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a b s t r a c t

We review the literature on individual patient organ acceptance decision making by presenting a
Markov Decision Process (MDP) model to formulate the organ acceptance decision process as a
stochastic control problem. Under the umbrella of the MDP framework, we classify and summarize
the major research streams and contributions. In particular, we focus on control limit-type policies,
which are shown to be optimal under certain conditions and easy to implement in practice. Finally,
we briefly discuss open problems and directions for future research.
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1. Introduction

Organ transplantation is a medical treatment where a trans-
lant surgeon removes an organ from a donor’s body and trans-
lants it into the body of a recipient (or patient) whose corre-
ponding organ is non-functioning, damaged or missing. Liver
nd kidney transplantations account for about 80% of the total
umber of organ transplantations in the U.S. every year, as organ
ransplantation is the best option for end-stage kidney disease
ESKD) patients and the only therapy for end-stage liver disease
ESLD) patients. Organ transplantation is also applied in the treat-
ent of end-stage lung disease, heart failure, diabetes (due to
on-functioning pancreas) and other organ failures. Depending
n the donor, a donated organ is classified as a deceased donor
r living donor organ. Living donor organ transplantation,1 as an

alternative to deceased donor organ transplantation, has become
popular in recent years due to the growing need for transplanta-
tion, the shortage of deceased donor organs and its satisfactory
performance. The outcome of living donor liver transplantation
is comparable to the outcome of deceased donor liver transplan-
tation [1]. Living donor organs may even be preferable among
ESKD patients, as living donor recipients in general have better
quality of life and societal participation than deceased donor re-
cipients [2]. Though organ transplantation is the preferred option

✩ This material is based upon work supported by the National Science
Foundation, United States under Grant IIS-2123684 and the U.S. Air Force Office
of Scientific Research under Grant FA95502010211.
∗ Corresponding author.

E-mail address: marcus@umd.edu (S.I. Marcus).
1 In living donor organ transplantation, only part of a donor’s organ is

removed. For example, a living donor may be able to donate one of their kidneys,
one liver lobe, a lung or part of the lung, part of the pancreas or part of the
intestines. However, living heart donation is currently not feasible.
ttps://doi.org/10.1016/j.sysconle.2023.105476
167-6911/© 2023 Elsevier B.V. All rights reserved.
of ESLD and ESKD patients, risks include those associated directly
with the transplant surgery itself, as well as acute and chronic
rejection of the donor organ, infections and side effects of taking
medications (for anti-rejection or immunosuppressants) [3].

Patients eligible for transplantation have to join the waitlist
of the United Network for Organ Sharing (UNOS), which allocates
donated organs across the U.S. Once an organ is available, eligible
patients on the waitlist will be prioritized by a complex scoring
and ranking system. An available organ will be offered to patients
successively until it is accepted. It has to be transplanted into
the recipient as soon as possible and will be discarded if no one
accepts it by a certain deadline. The time during transport is
called the ‘‘cold ischemia time’’. The shorter the cold ischemia
time is, the better the transplant outcome. Besides joining the
UNOS waitlist, ESKD patients with incompatible directed2 living
donors have the option of joining a kidney paired donation (KPD)
program, where living donor kidneys are swapped such that each
patient is paired with a compatible donor.

Because there is a shortage of organ donors, patients often
have to wait for a long time, which could be several months or
even years, depending on the type of organ. According to the
UNOS database [4], newly listed patients for kidney transplanta-
tion have increased 21% from 2010 to 2019, while liver listings
increased 12%, and heart and lung listings increased more than
30%. The kidney waitlist is even six times longer than the number
of transplantation performed in 2019, and waitlists for liver, heart
and lung transplantations are at least double the number of cor-
responding transplantations performed. In addition, researchers
observe that a large portion of kidney and liver offers are declined

2 A directed donor specifies the patient, usually a parent, family member or
friend, who will receive their donated organ. A non-directed living donor does
not name or have an intended recipient.
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y at least one candidate before being accepted for transplanta-
ion, frequently due to unsatisfactory quality [5,6]. This raises the
uestion: how should an individual patient behave regarding the
cceptance of an organ for transplantation?
Patients make their decision under various uncertainties, in-

luding their future health status, availability of organ offers, and
utcomes of the transplant surgery. A good organ acceptance
trategy should reduce patient’s risk and improve their quality of
ife and total lifetime expectancy. For example, low quality organs
re often rejected by relatively healthy patients, who are more
illing to wait longer for a potentially better offer than patients

n poor health [6]. However, patients will be more likely to accept
oor quality organs if the probability of getting an offer decreases
s the waitlist increases. A patient’s personal preferences, includ-
ng their risk preference and expectations for life and health, also
lays an important role in decision making. From a policy maker’s
erspective, understanding patient behavior helps increase the
fficiency of the organ allocation system and enhances the social
elfare.
Markov Decision Processes (MDPs) [7] provide a general mod-

ling paradigm for dynamic decision making under risk and un-
ertainty, and various MDP models have been proposed to study
ndividual patient liver and kidney acceptance [8]. These models
an also be modified to study the acceptance of other organs, in-
luding pancreas, lung and heart. The primary stochastic elements
o be modeled include the patient’s medical status, availability
f organ offers and outcomes of transplantation. The goal is then
o determine an acceptance strategy that maximizes the benefit
f an individual patient (the decision maker). Control limit-type
olicies have been shown to be practical and desirable, through
oth rigorous theoretical arguments and empirical studies. When
iscussing specific models, we will focus on the corresponding
ptimal policies and their underlying intuition.
The rest of the paper is organized as follows: In Section 2,

we present a general MDP framework to show how to formulate
the individual patient organ acceptance as a stochastic control
problem. In particular, we introduce the concept of a control limit
policy. In Section 3, we present various specific MDP models un-
der the umbrella of the MDP framework. We identify the primary
stochastic elements of the organ acceptance problem from their
models and discuss their corresponding optimal policies. Finally
in Section 4, we point out potential open research problems and
future directions.

2. MDP framework

In this section, we first describe the individual patient organ
acceptance problem and propose an MDP model to illustrate
the basic idea of modeling the organ acceptance as a stochastic
control problem. Then we introduce the concept of control limit
policies discussed in the context of organ acceptance.

2.1. Problem settings and model formulation

Our study focuses on the individual patient decision making
regarding the acceptance of an organ for transplantation. The
decision problem is whether to accept the offered organ based
on patient medical status and characteristics of the organ offer.
If accepted, the patient will undergo the transplantation, and
the decision process terminates, whereas if rejected, the offer
will be discarded, and the patient will wait for the next offered
organ. The future patient state, availability of organ offers and
outcomes of transplantation are the primary stochastic elements
to be modeled. The patient will make a decision based on both
patient and organ states. The objective is to maximize the total
2

benefit of patient, for instance, the total quality-adjusted life
years (QALY), over the entire decision process.

Now we present an MDP framework to properly depict the
above-mentioned ingredients. With the exception of one model,
we consider discrete-time MDP models only, where the set of
decision epochs is the natural numbers N. At each epoch, both
patient state and organ offer are updated, and the patient has to
make a decision on acceptance.

State of patient and organ offer stochastic processes
We define the following stochastic processes to describe the

evolution of patient state and organ offer over time.

• {ht}t∈N: patient state. ht ∈ SH ⊆ R+ is a scalar representing
the medical status of patient. For example, ht could be a
composite index computed by patient’s lab test results and
other characteristics. If the patient dies, we set ht = 0.

• {kt}t∈N: organ offer state. kt ∈ SK ⊆ R+ is a scalar represent-
ing the characteristics (e.g., the quality or match level) of
the offered organ at time t . We assume that there is at most
one organ offer arriving at each decision epoch. If there is
no organ offer arriving at t , we set kt = 0.

The state space is SH × SK .

Remark 1. The term ‘‘offered organs’’ refer to organs offered to
patients on the UNOS waitlists, predominantly deceased-donor
organs. Note that at each epoch, patients may have multiple
choices of organs even though we assume that at most one organ
offer arrives. For example, patients with directed living donors
(who are relatives of the patient in most cases) may simulta-
neously join the UNOS waitlist. They may choose either offered
deceased-donor organs or those from directed living donors.

Remark 2. In practice, the UNOS and transplant surgeons use
some (scalar) composite indices to measure the medical status
of a patient or a donor organ. For example, they use the model
for end-stage liver disease (MELD) score, which is a weighted
average of some blood testing results, to measure how severe a
patient’s liver disease is. Other examples include the estimated
post transplant survival (EPTS) score, which measures the medical
status of an ESKD patient, and the kidney donor profile index
(KDPI) score, which evaluates the quality of a kidney offer.

We assume that the patient has at most one directed living
donor over the entire decision process, and the organ from the
directed living donor is always available and has fixed character-
istics kLD ∈ SK .

Remark 3. For a continuous-time model, it is more natural
to consider an increasing sequence of stochastic arrival times
(e.g., arrival times of a Poisson process) of organ offers {Un}n∈N.
Organ offers are available only at the random instants {Un}n∈N at
which the patient has to make a decision regarding acceptance.

Action & action space
Define {at}t∈N to be the patient actions over time. For each

t ∈ N, at ∈ A = W
⋃

T where A is the action space including

• W : the set of non-transplantation actions. For example, a
ESKD patient may go on medication or dialysis;

• T = {TD, TLD}: the set of transplantation actions where TD is
to transplant with the organ offered by the UNOS and TLD is
to transplant with the organ donated by the directed living
donor (if there is one).

Since most models to be discussed in Section 3 have finite
state and action spaces, to simplify notation, we assume hence-
forth that the MDP model has finite state and action spaces,
i.e., SH , SK and A are finite sets. Extensions to more general
settings are straightforward, in terms of modeling.
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At each decision epoch t ∈ N, patient state ht evolves ac-

cording to the Markov transition probability function p(·|·, ·), p :

SH × SH × A ↦→ [0, 1], i.e., at t + 1, patient state transitions to
ht+1 with probability (w.p.) p(ht+1|ht , at ). Denote by K(kt |ht ), K :

SK × SH ↦→ [0, 1], the (conditional) probability for a patient in
state ht to receive an offer of state kt . The distribution of organ
offer state kt depends only on the current patient state ht , not
on the history of patient state and organ offer. kt is not directly
affected (controlled) by the patient’s action (decision).

We set {(h, k) ∈ SH × SK | h = 0} to be absorbing states, as
= 0 represents death.

ewards & objective functions
At decision epoch t , a patient in state ht who takes a non-

ransplantation action at ∈ W receives an intermediate reward
(ht , at ), r : SH × W ↦→ R+. The offered organ arriving at t is no
onger available to the patient after t . Set r(0, a) = 0, ∀a ∈ W ,
i.e., no reward accrues after the patient dies.

If the patient accepts an organ by taking TD or TLD, the decision
process terminates. When taking TD, the patient receives the
terminal transplantation reward RD(ht , kt ), RD : SH × SK ↦→ R+;
when taking TLD, the patient receives the terminal transplantation
reward RLD(ht , kLD), RLD : SH × SK ↦→ R+, where kLD, the
characteristics of the organ from the directed living donor, is a
constant. Reward functions RD and RLD take into account all the
short-term and long-term effects of the transplantation, as the
decision process terminates after the transplantation. Similarly,
we set RD(0, k) = RLD(0, k) = 0, ∀k ∈ SK .

This type of MDP model falls into a special class of MDP
models called optimal stopping problems. Denote by τ = min{t ∈
N | at ∈ T } the random terminal time when the patient undergoes
transplantation. Given a policy π : N×SH×SK ↦→ A, the expected
total discounted reward at the start with initial state (h0, k0) is
given by

fπ (h0, k0)

=E

(
τ−1∑
t=0

β t r(ht , π (t, ht , kt ))

+ βτR(hτ , kτ , π (τ , hτ , kτ ))
⏐⏐⏐⏐ (h0, k0)

)
,

(1)

where β ∈ (0, 1] is the discount factor and R(ht , kt , a) :=

1{a=TD}RD(ht , kt ) + 1{a=TLD}RLD(ht , kLD) is the transplantation re-
ward.

A policy π is called a stationary policy if it does not depend
on time, i.e., there exists a function d : SH × SK ↦→ A such
that π (t, ·, ·) = d(·, ·), ∀t ∈ N. It can be shown that there
exists a stationary optimal policy for the MDP model proposed in
Section 2 [9]. Therefore, we will only consider stationary policies
from now on. The goal is to find a policy π∗

∈ Π such that

π∗
∈ argmax

π∈Π

fπ (h0, k0), ∀(h0, k0) ∈ SH × SK ,

where Π is the set of all the feasible stationary policies. Denote
the maximum expected total discounted reward function (also
known as the value function) by V := fπ∗ .

2.2. Control limit policies

Finding the optimal solution of this MDP problem translates
into finding a partition of the state space SH × SK , where each
part of the partition is assigned an optimal action. For individual
patient organ acceptance MDP models, many researchers have

proposed optimal policies built on the idea of a control limit policy.

3

Definition 1. Suppose that an MDP model has a one-dimensional
state space S ⊂ R and an action space A. A stationary policy
π : S ↦→ A is called a control limit policy if there exists a finite
collection of intervals {Ii}ni=1 partitioning R and satisfying

1. For any a ∈ A, there exists at most one interval Ii satisfying
π (s) = a, ∀s ∈ Ii

⋂
S;

2. For any interval Ii, there exists a ∈ A such that π (s) =

a, ∀s ∈ Ii
⋂

S.

Endpoints of intervals {Ii}ni=1 are called control limits.

The simplest and most common control limit policy, where
n = 2, takes the following form:

π (s) =
{
a1 if s < s∗,
a2 if s ≥ s∗.

(2)

This control limit policy is easy to implement: if the value of state
s is less than control limit s∗, take action a1; otherwise take action
a2. If there exists a control limit optimal policy, solving the MDP
problem boils down to finding the optimal control limits, which
can be solved efficiently. Control limit optimal policies exist in
many classes of MDP problems, including machine maintenance
and replacement, inventory control and asset allocation [7].

The MDP model we proposed has a vector-valued state (ht , kt )
to which Definition 1 does not apply. However, under suitable
conditions, by fixing the value of one state variable and project-
ing the state space onto the other dimension, researchers have
established optimal policies that take the form of a control limit
policy (in one-dimension).

Definition 2. A stationary policy π : SH × SK ↦→ A is called a
patient-based control limit policy if for each k ∈ SK , there exists
a finite collection of intervals {Iki }

nk
i=1 partitioning R and satisfying

1. For any a ∈ A, there exists at most one interval Iki satisfying
π (h, k) = a, ∀h ∈ Iki

⋂
SH ;

2. For any interval Iki , there exists a ∈ A such that π (h, k) =
a, ∀h ∈ Iki

⋂
SH .

Definition 3. A stationary policy π : SH × SK ↦→ A is called an
organ-based control limit policy if for each h ∈ SH , there exists a
finite collection of intervals {Ihi }

nh
i=1 partitioning R and satisfying

1. For any a ∈ A, there exists at most one interval Ihi satisfying
π (h, k) = a, ∀k ∈ Ihi

⋂
SK ;

2. For any interval Ihi , there exists a ∈ A such that π (h, k) =
a, ∀k ∈ Ihi

⋂
SK .

Both control limit policies are intuitive: the decision maker
should accept an organ offer if the offer is of sufficiently good
quality, or the patient health is worse than some threshold. Note
that existence of a patient-based control limit optimal policy does
not imply the existence of an organ-based control limit optimal
policy, nor vice versa. A counterexample is provided in Fig. 1.

Action spaces of most MDP models to be reviewed consist
of only two actions: reject the offer and wait (W ), and accept
the offer for transplantation (T ). If both patient-based and organ-
based control limit optimal policies exist, it is easy to show that
there exists an optimal policy such that states for which optimal
actions are W and T are respectively contained in two disjoint
connected subsets of R2

+
, as illustrated in Fig. 2.

Some researchers also establish a similar result when |A| =
3 [10]. In general, if |A| ≥ 3, the existence of both patient-
based and organ-based control limit optimal policies does not
guarantee that there exists an optimal policy that allows R2

+
to

be partitioned into at most |A| connected decision regions. A

counterexample is provided in Fig. 3.
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Fig. 1. Assume an optimal policy for an MDP model with A = {W , T } is depicted
above. Then the corresponding patient-based optimal policy is a control limit
policy, but the corresponding organ-based policy is not a control limit policy.
For example, for fixed h1 ∈ SH , action W is specified in two disjoint intervals
[0, k1] and [k2,∞).

Fig. 2. For an MDP model with A = {W , T }, if both patient-based and organ-
ased control limit optimal policies exist, then there exists an optimal policy
uch that states for which optimal actions are W and T are contained in two
isjoint connected subsets.

Fig. 3. For an MDP model with |A| = 3, suppose that its unique optimal policy
s depicted above. Both patient-based and organ-based control limit optimal
olicies exist. However, action a3 is optimal in a disconnected region.

. Model review

In this section, we start with the only continuous-time model
eviewed in this paper. Then we discuss a paradigm for discrete-
ime models in Section 3.2, which is fairly close to the model
4

proposed in Section 2. Discrete-time models in subsequent sub-
sections can be viewed as variants of the paradigm.

3.1. A continuous-time model

Model formulation
The continuous-time model in this section is the earliest one

that formulates the kidney acceptance as an infinite-horizon op-
timal stopping problem [11]. The patient’s remaining lifetime at
the beginning of the decision process is represented by a random
variable τ . The action space is A = {W , T }, where W is to reject
the offer and wait, and T is to accept the offer for transplantation.
As mentioned in Remark 3, the patient makes their decision only
at arrival times of kidney offers {Un}n∈N, as W is the only available
action at any t /∈ {Un}n∈N. States of kidney offers form a se-
quence of independent and identically distributed (i.i.d.), positive,
bounded random variables {kn}n∈N having distribution function F .
{kn}n∈N, {Un}n∈N and τ are mutually independent. {(Un, kn)}n∈N is
marked point process.
There is a terminal transplantation reward only. At time Uj, if

he offer kj is accepted, the decision process terminates and the
atient receives the terminal reward β(Uj)kj, where β : R+ ↦→

0, 1] is a nonincreasing discount function; otherwise, the offer is
iscarded, and the process continues until another offer arrives
r the process terminates by itself (i.e., the patient’s remaining
ifetime is zero). Denote 1 − αj+1 = P(τ ≤ Uj+1|τ > Uj)
he probability that the process terminates by itself before the
j+1)th arrival time Uj+1, given that the patient survives through
j.

tructure of the optimal policies
It is proved that organ-based control limit optimal policies

xist under three organ arrival patterns. Moreover, conditions
hat the optimal control limit has to satisfy are derived.

1. Fixed arrival instants. Suppose that {Un}
N
n=0 is a finite se-

quence of constants for some N ∈ Z+ and the process
terminates by itself at UN if the patient is still alive but
no offer is accepted by UN . By backward dynamic program-
ming, λj

N , the maximum expected total discounted reward
starting at Uj if the jth offer is rejected, can be recursively
defined by

λ
j
N = αj+1

⎛⎝λ
j+1
N F

(
λ
j+1
N

βj+1

)
+

∫
∞

λ
j+1
N

βj+1

βj+1xdF (x)

⎞⎠ , (3)

where βj := β(Uj). Therefore, an optimal policy takes the
following form: accept the jth offer if and only if kj >

λ
j
N/βj. Moreover, this result is extended to the correspond-

ing infinite horizon problem by taking N → ∞. Let lj =
limN→∞ λ

j
N and γj = lj/βj. Taking N → ∞ in (3),

lj = αj+1βj+1

(
γj+1F (γj+1)+

∫
∞

γj+1

xdF (x)

)
.

In this case, it is optimal to accept the jth offer if and only
if kj > γj.

2. Deteriorating lifetime and renewal-type arrival of offers. Sup-
pose that G is the distribution function of lifetime τ and
interarrival times {(Uj−Uj−1)}∞j=1 are i.i.d. with distribution
function H . If the process does not terminate and an offer of
quality k arrives at time t, V (t, k), the maximum expected
total discounted reward starting at t is given by

V (t, k) = max(β(t)k, λ(t)), (4)
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Fig. 4. Function λ(t) and corresponding critical times. For example, during time
interval [t2, t3), the optimal strategy is to accept the organ offer if and only if
t takes the value x1 or x2 .

where λ(t) =
∫
∞

0 G(s|t)
(∫

∞

0 V (t + s, y)dF (y)
)
dH(s) is the

maximum expected total discounted reward when the of-
fer is rejected. G(s|t) = P(τ > t+s|τ > t) is the probability
of survival beyond t + s, given that the process survives at
t .
If G has the increasing failure rate (IFR) property, i.e., G(s|t)
is nonincreasing in t for any s ≥ 0, there exists an optimal
policy fully characterized by λ(t): it is optimal to accept
an offer of state k at time t if and only if k > λ(t)/β(t).
Moreover, λ(t) is continuous and nonincreasing on [0,∞).
λ(t) monotonically decreasing is intuitive: as time passes,
the probability that the process terminates by itself in-
creases due to the IFR property of G. So, patients tend to
tolerate and accept low quality organs, as they get zero
reward if the process terminates by itself. IFR is a widely-
used concept to describe the wearing out of a system; it is
also a necessary condition for the optimality of the control
limit policy to hold here.
A special case studied is where lifetime τ has an Erlang
distribution (which is IFR), the organ arrival process is a ho-
mogeneous Poisson process with intensity µ, and discount
function β(t) ≡ 1 [12]. Each kn admits a finite number
of values ∞ > x1 > · · · > xm > 0 with probabil-
ities p1, . . . , pm respectively. Since λ(t) is monotonically
decreasing, critical times when the acceptance criterion
changes are defined by

ti =
{
max{0, λ−1(xi)} if inft∈R+

λ(t) < xi
∞ otherwise,

i = 1, . . . ,m.

Critical times satisfy 0 = t1 < t2 < · · · < tm ≤ ∞ where
for each i, t ∈ [ti, ti+1] implies xi+1 ≤ λ(t) ≤ xi (setting
xm+1 = 0, tm+1 = ∞). Therefore, there exists an optimal
policy taking a simple form: During each time interval
[ti, ti+1), i = 1, . . . ,m, accept the offer of value xk if and
only if k ≤ i. Fig. 4 provides an example of function λ(t)
and corresponding critical times. Another study discusses
the related computational issues and provides an analytic
expression for λ(t) [13].

3. Nonhomogeneous Poisson arrival process. Suppose that the
organ arrival process is a nonhomogeneous Poisson process
with continuous intensity function µ(t). λ(t), defined as in
the previous case, satisfies an ordinary differential equation
(ODE)

λ′(t) = r(t)λ(t)− β(t)µ(t)
∫

∞

λ(t)
F (x)dx, (5)
β(t)

5

where F (x) = 1 − F (x), r(t) = g(t)/(1− G(t)) is called
the failure rate function and g is the density function of G.
Note that the previous case is a special case of this one if
the organ arrival process is a homogeneous Poisson process
with constant intensity µ, and then λ(t) can be obtained by
solving (5).

.2. Discrete-time model paradigm: Deceased donor liver

The optimal acceptance of deceased donor livers for patients
n the deceased donor waitlist is reviewed in this section. A
iscrete-time infinite-horizon MDP model is proposed [14], in
hich the state is a two-dimensional vector describing both
atient health and quality of the organ offer. The waitlist mech-
nism is implicitly modeled by the chance of a patient in various
ealth states to receive organ offers of various qualities. Instead
f including a terminal transplantation reward only as in Sec-
ion 3.1, the goal is to maximize the total quality adjusted lifetime
xpectancy (QALE) of the patient over the entire decision pro-
ess. This model is also discussed thoroughly in another tutorial
aper [15].
At each time t ∈ N, the state of the MDP is a random vector

ht , kt ), where ht ∈ SH = {1, . . . ,H,H+1} represents the state of
he patient. A larger value of ht implies worse patient health, and
+1 represents death. kt ∈ SK = {1, . . . , K , K+1} represents the
tate of the organ offer. A larger value of kt implies worse quality,
nd K + 1 represents ‘‘the organ is unavailable’’. Action space
= {W , T } is the same as Section 3.1, where T is to transplant,

nd W is to reject and wait. At epoch t , if a patient in ht accepts
he organ offer of state kt , they receive the terminal transplanta-
ion reward R(ht , kt ), and the process terminates. Otherwise, that
rgan offer is no longer available after t , and the patient receives
n intermediate reward r(ht ) for being alive for one more epoch.
t the next epoch t+1, the state vector transitions to (ht+1, kt+1)
.p. H(ht+1|ht )K(kt+1|ht+1), where H(ht+1|ht ) is the (conditional)
robability that the patient is in ht+1 at epoch t + 1, given that
hey are in ht and do not undergo transplantation at epoch t;
(kt+1|ht+1) is the (conditional) probability for a patient in state
t+1 to receive an offer of state kt+1 (recall that we assumed in
ection 2 that the distribution of organ offer kt depends only on
he current patient state ht ). The decision process terminates if
he patient undergoes transplantation or dies.

emark 4. Note that the models in Sections 3.2 through 3.4 use
the convention that larger values of ht (or kt , respectively) implies
worse patient health (or organ quality, respectively).

V (h, k), the maximum expected total discounted reward at the
start with initial state (h, k), satisfies Bellman’s equation{
V (h, k) = max{R(h, k), VW (h, k)} if h ≤ H
V (H + 1, k) = 0,

∀k ∈ SK , (6)

where

VW (h, k) = r(h)+ β
∑
h′∈SH

V (h′)H(h′|h),

V (h) =
∑
k∈SK

V (h, k)K(k|h).

VW (h, k) is the maximum expected total discounted reward by
choosing W at the initial state (h, k) and V (h) is obtained by
taking expectation of V (h, k) over k.

Assuming the IFR property for H and monotonicity for reward
functions, V (h, k) is proved to be nonincreasing in both h and
k, i.e., the expected total discounted reward does not increase
if the patient health deteriorates or the quality of organ offer
drops. Moreover, both organ-based and patient-based control
limit optimal policies exist under suitable conditions [14]. With
A = {W , T }, optimal policies are given by the following:
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1. Organ-based control limit optimal policy: for a patient in
state h, it is optimal to accept the organ offer if and only
if its quality is sufficiently good, i.e., if the organ state k is
less than some control limit K ∗(h), K ∗

: SH ↦→ SK .
2. Patient-based control limit optimal policy: given an organ

offer of state k, it is optimal to accept it if and only if the
patient’s health is sufficiently poor, i.e., if the patient state
h is greater than some control limit H∗(k), H∗

: SK ↦→ SH .

Both control limit policies are intuitive: the patient will accept
the organ offer if either the organ is of sufficiently good quality,
or the patient is in medically urgent condition (e.g., in bad health
state). When both types of control limit optimal policies exist,
it is straightforward to show that there exist H∗ and K ∗ that
are monotone and the inverse of each other. As a result, states
for which optimal actions are transplant (T ) and wait (W ) are
contained in two disjoint connected subsets of R2

+
(See Fig. 2 for

n example).

isk-sensitive patients
This model can be modified to study risk-sensitive patients

ho want to maximize expected total utility rather than re-
ard [16]. An exponential utility function u(x) = 1−e−γ x, γ > 0,

s used to model risk-averse patients, where u(x) is the patient’s
tility from surviving x time epochs.
The state space and dynamics remain the same, but the reward

ow is measured in terms of patient lifetime instead of QALE.
enote the post-transplantation lifetime by a random variable j
hich takes values in ST = {0, 1, . . . , J}. For patients in state h,

f they accept an offer of state k, a transplantation reward j is
onferred w.p. J(j|h, k); otherwise, the transplantation does not
appen and one unit reward accrues for being alive for one more
poch. The value function V satisfies Bellman’s equation:

V (h, k) = max{V T (h, k), VW (h, k)} if h ≤ H
V (H + 1, k) = 0,

∀k ∈ SK , (7)

here

V T (h, k) = u−1

⎛⎝∑
j∈ST

J(j|h, k)u(j)

⎞⎠ ,

W (h, k) = u−1

⎛⎝∑
h′∈SH

∑
k′∈SK

H(h′|h)K(k′|h′)u(1+ V (h′, k′))

⎞⎠ .

T (h, k) is the certainty equivalent [17] of the expected post-
ransplantation utility: if a patient in state (h, k) chooses trans-
lantation, their expected utility is

∑
j∈ST

J(j|h, k)u(j), which is
qual to the utility of being alive for V T (h, k) epochs. Similarly,
W (h, k) is the certainty equivalent of the expected utility from
hoosing W , and V (h, k) is the certainty equivalent of the ex-
ected utility from making the optimal decision.
Monotonicity of value functions and existence of both types of

ontrol limit optimal policies can still be proved, but organ-based
nd patient-based results are slightly different [16]:

1. Organ-based results: for fixed h, V (h, k) is convex and
nonincreasing in k. Moreover, there exists an organ-based
control limit optimal policy.

2. Patient-based results: for fixed k, V T (h, k) is convex and
nonincreasing in h. Moreover, there exists a patient-based
control limit optimal policy.

.3. Variant 1: Living donor liver

By removing the organ offer process {kt}t∈N, the model in Sec-

ion 3.2 can be modified to study the behavior of an ESLD patient j

6

ith a directed living donor who wants to decide the optimal
iming of transplantation [18]. Assume that the living donor organ
s always available and its quality is a constant. Dynamics and
eward functions are similar to those in Section 3.2: by taking T ,
patient in ht receives a terminal transplantation reward R(ht )
nd the decision process terminates; otherwise, the patient who
akes W receives an intermediate reward r(ht ), and at the next
poch, the patient state transitions to ht+1 w.p. H(ht+1|ht ). V (h),
he maximum expected total discounted reward at the start with
nitial state h, satisfies Bellman’s equation [19]

V (h) = max{R(h), r(h)+ β
∑

h′∈SH
V (h′)H(h′|h)} if h ≤ H,

V (H + 1) = 0.
(8)

imilar to Section 3.2, it is proved that V is nonincreasing and
here exists a patient-based control limit optimal policy: it is
ptimal to accept the living donor organ if and only if the patient’s
ealth is sufficiently poor, i.e., the patient state h is greater than
ome control limit H∗, which is a constant in this case.

robust MDP formulation
This model is further studied under uncertain patient state

ransition probabilities [20]. A robust MDP model is proposed
here the transition probability measure may vary within a
et constructed by relative entropy (Kullback–Leibler divergence)
pper bound. Specifically, Bellman’s equation is given by

V (h) = max

{
R(h),

r(h)+ β infp∈P(h)
∑

h′∈SH
V (h′)p(h′)

}
if h ≤ H

V (H + 1) = 0,

(9)

here V is the worst-case value function, P(h) is a set of proba-
ility measures over SH , which describes transition probabilities
f patient state starting from h ∈ SH . P(h) is a ‘‘ball’’ centered at
he maximum likelihood estimate with radius to be the relative
ntropy upper bound in the space of probability measures:

(h) = {p ∈ M(SH ) | D(p ∥ p̂h) ≤ β(h)},

here M(SH ) is the set of all the probability measures over SH , D
enotes the Kullback–Leibler divergence, p̂h is the maximum like-
ihood estimate of transition probability measure starting from
, and β(h) is called the level of ambiguity. The original model
hat directly uses the maximum likelihood estimate p̂h as the true
ransition probability measure is called the myopic model. It can
e shown that there exists a stationary optimal policy for the
obust MDP model [19]. The optimal policy of the robust model
as the following properties [20]:

1. As the level of ambiguity increases, the optimal action is to
transplant sooner (i.e., to transplant in healthier states).

2. States in which the optimal action is transplantation under
the myopic model is a subset of states in which the optimal
action is transplantation under the robust model.

3. If both robust and myopic models have (patient-based)
control limit optimal policies, the control limit of the robust
model is lower than or equal to the control limit of the
myopic model. In other words, under the robust model,
patients will take transplantation in healthier states, com-
pared to the myopic model.

.4. Variant 2: Choosing among living donor and deceased donor
ivers

A patient with a directed living donor can simultaneously

oin the UNOS deceased donor liver waitlist [10,21], which is a
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Fig. 5. An example of an AM3R policy that allows R2
+

plane to be partitioned
into three connected decision regions.

combination of cases considered in Sections 3.2 and 3.3. As in
Section 3.2, at each decision epoch t ∈ N, the state of MDP
is a random vector (ht , kt ) describing patient health and quality
of the deceased donor organ offer. Assume that the organ from
the directed living donor is always available and has fixed state
kLD. Now the action space is A = {W , TD, TLD}, including waiting
(W ), transplantation with the deceased donor organ (TD) and
ransplantation with the living donor organ (TLD). The decision
rocess terminates once the patient chooses TLD or TD. If the
atient accepts the deceased (or directed living) donor organ,
terminal transplantation reward RD(ht , kt ) (or RLD(ht , kLD)) is

onferred; otherwise, the patient receives an intermediate reward
(hn), and the state vector (ht , kt ) evolves in the same manner as
in Section 3.2. Now, Bellman’s equation becomes⎧⎪⎪⎨⎪⎪⎩
V (h, k) = max

⎧⎨⎩
RD(h, k),

RLD(h, kLD),
r(h)+ β

∑
h′∈SH

V (h′)H(h′|h)

⎫⎬⎭ if h ≤ H

V (H + 1, k) = 0,
∀k ∈ SK ,

(10)

here V (h) =
∑

k∈SK
V (h, k)K(k|h). The value function V (h, k)

s still nonincreasing in both h and k. Since the patient has at
ost three options now, they show the existence of the following
ontrol limit-type optimal policies [10]:

1. At-most-2-region-organ-based (AM2RO) optimal policy :
For fixed h, there exists a control limit K ∗(h), K ∗

: SH ↦→ SK
such that it is optimal to accept the deceased donor organ
if and only if k ≤ K ∗(h). Moreover, a∗(h, K ∗(h) + 1) =

a∗(h, K ∗(h) + 2) = · · · = a∗(h, K + 1), where a∗(h, k) is
the optimal action at state (h, k).

2. At-most-3-region optimal (AM3R) policy: For fixed k, there
exists a control limit H∗(k), H∗

: SK ↦→ SH such that it is
optimal to wait if and only if h ≤ H∗(k). Moreover, there
exists an AM2RO optimal policy.

onsequently, when an AM3R optimal policy exists, for each a ∈

A, there exists a connected subset of R2
+

containing those states
for which a is optimal. Moreover, these subsets are mutually
disjoint. An example is depicted in Fig. 5. The AM3R optimal
olicy has an intuitive explanation: for patients in good health,
hey should either wait or accept deceased donor organs of good
uality; once their health status deteriorates below some thresh-
ld, they should transplant with the living donor organ unless the
urrently available deceased donor organ has better quality.
7

3.5. Variant 3: Optimal timing to start dialysis treatment and accept
a kidney offer

In kidney transplantation, the timing to start dialysis has great
impact on the outcome of transplantation [22,23]. A discrete-time
infinite horizon MDP model is developed to study the impact
of dialysis [24]. This model can still be regarded as a variant
of the one in Section 3.2, by incorporating actions, dynamics
and rewards related to dialysis. Specifically, before undergoing
transplantation or death, the patient could be on medication
without starting dialysis or on dialysis. If the patient is on med-
ication, three actions are available: medication (M), dialysis (D)
and transplantation (T ). Once the patient starts dialysis, they
have to continue on dialysis until transplantation or death. So,
a patient on dialysis can only choose action D or T . Patient state
transition probability matrices and reward functions are different
when being on medication or dialysis. Several kidney offer arrival
patterns have been studied, and for each arrival pattern, criteria
are proposed to decide the optimal action. However, those criteria
are proved under restrictive conditions and are difficult to check
in practice.

Remark 5. Settings of the continuous-time model in Section 3.1
11] are relatively simple. In particular, the patient state is rep-
esented by a single random variable representing remaining
ifetime, which cannot model the progress of the disease, but en-
bles the optimal control limit to be precisely described (e.g., by
n ODE (5)) and efficiently computed [12]. Discrete-time models
onsidering Markovian evolution of the patient’s state establish
he existence of control limit optimal policies but do not provide
ny guidance on computing an optimal policy. The basic model
n Section 3.2 can be easily extended to study various settings in
ections 3.3 and 3.4, which also share similar structural proper-

ties, including the monotonicity of value functions and existence
of control limit-type optimal policies.

Now we present several studies which propose MDP models
and use empirical or statistical methods to find policies that are
reasonable and advantageous. These studies do not attempt to
establish any theoretical optimality results.

3.6. Variant 4: Continuous state space analog

The discrete-time infinite horizon MDP model [6] presented
in this section can be viewed as a continuous state space analog
of the one in Section 3.2. At each decision epoch t ∈ N, the
state vector (ht , kt ) takes values in (0, h] × (0, k] where larger
values of ht (or kt , respectively) implies better patient health
(or organ quality, respectively). Assume that {kt}t∈N is an i.i.d.
equence, also independent of {ht}t∈N, with distribution function
. If a patient rejects an organ offer, their state h evolves as a
arkov process specified by transition density function f (·|h), f :

0, h] × (0, h] ↦→ R+. If the patient accepts an organ offer of
value k, w.p. p(h, k), the transplantation is a success that confers a
terminal reward of B to the patient at the next epoch; otherwise,
the failed transplantation results in immediate death with zero
reward. The patient’s single period reward for being alive is u. The
process terminates when the patient undergoes transplantation
or dies. So, starting at state (h, k), the expected total reward from
accepting an organ is

V T (h, k) = p(h, k)B,

and the expected total reward from rejecting an organ and con-
tinuing to wait is

VW (h, k) =
∫ k ∫ h

V (h′, k′)f (h′|h)dh′dG(k′),

0 0
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here V (h, k) satisfies Bellman’s equation

V (h, k) = u+ β max(V T (h, k), VW (h, k)).

An organ-based control limit policy is proposed: there exists an
organ quality control limit function kc : (0, h] ↦→ (0, k] satisfying

T (h, kc(h)) = VW (h, kc(h)), ∀h, such that the organ should be
ccepted if k > kc(h). An empirical study shows that the control
imit function kc(h) decreases when the patient state h decreases
i.e., patient health deteriorates) or the waitlist increases. Their
esults coincide with and explain the behavior of patients in
ractice very well:

1. Low quality organs are rejected by relatively healthier pa-
tients.

2. As the waitlist increases, the use of poor quality organs is
increased, since the chance for a patient to receive organ
offers decreases.

.7. Other variants

Two studies presented in this section have state spaces en-
irely different from Section 2. The first study [25] proposes a
iscrete-time infinite horizon MDP model where the patient state
pace SH consists of five possible stages in the kidney transplan-
ation procedure: alive on dialysis waiting for transplantation
S1), not eligible for transplantation (S2), received a functioning
ransplant (S3), transplant failed (S4), and death (S5). Organ offer
tates {kn}n∈N are i.i.d., also independent of patient state. Action
pace is A = {W , T }, where W is to wait, and T is to transplant,
hich is available only in S1. In states other than S1, W is the only
ption.
An organ-based control limit-type policy based on the one-

ear graft survival rate is proposed: the patient should accept
n organ offer if its one-year graft survival rate exceeds the
rescribed threshold. The one-year graft survival rate and its min-
mum acceptable criterion can be estimated from characteristics
f both the patient and offered organ by empirical formulas. It is
otable that this estimation takes into consideration not only the
atient’s medical status but also their personal preference.
Once all the model parameters are specified, the patient’s

ALE in each state can be estimated by stochastic simulation.
imulation results show that patients who are in good medical
tatus or expect relatively high quality of post-transplant life can
e selective on which organs to accept for transplantation.
Finally, we describe a study on deciding the order of deceased

onor and living donor kidney transplantation for a pediatric pa-
ient with a directed living donor [26]. Similar to the other model,
he MDP considers five stages of the treatment procedure: on
he waitlist, post-transplantation with a deceased donor kidney,
ost-transplantation with a living donor kidney, after two graft
ailures, and death. The arrival and acceptance of organ offers
re implicitly modeled by transition of the state. Two strategies
re studied: living-donor-first followed if necessary by deceased
onor retransplantation versus deceased-donor-first followed if
ecessary by living donor (if still available to donate) or deceased
onor (if not) retransplantation. Once the patient chooses one
trategy, the transition probability can be estimated by empirical
ormulas. Patient survival for the subsequent 20 years (which can
e viewed as the patient’s total reward) is predicted by stochastic
imulation. Simulation results indicate that it is better for highly
ensitized patients to choose deceased-donor-first strategy. For

ther patients, living-donor-first strategy is preferred.

8

. Future research

We conclude our review by suggesting several future research
uestions and directions.
Compute the optimal control limit policy. Since closed-form

xpressions for control limit optimal policies (like (5)) are rare,
umerical solutions by simulation-based methods may be re-
uired, where multiple sample paths are generated by stochastic
imulation to estimate the performance of a given policy.
Consider more detailed patient and organ states. States of most

DP models we discussed are two-dimensional vectors that de-
cribe patient and organ characteristics. Such oversimplified set-
ings make it easier for researchers to derive structural results,
ncluding control limit-type policies. The real medical decision-
aking procedure is more complicated. Instead of a simple com-
osite index, a vector of detailed features of the patient and organ
onor including their ages, blood types and lab test results may be
more appropriate state definition for the MDP model. Structural
esults for such detailed models are likely to be more challenging
o find and prove.

Consider multiple treatment options. Most currently available
DP models have the following restrictions:

• The decision process terminates after a transplantation hap-
pens, and all the post-transplantation effect is summarized
by a terminal reward. These decision models are less helpful
for patients who are likely to experience retransplantations.
For example, in Section 3.4, patients with directed living
donors also enroll in the UNOS deceased donor waitlist.
They may choose living-donor-first followed if necessary by
deceased donor retransplantation, or the other way around.
A model that considers explicitly retransplantation might be
more appropriate in this case.

• In most MDP models, there are only two options available
(wait or transplant). Currently existing studies considering
multiple treatment options are not yet satisfactory. For ex-
ample, results in Section 3.5 are derived under restrictive
assumptions and hard to check in practice; the model in
Section 3.4 assumes that the living donor organ is always
available with static quality, while in practice, the avail-
ability of a living donor is uncertain as time passes. How
to properly model multiple treatment options and derive
corresponding structural results could be a future research
problem.

Distinguish different organs. Though most models are built in
he context of kidney or liver transplantation, they do not stress
eatures of different types of organs. As pointed out earlier, states
f most MDP models are two-dimensional vectors represent-
ng patient and organ states, which are applicable in model-
ng any type of organ acceptance. Future research could aim
o capture more specific characteristics of each type of organ
ransplantation. For example:

• Human leukocyte antigen (HLA) incompatibility is a major
barrier in kidney and heart transplantation, but the role of
HLA is less important or unclear in other types of organ
transplantation. To receive an incompatible kidney, ESKD
patients have to undergo desensitization treatment [27].
Some recent work in [28] studies the optimal acceptance
of (possibly) incompatible kidneys by explicitly incorporat-
ing the incompatibility as a state variable and establishes
control limit optimal policies.

• Hearts must be donated by recently deceased donors, i.e.,
there is currently no way to utilize living heart donors,
whereas living donors can be utilized for all other organs.
For instance, most people can get by with only one lung or
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kidney, which allows them to donate the other; for living
liver donors, they only donate a portion of their livers,
which will recover within several weeks after the transplant
surgery because of remarkable regenerative capacities of
human livers.

• ESKD patients may choose a lifetime on dialysis, as an al-
ternative to kidney transplantation. For other end-stage dis-
eases, organ transplantation is considered necessary when
the disease cannot be controlled by other treatment options.

Consider multi-organ transplantation. Combined pancreas-
kidney and liver–kidney transplantation are major types of multi-
organ transplantation [29]. Pancreas transplantation is a choice
for people with type 1 diabetes. If they have kidney failure
from diabetes, they may also accept a kidney transplant at the
same time. Other types of multi-organ transplantation, including
combined heart–lung, heart–kidney, lung–liver–pancreas, liver–
pancreas–kidney and heart–lung–liver transplantation, are also
performed in practice. Such settings may require new modeling,
analysis and solutions.

Include patient personal preference. For example, Section 3.2
considers risk-averse patients by applying an exponential utility
function and then studies a risk-sensitive MDP [16]. Such meth-
ods can also be applied to study risk-tolerant patients. Future
research could also study other risk measures, as well as other
types of preference incorporating financial considerations and
quality of life.

Design organ allocation policies. This review focuses on the
individual patient behavior, with the objective of maximizing
individual patient benefit, whereas a system view would consider
the design of organ allocation policies [30,31] where multiple pa-
tients are included and the decision-making process of individual
patients could be modeled via game theory, e.g., using Markov
game models.
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