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In this paper, we discuss decomposition in the context of three-dimensional Chern—Simons
theories. Specifically, we argue that a Chern—Simons theory with a gauged noneffectively-acting
one-form symmetry is equivalent to a disjoint union of Chern-Simons theories, with discrete
theta angles coupling to the image under a Bockstein homomorphism of a canonical degree-two
characteristic class. On three-manifolds with boundary, we show that the bulk discrete theta
angles (coupling to bundle characteristic classes) are mapped to choices of discrete torsion in
boundary orbifolds. We use this to verify that the bulk three-dimensional Chern-Simons de-
composition reduces on the boundary to known decompositions of two-dimensional (WZW)
orbifolds, providing a strong consistency test of our proposal.
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1. Introduction

Decomposition is the observation that some local quantum field theories are equiv-
alent to disjoint unions of other local quantum field theories, essentially a counter-
example to old lore linking locality and cluster decomposition. It was first* observed

" Corresponding author.

*For purposes of historical language translation, before the term “one-form symmetry” was coined, the-
ories with one-form symmetries were sometimes called “gerby” theories, in reference to the fact that a
gerbe is a fiber bundle whose fibers are higher groups.
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in Ref. 1 in two-dimensional (2D) gauge theories and orbifolds with trivially-acting
subgroups (nonminimally-charged matter),?> * and since then has been developed in
many other references, see e.g. Refs. 5-30 and 31-35 for reviews.

Decomposition is not limited to two dimensions, and indeed four-dimensional
versions of decomposition have been described in Refs. 16 and 18. The common
thread linking these different examples involves what is now called a higher-form
symmetry: a quantum field theory in d space—time dimensions decomposes if it has a
global (d — 1)-form symmetry (possibly realized noninvertibly).%:18

In this paper, following up,*’ we turn to decomposition in three-dimensional (3D)
Chern—Simons theories with gauged noneffectively-acting one-form symmetries.
Briefly, we find that

[Chern — Simons(H)/BA] = H Chern — Simons(G)y, (1.1)
0cK

where G = H/(A/K), K C A defines the trivially-acting subgroup, and 6 indicates a
discrete theta angle coupling to an appropriate characteristic class of G bundles, On
the boundary, this reduces to decomposition in noneffectively-acting orbifolds of 2D
WZW models. A key role is played by the fact that the bulk discrete theta angles
(coupling to bundle characteristic classes) become discrete torsion on the boundary,
a result we explain in detail. The fact that the bulk decomposition correctly implies a
known decomposition of the 2D boundary theory provides a strong consistency check
on our proposal.

In two dimensions, decomposition has had a variety of applications, for example
in giving nonperturbative constructions of geometries in phases of some gauged
linear sigma models (GLSMs),>3% % in Gromov—Witten theory,5 !! in computing
elliptic genera to check claims about IR limits of pure supersymmetric gauge theo-
ries,!” and recently in understanding Wang—Wen—Witten anomaly resolution.?” 2949

Chern—Simons theories are the starting point for many physics questions, and so
we anticipate that the results of this paper should have a variety of applications. For
example, as is well known, 3D AdS gravity can be understood as a Chern—Simons
theory,” making Chern—Simons theories a natural playground for addressing ques-
tions in 3D gravity, an approach used in e.g. Ref. 51 to address Marolf-Maxfield
factorization questions.’?> We anticipate that this work may have analogous uses.

Similarly, one of the original applications of 2D decomposition was to understand
phases of certain gauged linear sigma models, where decomposition was used locally
(ala Born—Oppenheimer) to understand IR limits of certain theories as non-
perturbatively-realized branched covers of spaces.” We expect that similar ideas
could be used to understand the IR limits of certain Chern—Simons-matter theories.

We begin in Sec. 2 with a review of decomposition in 2D WZW orbifolds, which
not only serves as a review of decomposition, but also describes the decomposition
pertinent to boundaries in the 3D Chern—Simons theories we discuss.

In Sec. 3, we describe the primary proposal of this paper, namely, decomposition
in Chern—Simons theories with gauged one-form symmetry groups, which takes the
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form (1.1). All Chern—Simons theories are assumed to have levels such that the
theories exist on the three-manifolds over which they are defined. We describe how
this bulk decomposition maps to boundary WZW models, and reproduces standard
results on decomposition in 2D noneffective orbifolds, which serves as a strong
consistency test of our claims. We also observe that in all these examples, the
boundary discrete theta angles (choices of discrete torsion in boundary WZW
models) are trivial, which is often reflected in the bulk discrete theta angles.

In Sec. 4, we discuss the spectra of these theories. We begin with an explanation
and review of monopole operators, local operators (analogues of twist fields in 2D
orbifolds) which can be used to construct projection operators. We then discuss line
operators. When gauging ordinary one-form symmetries, the standard technology of
anyon condensation can be used to describe the line operators. However, to describe
noneffectively-acting one-form symmetries (in which a subgroup acts trivially), as
relevant for this paper, requires a minor extension, which we propose and utilize.

In Sec. 5, we walk through the details of bulk and boundary decomposition,
spectrum computations, and consistency tests such as level-rank duality in a variety
of concrete examples.

Finally in Sec. 6, we briefly discuss the related case of boundary G /G models. These
2D theories decompose, and we briefly discuss their corresponding bulk theories.

In App. A, we summarize some results on line operators that are used in the main text.
In App. B, we give a brief overview of crossed modules, to make this paper self-contained,
as they are used in the description of 3D decomposition. In App. C, we describe gauging
effectively-acting one-form symmetries without appealing to line operators.

2. Warm-Up: Decomposition in WZW Orbifolds

As a warm-up exercise, let us briefly review decomposition in two dimensions, and
apply it towards orbifolds of WZW models.

Consider an orbifold [X/T'] where a central subgroup K C I acts trivially on X.
As has been discussed previously (see e.g. Ref. 1), for an ordinary (orientation-
preserving) orbifold

QFT([X/T]) = [] QFT([X/Glyw)), (2.1)
vk
where 0(w) is a choice of discrete torsion, given as the image of the extension class
[w] € H%(G, K) corresponding to
1-K—->T-G-—1 (2.2)
under the map 0 : K — U(1), yielding §(w) € H*(K,U(1)).

Consider a I' orbifold of a WZW model for a group H, with K C T acting trivially,
and G = T'/K a subset of the center of H, acting freely on H. Then, as a special case
of the decomposition above, we have that

(WZW (H)/T] = [[ WZW(H/G)g(.), (2.3)

0ck
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with both sides at the same level. That said, (ordinary) discrete torsion vanishes for
cyclic subgroups, so the only occasion on which (w) can be nontrivial will be if
H = Spin(4n) and I'/ K = Z, x Zy. (We will discuss that case in Subsec. 5.7.)

For example, consider a Z, orbifold of an SU(2) WZW model, where a Z, C Z,
acts trivially, and the Z, coset is the freely-acting center of SU(2). For an ordinary
(orientation-preserving) orbifold, since there is no discrete torsion in a Z, orbifold, we
have that

(WZW(SU(2))/Z4] = [ [ WZW(SO(3)) (2.4)

(with all WZW models at the same level).

Although we will not utilize orientifolds in this paper, in principle one can also
consider orientation-reversing orbifolds (orientifolds) of WZW models, see e.g.
Refs. 53-58. See Ref. 59 and references therein for discussions of discrete torsion in
orientifolds.

So far we have discussed discrete torsion weighting different universes. In prin-
ciple, WZW models can also be weighted by analogues of discrete theta angles.
Although these are better known in the case of gauge theories,” the point is that if a
group manifold G has a torsion characteristic class, some w € H?*(G, F) for some
coefficient module F', then there exists a discrete theta angle 6 € F that weights maps
into G, via a term in the action of the form

/ (6, 6 w), (2.5)
»

where ¥ is the worldsheet and ¢ : ¥ — G any map in the path integral. If G = G /Z
for some finite group Z, these discrete theta angles can also, for appropriate w,
correspond to choices of discrete torsion in a Z orbifold of a WZW model on G.

In Subsec. 3.3, we shall see that the choices of discrete theta angle above that arise
in the WZW orbifolds appearing on boundaries of decompositions of one-form-
gauged Chern—Simons theories, are the same as choices of discrete torsion.

3. Decomposition in Noneffective One-Form Symmetry Gaugings

In general terms, one expects a decomposition in a d-dimensional quantum field
theory whenever it has a global (d — 1)-form symmetry.16:1

A typical example of a decomposition in two dimensions involves gauging a
noneffective group action: a group action in which a subgroup acts trivially on the
theory being gauged, in the sense that its generator commutes with the operators of
that theory: [J, O] = 0. Gauging a trivially-acting group results in a global one-form
symmetry, which is responsible for a decomposition.

In principle, an analogous phenomenon exists in three dimensions, involving the

gauging of “trivially-acting” one-form symmetries. Here, for a one-form action to be

"Discrete theta angles in gauge theories in unrelated contexts have a long history, see e.g. Ref. 60 (Sec. 6 in
Ref. 61 and Sec. 4 in Ref. 36) for 2D examples and Refs. 6264 for four-dimensional examples.
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trivial means that it commutes with the line operators in the theory, as we shall
elaborate below.

In this section, after a short overview of the notion of noneffective one-form
symmetries, we make a precise prediction for decomposition.

3.1. Noneffective one-form symmetry group actions

We define a “trivially-acting” one-form symmetry in terms of the fusion algebra of
the corresponding lines, and a “non-effective” one-form symmetry is one in which a
subset of the lines acts trivially.

First, let us recall some basics of gauging one-form symmetries, which in three
dimensions we will be described by the fusion algebra of line operators (see e.g.
Subsec. 3.1 in Refs. 65-67 and Sec. 2 in Ref. 68) and references therein for a detailed
discussion, with gauging as in e.g. Ref. 69. Anomalies in such a gauging are discussed
in e.g. (Subsec. 2.3 in Ref. 51 and Sec. 2.1 in Refs. 70-73). In order to be gaugeable,
its 't Hooft anomaly must vanish, which requires that the lines be mutually
transparent, meaning that they have trivial mutual braiding. In particular, a one-
form symmetry necessarily has abelian lines, for which the braiding is completely
characterized by their spins (see e.g. Eq. (2.28) in Ref. 51 and Sec. 2 in Ref. 70),
schematically

where
B(a,b) = exp(2mi(h(a x b) — h(a) — h(b))), (3.2)

where a, b denote lines, and h(a) mod 1 is the spin of the line a. Note that if the spins
are integers, then B = 1 and there is no obstruction. Conversely, if B = 1, then spins
are integers or half integers.

We take® a “trivially-acting BK” to be described by a set of lines {g} such that all
other lines b both

1. have trivial monodromy under g, meaning B(g,b) = 1, and also are
2. invariant under fusion with g, g x b = b,

for all g. (In effect, there are two conditions in three dimensions, whereas invariance
in two dimensions really boils down to a single constraint of the form [J, O] = 0).

“We are using “B” to mean several different things in this section. We use BK to denote a one-form
symmetry, a standard notation in mathematics, going back decades. (In physics, the notation K is
sometimes used instead). Later, we will use BG to denote a classifying space. In this section, we also use
B(a,b) to denote line monodromies.
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To be clear, this notion can be somewhat counterintuitive. Consider for example
SU(2) Chern—Simons theory. This theory has a BZ, one-form symmetry defined by
the center of SU(2). However, although the classical action is invariant under the
center, the Wilson lines are not invariant, as the BZ, action multiplies Wilson lines
by phases (corresponding to the n-ality of the corresponding representation with
respect to the center). In particular, the BZ, action on SU(2) Chern—Simons theory
defined by the center of SU(2) is not trivial.

3.2. Basic decomposition prediction

In Ref. 30, it was argued that in a quotient by a 2-group I' of the form
1-BK—-T—G—1, (3.3)

where the BK acts trivially, the path integral sums over both K gerbes and a subset
of G bundles, specifically G bundles satisfying a constraint.

In general, if one has a group H and an abelian group A with amapd: A — H
whose image is in the center of H, then the crossed module! I'. = {A — H} defines
a 2-group we shall label I'. So long as we are interested in flat bundles, we can
apply the same analysis as Ref. 30, and argue that [ bundles on a three-manifold M
map to G = H/im A bundles satisfying a condition. This 2-group fits into an exact
sequence

1—>K—>Ai>H—>G—>1, (3.4)

where K = Ker d. (Physically, d just encodes the A action, by projecting it to a
subgroup of the center of H). This exact sequence defines an element

w€ Hpyop(G, K) = H,\,(BG, K), (3.5)

group
which we will give explicitly in (3.9), and the condition that G bundles must satisfy
to be in the image of " bundles is that

P'w =0, (3.6)
for ¢ : M — BI" the map defining the I" bundle on M, for the same reasons discussed
in Ref. 30.

Next, we describe the element w corresponding to the extension (3.4), appearing
in the constraint (3.6) above. Let Z = imd C Z(H), the center of H, and wg the
Z-valued degree-two characteristic class for G correspond to a generator of
HZ,.(BG, Z). (For example, for G = SO(n), wg is the second Stiefel-Whitney class
w,). Let @ € H2,,.,(Z, K) be the class of the extension

group
1-K—-A—-Z7Z—1, (3.7

and let
B, H3,(BG, Z) — H3,,(BG, K) (3.8)

sing

9See App. B for an introduction to crossed modules, or alternatively (App. A) in Ref. 74 and Sec. 2 in
Ref. 75.
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be the Bockstein homomorphism in the long exact sequence associated to the ex-
tension (3.7). Then

w = ﬂa(wG) € Hging(BGa K) (39)

When discussing boundary WZW models, it will be useful to describe w differ-
ently. To that end, we use the fact that

Hs’;ng(BGa Z) = Map(BG,K(Z,n)), (310)
to write wg and « as maps
wg : BG — K(Z,2), a: BZ(=K(Z,1)) - K(K,2). (3.11)

Since Eilenberg—Maclane spaces are in the stable category, where B exists as a
functor, we can define

Ba: K(Z,2) — K(K,3), (3.12)
hence
Baowg: BG — K(K,3), (3.13)

and so defines an element of H b?mg(BG , K). Furthermore, Ba is just the Bockstein
homomorphism 3, hence

w = Baowg = B,(wg), (3.14)

and so we recover the description of w above.

So far, we have argued that on general principles, our I' gauge theory should be
described by a G gauge theory such that the G bundles satisfy the constraint (3.6).
Just as in Refs. 1 and 30, such a restriction on instantons can be implemented by a sum
over universes. The constraint (3.6), namely, ¢*w = 0, is implemented by summing
over G Chern—Simons theories with discrete theta angles coupling to w, formally

[Chern—Simons(H)/BA] = H Chern—Simons(G)j, (3.15)

bk

where 0 is the 3D discrete theta angle coupling to ¢*w, for levels and underlying three-
manifolds for which these theories are defined.® This is our prediction for decomposi-
tion in 3D Chern—Simons theories.

The G Chern—Simons theory is defined to be the B(imA) gauging of the H
Chern—Simons theory, at the same level as the H Chern—Simons theory. This is

¢ As has been noted in e.g. Ref. 69 (App. C in Ref. 76 and App. A in Ref. 77-80), not every Chern—Simons
theory with every level is well-defined on every three-manifold. The basic issue is that Chern—Simons
actions are not precisely gauge-invariant, but under gauge transformations shift by an amount
proportional to 27. Depending upon the gauge group and the three-manifold, the proportionality factor
may or may not be integral. If k£ times that proportionality factor is integral, then the exponential of the
action is gauge-invariant, and the theory is well-defined; if that product is not integral, then the path
integral is not gauge-invariant and so not defined. Even if it is defined, it may depend upon subtle choices.
For example, App. A in Ref. 77 argues that the (ordinary, bosonic) U(1); Chern-Simons theory is well-
defined only on spin three-manifolds, and furthermore that the choices of values of the action, the
Chern—Simons invariants in the sense of Refs. 81 and 82, are in one-to-one correspondence with the spin
structures. More generally, gauging one-form symmetries can create issues of this form, precisely because
one twists gauge fields by gerbes, which results in “twisted” bundles and connections not present in the
original theory, of fractional instanton numbers.
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important to distinguish because sometimes gauging one-form symmetries can shift
levels. For example, Sec. C.1 in Ref. 76 argues that, schematically, U(1),,/BZ, =
U(1),,, and not U(1)y,,, despite the fact that as groups, U(1)/Z, = U(1).

The reader should note that the decomposition statement above correctly
reproduces ordinary one-form gaugings. Consider the case that K = 1, so that the
map d: A — H is one-to-one into the center of H. Then, decomposition (3.15)
correctly predicts that

[Chern—Simons(H)/BA] = Chern—Simons(G), (3.16)

which is a standard result (see e.g. Ref. 69). Decomposition becomes interesting in
cases in which K # 1.

In Sec. 5, we will check this statement in several examples, outlining how it both
reproduces known results as well as explains new cases.

3.3. Boundary WZW models

Let us now turn to Chern—Simons theories on manifolds with boundary, and the
corresponding theories on the boundaries. We will see that the bulk Chern—Simons
decomposition of the previous section correctly predicts a decomposition of boundary
WZW models, which matches existing results on decomposition in 2D orbifolds. This
matching involves a rather interesting relation between characteristic classes of
bundles on three-manifolds and choices of discrete torsion in 2D orbifolds. In par-
ticular, the fact that the 3D decomposition correctly reproduces 2D decomposition
on the boundary is an important consistency test of our proposal.

Briefly, as has been discussed elsewhere (see e.g. Refs. 83-87, Subsec. 4.2 in
Ref. 88, Subsec. 5.2 in Ref. 89, and in related contexts”*?!), on a three-manifold with
boundary, a bulk Chern—Simons theory for gauge group G naturally couples to a
(chiral) WZW model for the group G on the boundary. If the Chern—Simons theory
has level k, then (see e.g. Subsec. 4.2 in Ref. 88) the boundary WZW model has level
7(k), where

71 Hjyy(BG, F) — Hjy (G, F) (3.17)

is the loop space map' for any abelian group F, and we take Chern—Simons
levelst k€ HY ,(BG,Z), and WZW levels 7(k) € H2 ,(G,Z). Similarly, if the

sing sing
Chern—Simons theory has a discrete theta angle coupling to some characteristic class
defined by an element of w € H3(BG, F), then the boundary WZW model couples”

This is the natural map

H;ng(BG F) = I\'I&p(BG, K(Fv ”))

— Map(Q(BG), QK (F,n))) = Map(G, K(F,n — 1)) = HI=\(G, F). (3.18)

which sends any f € Map(BG, K (F,n)) to Q(f). For later use, to construct explicit maps, one needs
concrete choices of e.g. X — QBX, for which we refer the reader to e.g. Refs. 92-95. As such choices do not
alter cohomology classes, we will not discuss them explicitly in this paper.

& As before, levels are assumed to be such that the theory exists.

"We would like to thank Y. Tachikawa for a discussion of discrete theta angles in this context.
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to a discrete theta angle defined by 7(w) € H?(G, F). Such discrete theta angles in
2D WZW models are reviewed in Sec. 2.

Given that standard bulk Chern—Simons/boundary WZW model relationship
reviewed above, the 3D decomposition prediction 3.15 implies that in the associated
boundary RCFT, an A orbifold of a WZW model for H is equivalent to a disjoint
union of WZW models for G

(WZW(H)/A] = [] WZW(G), (3.19)
e K
with levels and discrete theta angles related to those of the bulk theory by the map 7.
We will see later in this section that although the WZW discrete theta angles 6 are
derived from characteristic classes in the Chern—Simons theory, they nevertheless
correspond to choices of discrete torsion in the boundary orbifolds.

As a consistency check, let us show that 7 commutes with gauging BA, so that the
levels on the left-and right-hand sides of (3.19) match, just as they did' in the bulk
prediction (3.15). First, for G as any topological group, there is a natural homotopy
equivalence between the loop space Q(BG) and G (meaning that BG is a delooping
of GG). Also, for any abelian group F, the Eilenberg-Maclane space K(F,n — 1) is
homotopy equivalent to loop space Q(K(F,n)). Since

H:mg(BGv F) = Map(BG, K(F,n)) (3.20)

and since €2 is a functor, for any continuous homomorphism f : G; — G, between to-
pological groups GG, Gy, there is a continuous map Bf : BG; — BG4 and natural maps

Map(BG,, K(F,n)) — Map(BG,, K(F,n)), (3.21)
a— B(foa) (3.22)
and
Map(Gy, K(F,n — 1)) — Map(G,, K(F,n — 1)), (3.23)
b fob. (3.24)

Combining these maps, one finds that for any Lie group G with K as a subgroup of the
center, the following diagram commutes:

l l (3.25)
Hsging(BG7 F) Hs%ng(G, F).

This tells us that the levels appearing on either side of the boundary WZW
relation (3.19) match, as expected, consistent with the prediction (3.15) of the bulk
Chern—Simons theory.

‘Modulo subtleties discussed there in special cases, such as those arising from the fact that U(1)/Z;, = U(1)
as a group, but the corresponding Chern—Simons theories have different levels.
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Now, we will argue that the WZW model discrete theta angles, arising as 7 of
characteristic classes in the Chern—Simons theory, are the same as choices of discrete
torsion in the boundary theory. This will be important in understanding how the
3D Chern—Simons decomposition compares to 2D decompositions as reviewed in
Sec. 2. For simplicity, we will assume that H is the universal covering, so that
Z = m1(G). (Similar results exist in more general cases).

To that end, since 7 is the loop space functor, we can write

T(Ba(wg)) = T1(Baowg) = Q(Ba o wg) = Q(Ba) o Qwg). (3.26)
Now, Q(Ba) = «, and
Q(wg) € Map(Q(BG),Q(K(Z,2))) = Map(G, K(Z,1)), (3.27)

so Q(wg) is a map G — BZ. Now, we claim that Q(wg) is also the cell attachment
map p of the Postnikov tower, p : G — Bm(G) = BZ, where Z = 7 (G).

To make this clear, recall that the Postnikov tower map is the classifying map for
the universal cover. In other words, if G is the universal covering group of G, then
p*EZ = G. Now, on the other hand, BG — BG is a principal K(Z,1) bundle on BG,
which corresponds to a map BG — B(K(Z,1)) = K(Z,2), which is wg. Applying
the loop space functor gives the map Q(wg) : G — K(Z,1) = BZ, which is then
more or less tautologically p.

In particular, we see that

T(Baowg) = aoQwg) = aop. (3.28)

The expression above relates the Chern—Simons discrete theta angles (coupling to
bundle characteristic classes) to discrete torsion on the boundary. We can see this as
follows. If ¢ : ¥ — G is any map from the worldsheet ¥ into the target G, then po ¢ :
Y — BZ defines a Z-twisted sector over X. In particular, the discrete theta angle phase

(0,07 (a0 p)), (3.29)
for 6 : K — U(1) any character of K, corresponds to discrete torsion in the Z-twisted
sector defined by p o ¢, specifically discrete torsion given by 8(«) € H Egmup(Z ,U(1)), for
aeH gmup(Z , K). Thus, we see that 7 relates discrete theta angles coupling to bundle
characteristic classes on three-manifolds, to discrete torsion in 2D orbifolds on boundaries.

In passing, this phenomenon that 3D bulk discrete theta angles become discrete
torsion in boundary 2D orbifolds is also visible in the case that the bulk theory is a
finite 2-group orbifold, see Subsec. 3.2 in Ref. 30.

Now, let us compare the decomposition (3.19) in boundary WZW models, implied
by bulk Chern—Simons decomposition, to standard results' on decomposition in 2D
orbifolds, as reviewed earlier in Sec. 2.

Certainly, the form of the boundary decomposition (3.19) is identical to that arising
in 2D orbifolds with trivially-acting central subgroups, possibly modulo the form of the
discrete theta angles. We have just argued that the discrete theta angles arising on the
boundary correspond to choices of discrete torsion, and in fact, the discrete torsion
phases arising in the boundary case match those in the ordinary 2D case.

2250227-10
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We can relate these two pictures of boundary discrete theta angles as follows.
Recall « € H gmup(Z , K) is the class of the extension

1-K—-A—Z7Z—1. (3.30)

In 2D decomposition in A orbifolds with trivially-acting central subgroups K, the
discrete torsion phase factors on a universe associated with § € K are precisely the
image of o under 6:

ngoup(ZﬂK) - H;roup(Zﬂ U(l))7 (331)
a— foa. (3.32)

These are the same as the discrete torsion phases arising in the boundary WZW
decomposition (3.19), as we have just discussed, and we will confirm explicitly in
examples in Sec. 5 that the decomposition above in the boundary theory precisely
coincides with the decomposition of WZW orbifolds given in (2.3). This matching is
an important consistency test of our proposal.

3.4. Nontriviality of discrete theta angles

In the boundary WZW models appearing in these decompositions, the discrete tor-
sion on each universe appearing in a decomposition is trivial. For most single group
factors, this is because the center is usually a cyclic group, and cyclic group orbifolds
have no discrete torsion. The exceptions are the groups Spin(4n), which have center
Zy X Zsy. That finite group admits discrete torsion; however, to generate the discrete
torsion in a decomposition of a string orbifold, the orbifold group must be non-
abelian, and so cannot arise as the boundary of a 3D theory, as we will discuss in
greater detail in Subsec. 5.7.

In at least some examples, not only are the boundary discrete theta angles (dis-
crete torsions) trivial, but the bulk discrete theta angles are also trivial. For exam-
ple, in bulk theories, for cases in which K = Z,, Z = Z,, and A = Z,, so that the
extension « is

1—>2y — 72y — Zy — 1, (3.33)

the bulk discrete theta angle couples to the Bockstein 3, of a distinguished element
wg € H?(Ms,Z,). Now, for this o

ﬂa(wG) = Sql (wG)7 (334)
and as we will argue in Subsec. 5.3
Sq' (wg) = wy (TMs) U wg, (3.35)

hence it can only be nonzero on nonorientable spaces. However, we only define
Chern—Simons theories on oriented three-manifolds, so for all cases we consider, these
bulk discrete theta angles vanish.

"We would like to thank Y. Tachikawa for making this observation.

2250227-11



T. Pantev & E. Sharpe

Similarly, if the three-manifold is 7%, the pertinent Bockstein homomorphism will
vanish, and one cannot get a nonzero bulk discrete theta angle. Briefly, for any short
exact sequence

1-K—-A—7—1, (3.36)

for K, A, Z abelian, the induced map
H*(T3, A) — H*(T3,Z) (3.37)

is surjective (since each of those cohomology groups is just Hom from a free abelian
group into the coefficients), which implies that in the long exact sequence

H(T* K) — H(T% A) — HX(T* 2) 2 HY(T%, K), (3.38)

the Bockstein 8 = 0, and so the bulk discrete theta angles are trivial in the corre-
sponding cases.

For another example, consider Lens spaces. From Example 3E.2 in Ref. 96, for the
Bockstein associated to the short exact sequence

1-272, =2, — Z,, — 1, (3.39)

the associated Bockstein maps generators of H'(L,Z,,) to generators of H*(L,Z,,),
for L as a Lens space, but 32 = 0, hence the associated Bockstein map

8+ H*(L,Zy,) — H*(L,Zy,) (3.40)

necessarily vanishes, and so the bulk discrete theta angles are trivial in corresponding
cases.

More generally, whether the bulk discrete theta angles are always trivial is a reflection
of the map 7 : H3,(BG, K) — H3,,(BG, K). For example, if 7 is injective, then triv-
iality of the boundary discrete theta angles implies triviality of the bulk discrete theta
angles. We leave general questions about the injectivity of 7 for future work.

In passing, note that in the bulk, orientability plays a key role. At least abstractly,
it is tempting to speculate about more general cases involving, e.g. orientifolds of
boundary WZW models, as might arise if the three-manifold descends to a solid Klein
bottle (a three-manifold whose boundary is the 2D Klein bottle). On such a non-
orientable space, at least sometimes the discrete theta angles would be nontrivial.
Furthermore, in orientifolds, discrete torsion is counted by H g, (Z,U(1)) with a
nontrivial action on the coefficients (see e.g. Refs. 53, 54, 58 and 59), so that for
example H group(Zg, U(1)) can be nonzero, which again would result in boundary
WZW models with nonzero discrete theta angle contributions.

4. Spectra

In this section, we briefly describe the spectra of monopole operators and line
operators in a theory with a gauged trivially-acting one-form symmetry, and argue
that the results are consistent with decomposition (3.15).
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4.1. Monopole operators

In 2D theories, when one gauges a noneffectively-acting group, one gets twist fields
and Gukov—Witten operators corresponding to conjugacy classes in the trivially-
acting subgroup. In 3D theories, instead of twist fields, one has monopole operators
(see e.g. Refs. 97 and 98), which play the same role. In this section, we will outline
their properties.

In two dimensions, twist fields generate branch cuts, which in the language of
topological defect lines are real codimension-one walls that implement the gauging of
the zero-form symmetry. In three dimensions, when gauging a one-form symmetry,
from thinking about topological defect ones, one sees the theory has codimension-two
lines, which end in monopole operators, in the same way that in two dimensions, the
orbifold branch cuts terminate in twist fields.

We can think of the monopole operators in three dimensions as local disorder
operators: on a sphere surrounding the monopole operator associated to a BG
symmetry, one has a nontrivial G gerbe, corresponding to an element of H?(S?, Q)
(for G assumed finite), just as on a circle surrounding a twist field in two dimensions
one has a nontrivial bundle.

In two dimensions, the twist fields associated to trivially-acting gauged zero-form
symmetries are local dimension-zero operators, which can be used to form projectors
onto the universes of decomposition. In three dimensions, the monopole operators
associated to trivially-acting gauged one-form symmetries are closely analogous, and
can again be used to form projection operators, in exactly the same fashion. In
Subsec. 4.1.4 in Ref. 30, projection operators are explicitly constructed from mono-
pole operators in 3D theories, and we encourage the reader to consult that reference
for further details.

4.2. Line operator spectrum

Given a “gaugable” one-form symmetry, described by a subset of the lines in the
theory, there is a standard procedure for computing the spectrum of lines in the
gauged theory, given as follows (see e.g. Sec. 2 in Ref. 69 and Subsec. 2.5 in Ref. 99).5!
For BZ,, let g denote a line generating the others, and then

¢ Exclude from the spectrum all lines a which have monodromy* B(g, a) # 1, under
a generator g, where the g action on a line b is determined by the process

b
g = B(g,0) (4.1)

o Identify any two lines b, g x b that differ by fusion with g, and finally

*In terms of the S-matrix, B(a,b) = S,;,/Sy,, see e.g. Eq. (40) in Ref. 68.
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e Lines b that are invariant under fusion (meaning @ = g X a) become n lines in the
spectrum of the gauged theory.

This is closely analogous to 2D orbifolds, in which one omits noninvariant
operators, and fixed points lead to twist fields.

This is a special case of a more general procedure, sometimes known as anyon
condensation, which is also applicable to noninvertible symmetries, unlike the basic
algorithm above. (See e.g. Subsec. 4.1. in Ref. 51),2%997102 for further details.

Now, in our case, the (noneffectively-acting) one-form symmetry we wish to gauge
is not described by a set of lines within the original theory. Sometimes, in some
special cases, we can describe it by adding lines to the theory, such as in the case that
the entire gauged one-form symmetry acts trivially. In general, however, that pro-
cedure is not well-defined. Consider for example the case of SU(2), Chern—Simons
theory, whose spectrum of lines {(0), (1), (2), (3), (4)} is as described in App. A. Let
us consider gauging a BZ,. Now, SU(2), has a BZ, symmetry, corresponding to the
lines (0), (1), so one could imagine extending it to BZ, by replacing {(0), (1)} with
{(0), 1, ¢y, £5} which obey

O X by =Ly mod 45 (4.2)
with ¢, = (0). In order for the image of Z,—Z, to act trivially, we require
4y x (2,3,4) =(2,3,4), (4.3)
and for this to descend to the ordinary SU(2),, we also require
4 % (2,3,4) = {3 x (2,3,4), (4.4)

which must match (1) x (2,3,4) in the SU(2), fusion algebra given in App. A
by x(2)=(3), bLzx(3)=(2), lzx4)=(4). (4.5)
The new lines ¢; are then defined to have trivial monodromy with all other lines
B(l;,z) =1 (4.6)

for all lines z. This much is uniquely specified by the statement of the extension.

Now, we have not completely specified the extension of SU(2),; for example, the
product (2) x (3) in SU(2), contains a (1), so we would still need to decide whether
to replace (1) with ¢; or ¢3, for example. However, in making such choices, we find an
internal contradiction with the structure we have already described, namely, a failure
of associativity. For example, in SU(2),, as described in App. A

2)x@)=1)+), ) x(3)=1(0)+(4). (4.7)
We could replace the (1) above with either ¢; or ¢5. Suppose we take
(2) x (3) =4, + (4). (4.8)
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Then,
Lx((2)x3) =4y x (14 (4) =4y + (4), (4.9)
(1 x(2)) x (3) = (3) x (3) = (0) + (4). (4.10)
However, ¢, # (0), so we see that
< ((2) x (3)) # (1 x (2)) x (3), (4.11)
and so associativity is broken. We encounter a similar problem if we choose
(2) x (3) =43+ (4) (4.12)

instead and consider fusion with /3. Put simply, we cannot enlarge the BZ, inside
SU(2), to a noneffective BZ,, without breaking associativity.

With this in mind, we outline here ! a minor extension of the prescription of Sec. 2
in Ref. 69 and Subsec. 2.5 in Ref. 51, 99 for counting line operators in 3D theories
with gauged one-form symmetries. (As we will not be using noninvertible symme-
tries, we will not attempt to describe the analogous construction for condensation
algebra objects here).

Our approach is motivated by the action of a group G on a set M: we distinguish
G and M, G is not a subset of M in general, though we can still define an action of G
on M that enables us to make sense of the quotient M /G. Let G be a finite abelian
group, so that BG is a group of one-form symmetries, and associate lines to elements
of G. Consider a set of simple lines C (objects in a braided tensor category, which we
will gauge).

An action of BG on C is then described by giving, for each g € G and line L € C,

e a monodromy B(g, L), such that
B(glaL)B(927L) = B(91927L)7 (413)

and
e a fusion g x L € Z[C], meaning g x L = Y N c for c € C and N € Z, with the
property that

g1 % (g2 X L) = (9192) x L. (4.14)

We say that a line in BG corresponding to g € G acts trivially if, for all L € C,
B(g,L)=1 and ¢gxL=1L, (4.15)

and then to say BG acts noneffectively, as in Subsec. 3.1, means that some for some
g # 1 in G, the line corresponding to G acts trivially.

' Although we are only interested in isomorphism classes of objects, presumably the full categorical de-
scription is in terms of module categories, or as a minor variation on the group actions described in Sec. III.
B in Ref. 68. As we are only interested here in counting (isomorphism classes of) objects, and this is merely
a minor variation on existing methods, we will be very schematic.
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Now, given an action of BG on C, we propose to construct the lines of the quotient
C/BG as follows, by close analogy with (Subsec. 2 in Ref. 69 and Subsec. 2.5 in
Ref. 99).5!

e Exclude any L such that for some g € G, B(g,L) # 1,
o Identify L ~ g x L for each g € G,
e For each g € G such that g x L = L, we get a copy of L in C/BG.

It is straightforward to check that in the special case the lines in BG are a subset
of those in C, this reduces to the prescription reviewed earlier and in Sec. 2 in Ref. 69
and Subsec. 2.5 in Ref. 99.5!

As another special case, note that if all of BG acts trivially, then in the quotient
C/BG,

e No lines in C are excluded, since B(g, L) = 1 for all L,

o No lines are identified, since g x L = L for all L, so fusion does not relate different
lines,

e Since g x L = L for each g € G and each L € C, we get |G| copies of the lines in C.

This is consistent with the expectations of decomposition in this case: if we gauge
a BG that acts completely trivially on a theory, in the sense above, one expects to get
|G| copies of the theory.

We will apply this computation in specific examples in Chern—Simons theories
later in this paper, but for the moment, we give two toy examples, to illustrate
the idea.

First, consider BZ,/BZ,. Let the lines of C = BZ, be generated over Z by
{(0), (1)}, where

(0) x (0) = (0),(0) x (1) = (1), (1) x (1) = (0), (4.16)
and BZ, acts as
g% (0) =(1),gx (1) = (0), (4.17)

and we take all monodromies B = 1. Then, applying the procedure above, to get the
lines of C/BZ,,

e Since B(g,L) =1 for all L € C, no lines are excluded,
e Since g x (0) = (1), (0) ~ (1),

e No lines are invariant.

Hence, the quotient is generated by one single line, as one would expect.
Next, counsider BZ,/BZ,, where the BZ, acts noneffectively. Let the lines of
C = BZ, be as above, and the generator g of BZ, acts as

gx(0) =(1),gx (1) = (0). (4.18)
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As before, we take all monodromies B = 1. Applying the procedure above

e Since B(g, L) =1 for all L € C, no lines are excluded.

e Since g x (0) = (1), (0) ~ (1),
e Since ¢* x (0) = (0) and ¢* x (1)

= (1), (0) ~ (1) appears twice in the quotient.

Thus, the quotient C/BZ, is generated over Z by two lines, as expected since a
Zo C Z,4 describes trivially-acting lines.

We should also briefly observe that the theories we are describing, which de-
compose, have the property that they violate the axiom of remote detectability in a
topological order, see e.g. Refs. 103-105. This axiom says that there are no invisible
lines in the bulk theory (technically, that the category of lines has trivial center).
Violation of remote detectability signals multiple vacua and therefore a decompo-
sition, much as cluster decomposition in other contexts.!

4.3. Bulk-boundary map

Let us now consider the bulk-boundary map between lines in the 3D bulk and on the
2D boundary. Let C be the category of lines which act trivially in the bulk. Suppose
we have a line in C which ends on the boundary, defining an object in the 2D vertex
operator algebra V. We can describe this bulk-boundary relation by a functor

F:C— Rep(V), (4.19)

(for Rep(V) the category of representations of V') which takes a line to the vector
space of ways and the line can end on the boundary, giving point operators.

As observed in Subsec. 3.5 in Ref. 106, a one-form symmetry that acts trivially in
the bulk might act nontrivially on the boundary, and the theory can still decompose,
much as with Chan—Paton factors and D-branes in 2D theories. Broadly speaking,
the different line operators in the 3D bulk end on the various 2D sectors of the
boundary theory.

A 3D theory may have surface operators which are not totally determined by the
line operators. In the case where the 3D theory has only a local vacuum, all the
surfaces can be built as condensations, i.e. networks of lines. However, when there are
multiple vacua, as in the cases we are interested in, then this fails to be true. The
surfaces which are not built as a network of lines will end on a line on the boundary.
These lines define the “action” of a trivially acting zero-form symmetry, In two
dimensions, if one gauges a trivially-acting zero-form symmetry, then one obtains an
emergent global one-form symmetry (and hence a decomposition).

From the decomposition conjecture (3.15), the different universes and hence the
different ground states are labeled by elements of the Pontryagin dual of the one-
form symmetry group. On the other hand, the surfaces in the bulk which enact a
2-form symmetry, come from gauging a trivially acting one-form symmetry. So while
the lines that the surface ends on has trivial action on the boundary, the surface itself
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is not necessarily trivial in the bulk. This is summarized in the following diagram,
where F is the functor that makes objects to the boundary:

Bulk symmetry Boundary symmetry

trivially-acting one-form i trivially-acting zero-form (4.20)
gauge lgauge

global two-form - global one-form

5. Examples

In the following several subsections, we will walk through examples of the decom-
position proposed in Sec. 3. Where possible, we will apply level-rank duality to
perform self-consistency tests. In all cases, we will compare to the decomposition of
the boundary WZW model. In particular, as reviewed in Sec. 2, decomposition is
reasonably well-understood in 2D theories, and so we get solid consistency tests by
checking that the boundary WZW decomposition implied by the bulk Chern—Simons
decomposition matches existing 2D results.

In each case, we will assume that levels are chosen so that the theories are well-
defined, but will not list those conditions explicitly.

5.1. Chern—Simons(SU(2))/BZ,, K =1

In this section, we will reproduce a well-known result as a special case of the de-
composition prediction (3.15).

Specifically, we consider gauging the BZ, central one-form symmetry in SU(2)
Chern—Simons theory.

Here, this BZ, is not trivially-acting, and so no decomposition is expected. In
particular, this gauging is known (see e.g. Ref. 69) to be equivalent to the SO(3)
Chern—Simons theory at the same level. At the level of the path integral for the gauge
theory, this is discussed in App. C.

We can understand this as a special case of the decomposition prediction (3.15).
In the language of that statement, we identify A = Z,, H = SU(2),andd : A — H is
the inclusion map of the center, Z,—SU(2). Then, the kernel of d vanishes, so K = 1,
and G = H/A = SO(3). This corresponds to the exact sequence

11— Zy-5SU2) — SO3) — 1. (5.1)

Furthermore, in the case, since K = 1, the extension class [w] € H3(G, K) is trivial,
w =1, s0 ¢*w = 1 and there is no discrete theta angle.
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Putting this together, we see that the decomposition prediction (3.15) in this
case is

[Chern—Simons(SU(2))/BZ,] = Chern—Simons(SO(3)), (5.2)

which reproduces known results.

Let us also compute the line operator spectrum in this example. This is a standard
computation, but we will quickly outline it using the tools of Subsec. 4.2, with an eye
towards later, more obscure, versions. There are five line operators in SU(2),
Chern—Simons, as listed in App. A, which we denote

(0), (1), (2),(3), (4). (5-3)
We gauge a BZ,, with lines {¢y, ¢, }, where
£; % fj = ‘€i+j mod 2> (5.4)
and which act on the SU(2), lines as
box L=1L6 xL=(1)xL, (5.5)
and with
B(ty, L) = +1, B(£,,0) = B(¢;,1) = B(f;,4) = +1, B(¢,,2) = B(4;,3) = —1. (5.6)

(Clearly, we can identify the action of this BZ, with the action of the lines (0), (1) in
SU(2),). It is straightforward to check that this gives a well-defined action in the
sense of Subsec. 4.2. Applying the procedure there, to get the lines of SU(2),/BZ,,

o the lines (2) and (3) are not invariant under monodromies and so should be
excluded,

e from (1) x (1) = (0), the lines (0) and (1) should be identified in the quotient, and

o from (1) x (4) = (4), the line (4) is duplicated,

so that the SU(2),/BZ, spectrum consists of the vacuum line and two copies of (4),
which is the standard result for SO(3),.

Now, let us turn to the boundary theory. On the boundary, this reduces to the
statement

[WZW (SU(2))/Z,] = WZW(SO(3)), (5.7)

which is standard.

5.2. Chern-Simons(SU(2)) x [point/BZ,|, K = Z,

Now, let us apply the decomposition prediction (3.15) to a different case, namely, one
in which we gauge a trivially-acting BZ, “acting” on an SU(2) Chern—Simons the-
ory, uncoupled from the center one-form symmetry of the SU(2) theory.

This is perhaps the cleanest example of a BZ, gauging that acts trivially: we
gauge a BZ, in bulk that does nothing at all to the SU(2).
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Let us apply the decomposition prediction (3.15) to this case. Here, in the nota-
tion of (3.15), we take H = SU(2) and A = Z,; however, the map d : A — H maps
all of Z, to 1. In this case, the kernel of d, K, is all of Z,, and G = H = SU(2). The
decomposition prediction for this case is that

[Chern—Simons(SU(2))/BZ,] = H Chern—Simons(SU(2)), (5.8)

bk

two copies of the SU(2) Chern—Simons theory. Furthermore, in this case there are no
nontrivial discrete theta angles, hence the decomposition prediction can be written
more simply as

[Chern—Simons(SU(2))/BZ,] = H Chern—Simons(SU(2)). (5.9)
2

Let us briefly consider the spectrum of line operators, following the procedure
discussed in Subsec. 4.2. We describe the trivially-acting BZ, in terms of two lines
{ly, ¢}, where

Z'i, X é} = éiJrj mod 2> (510)
and with an action on the lines of SU(2), given by

It is straightforward to check that this gives a well-defined action in the sense of
Subsec. 4.2.

Next, we compute the spectrum of SU(2),/BZ,, for this trivially-acting BZ,.
From the rules in Subsec. 4.2,

o None of the original lines of the SU(2) Chern—Simons theory is omitted, as they all
have trivial monodromy under the generator (a),

o Since (a) x (a) = (0), we see that in the gauged theory, (a) and (0) are identified
with one another,

o Since all of the original lines are invariant under fusion ((a) x (z) = (z)), they are
all duplicated.

As a result, the line operator spectrum of the gauged theory is two copies of the
line operator spectrum of the original SU(2) Chern—Simons theory, consistent with
decomposition. This result could also be obtained by adding one new line a to the
lines of SU(2),, which interacts trivially with all other lines, and then condensing
{(0),a} in the ordinary fashion, though as we discussed in Subsec. 4.2, it will not
always be possible to do that.

Next, we turn to the boundary theory. In the boundary WZW model, bulk de-
composition becomes the statement that

(WZW(SU(2))/Z,] = [ [ WZW(SU(2)). (5.12)
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In the Z, orbifold on the left, the Z, acts trivially on the SU(2) WZW model, for
which case ordinary 2D decomposition predicts exactly the statement above, that the
completely-trivially-acting Z, orbifold of a WZW model is just two copies of the same
WZW model. Thus, the boundary theory matches results from 2D decomposition, as
expected.

5.3. Chern—-Simons(SU(2))/BZ,, K = Z,

Consider a SU(2) Chern—Simons theory in three dimensions, and gauge a BZ, that
acts via projecting to a BZ, which acts as the center symmetry. In this case, there is a
trivially-acting BZ,, so in broad brushstrokes one expects two copies of a
BZ,-gauged SU(2) Chern—Simons theory.

Let us walk through the prediction of the decomposition prediction (3.15) in
this case. Here, we have H = SU(2) and A =Z,, with the map d: A — SU(2)
mapping the Z, onto the center Z, of SU(2). Thus, the map d is surjective, but not
injective: its kernel K = Z,. Similarly,

G = H/im d = SU(2)/Z, = SO(3). (5.13)

Putting this together, we see in this case that the decomposition prediction
(3.15) is
[Chern —Simons(SU(2))/BZ,)
= Chern—Simons(SO(3)), H Chern—Simons(SO(3))_, (5.14)

where the + denotes the two values of the discrete theta angle coupling to the
characteristic class defined by 3, (wg = wgp(s)), for a the class of the extension

and where here, wgp(3) = w,, the second Stiefel-Whitney class.

Next, we will argue™ that the characteristic class (,(w,) is the third Stiefel-
Whitney class ws. From the Wu formula (Problem 8-A in Ref. 107) for Steenrod
squares, which map Sq* : H*(X,Z,) — H***(X,Z,), k > 0:

ko k—m
qu(wm(g)) = Z < >wk—t (g) U Wit (g)

=0 3
k —k+t—1
- Z < " ¢ > Wi—t (5) U Wy 1t (f)a (516)
t=0

“E.S. would like to thank Y. Tachikawa for observing the pertinent properties of ws.
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where each w; = w;(§) for a real vector bundle £, and in the equality, we have used
the fact that

k—m (k—=—m)(k—m—-1)---(k—m—t+1)
t t! ’
m—k)m—-k+1)---(m—-k+t—1)
t!

m—k+t—1
= . mod 2. (5.17)

=)

(See e.g. Ref. 108 for this and related observations). As a result, for any real vector
bundle

Sqt(wy) = wy Uws 4+ wy Uws = wy, Uw,y + ws, (5.18)

so if w; = 0, as is the case for SO(3) bundles, then wy = Sq' (w,). (In principle, this is
one explanation of why all SO(3) bundles can be constructed by twisting SU(2)
bundles by Z, gerbes: the gerbe characteristic class determines not only the second
Stiefel-Whitney class w, of the SO(3) bundles, but also w; via Sq!, as above).

Furthermore, the action of Sq' is the Bockstein homomorphism (3 associated to
the extension

1 -2y -2y — Zy — 1, (5.19)
(see e.g. Sec. 4.L in Ref. 96,) meaning
Sq'(z) = B(z) (5.20)

for any x. The extension (5.19) above coincides with « in this case, so we see that in
this example, the discrete theta angle couples to

Ba(wy) = Sql(w2)a (5.21)

using (3.14). We also see that in this example, this class can be described even more
simply as ws, the third Stiefel-Whitney class, as wsy = Sq'(w»).

Now, on a three-manifold M, we can write Sq'(z) for any z in terms of the Wu
class v, € H'(M,Z,) as (Chap. 11 in Ref. 107)

Sq'(z) = v, Uz. (5.22)
Furthermore (Theorem 11.14 in Ref. 107)
vy =w (TM), (5.23)

so assembling these pieces, we have that

ws(€) = Sq* (wy(€)) = wi (M) U wy(€). (5.24)
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As a result, the third Stiefel-Whitney class w3 will only be nontrivial on a non-
orientable three-manifold M. However, Chern—Simons theories are not defined on
nonorientable spaces.

In Subsec. 5.9, we will use level-rank duality to perform a self-consistency check of
decomposition in this case.

Now, let us check this prediction by computing the line spectrum in this gauged
Chern—Simons theory. First, following Subsec. 4.2, we define a BZ, by lines {£;, ¢;,
45,03} such that

Ei X EJ = €z+j mod 4> (525)
and which acts on the lines of SU(2), (described in App. A) as follows:
B(lys, L) = +1,B(413,0) = B(ly3,1) = B({3,4) = +1,
B(€1,372) = B(gl,?n 3) = _11 (526)

bgx L=4yx L=L 4 xL=1403xL=(1)xL. (5.27)

It is straightforward to check that this action of BZ, on the lines of SU(2), is well-
defined in the sense of Subsec. 4.2. As ¢, acts trivially, this is also a noneffective
action, in the sense of Subsec. 3.1.

Next, we follow the procedure outlined in Subsec. 4.2 to get the lines of

SU(2),/BZ,:

e Lines (2) and (3) have B({; 3, L) # +1, and so are omitted.

e Since /; 3 x (1) = (0), we identify the lines (0) ~ (1).

e Since ¢; x (4) = (4) for all i, we get four copies of (4) in the spectrum of SU(2),/
BZ,4, and since £y 5 x (1) = (1), £y x (0) = (0), we get two copies of (0) ~ (1).

Thus, we see that we get two copies of the lines of SO(3),, consistent with the
expectations from the decomposition.

Before going on, let us compute the lines in one more example, specifically

(2)4/ BZs,,, where the Z,, projects to the Z, center of SU(2),, with kernel Z,. The
lines of BZ,, are {{,...,{s, 1}, where

£; x Zj = Zi-&-j mod 2p> (5.28)
and their action on SU(2), is given by
B(levens L) = +1, B(loqa,0) = +1 = B(loaq, 1) = B(loaa; 4), (5.29)
B(loaq; 2) = =1 = B(loaa; 3); (5.30)
Loyen X L =L, Lyqq x L= (1) x L. (5.31)

As before, it is straightforward to check that this action of BZ,, is well-defined in
the sense of Subsec. 4.2, and since {{.,} acts trivially, it is a noneffective action, in
the sense of Subsec. 3.1.
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Next, we follow the procedure outlined in Subsec. 4.2 to get the lines of
SU(2)4/BZQP

e Lines (2) and (3) have B({,qq, L) # +1, and so are omitted.

e Since fyqq x (1) = (0), we identify the lines (0) ~ (1).

e Since ¢; x (4) = (4) for all 7, we get 2p copies of (4), and since loyen X (1) = (1),
Leven X (0) = (0), we get p copies of (0) ~ (1).

Altogether, we find p copies of the lines of SO(3),, consistent with expectations
from decomposition, since BZ, acts trivially.

Before going on, let us briefly discuss the boundary theory. The Chern—Simons
decomposition (5.14) becomes a decomposition of WZW models, formally

[WZW(SU(2))/Z4] = WZW(SO(3)).. [[WZW(S0(3))-_. (5.32)

Here the Z, discrete theta angle couples to the image of the element of H?(BSO(3),
Z,) (corresponding to third Stiefel-Whitney classes) in H?(SO(3),Zy) = Zo.
However, the generator of this group is Sq'(a), where a generates H'(SO(3),Z,) and
for reasons discussed previously, Sq'(a) = w;(TM) U a, hence is nonzero only if the
2D space is nonorientable.

We will consider various generalizations of this example, returning to this ex-
ample for special levels to utilize level-rank duality consistency checks in Subsec. 5.9.

5.4. Chern-Simons(SU(n))/BZ,,, K =7,

Next, we will consider gauging the action of BZ
the Z,,
angles for special values of n and p beyond those discussed already.

In terms of the decomposition prediction (3.15), we take A = Z,,, H = SU(n),

and d: A — H acts by projecting to Z =7Z, C Z(H). Then, the kernel K = Z,,
G = SU(n)/Z,, and we have the long exact sequence

1—%2,— 72, — SU(n)— SU(n)/Z, — 1. (5.33)

np on SU(n) Chern-Simons, where
acts by projecting to the center Z, of SU(n), and study the discrete theta

In general terms, decomposition (3.15) then predicts that

[Chern—Simons(SU(n))/BA] = H Chern—Simons(SU (n)/Zy, )g (), (5.34)
0cK

where the 6(w) are discrete theta angles coupling to the characteristic class defined
by Bo(Wsum)/z, ) where Wy /z, € H;ng(BSU(n)/Zm Z,) is a generalization of the
second Stiefel-Whitney class to n > 2, and 3, is the Bockstein map in the long exact
sequence associated to the extension

1= K(=2,) — A(=2Z,,) — Z(=Z,) — 1, (5.35)

np)

with extension class a € H2.,(Z, K).

group
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We will evaluate this expression for some special cases in which we will simplify
the expression for discrete theta angles. We will use,'% which provides the coho-
mology of SU(n)/Z,, which (modulo a degree shift) is essentially the same. (See also
Refs. 110-115.)

First, consider the case that p is a prime number that does not divide n. Then,
from Sec. 7 in Ref. 109

H:mg(BSU(n)/Zm Zp) = H:mg(BSU(n)? Zp), (536)

and so there is no Z,-valued characteristic class in degree three, hence no discrete
theta angle. In this case, the decomposition above can be written more simply as

[Chern—Simons(SU(n))/BA] = H Chern—Simons(SU(n)/Z,,). (5.37)

Next, suppose that p = 2, and n = 2m for m odd. From Corollary 4.2 in Ref. 109,
the group Hsmg(BSU( n)/Z,,Zs) # 0, and so for wey /7, € Hin(BSU(n)/Z,,Zy,),
we get a discrete theta angle coupling to 3, (wgi(n)/z, ), the image of wgy )z, under
the Bockstein map associated to the extension

1— 2y, — Zp, — Z, — 1, (5.38)

with extension class a€ H gloup(Zn,ZP). Since p=2, we can write
Bo(Wsvmy/z,) = SA (Wsp(n)/z, ), as before, and also just as before, it is only nonzero
on nonoriented spaces, as we saw for the case of SU(2) and SO(3) theories in
Subsec. 5.3.

Now, let us consider the corresponding boundary WZW model. The bulk de-

composition above predicts

[(WZW(SU(n))/Z,,| = [[ WZW (SU(n)/Z,)s(., (5.39)

0ck

np

Now, from ordinary 2D decomposition, since there is no discrete torsion in Z,,,

[WZW (SU (n))/Z ]_[wzw (SU(n)/Z,). (5.40)

This is certainly consistent with the special cases computed above, in which the bulk
discrete theta angle vanishes.

5.5. Chern-Simons(Spin(n))/BZ,,, K =7,

Next, we consider a simple generalization of the example above, in which we gauge a
BZs,, action on Spin(n) Chern—Simons, in which the BZ,, acts by first projecting to
BZ, which acts through (a subgroup of) the center. We begin by discussing the case
that the Z, is such that Spin(n)/Z, = SO(n). In the case that n is divisible by four,
there is a second choice of Z, subgroup, for which the quotient Spin(n)/Z, # SO(n).
We will discuss the second case at the end of this section.
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In terms of the decomposition prediction (3.15), we take A = Z,,, H = Spin(n),
and d : A — H is the map that projects Z,, onto the Z, in the center of Spin(n) such
that Spin(n)/Zy = SO(n). Then, the kernel of d is K = Z,, G = H/A = SO(n), and
we have the exact sequence

1 — Z, — Zy, — Spin(n) — SO(n) — 1. (5.41)
This extension is nontrivial, and defines a discrete theta angle coupling to 3, (wso(m)),

with wgo(,) = w,, the second Stiefel-Whitney class, as before, and the Bockstein
homomorphism g, is associated to the extension

1= 2y, — Ly, — Zy— 1 (5.42)
of extension class a € H grOup(ZQ, Ly).
Decomposition then predicts (3.15)
[Chern—Simons(Spin(n))/BZ,,] = H Chern—Simons(S0(n))y, (5.43)
ez,

where 6 denotes the discrete theta angle coupling.

In the case that p = 2, for the same reasons as discussed in Subsec. 5.3, we can
identify 3,(w,) with ws, the third Stiefel-Whitney class. However, by the same
reasoning as described in Subsec. 5.3, the third Stiefel-Whitney class will only
be nontrivial on nonorientable three-manifolds. Therefore, on orientable three-
manifolds, for p = 2, the statement of decomposition reduces to

[Chern—Simons(Spin(n))/BZ,] = H Chern—Simons(SO(n)). (5.44)

Next, let us briefly compare to the boundary WZW model. On the boundary, from
the decomposition (5.43), we have

[WZW (Spin(n))/Zy,) = [ WZW(SO(n))s, (5.45)

ez,

For the case p = 2, for the same reasons as noted in Subsec. 5.3, for oriented
spaces, the discrete theta angles are trivial, as the characteristic class they couple to
vanishes. As a result, on oriented spaces, for p = 2 we can equivalently write

[WZW (Spin(n))/Z,] = ]_[wzw SO(n)). (5.46)

This is consistent with the prediction of decomposition in two dimensions in this
case. As reviewed in Sec. 2, essentially because there is no discrete torsion in a Z,
orbifold, in a 2D WZW orbifold by Z,, with trivially-acting Z,, we have

D>

[WZW (Spin(n))/Z,] = HWZW SO(n)). (5.47)
For p = 2, this is certainly consistent with the bulk description.
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So far we have discussed the case that the Z,, maps to Z, C Spin(n) such that
Spin(n)/Z, = SO(n). (5.48)
In the case that n is divisible by four, there is another choice of Z, subgroup of the
center of Spin(n), which leads to a quotient
Spin(n)/Z, # SO(n), (5.49)
which for example projects out the vector representation. (See e.g. Ref. 116 for a
discussion in a different context.) This second quotient group is sometimes denoted

Semi-spin(n), abbreviated Ss(n) (see e.g. Sec. 11 in Ref. 115). Relevant material on
the cohomology of Ss(n) can be found in e.g. Sec. 9 in Ref. 109.

5.6. Chern-Simons(Spin(4n + 2))/BZ,,, K = 7Z,

Let us consider the case of a Chern—Simons theory with gauge group Spin(4n + 2)
and a gauged BZj,,, where the Z,, maps to the center (Z,) of Spin(4n + 2), with
kernel K = Z,.

In terms of the decomposition prediction (3.15), we take A = Ly, H = Spin(4n+
2),and d : A — H projects Z,, onto the central Z, C Spin(4n + 2). The kernel of d is
K =127, G=H/A=S50(4n +2)/Z,, and we have the exact sequence

1 — Z, — Zy, — Spin(4n +2) — SO(4n + 2)/Zy — 1. (5.50)
Decomposition then predicts (3.15)
[Chern—Simons(Spin(4n + 2))/ BZy,)
= H Chern—Simons(SO(4n + 2)/Zs) (., (5.51)
0z,
where the discrete theta angle couples to a characteristic class ﬁa(wspin(4n +2)/7,) for
0, the Bockstein map associated to the short exact sequence

1 — Zy — Ly — Zy — 1 (5.52)

of extension class a € H gmup (Z4,7Z,).

Consider for example the case p = 2. From Lemma 8.1 in Ref. 109, SO(4n + 2)/Z,
has one characteristic class in H*(BSO(4n + 2)/Z,,7Z,), related to w; of a covering
SO(4n + 2) bundle.

In the boundary WZW model, the decomposition (5.51) predicts

[WZW (Spin(4n + 2))/Zy,) = [ WZW(SO(4n + 2)/Z,)y. (5.53)
07,

Ordinary 2D decomposition predicts in this case that
[WZW (Spin(4n + 2))/Zy,) = [ [ WZW(SO(4n + 2)/Z,), (5.54)
»
essentially because there is no discrete torsion in a Z, orbifold.
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5.7. Chern-Simons(Spin(4n))/B(Zy x Zs,), K =7,

Next, we consider the case of a B(Z, x Z,,) action on a Spin(4n) Chern-Simons
theory. Here, Spin(4n) has center Z, x Z,, and the Zy X Z,, acts by first mapping to
the center.

In terms of the decomposition prediction (3.15), we take A =Zy x Zy,,
H = Spin(4n),d : A — H maps A onto the center, K = Ker d = 7Z,, hence we predict

[Chern —Simons(Spin(4n))/B(Zy x Zsy,)]

= H Chern—Simons(SO(4n)/Z,)s, (5.55)

0z,

where the discrete theta angle couples to 3, (Wspin(an)/z,x7,), for B, the Bockstein map
associated to the short exact sequence

1—)ZpﬁZ2XZ2p—>Z2XZ2—>1 (556)

of extension class « € H gmup (Zy x Ly, Z,,).

Consider for example p = 2. From Lemma 8.1 in Ref. 109, SO(4n)/Z, has one
characteristic class in H*(BSO(4n)/Z,,Z,), related to ws of a covering SO(4n)
bundle.

Now, let us consider this in the boundary WZW model. The bulk decomposi-

tion (5.55) predicts that

[WZW (Spin(4n))/(Zy x Zy,)] = [[ WZW(SO(4n)/Zy)s, (5.57)
0z,

whereas discussed in Subsec. 3.3, the boundary discrete theta angles 6 correspond to
choices of discrete torsion, here in a G = Z, x Z, orbifold.

We can understand those boundary discrete theta angles more precisely by
comparing them to the predictions of 2D decomposition. We have a I' = Zy x Zy,
orbifold, with trivially-acting K = Z,, and G = I'/ K = Zy X Z,. In principle, G can
contain discrete torsion, since H?(Zy X Zy, U (1)) = Zs, so we should compute to see
if we get nontrivial discrete torsion in any factors. Any such discrete torsion is the
image of the extension class in H?(G, K) corresponding to

1-K—-T—-G-—1 (5.58)

under the map K — U(1) defined by the representation of K corresponding to
that universe, and the extension class is nontrivial; nevertheless, as discussed in
Subsec. 6.1 in Ref. 26, its image in H?(G,U(1)) is trivial for both irreducible
representations of K. As a result, 2D decomposition predicts

[WZW (Spin(4n))/(Zy x Zy,)] = [ [ WZW(SO(4n)/Z,). (5.59)

In particular, the boundary discrete theta angles vanish.
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In passing, we should observe that this is a nontrivial constraint. The two choices
of discrete torsion in the WZW model for Spin(4n)/Z, X Z, correspond to two dis-
tinct quantum theories, each of which can be described as the WZW model for
SO(4n), see e.g. Refs. 117-121. Furthermore, in two dimensions, certainly there exist
examples in which both choices of discrete torsion appear. For example, only slightly
generalizing results in'

[WZW (Spin(4n))/ D] = WZW(SO(4n)/Z,), [ WZW(SO(n)/Z,) ., (5.60)
[WZW (Spin(4n))/H] = WZW(SO(4n)/Z,), [[ WZW(S0(4n)/Z,) . (5.61)

where in both D, and H the Z, center is taken to act trivially, and the £ indicates the
two choices of discrete torsion.

However, because both the dihedral group D, and the group of unit quaternions H
are nonabelian, there is no Chern—Simons version of the decompositions above. That
is fortuitous, as of the two SO(4n)/Z, WZW models, the one with nonzero discrete
torsion also does not have a Chern—Simons dual.!?!:!22

More generally, in order to get a 2D decomposition of [WZW (Spin(4n))/I'| to
copies of WZW(SO(4n)/Z,) with nontrivial discrete torsion, it is straightforward to
check that I' must be nonabelian, and so does not admit a Chern—Simons description.

5.8. Chern-Simons(Sp(n))/BZsy,, K = Z,

Next, consider the case of a Chern—Simons theory with gauge group Sp(n) and a
gauged BZ,,, where the Z,, maps to the center (Z,) of Sp(n).

In terms of the decomposition prediction (3.15), we take A = Z,,, H = Sp(n),
and d: A — H projects Z, onto the central Z, C Sp(n), with K = Ker d = Z,.
Decomposition then predicts (3.15)

[Chern—Simons(Sp(n))/BZs,,] = H Chern—Simons(Sp(n)/Zs), (5.62)
0z,
where the discrete theta angle couples to a characteristic class (3,(wgy(n)/z,) for 8,
the Bockstein map associated to the short exact sequence
1 — Zy — Loy — Ly — 1 (5.63)
of extension class « € H gwup(ZQ, Z,). See e.g. Sec. 8 in Ref. 109 for results on per-

tinent characteristic classes.
In the boundary WZW model, the bulk decomposition (5.62) predicts

[(WZW (Sp(n))/Zs) = [ WZW(Sp(n)/Zs)p. (5.64)
()EZ

Because there is no discrete torsion in a Z, orbifold, 2D decomposition predicts in
this case that

WEW(Sp(0)/ 2] = [T WZW(Sp(a)/22) (5.65)
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5.9. Chern-Simons(U(1)),/BZp, K =7,

Consider a U(1);, Chern—Simons theory in three dimensions. This theory has a global
BZ,. symmetry which can be gauged (see e.g. Refs. 123 and 124, App. C in Ref. 70). It
has slightly different properties depending upon whether k is even or odd (see e.g.
Subsec. 2.2 in Ref. 51):

e When £ is even, this theory has k line operators, labeled by elements of Z;. If k is 0
mod 8, then the BZ,;, one-form symmetry generator has integer spin. If k is 2 mod 8,
then the one form generator has spin 1/4 and if k is 4 mod 8, then the one-form
symmetry generator is spin 1/2.

e When £ is odd, the theory has 2k lines labeled by elements of Z,;, and is moreover a
spin TQFT. The line with the label & is the transparent fermion.

Now, consider gauging a BZg,, where { divides n, where the Z;, projects to
Zy C Zy, for that BZ; above, with kernel BZ,. Let us apply the decomposition
prediction (3.15) to this case.

In the language of (3.15), A =7Z,, and H = U(1). Here, the map d: A — H is
given by projecting A = Z;, to a Z, C Z; C U(1), and so it has kernel K = Z,.
Furthermore

G = H/imd = U(1)/Z, = U(1). (5.66)

In this case, BU(1) = CP>* has no odd degree cohomology, so there cannot be
any discrete theta angle. Thus, the decomposition prediction (3.15) for this case
is that

[Chern—Simons(U (1)) / BZy,) = H [Chern—Simons(U(1);)/BZy), (5.67)

a sum of p theories (consistent with a trivially-acting BZ,) with no discrete theta
angles.

In particular, note that the right-hand side is a sum of U(1),,/BZ, Chern—Simons
theories, which is not necessarily the same as a union of U(1);, Chern—Simons the-
ories. Although as groups U(1)/Z;, = U(1), gauging a Chern—Simons theory by a
one-form symmetry is a bit different. For example, U(1)y,,/BZ, = U(1),,, from
Sec. C.1 in Ref. 76. (On the boundary, one has a U(1) WZW model, meaning a sigma
model on S', with radius determined by the level. Gauging the BZ,, in bulk becomes
gauging a 7, rotation in the boundary theory, which changes the radius and hence
the level).

We can use level-rank duality to perform a consistency test. Beginning with the
decomposition described in Subsec. 5.3 at level 1, namely

[Chern—Simons(SU(2),)/BZ,)
= Chern—Simons(SO(3),), H Chern—Simons(SO(3);)_.  (5.68)
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Here we have kept track of the discrete theta angle; we only consider Chern—Simons
theories on orientable manifolds, so no discrete theta angle is visible, so the predic-
tion of Subsec. 5.3 in this case is more simply

[Chern—Simons(SU(2),)/BZ,] = H Chern—Simons(SO(3),). (5.69)

From level-rank duality, we know Subsecs. 3.1 and 3.2 in Ref. 125
U1)y =U(1)—5 < SU(2)s, (5.70)
so we have that

[Chern—Simons(U(1)y)/BZy] = [SU(2),/BZs,)

5.71
= Chern—Simons(SO(3)y). (5.71)

Thus, we see from level-rank duality that our decomposition in Subsec. 5.3 implies

[Chern—Simons(U(1),)/BZ4) = H[Chern—Simons(U(l)Q)/BZQ], (5.72)
2
which is a special case of the result (5.67), confirming in this case that the decom-
position prediction (3.15) is giving results compatible with this example of level-rank
duality.
Next, we compute the spectrum of line operators in U(1)s/BZ,,, using the
methods of Subsec. 4.2, where in the gauging, the Z,, projects to Z, with trivially
acting Z,. We describe the Z,, by a set of lines {/;}, i € {0,...,2p — 1}, where

Zi X K/ = £i+j mod 8+ (573)
U(1)g has eight lines, labeled

(0),(1),(2),(3),(4), (5), (6),(7) (5.74)

whose properties are listed in App. A, and for which {(0),(4)} encode a BZ,. The
action of BZj, on the lines of U(1)g is given as follows:
B(&avenvL) = +1aB(£odd7L) = B(47L)a (575)
loven X L= L,logq X L = (4) x L, (576)
using the monodromies and fusion algebra described in App. A. It is straightforward
that this gives a well-defined action in the sense of Subsec. 4.2.

Next, we compute the spectrum of lines in U(1)g/BZsg, following the procedure of
Subsec. 4.2.

e The lines (1), (3), (5), (7) have B({,qq, L) = —1 # +1, and so are excluded.

o 0 x (0)=(4), ¢, x (2) = (6), so we identify (0) ~ (4), (2) ~ (6).
o lowen X L =L, so we get p copies of (0) ~ (4) and (2) ~ (6).
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Thus, the resulting spectrum is p copies of {(0) ~ (4),(2) ~ (6)}, which is the
same as p copies of the line operator spectrum of U(1)g/BZ,, as expected from
decomposition, since there is a trivially-acting Z,,.

Next, let us compare to boundary WZW models. A (boundary) WZW model for
the group U(1) is the same as a ¢ = 1 free scalar, of radius determined by the level.
(See e.g. App. C.1 in Ref. 76 for discussions of the RCFTs arising at particular values
of the level). Gauging the bulk one-form symmetry corresponds to orbifolding the
boundary ¢ = 1 theory, which just changes the radius of the target-space circle in
that boundary ¢ = 1 theory.

In a 2D sigma model with target S!, if we orbifold by a Z;, where Z, C Zy, acts
trivially, then from 2D decomposition, the resulting theory is equivalent to p copies of
the effectively-acting Z;, orbifold, precisely matching (5.67), as expected.

5.10. Ezxceptional groups

So far we have discussed quotients of Chern—Simons theories for the gauge groups
SU(n), Spin(n), and Sp(n). We can also consider cases with exceptional gauge
groups. Although G5, Fy, and Fg have no center, the group Fy has center Z3, and E;
has center Z, (see e.g. App. A in Ref. 126).

For example, applying decomposition (3.15), for a Z;, that acts on Ey by pro-
jecting to the Z; center with kernel Z,),

[Chern—Simons(Eg)/BZs,] = [ ] Chern—Simons(E/Zs)y, (5.77)
ez,

where the discrete theta angle couples to (,(wg,z,), for 3, the Bockstein map
associated to the short exact sequence

1= 2, — Zs, — 23— 1 (5.78)

of extension class o € HZyoup(Z3, Z,y).
Similarly, from decomposition (3.15), for a Z,, that acts on E; by projecting to

the Zy center with kernel Z,

[Chern—Simons(E;)/BZy,] = || Chern—Simons(E;/Zy)y, (5.79)
ez,

where the discrete theta angle couples to (,(wg,/z,), for 3, the Bockstein map
associated to the short exact sequence
1 = Zy — Loy — Ly — 1 (5.80)
of extension class a € H émup(ZQ, Ly).
In both cases, in the boundary WZW model, this reduces to 2D decomposition of a

WZW orbifold, with the discrete theta angles becoming choices of discrete torsion. In
both cases, as the orbifolds involve cyclic groups, discrete torsion is trivial, so the
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boundary decomposition yields just a disjoint union of copies of the same WZW
orbifold.

5.11. Chern-Simons(H, x H,)/BA

For completeness, let us also briefly discuss decomposition in gauged Chern—Simons
theories whose gauge groups are a product of Lie groups. Specifically, consider the
gauge of a gauged BA action, for A finite and abelian, on a Chern—Simons theory for
H, x H, (at various levels, such that the gauge theory is well defined on the given
three-manifold). Bulk decomposition takes the same form as (3.15)

[Chern—Simons(H,; x H,)/BA] = H Chern—Simons(G)j, (5.81)
0cK
where
1 K> ASH xHy—G—1, (5.82)

and the discrete theta angle couples to G, (wg), for 5, the Bockstein homomorphism
associated to
1-K—A—7—1, (5.83)

classified by o € H éroup(Z , K), where Z is a subgroup of the product of the centers of

H, 5, given by the image of d.
On the boundary, as before, this reduces to decomposition in the 2D theory, here

[(WZW(H, x Hy)/A] = [ WZW(G),, (5.84)
ok

where the discrete theta angles # now correspond to choices of discrete torsion in a
[WZW(H, x H,)/Z] (5.85)

orbifold. Essentially, because A is abelian, for ultimately the same reasons as in
Subsec. 5.7, the discrete torsion is trivial on each universe.

5.12. Finite 2-group orbifolds

So far, we have focused on Chern—Simons theories in three dimensions, but the same
ideas apply to the finite 2-group orbifolds discussed in Ref. 30. There, orbifolds by
2-groups I' were described, where I' is an extension

1-BK—-T—G-—1, (5.86)
where G, K are both finite and K is abelian, determined by [w] € H group(G , K). Now,

T can also be described by a crossed module {d : A — H}, corresponding to a four-
term exact sequence of ordinary groups

1—>K—>A1>H—>G—>1, (5.87)
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also determined (up to equivalences) by [w] € H (G, K) (see e.g. Sec. IV.9 in
Ref. 127 for related observations).

In this language, we can write the 2-group orbifold [X/T'] in terms of the crossed
module as

[X/T] = [[X/H]/BA, (5.88)

at least for a presentation in which A is abelian.
For this slightly different physical realization in terms of finite groups, the
statement of decomposition (3.15) is modified, but only slightly

[(X/T] = [[X/H]/BA] = ®pc;c[X/Clogo) (5.89)

where the discrete torsion (formerly discrete theta angle) w() is defined by ¢*w.
In this sense, the decomposition described in this paper is simply a variation on the
2-group orbifold decomposition described in Ref. 30. The fact that bulk discrete theta
angles (here, C-field analogues of discrete torsion) become (ordinary) discrete torsion
in the boundary theory was also observed in Subsec. 3.2 in Ref. 30.

In passing, we should also observe that results in finite 2-group orbifolds have a
qualitatively different form. For example, Subsec. 4.4 in Ref. 30 described an orbifold
by a 2-group extension

1 — BZy — T — (Zy)* — 1. (5.90)

In this case, [X/T] is equivalent to a pair of copies of [ X/(Z,)?] orbifolds, each with
a different C field discrete torsion in H g ((Zs)?, U(1)), which is nontrivial even
on T%. One could imagine an analogous theory here, such as a quotient of SU(2)?
Chern—Simons by BA (for A a finite abelian group, with K = Z, kernel, say) that
leads to a disjoint union of SO(3)* Chern—Simons theories. Here, however, in the case
of Chern—Simons theories, no analogue of C field discrete torsion is present for 7%,
partly because (as noted in Subsec. 3.4) the pertinent Bockstein homomorphism
vanishes. Part of the difference between these two theories is that in the

Chern—Simons case, the pertinent exact sequence of finite groups has the form
1—Zy— A— (29 — 1, (5.91)

whereas by contrast the analogous sequence in Ref. 30, namely (5.90), can be al-
ternately encoded as a four-term sequence

1—2Zy— P —Q — (Zy)? -1, (5.92)

which realizes an element of H gmup((ZQ):“,Zz). By contrast, the short exact se-

quence (5.91) realizes an element of H gmup((ZQ)i‘,ZQ), cohomology of different

degrees; the crossed module construction realizes a 2-group, but involves different
groups.

6. Boundary G /G Models

For completeness, in this section we include a different example of a decomposition.
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Consider gauged WZW models G/H at level k, on the boundary of a 3D theory.
Because the H action being gauged is an adjoint action,'?® if the center Z(H) of H is
nonzero, it acts trivially, and in two dimensions, the resulting gauged WZW model
decomposes into universes indexed by irreducible representations of Z(H).

Now, let us compare to the bulk theory. From Sec. 3 in Ref. 69, for the gauged
WZW model G/H at level k, the bulk 3D theory is a (G x H)/Z gauge theory, with
Z as the common center of G and H, with action

kScs(G) — kScs(H), (6.1)

where £ is the index of the embedding H—G,

Consider the special case of the 2D G/G model, on the boundary of a 3D theory.
The G/G model decomposes into universes indexed by the integrable representa-
tions. (In principle, this is because it is a unitary topological field theory!?%:130; the
specific relation to decomposition is via noninvertible symmetries, as discussed in
Refs. 20 and 21.) From the discussion above, the bulk dual to the boundary G/G
model appears to have an identically-zero action (6.1). Since the boundary theory is a
topological field theory, this would be trivially consistent.

For more general boundary G/ H-gauged WZW models, the bulk action (6.1) does
not vanish identically. Decomposition of the boundary suggests that the bulk may
also decompose, in which case the bulk theory should admit a global two-form
symmetry. We leave elucidating that symmetry for future work.

7. Conclusions

In this paper, we have discussed decomposition in 3D Chern—Simons theories with
gauged noneffectively-acting one-form symmetries. In the bulk decomposition, the
different universes of the decomposition have discrete theta angles coupling to bundle
characteristic classes, specifically, images under Bockstein maps of canonical degree-
two characteristic classes. On the boundary, those map to choices of discrete torsion,
and the bulk decomposition becomes a standard orbifold decomposition, involving
WZW models, which serves as a strong consistency test.

There are many directions this work could be taken. One example would be to
consider decomposition in gauged Chern—Simons theories in which the original
theory has a discrete theta angle, analogous to decomposition in 2D orbifolds with
discrete torsion.?® Another example would be to consider decomposition in
Chern—Simons-matter theories, rather than pure Chern—Simons. Similarly, it would
be interesting to consider decomposition in holomorphic Chern—Simons,'3!
deformations of Chern—Simons theories, that arise when studying disk instanton
corrections in string compactifications.

It would also be interesting to understand dimensional reduction of decomposi-
tion to two dimensions. The dimensional reduction of pure Chern—Simons is the 2D
G/G model (which as a unitary TFT already admits a decomposition??-?1:129:130)

or
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and the BK symmetry in three dimensions should become a K x BK symmetry in
the two-dimensional theory.

In condensed matter physics, there exists a realization of Chern—Simons theories
known as the Levin—-Wen model,'?* and it would be interesting to consider this story
in that setting.

In a different direction, Chern—Simons theories can also arise on boundaries of
four-dimensional theories, and it would be interesting to study decomposition in that
context, perhaps relating it to the decomposition arising after instanton restriction in
Ref. 16. There, the instanton restriction resulted in a disjoint union of 4D Yang—Mills
theories with theta angle terms of the form

1 2mm
——— | TtFAF 7.1
s [mFAE (71)
for m e {0,1,...,k— 1}, which implements the restriction on instantons. On a

boundary, that would become a disjoint union of theories, whose actions have
Chern—Simons terms of the form

1 2mm
@T /wcsa (7~2)

clearly related to the disjoint unions of Chern—Simons theories we discuss in this
paper. We leave such considerations for future work.
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Appendix A. Line Operators

In this section, we briefly review some basics of line operators in Chern—Simons
theories and their quantum numbers, to make this paper self-contained.

In general, the line operators in a Chern—Simons theory at level k correspond to
integrable representations, which for a model at level k, are the representations of
highest weight A satisfying the unitarity bound (Eq. (9.30) in Ref. 132)

1/}')‘<k

25 <k

(A1)
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for ¢ as the highest weight of the adjoint representation. (For example, for SU(n) the
integrable representations at any level are classified by Young diagrams of width
bounded by the level.) Similarly, for a given WZW primarily associated to an inte-
grable representation of highest weight A, the L, eigenvalue is (Eq. (15.87) in
Ref. 133)

(A A +2p)

h:
2(k+g)

(A.2)

where ¢ is the dual Coxeter number and p the Weyl vector (half-sum of positive roots).
In passing, a representation is integrable if and only if its dual is integrable, and its
dual defines WZW primaries of the same conformal weight, see e.g. Subsec. 8.3 in
Ref. 126. Similarly, the quantum dimension is given by (Eq. (16.66) in Ref. 133)

sin (—”(’Zi”gm)

o [ 7p)
a>0 sm( g )

(A.3)

For use in examples in the text, the line operators of SU(2), are"

SU(2), Integrable rep. A h ¢-dim
(0) 1 [0,4] 0 1
1) (1117 (40 1 1
2) O L3 18 V3
®3) (11 31 5/8 V3
(4) [ 22 13 2

where A denotes the Dynkin label of each line, h is the conformal weight of the
corresponding boundary chiral primary as above, and ¢-dim denotes the quantum
dimension.

The fusion algebra of SU(2), lines can be computed with the program Kac,
that algebra is given as follows:

135 and

(0) x (0) = (0), (2) x (2) = (0) + (4),
(0) x (1) = (1), (2) x (3) = (1) + (4),
(0) x(2) = (2), (2) x (4) = (2) + (3),
(0) x(3) = (3), 3) x (3) = (0) + (4),
(0) x (4) = (4), 3) x (4) = (2) + (3),
(1) x (1) = (0), (4) x (4) = (0) + (1) + (4)

"We would like to thank M. Yu for providing the results for line operators of SU(2), and U(1)g listed in
this appendix.
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(1) x(2) = 3),
(1) x(3) = (2),
(1) x (4) = (4),

We see that the lines (0), (1) are mutually transparent, and their fusion products

have the structure of the group Zs.

From the table above, it is straightforward to compute the monodromies of the

line (1) about other lines, using

B(a,b) = exp(2wi(h(a x b) — h(a) — h(b))),

and one finds

B(1,1) = +1,
B(1,2) = —1,
B(1,3) = —1,
B(1,4) = +1,

(A.4)

R

)
)
)
)

o J O ot

so that all monodromies are in {41}, as expected for a BZ,, and also consistent with
the fact that (2) and (3) correspond to Wilson lines for an odd number of copies of

the ¥ representation.

Similarly, it will be useful later to write down the fusion algebra for U(1)g. Here,
there are eight lines, labeled (0) through (7), with conformal weights and quantum

dimensions

)

) 1/16
) 1/4
) 9/16
) 1

) 9/16
) 1/4
) 1/16

e e = e T

and the fusion algebra acts by addition, as

(a) x (b) = (a+ b mod ).

(A.9)

From the table of lines above, it is clear that there is a BZ, corresponding to the

lines {(0), (4)}. For use in Subsec. 5.9, we list here pertinent monodromies:
B((0),L) = +1,B(4,0) = B(4,2) = B(4,4) = B(4,6) = +1,
B(4,1) = B(4,3) = B(4,5) = B(4,7) = —1.
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Appendix B. Overview of Crossed Modules

In this paper, we have described 2-groups using crossed modules. As they play an
important role in the decomposition statement in 3D Chern—Simons theories, to
make this paper self-contained, we include a brief overview here.

Briefly, a crossed module consists of the following data:

e a pair of groups G, Gy,
e a group homomorphism d : G; — Gy,
e a group homomorphism « : G, — Aut(G,),

such that

1. The composition
Gy LGy % Aut(Gy) (B.1)
is the conjugation action of G; on itself, meaning

a(d(g1))(h) = g1hg1 ", (B.2)
for g;, h € G4, or equivalently that

G1 X G1 Go X G1
\ / (B3)
Ad a
G
commutes
2. d is equivariant for the G, action on the source and target, meaning
d(a(go)(h)) = god(h)g5" (B.4)

for gg, h € Gy, or equivalently that

GO X Gl —2 Gl

Idxdl ld (B.5)

Ad
Go X Go —— GQ,
commutes.

In the description above, Ad : G — Aut(G) denotes the adjoint action of G to
itself, namely, Ad(g)(z) = gzg~!.
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Some examples of crossed modules include the following:

e For G any group, let Gy = Aut(G,), with d : G; — Aut(G;) the natural inclusion
(meaning d(g) = Ad(g)) and « : Aut(G;) — Aut(G;) the identity.

e Let G be any group and GG a normal subgroup of G, with d : G; — G, inclusion,
and « : Gy — Aut(G,) by conjugation.

A crossed module can be encoded in a four-term exact sequence:

1 - Kerd— Gy %Gy — Coker d — 1. (B.6)

In the case that Ker d is abelian, this is sometimes alternatively expressed as the
extension

1 — B(Ker d) — I' — Coker d — 1, (B.7)

for ' the 2-group corresponding to the crossed module.

Physically, in this paper, the map d encodes the action of the noneffectively-acting
BA, by mapping A to a subset of the center of the Chern—Simons gauge group, which
acts nontrivially.

136

For more information on crossed modules, see for example!*® for further mathe-

matics background, or App. A in Ref. 74 and Sec. 2 in Ref. 75 in physics.

Appendix C. Generalities on Gauging Effectively-Acting
One-Form Symmetries

For most of this paper, we have discussed gauging one-form symmetries in terms of
line operators, but it is worth observing that this operation can also be understood in
terms of local actions, which we will briefly review in this section.

Suppose in general terms we have a G gauge theory, and we gauge the action of a
one-form symmetry BK, where BK acts nontrivially on the line operators of the
theory. (For example, this is the case if K is a subset of the center of G).

In general terms, when gauging the BK on a G gauge theory,

o the path integral sums over K gerbes, and

o for each K gerbe, the path integral sums over gerbe-twisted G bundles, defined by
transition functions which close on triple overlaps only up to a cocycle representing
the gerbe characteristic class.

Consider for example gauging an effectively-acting BZ,, in an SU(n) gauge the-
ory. The twisted SU(n) gauge fields above are all the same as ordinary SU(n)/Z,
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gauge fields, and the gerbe characteristic classes correspond to (some) characteristic
classes of SU(n)/Z, bundles. Let us look at this in more detail:

1. The transition functions g;; of a twisted bundle no longer close on triple overlaps,
but rather obey

9ii9k9ki = hijlc (C-l)

for a cocycle h,j; representing an element of H?(Y',Z,) corresponding to the gerbe
characteristic class, and
2. Across overlaps, the gauge field A obeys

A; = g,jAig5 + g1 dgiy — TA;, (C.2)

where I is the identity and A;; is a locally-defined one-form field, with the
property that if the gerbe were to admit a connection B, then on the same
overlaps

Now, this procedure should generate all G/K bundles. One example of this
involves the relation between SU(2) and SO(3) bundles in 3D theories. As is well
known

Chern—Simons(SU(2))/BZy = Chern—Simons(SO(3)), (C4)

for the BZ, corresponding to the center one-form symmetry. Viewed as a BZ,
quotient of an SU(2) gauge theory, the path integral

e sums over Z, gerbes, whose characteristic class is w € H?(M,Z,), and

e sums over w-twisted SU(2) bundles, meaning that the SU(2) transition functions
close on triple overlaps only up to w, and that gauge transformations across
patches only have to match up to a Z, shift.

Interpreted in terms of SO(3) bundles, the characteristic class w € H?(M,Z,) is
the second Stiefel-Whitney class of an SO(3) bundle. (The other possibly nonzero
characteristic class, the third Stiefel-Whitney class ws € H3(M,Z,), is determined
by wy as ws = Sq!(w,), see Subsec. 5.3). The fact that gauge transformations only
respect SU(2) up to Z, shifts, and that SU(2) transition functions only close up to w,
are indicative of general aspects of SO(3) bundles.

Thus, we see that the BZ,-gauged SU(2) theory really does recover all SO(3)
bundles, even those with nonzero ws, as expected.

If we instead gauged a BA action on a G Chern—Simons theory with a trivially-
acting subgroup BK, then, for reasons detailed in Ref. 30, we would recover
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G/(A/K) gauge theory, with a restriction on G/(A/K) bundles. One role of de-

composition is to implement that restriction.
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