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In this paper, we discuss decomposition in the context of three-dimensional Chern{Simons

theories. Speci¯cally, we argue that a Chern{Simons theory with a gauged none®ectively-acting

one-form symmetry is equivalent to a disjoint union of Chern{Simons theories, with discrete
theta angles coupling to the image under a Bockstein homomorphism of a canonical degree-two

characteristic class. On three-manifolds with boundary, we show that the bulk discrete theta

angles (coupling to bundle characteristic classes) are mapped to choices of discrete torsion in

boundary orbifolds. We use this to verify that the bulk three-dimensional Chern{Simons de-
composition reduces on the boundary to known decompositions of two-dimensional (WZW)

orbifolds, providing a strong consistency test of our proposal.
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1. Introduction

Decomposition is the observation that some local quantum ¯eld theories are equiv-

alent to disjoint unions of other local quantum ¯eld theories, essentially a counter-

example to old lore linking locality and cluster decomposition. It was ¯rsta observed

*Corresponding author.
aFor purposes of historical language translation, before the term \one-form symmetry" was coined, the-

ories with one-form symmetries were sometimes called \gerby" theories, in reference to the fact that a

gerbe is a ¯ber bundle whose ¯bers are higher groups.
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in Ref. 1 in two-dimensional (2D) gauge theories and orbifolds with trivially-acting

subgroups (nonminimally-charged matter),2{4 and since then has been developed in

many other references, see e.g. Refs. 5{30 and 31{35 for reviews.

Decomposition is not limited to two dimensions, and indeed four-dimensional

versions of decomposition have been described in Refs. 16 and 18. The common

thread linking these di®erent examples involves what is now called a higher-form

symmetry: a quantum ¯eld theory in d space{time dimensions decomposes if it has a

global ðd� 1Þ-form symmetry (possibly realized noninvertibly).16,18

In this paper, following up,30 we turn to decomposition in three-dimensional (3D)

Chern{Simons theories with gauged none®ectively-acting one-form symmetries.

Brie°y, we ¯nd that

½Chern� SimonsðHÞ=BA� ¼
a

�2K̂
Chern� SimonsðGÞ�; ð1:1Þ

where G ¼ H=ðA=KÞ,K � A de¯nes the trivially-acting subgroup, and � indicates a

discrete theta angle coupling to an appropriate characteristic class of G bundles, On

the boundary, this reduces to decomposition in none®ectively-acting orbifolds of 2D

WZW models. A key role is played by the fact that the bulk discrete theta angles

(coupling to bundle characteristic classes) become discrete torsion on the boundary,

a result we explain in detail. The fact that the bulk decomposition correctly implies a

known decomposition of the 2D boundary theory provides a strong consistency check

on our proposal.

In two dimensions, decomposition has had a variety of applications, for example

in giving nonperturbative constructions of geometries in phases of some gauged

linear sigma models (GLSMs),5,36{48 in Gromov{Witten theory,6{11 in computing

elliptic genera to check claims about IR limits of pure supersymmetric gauge theo-

ries,17 and recently in understanding Wang{Wen{Witten anomaly resolution.27{29,49

Chern{Simons theories are the starting point for many physics questions, and so

we anticipate that the results of this paper should have a variety of applications. For

example, as is well known, 3D AdS gravity can be understood as a Chern{Simons

theory,50 making Chern{Simons theories a natural playground for addressing ques-

tions in 3D gravity, an approach used in e.g. Ref. 51 to address Marolf{Max¯eld

factorization questions.52 We anticipate that this work may have analogous uses.

Similarly, one of the original applications of 2D decomposition was to understand

phases of certain gauged linear sigma models, where decomposition was used locally

(ala Born{Oppenheimer) to understand IR limits of certain theories as non-

perturbatively-realized branched covers of spaces.5 We expect that similar ideas

could be used to understand the IR limits of certain Chern{Simons-matter theories.

We begin in Sec. 2 with a review of decomposition in 2D WZW orbifolds, which

not only serves as a review of decomposition, but also describes the decomposition

pertinent to boundaries in the 3D Chern{Simons theories we discuss.

In Sec. 3, we describe the primary proposal of this paper, namely, decomposition

in Chern{Simons theories with gauged one-form symmetry groups, which takes the
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form (1.1). All Chern{Simons theories are assumed to have levels such that the

theories exist on the three-manifolds over which they are de¯ned. We describe how

this bulk decomposition maps to boundary WZW models, and reproduces standard

results on decomposition in 2D none®ective orbifolds, which serves as a strong

consistency test of our claims. We also observe that in all these examples, the

boundary discrete theta angles (choices of discrete torsion in boundary WZW

models) are trivial, which is often re°ected in the bulk discrete theta angles.

In Sec. 4, we discuss the spectra of these theories. We begin with an explanation

and review of monopole operators, local operators (analogues of twist ¯elds in 2D

orbifolds) which can be used to construct projection operators. We then discuss line

operators. When gauging ordinary one-form symmetries, the standard technology of

anyon condensation can be used to describe the line operators. However, to describe

none®ectively-acting one-form symmetries (in which a subgroup acts trivially), as

relevant for this paper, requires a minor extension, which we propose and utilize.

In Sec. 5, we walk through the details of bulk and boundary decomposition,

spectrum computations, and consistency tests such as level-rank duality in a variety

of concrete examples.

Finally in Sec. 6, we brie°y discuss the related case of boundaryG=Gmodels. These

2D theories decompose, and we brie°y discuss their corresponding bulk theories.

InApp.A,we summarize some results on line operators that are used in themain text.

InApp.B,we give a brief overviewof crossedmodules, tomake this paper self-contained,

as they are used in the description of 3D decomposition. In App. C, we describe gauging

e®ectively-acting one-form symmetries without appealing to line operators.

2. Warm-Up: Decomposition in WZW Orbifolds

As a warm-up exercise, let us brie°y review decomposition in two dimensions, and

apply it towards orbifolds of WZW models.

Consider an orbifold ½X=�� where a central subgroup K � � acts trivially on X.

As has been discussed previously (see e.g. Ref. 1), for an ordinary (orientation-

preserving) orbifold

QFTð½X=��Þ ¼
a

�2K̂
QFTð½X=G��ð!ÞÞ; ð2:1Þ

where �ð!Þ is a choice of discrete torsion, given as the image of the extension class

½!� 2 H2ðG;KÞ corresponding to

1 ! K ! � ! G ! 1 ð2:2Þ
under the map � : K ! Uð1Þ, yielding �ð!Þ 2 H2ðK;Uð1ÞÞ.

Consider a � orbifold of a WZWmodel for a groupH, withK � � acting trivially,

and G ¼ �=K a subset of the center of H, acting freely on H. Then, as a special case

of the decomposition above, we have that

½WZWðHÞ=�� ¼
a

�2K̂
WZWðH=GÞ�ð!Þ; ð2:3Þ
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with both sides at the same level. That said, (ordinary) discrete torsion vanishes for

cyclic subgroups, so the only occasion on which �ð!Þ can be nontrivial will be if

H ¼ Spinð4nÞ and �=K ¼ Z2 � Z2. (We will discuss that case in Subsec. 5.7.)

For example, consider a Z4 orbifold of an SUð2Þ WZW model, where a Z2 � Z4

acts trivially, and the Z2 coset is the freely-acting center of SUð2Þ. For an ordinary

(orientation-preserving) orbifold, since there is no discrete torsion in a Z2 orbifold, we

have that

½WZWðSUð2ÞÞ=Z4� ¼
a

2

WZWðSOð3ÞÞ ð2:4Þ

(with all WZW models at the same level).

Although we will not utilize orientifolds in this paper, in principle one can also

consider orientation-reversing orbifolds (orientifolds) of WZW models, see e.g.

Refs. 53{58. See Ref. 59 and references therein for discussions of discrete torsion in

orientifolds.

So far we have discussed discrete torsion weighting di®erent universes. In prin-

ciple, WZW models can also be weighted by analogues of discrete theta angles.

Although these are better known in the case of gauge theories,b the point is that if a

group manifold G has a torsion characteristic class, some w 2 H2ðG;F Þ for some

coe±cient module F , then there exists a discrete theta angle � 2 F̂ that weights maps

into G, via a term in the action of the form
Z

�

h�; ��wi; ð2:5Þ

where � is the worldsheet and � : � ! G any map in the path integral. If G ¼ ~G=Z

for some ¯nite group Z, these discrete theta angles can also, for appropriate w,

correspond to choices of discrete torsion in a Z orbifold of a WZW model on ~G.

In Subsec. 3.3, we shall see that the choices of discrete theta angle above that arise

in the WZW orbifolds appearing on boundaries of decompositions of one-form-

gauged Chern{Simons theories, are the same as choices of discrete torsion.

3. Decomposition in None®ective One-Form Symmetry Gaugings

In general terms, one expects a decomposition in a d-dimensional quantum ¯eld

theory whenever it has a global ðd� 1Þ-form symmetry.16,18

A typical example of a decomposition in two dimensions involves gauging a

none®ective group action: a group action in which a subgroup acts trivially on the

theory being gauged, in the sense that its generator commutes with the operators of

that theory: ½J ;O� ¼ 0. Gauging a trivially-acting group results in a global one-form

symmetry, which is responsible for a decomposition.

In principle, an analogous phenomenon exists in three dimensions, involving the

gauging of \trivially-acting" one-form symmetries. Here, for a one-form action to be

bDiscrete theta angles in gauge theories in unrelated contexts have a long history, see e.g. Ref. 60 (Sec. 6 in

Ref. 61 and Sec. 4 in Ref. 36) for 2D examples and Refs. 62{64 for four-dimensional examples.
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trivial means that it commutes with the line operators in the theory, as we shall

elaborate below.

In this section, after a short overview of the notion of none®ective one-form

symmetries, we make a precise prediction for decomposition.

3.1. None®ective one-form symmetry group actions

We de¯ne a \trivially-acting" one-form symmetry in terms of the fusion algebra of

the corresponding lines, and a \non-e®ective" one-form symmetry is one in which a

subset of the lines acts trivially.

First, let us recall some basics of gauging one-form symmetries, which in three

dimensions we will be described by the fusion algebra of line operators (see e.g.

Subsec. 3.1 in Refs. 65{67 and Sec. 2 in Ref. 68) and references therein for a detailed

discussion, with gauging as in e.g. Ref. 69. Anomalies in such a gauging are discussed

in e.g. (Subsec. 2.3 in Ref. 51 and Sec. 2.1 in Refs. 70{73). In order to be gaugeable,

its 't Hooft anomaly must vanish, which requires that the lines be mutually

transparent, meaning that they have trivial mutual braiding. In particular, a one-

form symmetry necessarily has abelian lines, for which the braiding is completely

characterized by their spins (see e.g. Eq. (2.28) in Ref. 51 and Sec. 2 in Ref. 70),

schematically

ð3:1Þ

where

Bða; bÞ ¼ expð2�iðhða� bÞ � hðaÞ � hðbÞÞÞ; ð3:2Þ
where a, b denote lines, and hðaÞ mod 1 is the spin of the line a. Note that if the spins

are integers, then B ¼ 1 and there is no obstruction. Conversely, if B ¼ 1, then spins

are integers or half integers.

We takec a \trivially-acting BK" to be described by a set of lines fgg such that all

other lines b both

1. have trivial monodromy under g, meaning Bðg; bÞ ¼ 1, and also are

2. invariant under fusion with g, g� b ¼ b,

for all g. (In e®ect, there are two conditions in three dimensions, whereas invariance

in two dimensions really boils down to a single constraint of the form ½J ;O� ¼ 0).

cWe are using \B" to mean several di®erent things in this section. We use BK to denote a one-form
symmetry, a standard notation in mathematics, going back decades. (In physics, the notation K½1� is
sometimes used instead). Later, we will use BG to denote a classifying space. In this section, we also use

Bða; bÞ to denote line monodromies.
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To be clear, this notion can be somewhat counterintuitive. Consider for example

SUð2Þ Chern{Simons theory. This theory has a BZ2 one-form symmetry de¯ned by

the center of SUð2Þ. However, although the classical action is invariant under the

center, the Wilson lines are not invariant, as the BZ2 action multiplies Wilson lines

by phases (corresponding to the n-ality of the corresponding representation with

respect to the center). In particular, the BZ2 action on SUð2Þ Chern{Simons theory

de¯ned by the center of SUð2Þ is not trivial.

3.2. Basic decomposition prediction

In Ref. 30, it was argued that in a quotient by a 2-group � of the form

1 ! BK ! � ! G ! 1; ð3:3Þ
where the BK acts trivially, the path integral sums over both K gerbes and a subset

of G bundles, speci¯cally G bundles satisfying a constraint.

In general, if one has a group H and an abelian group A with a map d : A ! H

whose image is in the center of H, then the crossed moduled �� ¼ fA ! Hg de¯nes

a 2-group we shall label �. So long as we are interested in °at bundles, we can

apply the same analysis as Ref. 30, and argue that � bundles on a three-manifold M

map to G ¼ H=im A bundles satisfying a condition. This 2-group ¯ts into an exact

sequence

1 ! K ! A!d H ! G ! 1; ð3:4Þ
where K ¼ Ker d. (Physically, d just encodes the A action, by projecting it to a

subgroup of the center of H). This exact sequence de¯nes an element

! 2 H 3

groupðG;KÞ ¼ H 3

singðBG;KÞ; ð3:5Þ
which we will give explicitly in (3.9), and the condition that G bundles must satisfy

to be in the image of � bundles is that

��! ¼ 0; ð3:6Þ
for � : M ! B� the map de¯ning the � bundle on M, for the same reasons discussed

in Ref. 30.

Next, we describe the element ! corresponding to the extension (3.4), appearing

in the constraint (3.6) above. Let Z ¼ imd � ZðHÞ, the center of H, and wG the

Z-valued degree-two characteristic class for G correspond to a generator of

H 2

singðBG;ZÞ. (For example, for G ¼ SOðnÞ, wG is the second Stiefel{Whitney class

w2). Let � 2 H 2
groupðZ;KÞ be the class of the extension

1 ! K ! A ! Z ! 1; ð3:7Þ

and let

�� : H 2

singðBG;ZÞ ! H 3

singðBG;KÞ ð3:8Þ

dSee App. B for an introduction to crossed modules, or alternatively (App. A) in Ref. 74 and Sec. 2 in

Ref. 75.
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be the Bockstein homomorphism in the long exact sequence associated to the ex-

tension (3.7). Then

! ¼ ��ðwGÞ 2 H 3

singðBG;KÞ: ð3:9Þ
When discussing boundary WZW models, it will be useful to describe ! di®er-

ently. To that end, we use the fact that

H n
singðBG;ZÞ ¼ MapðBG;KðZ;nÞÞ; ð3:10Þ

to write wG and � as maps

wG : BG ! KðZ; 2Þ; � : BZð¼ KðZ; 1ÞÞ ! KðK; 2Þ: ð3:11Þ
Since Eilenberg{Maclane spaces are in the stable category, where B exists as a

functor, we can de¯ne

B� : KðZ; 2Þ ! KðK; 3Þ; ð3:12Þ
hence

B� � wG : BG ! KðK; 3Þ; ð3:13Þ
and so de¯nes an element of H 3

singðBG;KÞ. Furthermore, B� is just the Bockstein

homomorphism ��, hence

! ¼ B� � wG ¼ ��ðwGÞ; ð3:14Þ
and so we recover the description of ! above.

So far, we have argued that on general principles, our � gauge theory should be

described by a G gauge theory such that the G bundles satisfy the constraint (3.6).

Just as in Refs. 1 and 30, such a restriction on instantons can be implemented by a sum

over universes. The constraint (3.6), namely, ��! ¼ 0, is implemented by summing

over G Chern{Simons theories with discrete theta angles coupling to !, formally

½Chern�SimonsðHÞ=BA� ¼
a

�2K̂
Chern�SimonsðGÞ�; ð3:15Þ

where � is the 3D discrete theta angle coupling to ��!, for levels and underlying three-

manifolds for which these theories are de¯ned.e This is our prediction for decomposi-

tion in 3D Chern{Simons theories.

The G Chern{Simons theory is de¯ned to be the BðimAÞ gauging of the H

Chern{Simons theory, at the same level as the H Chern{Simons theory. This is

eAs has been noted in e.g. Ref. 69 (App. C in Ref. 76 and App. A in Ref. 77{80), not every Chern{Simons

theory with every level is well-de¯ned on every three-manifold. The basic issue is that Chern{Simons
actions are not precisely gauge-invariant, but under gauge transformations shift by an amount

proportional to 2�. Depending upon the gauge group and the three-manifold, the proportionality factor

may or may not be integral. If k times that proportionality factor is integral, then the exponential of the

action is gauge-invariant, and the theory is well-de¯ned; if that product is not integral, then the path
integral is not gauge-invariant and so not de¯ned. Even if it is de¯ned, it may depend upon subtle choices.

For example, App. A in Ref. 77 argues that the (ordinary, bosonic) Uð1Þ1 Chern{Simons theory is well-

de¯ned only on spin three-manifolds, and furthermore that the choices of values of the action, the

Chern{Simons invariants in the sense of Refs. 81 and 82, are in one-to-one correspondence with the spin
structures. More generally, gauging one-form symmetries can create issues of this form, precisely because

one twists gauge ¯elds by gerbes, which results in \twisted" bundles and connections not present in the

original theory, of fractional instanton numbers.
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important to distinguish because sometimes gauging one-form symmetries can shift

levels. For example, Sec. C.1 in Ref. 76 argues that, schematically, Uð1Þ4m=BZ2 ¼
Uð1Þm, and not Uð1Þ4m, despite the fact that as groups, Uð1Þ=Z2 ¼ Uð1Þ.

The reader should note that the decomposition statement above correctly

reproduces ordinary one-form gaugings. Consider the case that K ¼ 1, so that the

map d : A ! H is one-to-one into the center of H. Then, decomposition (3.15)

correctly predicts that

½Chern�SimonsðHÞ=BA� ¼ Chern�SimonsðGÞ; ð3:16Þ
which is a standard result (see e.g. Ref. 69). Decomposition becomes interesting in

cases in which K 6¼ 1.

In Sec. 5, we will check this statement in several examples, outlining how it both

reproduces known results as well as explains new cases.

3.3. Boundary WZW models

Let us now turn to Chern{Simons theories on manifolds with boundary, and the

corresponding theories on the boundaries. We will see that the bulk Chern{Simons

decomposition of the previous section correctly predicts a decomposition of boundary

WZWmodels, which matches existing results on decomposition in 2D orbifolds. This

matching involves a rather interesting relation between characteristic classes of

bundles on three-manifolds and choices of discrete torsion in 2D orbifolds. In par-

ticular, the fact that the 3D decomposition correctly reproduces 2D decomposition

on the boundary is an important consistency test of our proposal.

Brie°y, as has been discussed elsewhere (see e.g. Refs. 83{87, Subsec. 4.2 in

Ref. 88, Subsec. 5.2 in Ref. 89, and in related contexts90,91), on a three-manifold with

boundary, a bulk Chern{Simons theory for gauge group G naturally couples to a

(chiral) WZW model for the group G on the boundary. If the Chern{Simons theory

has level k, then (see e.g. Subsec. 4.2 in Ref. 88) the boundary WZW model has level

�ðkÞ, where

� : H n
singðBG;F Þ ! H n�1

sing ðG;FÞ ð3:17Þ

is the loop space mapf for any abelian group F , and we take Chern{Simons

levelsg k 2 H 4

singðBG;ZÞ, and WZW levels �ðkÞ 2 H 3

singðG;ZÞ. Similarly, if the

Chern{Simons theory has a discrete theta angle coupling to some characteristic class

de¯ned by an element of ! 2 H3ðBG;F Þ, then the boundary WZW model couplesh

fThis is the natural map

H n
singðBG;FÞ ¼ MapðBG;KðF ;nÞÞ

! Mapð�ðBGÞ;�ðKðF ;nÞÞÞ ¼ MapðG;KðF ;n� 1ÞÞ ¼ H n�1

sing ðG;FÞ: ð3:18Þ

which sends any f 2 MapðBG;KðF ;nÞÞ to �ðfÞ. For later use, to construct explicit maps, one needs

concrete choices of e.g.X 7! �BX, for which we refer the reader to e.g. Refs. 92{95. As such choices do not

alter cohomology classes, we will not discuss them explicitly in this paper.
gAs before, levels are assumed to be such that the theory exists.
hWe would like to thank Y. Tachikawa for a discussion of discrete theta angles in this context.
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to a discrete theta angle de¯ned by �ð!Þ 2 H2ðG;F Þ. Such discrete theta angles in

2D WZW models are reviewed in Sec. 2.

Given that standard bulk Chern{Simons/boundary WZW model relationship

reviewed above, the 3D decomposition prediction 3.15 implies that in the associated

boundary RCFT, an A orbifold of a WZW model for H is equivalent to a disjoint

union of WZW models for G

½WZWðHÞ=A� ¼
a

�2K̂
WZWðGÞ�; ð3:19Þ

with levels and discrete theta angles related to those of the bulk theory by the map � .

We will see later in this section that although the WZW discrete theta angles � are

derived from characteristic classes in the Chern{Simons theory, they nevertheless

correspond to choices of discrete torsion in the boundary orbifolds.

As a consistency check, let us show that � commutes with gauging BA, so that the

levels on the left-and right-hand sides of (3.19) match, just as they didi in the bulk

prediction (3.15). First, for G as any topological group, there is a natural homotopy

equivalence between the loop space �ðBGÞ and G (meaning that BG is a delooping

of G). Also, for any abelian group F , the Eilenberg{Maclane space KðF ;n� 1Þ is

homotopy equivalent to loop space �ðKðF ;nÞÞ. Since
H n

singðBG;F Þ ¼ MapðBG;KðF ;nÞÞ ð3:20Þ
and since � is a functor, for any continuous homomorphism f : G1 ! G2 between to-

pological groupsG1,G2, there is a continuous mapBf : BG1 ! BG2 and natural maps

MapðBG2;KðF ;nÞÞ ! MapðBG1;KðF ;nÞÞ; ð3:21Þ
a 7! Bðf � aÞ ð3:22Þ

and

MapðG2;KðF ;n� 1ÞÞ ! MapðG1;KðF ;n� 1ÞÞ; ð3:23Þ
b 7! f � b: ð3:24Þ

Combining these maps, one ¯nds that for any Lie group G withK as a subgroup of the

center, the following diagram commutes:

ð3:25Þ

This tells us that the levels appearing on either side of the boundary WZW

relation (3.19) match, as expected, consistent with the prediction (3.15) of the bulk

Chern{Simons theory.

iModulo subtleties discussed there in special cases, such as those arising from the fact that Uð1Þ=Zk ¼ Uð1Þ
as a group, but the corresponding Chern{Simons theories have di®erent levels.
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Now, we will argue that the WZW model discrete theta angles, arising as � of

characteristic classes in the Chern{Simons theory, are the same as choices of discrete

torsion in the boundary theory. This will be important in understanding how the

3D Chern{Simons decomposition compares to 2D decompositions as reviewed in

Sec. 2. For simplicity, we will assume that H is the universal covering, so that

Z ¼ �1ðGÞ. (Similar results exist in more general cases).

To that end, since � is the loop space functor, we can write

�ð��ðwGÞÞ ¼ �ðB� � wGÞ ¼ �ðB� � wGÞ ¼ �ðB�Þ � �ðwGÞ: ð3:26Þ
Now, �ðB�Þ ¼ �, and

�ðwGÞ 2 Mapð�ðBGÞ;�ðKðZ; 2ÞÞÞ ¼ MapðG;KðZ; 1ÞÞ; ð3:27Þ
so �ðwGÞ is a map G ! BZ. Now, we claim that �ðwGÞ is also the cell attachment

map p of the Postnikov tower, p : G ! B�1ðGÞ ¼ BZ, where Z ¼ �1ðGÞ.
To make this clear, recall that the Postnikov tower map is the classifying map for

the universal cover. In other words, if ~G is the universal covering group of G, then

p�EZ ¼ ~G. Now, on the other hand, B ~G ! BG is a principalKðZ; 1Þ bundle on BG,

which corresponds to a map BG ! BðKðZ; 1ÞÞ ¼ KðZ; 2Þ, which is wG. Applying

the loop space functor gives the map �ðwGÞ : G ! KðZ; 1Þ ¼ BZ, which is then

more or less tautologically p.

In particular, we see that

�ðB� � wGÞ ¼ � � �ðwGÞ ¼ � � p: ð3:28Þ
The expression above relates the Chern{Simons discrete theta angles (coupling to

bundle characteristic classes) to discrete torsion on the boundary. We can see this as

follows. If � : � ! G is any map from the worldsheet � into the target G, then p � � :

� ! BZ de¯nes a Z-twisted sector over�. In particular, the discrete theta angle phase

h�; ��ð� � pÞi; ð3:29Þ
for � : K ! Uð1Þ any character of K, corresponds to discrete torsion in the Z-twisted

sector de¯ned by p � �, speci¯cally discrete torsion given by �ð�Þ 2 H 2
groupðZ;Uð1ÞÞ, for

� 2 H 2
groupðZ;KÞ. Thus, we see that � relates discrete theta angles coupling to bundle

characteristic classes on three-manifolds, to discrete torsion in 2Dorbifolds onboundaries.

In passing, this phenomenon that 3D bulk discrete theta angles become discrete

torsion in boundary 2D orbifolds is also visible in the case that the bulk theory is a

¯nite 2-group orbifold, see Subsec. 3.2 in Ref. 30.

Now, let us compare the decomposition (3.19) in boundary WZWmodels, implied

by bulk Chern{Simons decomposition, to standard results1 on decomposition in 2D

orbifolds, as reviewed earlier in Sec. 2.

Certainly, the form of the boundary decomposition (3.19) is identical to that arising

in 2D orbifolds with trivially-acting central subgroups, possibly modulo the form of the

discrete theta angles. We have just argued that the discrete theta angles arising on the

boundary correspond to choices of discrete torsion, and in fact, the discrete torsion

phases arising in the boundary case match those in the ordinary 2D case.
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We can relate these two pictures of boundary discrete theta angles as follows.

Recall � 2 H 2
groupðZ;KÞ is the class of the extension

1 ! K ! A ! Z ! 1: ð3:30Þ

In 2D decomposition in A orbifolds with trivially-acting central subgroups K, the

discrete torsion phase factors on a universe associated with � 2 K̂ are precisely the

image of � under �:

H 2

groupðZ;KÞ ! H 2

groupðZ;Uð1ÞÞ; ð3:31Þ
� 7! � � �: ð3:32Þ

These are the same as the discrete torsion phases arising in the boundary WZW

decomposition (3.19), as we have just discussed, and we will con¯rm explicitly in

examples in Sec. 5 that the decomposition above in the boundary theory precisely

coincides with the decomposition of WZW orbifolds given in (2.3). This matching is

an important consistency test of our proposal.

3.4. Nontriviality of discrete theta angles

In the boundary WZW models appearing in these decompositions, the discrete tor-

sion on each universe appearing in a decomposition is trivial. For most single group

factors, this is because the center is usually a cyclic group, and cyclic group orbifolds

have no discrete torsion. The exceptions are the groups Spinð4nÞ, which have center

Z2 � Z2. That ¯nite group admits discrete torsion; however, to generate the discrete

torsion in a decomposition of a string orbifold, the orbifold group must be non-

abelian, and so cannot arise as the boundary of a 3D theory, as we will discuss in

greater detail in Subsec. 5.7.

In at least some examples, not only are the boundary discrete theta angles (dis-

crete torsions) trivial, but the bulk discrete theta angles are also trivial. For exam-

ple,j in bulk theories, for cases in which K ¼ Z2, Z ¼ Z2, and A ¼ Z4, so that the

extension � is

1 ! Z2 ! Z4 ! Z2 ! 1; ð3:33Þ

the bulk discrete theta angle couples to the Bockstein �� of a distinguished element

wG 2 H2ðM3;Z2Þ. Now, for this �

��ðwGÞ ¼ Sq1ðwGÞ; ð3:34Þ

and as we will argue in Subsec. 5.3

Sq1ðwGÞ ¼ w1ðTM3Þ [ wG; ð3:35Þ

hence it can only be nonzero on nonorientable spaces. However, we only de¯ne

Chern{Simons theories on oriented three-manifolds, so for all cases we consider, these

bulk discrete theta angles vanish.

jWe would like to thank Y. Tachikawa for making this observation.
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Similarly, if the three-manifold is T 3, the pertinent Bockstein homomorphism will

vanish, and one cannot get a nonzero bulk discrete theta angle. Brie°y, for any short

exact sequence

1 ! K ! A ! Z ! 1; ð3:36Þ

for K;A;Z abelian, the induced map

H2ðT 3;AÞ ! H2ðT 3;ZÞ ð3:37Þ
is surjective (since each of those cohomology groups is just Hom from a free abelian

group into the coe±cients), which implies that in the long exact sequence

H2ðT 3;KÞ ! H2ðT 3;AÞ ! H2ðT 3;ZÞ!� H3ðT 3;KÞ; ð3:38Þ

the Bockstein � ¼ 0, and so the bulk discrete theta angles are trivial in the corre-

sponding cases.

For another example, consider Lens spaces. From Example 3E.2 in Ref. 96, for the

Bockstein associated to the short exact sequence

1 ! Zm ! Zm2 ! Zm ! 1; ð3:39Þ

the associated Bockstein maps generators of H1ðL;ZmÞ to generators of H2ðL;ZmÞ,
for L as a Lens space, but �2 ¼ 0, hence the associated Bockstein map

� : H2ðL;ZmÞ ! H3ðL;ZmÞ ð3:40Þ

necessarily vanishes, and so the bulk discrete theta angles are trivial in corresponding

cases.

More generally,whether the bulkdiscrete theta angles are always trivial is a re°ection

of the map � : H 3

singðBG;KÞ ! H 2

singðBG;KÞ. For example, if � is injective, then triv-

iality of the boundary discrete theta angles implies triviality of the bulk discrete theta

angles. We leave general questions about the injectivity of � for future work.

In passing, note that in the bulk, orientability plays a key role. At least abstractly,

it is tempting to speculate about more general cases involving, e.g. orientifolds of

boundaryWZWmodels, as might arise if the three-manifold descends to a solid Klein

bottle (a three-manifold whose boundary is the 2D Klein bottle). On such a non-

orientable space, at least sometimes the discrete theta angles would be nontrivial.

Furthermore, in orientifolds, discrete torsion is counted by H 2
groupðZ;Uð1ÞÞ with a

nontrivial action on the coe±cients (see e.g. Refs. 53, 54, 58 and 59), so that for

example H 2
groupðZ2;Uð1ÞÞ can be nonzero, which again would result in boundary

WZW models with nonzero discrete theta angle contributions.

4. Spectra

In this section, we brie°y describe the spectra of monopole operators and line

operators in a theory with a gauged trivially-acting one-form symmetry, and argue

that the results are consistent with decomposition (3.15).
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4.1. Monopole operators

In 2D theories, when one gauges a none®ectively-acting group, one gets twist ¯elds

and Gukov{Witten operators corresponding to conjugacy classes in the trivially-

acting subgroup. In 3D theories, instead of twist ¯elds, one has monopole operators

(see e.g. Refs. 97 and 98), which play the same role. In this section, we will outline

their properties.

In two dimensions, twist ¯elds generate branch cuts, which in the language of

topological defect lines are real codimension-one walls that implement the gauging of

the zero-form symmetry. In three dimensions, when gauging a one-form symmetry,

from thinking about topological defect ones, one sees the theory has codimension-two

lines, which end in monopole operators, in the same way that in two dimensions, the

orbifold branch cuts terminate in twist ¯elds.

We can think of the monopole operators in three dimensions as local disorder

operators: on a sphere surrounding the monopole operator associated to a BG

symmetry, one has a nontrivial G gerbe, corresponding to an element of H2ðS2;GÞ
(for G assumed ¯nite), just as on a circle surrounding a twist ¯eld in two dimensions

one has a nontrivial bundle.

In two dimensions, the twist ¯elds associated to trivially-acting gauged zero-form

symmetries are local dimension-zero operators, which can be used to form projectors

onto the universes of decomposition. In three dimensions, the monopole operators

associated to trivially-acting gauged one-form symmetries are closely analogous, and

can again be used to form projection operators, in exactly the same fashion. In

Subsec. 4.1.4 in Ref. 30, projection operators are explicitly constructed from mono-

pole operators in 3D theories, and we encourage the reader to consult that reference

for further details.

4.2. Line operator spectrum

Given a \gaugable" one-form symmetry, described by a subset of the lines in the

theory, there is a standard procedure for computing the spectrum of lines in the

gauged theory, given as follows (see e.g. Sec. 2 in Ref. 69 and Subsec. 2.5 in Ref. 99).51

For BZn, let g denote a line generating the others, and then

. Exclude from the spectrum all lines a which have monodromyk Bðg; aÞ 6¼ 1, under

a generator g, where the g action on a line b is determined by the process

ð4:1Þ

. Identify any two lines b, g� b that di®er by fusion with g, and ¯nally

k In terms of the S-matrix, Bða; bÞ ¼ Sab=S0b, see e.g. Eq. (40) in Ref. 68.
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. Lines b that are invariant under fusion (meaning a ¼ g� a) become n lines in the

spectrum of the gauged theory.

This is closely analogous to 2D orbifolds, in which one omits noninvariant

operators, and ¯xed points lead to twist ¯elds.

This is a special case of a more general procedure, sometimes known as anyon

condensation, which is also applicable to noninvertible symmetries, unlike the basic

algorithm above. (See e.g. Subsec. 4.1. in Ref. 51),25,99{102 for further details.

Now, in our case, the (none®ectively-acting) one-form symmetry we wish to gauge

is not described by a set of lines within the original theory. Sometimes, in some

special cases, we can describe it by adding lines to the theory, such as in the case that

the entire gauged one-form symmetry acts trivially. In general, however, that pro-

cedure is not well-de¯ned. Consider for example the case of SUð2Þ4 Chern{Simons

theory, whose spectrum of lines fð0Þ; ð1Þ; ð2Þ; ð3Þ; ð4Þg is as described in App. A. Let

us consider gauging a BZ4. Now, SUð2Þ4 has a BZ2 symmetry, corresponding to the

lines (0), (1), so one could imagine extending it to BZ4 by replacing fð0Þ; ð1Þg with

fð0Þ; ‘1; ‘2; ‘3g which obey

‘i � ‘j ¼ ‘iþj mod 4; ð4:2Þ

with ‘0 ¼ ð0Þ. In order for the image of Z2,!Z4 to act trivially, we require

‘2 � ð2; 3; 4Þ ¼ ð2; 3; 4Þ; ð4:3Þ

and for this to descend to the ordinary SUð2Þ4, we also require

‘1 � ð2; 3; 4Þ ¼ ‘3 � ð2; 3; 4Þ; ð4:4Þ

which must match ð1Þ � ð2; 3; 4Þ in the SUð2Þ4 fusion algebra given in App. A

‘1;3 � ð2Þ ¼ ð3Þ; ‘1;3 � ð3Þ ¼ ð2Þ; ‘1;3 � ð4Þ ¼ ð4Þ: ð4:5Þ

The new lines ‘i are then de¯ned to have trivial monodromy with all other lines

Bð‘i;xÞ ¼ 1 ð4:6Þ

for all lines x. This much is uniquely speci¯ed by the statement of the extension.

Now, we have not completely speci¯ed the extension of SUð2Þ4; for example, the

product ð2Þ � ð3Þ in SUð2Þ4 contains a (1), so we would still need to decide whether

to replace (1) with ‘1 or ‘3, for example. However, in making such choices, we ¯nd an

internal contradiction with the structure we have already described, namely, a failure

of associativity. For example, in SUð2Þ4, as described in App. A

ð2Þ � ð3Þ ¼ ð1Þ þ ð4Þ; ð3Þ � ð3Þ ¼ ð0Þ þ ð4Þ: ð4:7Þ

We could replace the (1) above with either ‘1 or ‘3. Suppose we take

ð2Þ � ð3Þ ¼ ‘1 þ ð4Þ: ð4:8Þ
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Then,

‘1 � ðð2Þ � ð3ÞÞ ¼ ‘1 � ð‘1 þ ð4ÞÞ ¼ ‘2 þ ð4Þ; ð4:9Þ
ð‘1 � ð2ÞÞ � ð3Þ ¼ ð3Þ � ð3Þ ¼ ð0Þ þ ð4Þ: ð4:10Þ

However, ‘2 6¼ ð0Þ, so we see that

‘1 � ðð2Þ � ð3ÞÞ 6¼ ð‘1 � ð2ÞÞ � ð3Þ; ð4:11Þ

and so associativity is broken. We encounter a similar problem if we choose

ð2Þ � ð3Þ ¼ ‘3 þ ð4Þ ð4:12Þ

instead and consider fusion with ‘3. Put simply, we cannot enlarge the BZ2 inside

SUð2Þ4 to a none®ective BZ4, without breaking associativity.

With this in mind, we outline here l a minor extension of the prescription of Sec. 2

in Ref. 69 and Subsec. 2.5 in Ref. 51, 99 for counting line operators in 3D theories

with gauged one-form symmetries. (As we will not be using noninvertible symme-

tries, we will not attempt to describe the analogous construction for condensation

algebra objects here).

Our approach is motivated by the action of a group G on a set M : we distinguish

G and M , G is not a subset of M in general, though we can still de¯ne an action of G

on M that enables us to make sense of the quotient M=G. Let G be a ¯nite abelian

group, so that BG is a group of one-form symmetries, and associate lines to elements

of G. Consider a set of simple lines C (objects in a braided tensor category, which we

will gauge).

An action of BG on C is then described by giving, for each g 2 G and line L 2 C,

. a monodromy Bðg;LÞ, such that

Bðg1;LÞBðg2;LÞ ¼ Bðg1g2;LÞ; ð4:13Þ

and

. a fusion g� L 2 Z½C�, meaning g� L ¼PcN
c
gLc for c 2 C and N c

gL 2 Z, with the

property that

g1 � ðg2 � LÞ ¼ ðg1g2Þ � L: ð4:14Þ

We say that a line in BG corresponding to g 2 G acts trivially if, for all L 2 C,
Bðg;LÞ ¼ 1 and g� L ¼ L; ð4:15Þ

and then to say BG acts none®ectively, as in Subsec. 3.1, means that some for some

g 6¼ 1 in G, the line corresponding to G acts trivially.

lAlthough we are only interested in isomorphism classes of objects, presumably the full categorical de-
scription is in terms of module categories, or as a minor variation on the group actions described in Sec. III.

B in Ref. 68. As we are only interested here in counting (isomorphism classes of) objects, and this is merely

a minor variation on existing methods, we will be very schematic.
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Now, given an action of BG on C, we propose to construct the lines of the quotient
C=BG as follows, by close analogy with (Subsec. 2 in Ref. 69 and Subsec. 2.5 in

Ref. 99).51

. Exclude any L such that for some g 2 G, Bðg;LÞ 6¼ 1,

. Identify L 	 g� L for each g 2 G,

. For each g 2 G such that g� L ¼ L, we get a copy of L in C=BG.

It is straightforward to check that in the special case the lines in BG are a subset

of those in C, this reduces to the prescription reviewed earlier and in Sec. 2 in Ref. 69

and Subsec. 2.5 in Ref. 99.51

As another special case, note that if all of BG acts trivially, then in the quotient

C=BG,

. No lines in C are excluded, since Bðg;LÞ ¼ 1 for all L,

. No lines are identi¯ed, since g� L ¼ L for all L, so fusion does not relate di®erent

lines,

. Since g� L ¼ L for each g 2 G and each L 2 C, we get jGj copies of the lines in C.

This is consistent with the expectations of decomposition in this case: if we gauge

a BG that acts completely trivially on a theory, in the sense above, one expects to get

jGj copies of the theory.

We will apply this computation in speci¯c examples in Chern{Simons theories

later in this paper, but for the moment, we give two toy examples, to illustrate

the idea.

First, consider BZ2=BZ2. Let the lines of C ¼ BZ2 be generated over Z by

fð0Þ; ð1Þg, where
ð0Þ � ð0Þ ¼ ð0Þ; ð0Þ � ð1Þ ¼ ð1Þ; ð1Þ � ð1Þ ¼ ð0Þ; ð4:16Þ

and BZ2 acts as

g� ð0Þ ¼ ð1Þ; g� ð1Þ ¼ ð0Þ; ð4:17Þ
and we take all monodromies B ¼ 1. Then, applying the procedure above, to get the

lines of C=BZ2,

. Since Bðg;LÞ ¼ 1 for all L 2 C, no lines are excluded,

. Since g� ð0Þ ¼ ð1Þ, ð0Þ 	 ð1Þ,

. No lines are invariant.

Hence, the quotient is generated by one single line, as one would expect.

Next, consider BZ2=BZ4, where the BZ4 acts none®ectively. Let the lines of

C ¼ BZ2 be as above, and the generator g of BZ4 acts as

g� ð0Þ ¼ ð1Þ; g� ð1Þ ¼ ð0Þ: ð4:18Þ
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As before, we take all monodromies B ¼ 1. Applying the procedure above

. Since Bðg;LÞ ¼ 1 for all L 2 C, no lines are excluded.

. Since g� ð0Þ ¼ ð1Þ, ð0Þ 	 ð1Þ,

. Since g2 � ð0Þ ¼ ð0Þ and g2 � ð1Þ ¼ ð1Þ, ð0Þ 	 ð1Þ appears twice in the quotient.

Thus, the quotient C=BZ4 is generated over Z by two lines, as expected since a

Z2 � Z4 describes trivially-acting lines.

We should also brie°y observe that the theories we are describing, which de-

compose, have the property that they violate the axiom of remote detectability in a

topological order, see e.g. Refs. 103{105. This axiom says that there are no invisible

lines in the bulk theory (technically, that the category of lines has trivial center).

Violation of remote detectability signals multiple vacua and therefore a decompo-

sition, much as cluster decomposition in other contexts.1

4.3. Bulk-boundary map

Let us now consider the bulk-boundary map between lines in the 3D bulk and on the

2D boundary. Let C be the category of lines which act trivially in the bulk. Suppose

we have a line in C which ends on the boundary, de¯ning an object in the 2D vertex

operator algebra V . We can describe this bulk-boundary relation by a functor

F : C ! RepðV Þ; ð4:19Þ

(for RepðV Þ the category of representations of V ) which takes a line to the vector

space of ways and the line can end on the boundary, giving point operators.

As observed in Subsec. 3.5 in Ref. 106, a one-form symmetry that acts trivially in

the bulk might act nontrivially on the boundary, and the theory can still decompose,

much as with Chan{Paton factors and D-branes in 2D theories. Broadly speaking,

the di®erent line operators in the 3D bulk end on the various 2D sectors of the

boundary theory.

A 3D theory may have surface operators which are not totally determined by the

line operators. In the case where the 3D theory has only a local vacuum, all the

surfaces can be built as condensations, i.e. networks of lines. However, when there are

multiple vacua, as in the cases we are interested in, then this fails to be true. The

surfaces which are not built as a network of lines will end on a line on the boundary.

These lines de¯ne the \action" of a trivially acting zero-form symmetry, In two

dimensions, if one gauges a trivially-acting zero-form symmetry, then one obtains an

emergent global one-form symmetry (and hence a decomposition).

From the decomposition conjecture (3.15), the di®erent universes and hence the

di®erent ground states are labeled by elements of the Pontryagin dual of the one-

form symmetry group. On the other hand, the surfaces in the bulk which enact a

2-form symmetry, come from gauging a trivially acting one-form symmetry. So while

the lines that the surface ends on has trivial action on the boundary, the surface itself

Decomposition in Chern{Simons theories

2250227-17



is not necessarily trivial in the bulk. This is summarized in the following diagram,

where F is the functor that makes objects to the boundary:

ð4:20Þ

5. Examples

In the following several subsections, we will walk through examples of the decom-

position proposed in Sec. 3. Where possible, we will apply level-rank duality to

perform self-consistency tests. In all cases, we will compare to the decomposition of

the boundary WZW model. In particular, as reviewed in Sec. 2, decomposition is

reasonably well-understood in 2D theories, and so we get solid consistency tests by

checking that the boundary WZW decomposition implied by the bulk Chern{Simons

decomposition matches existing 2D results.

In each case, we will assume that levels are chosen so that the theories are well-

de¯ned, but will not list those conditions explicitly.

5.1. Chern{SimonsððSUðð2ÞÞÞÞ/BZZ2, K ¼ 1

In this section, we will reproduce a well-known result as a special case of the de-

composition prediction (3.15).

Speci¯cally, we consider gauging the BZ2 central one-form symmetry in SUð2Þ
Chern{Simons theory.

Here, this BZ2 is not trivially-acting, and so no decomposition is expected. In

particular, this gauging is known (see e.g. Ref. 69) to be equivalent to the SOð3Þ
Chern{Simons theory at the same level. At the level of the path integral for the gauge

theory, this is discussed in App. C.

We can understand this as a special case of the decomposition prediction (3.15).

In the language of that statement, we identify A ¼ Z2,H ¼ SUð2Þ, and d : A ! H is

the inclusion map of the center, Z2,!SUð2Þ. Then, the kernel of d vanishes, soK ¼ 1,

and G ¼ H=A ¼ SOð3Þ. This corresponds to the exact sequence

1 ! 1 ! Z2 !
d
SUð2Þ ! SOð3Þ ! 1: ð5:1Þ

Furthermore, in the case, since K ¼ 1, the extension class ½!� 2 H3ðG;KÞ is trivial,
! ¼ 1, so ��! ¼ 1 and there is no discrete theta angle.
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Putting this together, we see that the decomposition prediction (3.15) in this

case is

½Chern�SimonsðSUð2ÞÞ=BZ2� ¼ Chern�SimonsðSOð3ÞÞ; ð5:2Þ

which reproduces known results.

Let us also compute the line operator spectrum in this example. This is a standard

computation, but we will quickly outline it using the tools of Subsec. 4.2, with an eye

towards later, more obscure, versions. There are ¯ve line operators in SUð2Þ4
Chern{Simons, as listed in App. A, which we denote

ð0Þ; ð1Þ; ð2Þ; ð3Þ; ð4Þ: ð5:3Þ

We gauge a BZ2, with lines f‘0; ‘1g, where
‘i � ‘j ¼ ‘iþj mod 2; ð5:4Þ

and which act on the SUð2Þ4 lines as

‘0 � L ¼ L; ‘1 � L ¼ ð1Þ � L; ð5:5Þ

and with

Bð‘0;LÞ ¼ þ1; Bð‘1; 0Þ ¼ Bð‘1; 1Þ ¼ Bð‘1; 4Þ ¼ þ1;Bð‘1; 2Þ ¼ Bð‘1; 3Þ ¼ �1: ð5:6Þ

(Clearly, we can identify the action of this BZ2 with the action of the lines ð0Þ, ð1Þ in
SUð2Þ4). It is straightforward to check that this gives a well-de¯ned action in the

sense of Subsec. 4.2. Applying the procedure there, to get the lines of SUð2Þ4=BZ2,

. the lines (2) and (3) are not invariant under monodromies and so should be

excluded,

. from ð1Þ � ð1Þ ¼ ð0Þ, the lines ð0Þ and ð1Þ should be identi¯ed in the quotient, and

. from ð1Þ � ð4Þ ¼ ð4Þ, the line ð4Þ is duplicated,

so that the SUð2Þ4=BZ2 spectrum consists of the vacuum line and two copies of ð4Þ,
which is the standard result for SOð3Þ4.

Now, let us turn to the boundary theory. On the boundary, this reduces to the

statement

½WZWðSUð2ÞÞ=Z2� ¼ WZWðSOð3ÞÞ; ð5:7Þ

which is standard.

5.2. Chern{SimonsððSUðð2ÞÞÞÞ � ½point/BZZ2�, K ¼ ZZ2

Now, let us apply the decomposition prediction (3.15) to a di®erent case, namely, one

in which we gauge a trivially-acting BZ2 \acting" on an SUð2Þ Chern{Simons the-

ory, uncoupled from the center one-form symmetry of the SUð2Þ theory.
This is perhaps the cleanest example of a BZ2 gauging that acts trivially: we

gauge a BZ2 in bulk that does nothing at all to the SUð2Þ.
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Let us apply the decomposition prediction (3.15) to this case. Here, in the nota-

tion of (3.15), we take H ¼ SUð2Þ and A ¼ Z2; however, the map d : A ! H maps

all of Z2 to 1. In this case, the kernel of d, K, is all of Z2, and G ¼ H ¼ SUð2Þ. The
decomposition prediction for this case is that

½Chern�SimonsðSUð2ÞÞ=BZ2� ¼
a

�2K̂
Chern�SimonsðSUð2ÞÞ; ð5:8Þ

two copies of the SUð2Þ Chern{Simons theory. Furthermore, in this case there are no

nontrivial discrete theta angles, hence the decomposition prediction can be written

more simply as

½Chern�SimonsðSUð2ÞÞ=BZ2� ¼
a

2

Chern�SimonsðSUð2ÞÞ: ð5:9Þ

Let us brie°y consider the spectrum of line operators, following the procedure

discussed in Subsec. 4.2. We describe the trivially-acting BZ2 in terms of two lines

f‘0; ‘1g, where
‘i � ‘j ¼ ‘iþj mod 2; ð5:10Þ

and with an action on the lines of SUð2Þ4 given by

Bð‘i;LÞ ¼ þ1; ‘i � L ¼ L: ð5:11Þ

It is straightforward to check that this gives a well-de¯ned action in the sense of

Subsec. 4.2.

Next, we compute the spectrum of SUð2Þ4=BZ2, for this trivially-acting BZ2.

From the rules in Subsec. 4.2,

. None of the original lines of the SUð2Þ Chern–Simons theory is omitted, as they all

have trivial monodromy under the generator ðaÞ,
. Since ðaÞ � ðaÞ ¼ ð0Þ, we see that in the gauged theory, ðaÞ and ð0Þ are identi¯ed
with one another,

. Since all of the original lines are invariant under fusion (ðaÞ � ðxÞ ¼ ðxÞ), they are

all duplicated.

As a result, the line operator spectrum of the gauged theory is two copies of the

line operator spectrum of the original SUð2Þ Chern{Simons theory, consistent with

decomposition. This result could also be obtained by adding one new line a to the

lines of SUð2Þ4, which interacts trivially with all other lines, and then condensing

fð0Þ; ag in the ordinary fashion, though as we discussed in Subsec. 4.2, it will not

always be possible to do that.

Next, we turn to the boundary theory. In the boundary WZW model, bulk de-

composition becomes the statement that

½WZWðSUð2ÞÞ=Z2� ¼
a

2

WZWðSUð2ÞÞ: ð5:12Þ
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In the Z2 orbifold on the left, the Z2 acts trivially on the SUð2Þ WZW model, for

which case ordinary 2D decomposition predicts exactly the statement above, that the

completely-trivially-acting Z2 orbifold of a WZWmodel is just two copies of the same

WZW model. Thus, the boundary theory matches results from 2D decomposition, as

expected.

5.3. Chern{SimonsððSUðð2ÞÞÞÞ/BZZ4, K ¼ ZZ2

Consider a SUð2Þ Chern{Simons theory in three dimensions, and gauge a BZ4 that

acts via projecting to a BZ2 which acts as the center symmetry. In this case, there is a

trivially-acting BZ2, so in broad brushstrokes one expects two copies of a

BZ2-gauged SUð2Þ Chern{Simons theory.

Let us walk through the prediction of the decomposition prediction (3.15) in

this case. Here, we have H ¼ SUð2Þ and A ¼ Z2, with the map d : A ! SUð2Þ
mapping the Z4 onto the center Z2 of SUð2Þ. Thus, the map d is surjective, but not

injective: its kernel K ¼ Z2. Similarly,

G ¼ H=im d ¼ SUð2Þ=Z2 ¼ SOð3Þ: ð5:13Þ

Putting this together, we see in this case that the decomposition prediction

(3.15) is

½Chern�SimonsðSUð2ÞÞ=BZ4�
¼ Chern�SimonsðSOð3ÞÞþ

a

Chern�SimonsðSOð3ÞÞ�; ð5:14Þ

where the 
 denotes the two values of the discrete theta angle coupling to the

characteristic class de¯ned by ��ðwG ¼ wSOð3ÞÞ, for � the class of the extension

1 ! Z2 ! Z4 ! Z2 ! 1; ð5:15Þ

and where here, wSOð3Þ ¼ w2, the second Stiefel{Whitney class.

Next, we will arguem that the characteristic class ��ðw2Þ is the third Stiefel{

Whitney class w3. From the Wu formula (Problem 8-A in Ref. 107) for Steenrod

squares, which map Sqk : H�ðX;Z2Þ ! H�þkðX;Z2Þ, k � 0:

Sqkðwmð�ÞÞ ¼
X

k

t¼0

k�m

t

 !

wk�tð�Þ [ wmþtð�Þ

¼
X

k

t¼0

m� kþ t� 1

t

 !

wk�tð�Þ [ wmþtð�Þ; ð5:16Þ

mE.S. would like to thank Y. Tachikawa for observing the pertinent properties of w3.
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where each wj ¼ wjð�Þ for a real vector bundle �, and in the equality, we have used

the fact that

k�m

t

 !

¼ ðk�mÞðk�m� 1Þ � � � ðk�m� tþ 1Þ
t!

;

¼ ð
Þ ðm� kÞðm� kþ 1Þ � � � ðm� kþ t� 1Þ
t!



m� kþ t� 1

t

 !

mod 2: ð5:17Þ

(See e.g. Ref. 108 for this and related observations). As a result, for any real vector

bundle

Sq1ðw2Þ ¼ w1 [ w2 þ w0 [ w3 ¼ w1 [ w2 þ w3; ð5:18Þ

so if w1 ¼ 0, as is the case for SOð3Þ bundles, then w3 ¼ Sq1ðw2Þ. (In principle, this is

one explanation of why all SOð3Þ bundles can be constructed by twisting SUð2Þ
bundles by Z2 gerbes: the gerbe characteristic class determines not only the second

Stiefel{Whitney class w2 of the SOð3Þ bundles, but also w3 via Sq1, as above).

Furthermore, the action of Sq1 is the Bockstein homomorphism � associated to

the extension

1 ! Z2 ! Z4 ! Z2 ! 1; ð5:19Þ

(see e.g. Sec. 4.L in Ref. 96,) meaning

Sq1ðxÞ ¼ �ðxÞ ð5:20Þ

for any x. The extension (5.19) above coincides with � in this case, so we see that in

this example, the discrete theta angle couples to

��ðw2Þ ¼ Sq1ðw2Þ; ð5:21Þ

using (3.14). We also see that in this example, this class can be described even more

simply as w3, the third Stiefel{Whitney class, as w3 ¼ Sq1ðw2Þ.
Now, on a three-manifold M, we can write Sq1ðxÞ for any x in terms of the Wu

class 	1 2 H1ðM ;Z2Þ as (Chap. 11 in Ref. 107)

Sq1ðxÞ ¼ 	1 [ x: ð5:22Þ

Furthermore (Theorem 11.14 in Ref. 107)

	1 ¼ w1ðTMÞ; ð5:23Þ

so assembling these pieces, we have that

w3ð�Þ ¼ Sq1ðw2ð�ÞÞ ¼ w1ðMÞ [ w2ð�Þ: ð5:24Þ
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As a result, the third Stiefel{Whitney class w3 will only be nontrivial on a non-

orientable three-manifold M . However, Chern{Simons theories are not de¯ned on

nonorientable spaces.

In Subsec. 5.9, we will use level-rank duality to perform a self-consistency check of

decomposition in this case.

Now, let us check this prediction by computing the line spectrum in this gauged

Chern{Simons theory. First, following Subsec. 4.2, we de¯ne a BZ4 by lines f‘0; ‘1;
‘2; ‘3g such that

‘i � ‘j ¼ ‘iþj mod 4; ð5:25Þ

and which acts on the lines of SUð2Þ4 (described in App. A) as follows:

Bð‘0;2;LÞ ¼ þ1;Bð‘1;3; 0Þ ¼ Bð‘1;3; 1Þ ¼ Bð‘1;3; 4Þ ¼ þ1;

Bð‘1;3; 2Þ ¼ Bð‘1;3; 3Þ ¼ �1; ð5:26Þ

‘0 � L ¼ ‘2 � L ¼ L; ‘1 � L ¼ ‘3 � L ¼ ð1Þ � L: ð5:27Þ

It is straightforward to check that this action of BZ4 on the lines of SUð2Þ4 is well-

de¯ned in the sense of Subsec. 4.2. As ‘2 acts trivially, this is also a none®ective

action, in the sense of Subsec. 3.1.

Next, we follow the procedure outlined in Subsec. 4.2 to get the lines of

SUð2Þ4=BZ4:

. Lines (2) and (3) have Bð‘1;3;LÞ 6¼ þ1, and so are omitted.

. Since ‘1;3 � ð1Þ ¼ ð0Þ, we identify the lines ð0Þ 	 ð1Þ.

. Since ‘i � ð4Þ ¼ ð4Þ for all i, we get four copies of (4) in the spectrum of SUð2Þ4=
BZ4, and since ‘0;2 � ð1Þ ¼ ð1Þ, ‘0;2 � ð0Þ ¼ ð0Þ, we get two copies of ð0Þ 	 ð1Þ.

Thus, we see that we get two copies of the lines of SOð3Þ4, consistent with the

expectations from the decomposition.

Before going on, let us compute the lines in one more example, speci¯cally

SUð2Þ4=BZ2p, where the Z2p projects to the Z2 center of SUð2Þ4, with kernel Z4. The

lines of BZ2p are f‘0; . . . ; ‘2p�1g, where
‘i � ‘j ¼ ‘iþj mod 2p; ð5:28Þ

and their action on SUð2Þ4 is given by

Bð‘even;LÞ ¼ þ1;Bð‘odd; 0Þ ¼ þ1 ¼ Bð‘odd; 1Þ ¼ Bð‘odd; 4Þ; ð5:29Þ
Bð‘odd; 2Þ ¼ �1 ¼ Bð‘odd; 3Þ; ð5:30Þ

‘even � L ¼ L; ‘odd � L ¼ ð1Þ � L: ð5:31Þ

As before, it is straightforward to check that this action of BZ2p is well-de¯ned in

the sense of Subsec. 4.2, and since f‘eveng acts trivially, it is a none®ective action, in

the sense of Subsec. 3.1.
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Next, we follow the procedure outlined in Subsec. 4.2 to get the lines of

SUð2Þ4=BZ2p:

. Lines (2) and (3) have Bð‘odd;LÞ 6¼ þ1, and so are omitted.

. Since ‘odd � ð1Þ ¼ ð0Þ, we identify the lines ð0Þ 	 ð1Þ.

. Since ‘i � ð4Þ ¼ ð4Þ for all i, we get 2p copies of (4), and since ‘even � ð1Þ ¼ ð1Þ,
‘even � ð0Þ ¼ ð0Þ, we get p copies of ð0Þ 	 ð1Þ.

Altogether, we ¯nd p copies of the lines of SOð3Þ4, consistent with expectations

from decomposition, since BZp acts trivially.

Before going on, let us brie°y discuss the boundary theory. The Chern{Simons

decomposition (5.14) becomes a decomposition of WZW models, formally

½WZWðSUð2ÞÞ=Z4� ¼ WZWðSOð3ÞÞþ
a

WZWðSOð3ÞÞ�: ð5:32Þ

Here the Z2 discrete theta angle couples to the image of the element of H3ðBSOð3Þ;
Z2Þ (corresponding to third Stiefel{Whitney classes) in H2ðSOð3Þ;Z2Þ ¼ Z2.

However, the generator of this group is Sq1ðaÞ, where a generatesH1ðSOð3Þ;Z2Þ and
for reasons discussed previously, Sq1ðaÞ ¼ w1ðTMÞ [ a, hence is nonzero only if the

2D space is nonorientable.

We will consider various generalizations of this example, returning to this ex-

ample for special levels to utilize level-rank duality consistency checks in Subsec. 5.9.

5.4. Chern{SimonsððSUððnÞÞÞÞ/BZZnp, K ¼ ZZp

Next, we will consider gauging the action of BZnp on SUðnÞ Chern{Simons, where

the Znp acts by projecting to the center Zn of SUðnÞ, and study the discrete theta

angles for special values of n and p beyond those discussed already.

In terms of the decomposition prediction (3.15), we take A ¼ Znp, H ¼ SUðnÞ,
and d : A ! H acts by projecting to Z ¼ Zn � ZðHÞ. Then, the kernel K ¼ Zp,

G ¼ SUðnÞ=Zn, and we have the long exact sequence

1 ! Z‘ ! Zn‘ ! SUðnÞ ! SUðnÞ=Zn ! 1: ð5:33Þ

In general terms, decomposition (3.15) then predicts that

½Chern�SimonsðSUðnÞÞ=BA� ¼
a

�2K̂
Chern�SimonsðSUðnÞ=ZnÞ�ð!Þ; ð5:34Þ

where the �ð!Þ are discrete theta angles coupling to the characteristic class de¯ned

by ��ðwSUðnÞ=Zn
Þ, where wSUðnÞ=Zn

2 H 2

singðBSUðnÞ=Zn;ZnÞ is a generalization of the

second Stiefel{Whitney class to n � 2, and �� is the Bockstein map in the long exact

sequence associated to the extension

1 ! Kð¼ ZpÞ ! Að¼ ZnpÞ ! Zð¼ ZnÞ ! 1; ð5:35Þ

with extension class � 2 H 2
groupðZ;KÞ.
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We will evaluate this expression for some special cases in which we will simplify

the expression for discrete theta angles. We will use,109 which provides the coho-

mology of SUðnÞ=Zn, which (modulo a degree shift) is essentially the same. (See also

Refs. 110{115.)

First, consider the case that p is a prime number that does not divide n. Then,

from Sec. 7 in Ref. 109

H �
singðBSUðnÞ=Zn;ZpÞ ¼ H �

singðBSUðnÞ;ZpÞ; ð5:36Þ

and so there is no Zp-valued characteristic class in degree three, hence no discrete

theta angle. In this case, the decomposition above can be written more simply as

½Chern�SimonsðSUðnÞÞ=BA� ¼
a

p

Chern�SimonsðSUðnÞ=ZnÞ: ð5:37Þ

Next, suppose that p ¼ 2, and n ¼ 2m for m odd. From Corollary 4.2 in Ref. 109,

the group H 3

singðBSUðnÞ=Zn;Z2Þ 6¼ 0, and so for wSUðnÞ=Zn
2 H 2

singðBSUðnÞ=Zn;ZnÞ,
we get a discrete theta angle coupling to ��ðwSUðnÞ=Zn

Þ, the image of wSUðnÞ=Zn
under

the Bockstein map associated to the extension

1 ! Zp ! Zpn ! Zn ! 1; ð5:38Þ

with extension class � 2 H 2
groupðZn;ZpÞ. Since p ¼ 2, we can write

��ðwSUðnÞ=Zn
Þ ¼ Sq1ðwSUðnÞ=Zn

Þ, as before, and also just as before, it is only nonzero

on nonoriented spaces, as we saw for the case of SUð2Þ and SOð3Þ theories in

Subsec. 5.3.

Now, let us consider the corresponding boundary WZW model. The bulk de-

composition above predicts

WZWðSUðnÞÞ=Znp

� �

¼
a

�2K̂
WZWðSUðnÞ=ZnÞ�ð!Þ: ð5:39Þ

Now, from ordinary 2D decomposition, since there is no discrete torsion in Zn,

½WZWðSUðnÞÞ=Znp� ¼
a

‘

WZWðSUðnÞ=ZnÞ: ð5:40Þ

This is certainly consistent with the special cases computed above, in which the bulk

discrete theta angle vanishes.

5.5. Chern{SimonsððSpinððnÞÞÞÞ/BZZ2p, K ¼ ZZp

Next, we consider a simple generalization of the example above, in which we gauge a

BZ2p action on SpinðnÞ Chern{Simons, in which the BZ2p acts by ¯rst projecting to

BZ2 which acts through (a subgroup of) the center. We begin by discussing the case

that the Z2 is such that SpinðnÞ=Z2 ¼ SOðnÞ. In the case that n is divisible by four,

there is a second choice of Z2 subgroup, for which the quotient SpinðnÞ=Z2 6¼ SOðnÞ.
We will discuss the second case at the end of this section.
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In terms of the decomposition prediction (3.15), we take A ¼ Z2p, H ¼ SpinðnÞ,
and d : A ! H is the map that projects Z2p onto the Z2 in the center of SpinðnÞ such
that SpinðnÞ=Z2 ¼ SOðnÞ. Then, the kernel of d is K ¼ Zp, G ¼ H=A ¼ SOðnÞ, and
we have the exact sequence

1 ! Zp ! Z2p ! SpinðnÞ ! SOðnÞ ! 1: ð5:41Þ

This extension is nontrivial, and de¯nes a discrete theta angle coupling to ��ðwSOðnÞÞ,
with wSOðnÞ ¼ w2, the second Stiefel{Whitney class, as before, and the Bockstein

homomorphism �� is associated to the extension

1 ! Zp ! Z2p ! Z2 ! 1 ð5:42Þ

of extension class � 2 H 2
groupðZ2;ZpÞ.

Decomposition then predicts (3.15)

½Chern�SimonsðSpinðnÞÞ=BZ2p� ¼
a

�2Ẑp

Chern�SimonsðSOðnÞÞ�; ð5:43Þ

where � denotes the discrete theta angle coupling.

In the case that p ¼ 2, for the same reasons as discussed in Subsec. 5.3, we can

identify ��ðw2Þ with w3, the third Stiefel{Whitney class. However, by the same

reasoning as described in Subsec. 5.3, the third Stiefel{Whitney class will only

be nontrivial on nonorientable three-manifolds. Therefore, on orientable three-

manifolds, for p ¼ 2, the statement of decomposition reduces to

½Chern�SimonsðSpinðnÞÞ=BZ4� ¼
a

2

Chern�SimonsðSOðnÞÞ: ð5:44Þ

Next, let us brie°y compare to the boundary WZWmodel. On the boundary, from

the decomposition (5.43), we have

½WZWðSpinðnÞÞ=Z2p� ¼
a

�2Ẑp

WZWðSOðnÞÞ�; ð5:45Þ

For the case p ¼ 2, for the same reasons as noted in Subsec. 5.3, for oriented

spaces, the discrete theta angles are trivial, as the characteristic class they couple to

vanishes. As a result, on oriented spaces, for p ¼ 2 we can equivalently write

½WZWðSpinðnÞÞ=Z4� ¼
a

2

WZWðSOðnÞÞ: ð5:46Þ

This is consistent with the prediction of decomposition in two dimensions in this

case. As reviewed in Sec. 2, essentially because there is no discrete torsion in a Z2

orbifold, in a 2D WZW orbifold by Z2p with trivially-acting Zp, we have

½WZWðSpinðnÞÞ=Z4� ¼
a

p

WZWðSOðnÞÞ: ð5:47Þ

For p ¼ 2, this is certainly consistent with the bulk description.
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So far we have discussed the case that the Z2p maps to Z2 � SpinðnÞ such that

SpinðnÞ=Z2 ¼ SOðnÞ: ð5:48Þ
In the case that n is divisible by four, there is another choice of Z2 subgroup of the

center of SpinðnÞ, which leads to a quotient

SpinðnÞ=Z2 6¼ SOðnÞ; ð5:49Þ
which for example projects out the vector representation. (See e.g. Ref. 116 for a

discussion in a di®erent context.) This second quotient group is sometimes denoted

Semi-spinðnÞ, abbreviated SsðnÞ (see e.g. Sec. 11 in Ref. 115). Relevant material on

the cohomology of SsðnÞ can be found in e.g. Sec. 9 in Ref. 109.

5.6. Chern{SimonsððSpinðð4nþ 2ÞÞÞÞ/BZZ4p, K ¼ ZZp

Let us consider the case of a Chern{Simons theory with gauge group Spinð4nþ 2Þ
and a gauged BZ4p, where the Z4p maps to the center (Z4) of Spinð4nþ 2Þ, with
kernel K ¼ Zp.

In terms of the decomposition prediction (3.15), we take A ¼ Z4p, H ¼ Spinð4nþ
2Þ, and d : A ! H projects Z4p onto the central Z4 � Spinð4nþ 2Þ. The kernel of d is

K ¼ Zp, G ¼ H=A ¼ SOð4nþ 2Þ=Z2, and we have the exact sequence

1 ! Zp ! Z4p ! Spinð4nþ 2Þ ! SOð4nþ 2Þ=Z2 ! 1: ð5:50Þ

Decomposition then predicts (3.15)

½Chern�SimonsðSpinð4nþ 2ÞÞ=BZ4p�

¼
a

�2Ẑp

Chern�SimonsðSOð4nþ 2Þ=Z2Þ�ð!Þ; ð5:51Þ

where the discrete theta angle couples to a characteristic class ��ðwSpinð4nþ2Þ=Z4
Þ for

�� the Bockstein map associated to the short exact sequence

1 ! Zp ! Z4p ! Z4 ! 1 ð5:52Þ

of extension class � 2 H 2
groupðZ4;ZpÞ.

Consider for example the case p ¼ 2. From Lemma 8.1 in Ref. 109, SOð4nþ 2Þ=Z2

has one characteristic class in H3ðBSOð4nþ 2Þ=Z2;Z2Þ, related to w3 of a covering

SOð4nþ 2Þ bundle.
In the boundary WZW model, the decomposition (5.51) predicts

½WZWðSpinð4nþ 2ÞÞ=Z4p� ¼
a

�2Ẑp

WZWðSOð4nþ 2Þ=Z2Þ�: ð5:53Þ

Ordinary 2D decomposition predicts in this case that

½WZWðSpinð4nþ 2ÞÞ=Z4p� ¼
a

p

WZWðSOð4nþ 2Þ=Z2Þ; ð5:54Þ

essentially because there is no discrete torsion in a Z4 orbifold.
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5.7. Chern{SimonsððSpinðð4nÞÞÞÞ/BððZZ2 � ZZ2pÞÞ, K ¼ ZZp

Next, we consider the case of a BðZ2 � Z2pÞ action on a Spinð4nÞ Chern{Simons

theory. Here, Spinð4nÞ has center Z2 � Z2, and the Z2 � Z2p acts by ¯rst mapping to

the center.

In terms of the decomposition prediction (3.15), we take A ¼ Z2 � Z2p,

H ¼ Spinð4nÞ, d : A ! H mapsA onto the center,K ¼ Ker d ¼ Zp, hence we predict

½Chern�SimonsðSpinð4nÞÞ=BðZ2 � Z2pÞ�

¼
a

�2Ẑp

Chern�SimonsðSOð4nÞ=Z2Þ�; ð5:55Þ

where the discrete theta angle couples to ��ðwSpinð4nÞ=Z2�Z2
Þ, for �� the Bockstein map

associated to the short exact sequence

1 ! Zp ! Z2 � Z2p ! Z2 � Z2 ! 1 ð5:56Þ

of extension class � 2 H 2
groupðZ2 � Z2;ZpÞ.

Consider for example p ¼ 2. From Lemma 8.1 in Ref. 109, SOð4nÞ=Z2 has one

characteristic class in H3ðBSOð4nÞ=Z2;Z2Þ, related to w3 of a covering SOð4nÞ
bundle.

Now, let us consider this in the boundary WZW model. The bulk decomposi-

tion (5.55) predicts that

½WZWðSpinð4nÞÞ=ðZ2 � Z2pÞ� ¼
a

�2Ẑp

WZWðSOð4nÞ=Z2Þ�; ð5:57Þ

whereas discussed in Subsec. 3.3, the boundary discrete theta angles � correspond to

choices of discrete torsion, here in a G ¼ Z2 � Z2 orbifold.

We can understand those boundary discrete theta angles more precisely by

comparing them to the predictions of 2D decomposition. We have a � ¼ Z2 � Z2p

orbifold, with trivially-acting K ¼ Zp, and G ¼ �=K ¼ Z2 � Z2. In principle, G can

contain discrete torsion, since H2ðZ2 � Z2;Uð1ÞÞ ¼ Z2, so we should compute to see

if we get nontrivial discrete torsion in any factors. Any such discrete torsion is the

image of the extension class in H2ðG;KÞ corresponding to

1 ! K ! � ! G ! 1 ð5:58Þ

under the map K ! Uð1Þ de¯ned by the representation of K corresponding to

that universe, and the extension class is nontrivial; nevertheless, as discussed in

Subsec. 6.1 in Ref. 26, its image in H2ðG;Uð1ÞÞ is trivial for both irreducible

representations of K. As a result, 2D decomposition predicts

½WZWðSpinð4nÞÞ=ðZ2 � Z2pÞ� ¼
a

p

WZWðSOð4nÞ=Z2Þ: ð5:59Þ

In particular, the boundary discrete theta angles vanish.
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In passing, we should observe that this is a nontrivial constraint. The two choices

of discrete torsion in the WZW model for Spinð4nÞ=Z2 � Z2 correspond to two dis-

tinct quantum theories, each of which can be described as the WZW model for

SOð4nÞ, see e.g. Refs. 117{121. Furthermore, in two dimensions, certainly there exist

examples in which both choices of discrete torsion appear. For example, only slightly

generalizing results in1

½WZWðSpinð4nÞÞ=D4� ¼ WZWðSOð4nÞ=Z2Þþ
a

WZWðSOð4nÞ=Z2Þ�; ð5:60Þ
½WZWðSpinð4nÞÞ=H� ¼ WZWðSOð4nÞ=Z2Þþ

a

WZWðSOð4nÞ=Z2Þ�; ð5:61Þ

where in bothD4 andH the Z2 center is taken to act trivially, and the
 indicates the

two choices of discrete torsion.

However, because both the dihedral groupD4 and the group of unit quaternionsH

are nonabelian, there is no Chern{Simons version of the decompositions above. That

is fortuitous, as of the two SOð4nÞ=Z2 WZW models, the one with nonzero discrete

torsion also does not have a Chern{Simons dual.121,122

More generally, in order to get a 2D decomposition of ½WZWðSpinð4nÞÞ=�� to
copies of WZWðSOð4nÞ=Z2Þ with nontrivial discrete torsion, it is straightforward to

check that �must be nonabelian, and so does not admit a Chern{Simons description.

5.8. Chern{SimonsððSpððnÞÞÞÞ/BZZ2p, K ¼ ZZp

Next, consider the case of a Chern{Simons theory with gauge group SpðnÞ and a

gauged BZ2p, where the Z2p maps to the center (Z2) of SpðnÞ.
In terms of the decomposition prediction (3.15), we take A ¼ Z2p, H ¼ SpðnÞ,

and d : A ! H projects Z2p onto the central Z2 � SpðnÞ, with K ¼ Ker d ¼ Zp.

Decomposition then predicts (3.15)

½Chern�SimonsðSpðnÞÞ=BZ2p� ¼
a

�2Ẑp

Chern�SimonsðSpðnÞ=Z2Þ�; ð5:62Þ

where the discrete theta angle couples to a characteristic class ��ðwSpðnÞ=Z2
Þ for ��

the Bockstein map associated to the short exact sequence

1 ! Zp ! Z2p ! Z2 ! 1 ð5:63Þ
of extension class � 2 H 2

groupðZ2;ZpÞ. See e.g. Sec. 8 in Ref. 109 for results on per-

tinent characteristic classes.

In the boundary WZW model, the bulk decomposition (5.62) predicts

½WZWðSpðnÞÞ=Z2� ¼
a

�2Ẑp

WZWðSpðnÞ=Z2Þ�: ð5:64Þ

Because there is no discrete torsion in a Z2 orbifold, 2D decomposition predicts in

this case that

½WZWðSpðnÞÞ=Z2� ¼
a

p

WZWðSpðnÞ=Z2Þ: ð5:65Þ
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5.9. Chern{SimonsððUðð1ÞÞÞÞk/BZZ‘p, K ¼ ZZp

Consider a Uð1Þk Chern{Simons theory in three dimensions. This theory has a global

BZk symmetry which can be gauged (see e.g. Refs. 123 and 124, App. C in Ref. 70). It

has slightly di®erent properties depending upon whether k is even or odd (see e.g.

Subsec. 2.2 in Ref. 51):

. When k is even, this theory has k line operators, labeled by elements of Zk. If k is 0

mod 8, then theBZk one-form symmetry generator has integer spin. If k is 2 mod 8,

then the one form generator has spin 1/4 and if k is 4 mod 8, then the one-form

symmetry generator is spin 1/2.

. When k is odd, the theory has 2k lines labeled by elements of Z2k and is moreover a

spin TQFT. The line with the label k is the transparent fermion.

Now, consider gauging a BZ‘p, where ‘ divides n, where the Z‘p projects to

Z‘ � Zk, for that BZk above, with kernel BZp. Let us apply the decomposition

prediction (3.15) to this case.

In the language of (3.15), A ¼ Z‘p and H ¼ Uð1Þ. Here, the map d : A ! H is

given by projecting A ¼ Z‘p to a Z‘ � Zk � Uð1Þ, and so it has kernel K ¼ Zp.

Furthermore

G ¼ H=imd ¼ Uð1Þ=Z‘ ¼ Uð1Þ: ð5:66Þ

In this case, BUð1Þ ¼ CP1 has no odd degree cohomology, so there cannot be

any discrete theta angle. Thus, the decomposition prediction (3.15) for this case

is that

½Chern�SimonsðUð1ÞkÞ=BZ‘p� ¼
a

p

½Chern�SimonsðUð1ÞkÞ=BZ‘�; ð5:67Þ

a sum of p theories (consistent with a trivially-acting BZp) with no discrete theta

angles.

In particular, note that the right-hand side is a sum of Uð1Þk=BZ‘ Chern{Simons

theories, which is not necessarily the same as a union of Uð1Þk Chern{Simons the-

ories. Although as groups Uð1Þ=Zk ¼ Uð1Þ, gauging a Chern{Simons theory by a

one-form symmetry is a bit di®erent. For example, Uð1Þ4m=BZ2 ¼ Uð1Þm, from

Sec. C.1 in Ref. 76. (On the boundary, one has a Uð1ÞWZW model, meaning a sigma

model on S1, with radius determined by the level. Gauging the BZk in bulk becomes

gauging a Zk rotation in the boundary theory, which changes the radius and hence

the level).

We can use level-rank duality to perform a consistency test. Beginning with the

decomposition described in Subsec. 5.3 at level 1, namely

½Chern�SimonsðSUð2Þ1Þ=BZ4�
¼ Chern�SimonsðSOð3Þ1Þþ

a

Chern�SimonsðSOð3Þ1Þ�: ð5:68Þ
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Here we have kept track of the discrete theta angle; we only consider Chern{Simons

theories on orientable manifolds, so no discrete theta angle is visible, so the predic-

tion of Subsec. 5.3 in this case is more simply

½Chern�SimonsðSUð2Þ1Þ=BZ4� ¼
a

2

Chern�SimonsðSOð3Þ1Þ: ð5:69Þ

From level-rank duality, we know Subsecs. 3.1 and 3.2 in Ref. 125

Uð1Þ2 ¼ Uð1Þ�2 $ SUð2Þ1; ð5:70Þ

so we have that

½Chern�SimonsðUð1Þ2Þ=BZ2� ¼ ½SUð2Þ1=BZ2�
¼ Chern�SimonsðSOð3Þ1Þ:

ð5:71Þ

Thus, we see from level-rank duality that our decomposition in Subsec. 5.3 implies

½Chern�SimonsðUð1Þ2Þ=BZ4� ¼
a

2

½Chern�SimonsðUð1Þ2Þ=BZ2�; ð5:72Þ

which is a special case of the result (5.67), con¯rming in this case that the decom-

position prediction (3.15) is giving results compatible with this example of level-rank

duality.

Next, we compute the spectrum of line operators in Uð1Þ8=BZ2p, using the

methods of Subsec. 4.2, where in the gauging, the Z2p projects to Z2 with trivially

acting Zp. We describe the Z2p by a set of lines f‘ig, i 2 f0; . . . ; 2p� 1g, where
‘i � ‘j ¼ ‘iþj mod 8: ð5:73Þ

Uð1Þ8 has eight lines, labeled

ð0Þ; ð1Þ; ð2Þ; ð3Þ; ð4Þ; ð5Þ; ð6Þ; ð7Þ ð5:74Þ

whose properties are listed in App. A, and for which fð0Þ; ð4Þg encode a BZ2. The

action of BZ2p on the lines of Uð1Þ8 is given as follows:

Bð‘even;LÞ ¼ þ1;Bð‘odd;LÞ ¼ Bð4;LÞ; ð5:75Þ
‘even � L ¼ L; ‘odd � L ¼ ð4Þ � L; ð5:76Þ

using the monodromies and fusion algebra described in App. A. It is straightforward

that this gives a well-de¯ned action in the sense of Subsec. 4.2.

Next, we compute the spectrum of lines in Uð1Þ8=BZ8, following the procedure of

Subsec. 4.2.

. The lines (1), (3), (5), (7) have Bð‘odd;LÞ ¼ �1 6¼ þ1, and so are excluded.

. ‘1 � ð0Þ ¼ ð4Þ, ‘1 � ð2Þ ¼ ð6Þ, so we identify ð0Þ 	 ð4Þ, ð2Þ 	 ð6Þ.

. ‘even � L ¼ L, so we get p copies of ð0Þ 	 ð4Þ and ð2Þ 	 ð6Þ.
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Thus, the resulting spectrum is p copies of fð0Þ 	 ð4Þ; ð2Þ 	 ð6Þg, which is the

same as p copies of the line operator spectrum of Uð1Þ8=BZ2, as expected from

decomposition, since there is a trivially-acting Zp.

Next, let us compare to boundary WZW models. A (boundary) WZW model for

the group Uð1Þ is the same as a c ¼ 1 free scalar, of radius determined by the level.

(See e.g. App. C.1 in Ref. 76 for discussions of the RCFTs arising at particular values

of the level). Gauging the bulk one-form symmetry corresponds to orbifolding the

boundary c ¼ 1 theory, which just changes the radius of the target-space circle in

that boundary c ¼ 1 theory.

In a 2D sigma model with target S1, if we orbifold by a Zkp where Zp � Zkp acts

trivially, then from 2D decomposition, the resulting theory is equivalent to p copies of

the e®ectively-acting Zk orbifold, precisely matching (5.67), as expected.

5.10. Exceptional groups

So far we have discussed quotients of Chern{Simons theories for the gauge groups

SUðnÞ, SpinðnÞ, and SpðnÞ. We can also consider cases with exceptional gauge

groups. Although G2, F4, and E8 have no center, the group E6 has center Z3, and E7

has center Z2 (see e.g. App. A in Ref. 126).

For example, applying decomposition (3.15), for a Z3p that acts on E6 by pro-

jecting to the Z3 center with kernel Zp,

½Chern�SimonsðE6Þ=BZ3p� ¼
a

�2Ẑp

Chern�SimonsðE6=Z3Þ�; ð5:77Þ

where the discrete theta angle couples to ��ðwE6=Z3
Þ, for �� the Bockstein map

associated to the short exact sequence

1 ! Zp ! Z3p ! Z3 ! 1 ð5:78Þ

of extension class � 2 H 2
groupðZ3;ZpÞ.

Similarly, from decomposition (3.15), for a Z2p that acts on E7 by projecting to

the Z2 center with kernel Zp

½Chern�SimonsðE7Þ=BZ2p� ¼
a

�2Ẑp

Chern�SimonsðE7=Z2Þ�; ð5:79Þ

where the discrete theta angle couples to ��ðwE7=Z2
Þ, for �� the Bockstein map

associated to the short exact sequence

1 ! Zp ! Z2p ! Z3 ! 1 ð5:80Þ

of extension class � 2 H 2
groupðZ2;ZpÞ.

In both cases, in the boundary WZWmodel, this reduces to 2D decomposition of a

WZW orbifold, with the discrete theta angles becoming choices of discrete torsion. In

both cases, as the orbifolds involve cyclic groups, discrete torsion is trivial, so the
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boundary decomposition yields just a disjoint union of copies of the same WZW

orbifold.

5.11. Chern{SimonsððH1 �H2ÞÞ/BA

For completeness, let us also brie°y discuss decomposition in gauged Chern{Simons

theories whose gauge groups are a product of Lie groups. Speci¯cally, consider the

gauge of a gauged BA action, for A ¯nite and abelian, on a Chern{Simons theory for

H1 �H2 (at various levels, such that the gauge theory is well de¯ned on the given

three-manifold). Bulk decomposition takes the same form as (3.15)

½Chern�SimonsðH1 �H2Þ=BA� ¼
a

�2K̂
Chern�SimonsðGÞ�; ð5:81Þ

where

1 ! K ! A!d H1 �H2 ! G ! 1; ð5:82Þ

and the discrete theta angle couples to ��ðwGÞ, for �� the Bockstein homomorphism

associated to

1 ! K ! A ! Z ! 1; ð5:83Þ

classi¯ed by � 2 H 2
groupðZ;KÞ, where Z is a subgroup of the product of the centers of

H1;2, given by the image of d.

On the boundary, as before, this reduces to decomposition in the 2D theory, here

½WZWðH1 �H2Þ=A� ¼
a

�2K̂
WZWðGÞ�; ð5:84Þ

where the discrete theta angles � now correspond to choices of discrete torsion in a

½WZWðH1 �H2Þ=Z� ð5:85Þ

orbifold. Essentially, because A is abelian, for ultimately the same reasons as in

Subsec. 5.7, the discrete torsion is trivial on each universe.

5.12. Finite 2-group orbifolds

So far, we have focused on Chern{Simons theories in three dimensions, but the same

ideas apply to the ¯nite 2-group orbifolds discussed in Ref. 30. There, orbifolds by

2-groups � were described, where � is an extension

1 ! BK ! � ! G ! 1; ð5:86Þ

where G,K are both ¯nite andK is abelian, determined by ½!� 2 H 3
groupðG;KÞ. Now,

� can also be described by a crossed module fd : A ! Hg, corresponding to a four-

term exact sequence of ordinary groups

1 ! K ! A!d H ! G ! 1; ð5:87Þ
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also determined (up to equivalences) by ½!� 2 H 3
groupðG;KÞ (see e.g. Sec. IV.9 in

Ref. 127 for related observations).

In this language, we can write the 2-group orbifold ½X=�� in terms of the crossed

module as

½X=�� ¼ ½½X=H�=BA�; ð5:88Þ
at least for a presentation in which A is abelian.

For this slightly di®erent physical realization in terms of ¯nite groups, the

statement of decomposition (3.15) is modi¯ed, but only slightly

½X=�� ¼ ½½X=H�=BA� ¼ ��2K̂ ½X=G�!ð�Þ; ð5:89Þ
where the discrete torsion (formerly discrete theta angle) !ð�Þ is de¯ned by ��!.
In this sense, the decomposition described in this paper is simply a variation on the

2-group orbifold decomposition described in Ref. 30. The fact that bulk discrete theta

angles (here, C-¯eld analogues of discrete torsion) become (ordinary) discrete torsion

in the boundary theory was also observed in Subsec. 3.2 in Ref. 30.

In passing, we should also observe that results in ¯nite 2-group orbifolds have a

qualitatively di®erent form. For example, Subsec. 4.4 in Ref. 30 described an orbifold

by a 2-group extension

1 ! BZ2 ! � ! ðZ2Þ3 ! 1: ð5:90Þ
In this case, ½X=�� is equivalent to a pair of copies of ½X=ðZ2Þ3� orbifolds, each with

a di®erent C ¯eld discrete torsion in H 3
groupððZ2Þ3;Uð1ÞÞ, which is nontrivial even

on T 3. One could imagine an analogous theory here, such as a quotient of SUð2Þ3
Chern{Simons by BA (for A a ¯nite abelian group, with K ¼ Z2 kernel, say) that

leads to a disjoint union of SOð3Þ3 Chern{Simons theories. Here, however, in the case

of Chern{Simons theories, no analogue of C ¯eld discrete torsion is present for T 3,

partly because (as noted in Subsec. 3.4) the pertinent Bockstein homomorphism

vanishes. Part of the di®erence between these two theories is that in the

Chern{Simons case, the pertinent exact sequence of ¯nite groups has the form

1 ! Z2 ! A ! ðZ2Þ3 ! 1; ð5:91Þ

whereas by contrast the analogous sequence in Ref. 30, namely (5.90), can be al-

ternately encoded as a four-term sequence

1 ! Z2 ! P 0 ! Q0 ! ðZ2Þ3 ! 1; ð5:92Þ

which realizes an element of H 3
groupððZ2Þ3;Z2Þ. By contrast, the short exact se-

quence (5.91) realizes an element of H 2
groupððZ2Þ3;Z2Þ, cohomology of di®erent

degrees; the crossed module construction realizes a 2-group, but involves di®erent

groups.

6. Boundary G/G Models

For completeness, in this section we include a di®erent example of a decomposition.

T. Pantev & E. Sharpe

2250227-34



Consider gauged WZW models G=H at level k, on the boundary of a 3D theory.

Because the H action being gauged is an adjoint action,128 if the center ZðHÞ of H is

nonzero, it acts trivially, and in two dimensions, the resulting gauged WZW model

decomposes into universes indexed by irreducible representations of ZðHÞ.
Now, let us compare to the bulk theory. From Sec. 3 in Ref. 69, for the gauged

WZW model G=H at level k, the bulk 3D theory is a ðG�HÞ=Z gauge theory, with

Z as the common center of G and H, with action

k‘SCSðGÞ � kSCSðHÞ; ð6:1Þ

where ‘ is the index of the embedding H,!G,

Consider the special case of the 2D G=G model, on the boundary of a 3D theory.

The G=G model decomposes into universes indexed by the integrable representa-

tions. (In principle, this is because it is a unitary topological ¯eld theory129,130; the

speci¯c relation to decomposition is via noninvertible symmetries, as discussed in

Refs. 20 and 21.) From the discussion above, the bulk dual to the boundary G=G

model appears to have an identically-zero action (6.1). Since the boundary theory is a

topological ¯eld theory, this would be trivially consistent.

For more general boundaryG=H-gauged WZWmodels, the bulk action (6.1) does

not vanish identically. Decomposition of the boundary suggests that the bulk may

also decompose, in which case the bulk theory should admit a global two-form

symmetry. We leave elucidating that symmetry for future work.

7. Conclusions

In this paper, we have discussed decomposition in 3D Chern{Simons theories with

gauged none®ectively-acting one-form symmetries. In the bulk decomposition, the

di®erent universes of the decomposition have discrete theta angles coupling to bundle

characteristic classes, speci¯cally, images under Bockstein maps of canonical degree-

two characteristic classes. On the boundary, those map to choices of discrete torsion,

and the bulk decomposition becomes a standard orbifold decomposition, involving

WZW models, which serves as a strong consistency test.

There are many directions this work could be taken. One example would be to

consider decomposition in gauged Chern{Simons theories in which the original

theory has a discrete theta angle, analogous to decomposition in 2D orbifolds with

discrete torsion.26 Another example would be to consider decomposition in

Chern{Simons-matter theories, rather than pure Chern{Simons. Similarly, it would

be interesting to consider decomposition in holomorphic Chern{Simons,131 or

deformations of Chern{Simons theories, that arise when studying disk instanton

corrections in string compacti¯cations.

It would also be interesting to understand dimensional reduction of decomposi-

tion to two dimensions. The dimensional reduction of pure Chern{Simons is the 2D

G=G model (which as a unitary TFT already admits a decomposition20,21,129,130),
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and the BK symmetry in three dimensions should become a K �BK symmetry in

the two-dimensional theory.

In condensed matter physics, there exists a realization of Chern{Simons theories

known as the Levin{Wen model,134 and it would be interesting to consider this story

in that setting.

In a di®erent direction, Chern{Simons theories can also arise on boundaries of

four-dimensional theories, and it would be interesting to study decomposition in that

context, perhaps relating it to the decomposition arising after instanton restriction in

Ref. 16. There, the instanton restriction resulted in a disjoint union of 4D Yang{Mills

theories with theta angle terms of the form

1

8�2
2�m

k

Z

TrF ^ F ; ð7:1Þ

for m 2 f0; 1; . . . ; k� 1g, which implements the restriction on instantons. On a

boundary, that would become a disjoint union of theories, whose actions have

Chern{Simons terms of the form

1

8�2
2�m

k

Z

!CS; ð7:2Þ

clearly related to the disjoint unions of Chern{Simons theories we discuss in this

paper. We leave such considerations for future work.
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Appendix A. Line Operators

In this section, we brie°y review some basics of line operators in Chern{Simons

theories and their quantum numbers, to make this paper self-contained.

In general, the line operators in a Chern{Simons theory at level k correspond to

integrable representations, which for a model at level k, are the representations of

highest weight 
 satisfying the unitarity bound (Eq. (9.30) in Ref. 132)

2
 � 

 2

� k; ðA:1Þ
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for  as the highest weight of the adjoint representation. (For example, for SUðnÞ the
integrable representations at any level are classi¯ed by Young diagrams of width

bounded by the level.) Similarly, for a given WZW primarily associated to an inte-

grable representation of highest weight 
, the L0 eigenvalue is (Eq. (15.87) in

Ref. 133)

h ¼ ð
; 
þ 2�Þ
2ðkþ gÞ ; ðA:2Þ

where g is the dual Coxeter number and � the Weyl vector (half-sum of positive roots).

In passing, a representation is integrable if and only if its dual is integrable, and its

dual de¯nes WZW primaries of the same conformal weight, see e.g. Subsec. 8.3 in

Ref. 126. Similarly, the quantum dimension is given by (Eq. (16.66) in Ref. 133)

Y

�>0

sin
�ð
þ�;�Þ

kþg

� �

sin
�ð�;�Þ
kþg

� � : ðA:3Þ

For use in examples in the text, the line operators of SUð2Þ4 aren

where ~
 denotes the Dynkin label of each line, h is the conformal weight of the

corresponding boundary chiral primary as above, and q-dim denotes the quantum

dimension.

The fusion algebra of SUð2Þ4 lines can be computed with the program Kac,135 and

that algebra is given as follows:

ð0Þ � ð0Þ ¼ ð0Þ; ð2Þ � ð2Þ ¼ ð0Þ þ ð4Þ;
ð0Þ � ð1Þ ¼ ð1Þ; ð2Þ � ð3Þ ¼ ð1Þ þ ð4Þ;
ð0Þ � ð2Þ ¼ ð2Þ; ð2Þ � ð4Þ ¼ ð2Þ þ ð3Þ;
ð0Þ � ð3Þ ¼ ð3Þ; ð3Þ � ð3Þ ¼ ð0Þ þ ð4Þ;
ð0Þ � ð4Þ ¼ ð4Þ; ð3Þ � ð4Þ ¼ ð2Þ þ ð3Þ;
ð1Þ � ð1Þ ¼ ð0Þ; ð4Þ � ð4Þ ¼ ð0Þ þ ð1Þ þ ð4Þ:

nWe would like to thank M. Yu for providing the results for line operators of SUð2Þ4 and Uð1Þ8 listed in

this appendix.

SUð2Þ4 Integrable rep. ~
 h q-dim

(0) 1 [0,4] 0 1

(1) [4,0] 1 1
(2) [1,3] 1/8

ffiffiffi

3
p

(3) [3,1] 5/8
ffiffiffi

3
p

(4) [2,2] 1/3 2,

Decomposition in Chern{Simons theories

2250227-37



ð1Þ � ð2Þ ¼ ð3Þ;
ð1Þ � ð3Þ ¼ ð2Þ;
ð1Þ � ð4Þ ¼ ð4Þ;

We see that the lines ð0Þ, ð1Þ are mutually transparent, and their fusion products

have the structure of the group Z2.

From the table above, it is straightforward to compute the monodromies of the

line ð1Þ about other lines, using
Bða; bÞ ¼ expð2�iðhða� bÞ � hðaÞ � hðbÞÞÞ; ðA:4Þ

and one ¯nds

Bð1; 1Þ ¼ þ1; ðA:5Þ
Bð1; 2Þ ¼ �1; ðA:6Þ
Bð1; 3Þ ¼ �1; ðA:7Þ
Bð1; 4Þ ¼ þ1; ðA:8Þ

so that all monodromies are in f
1g, as expected for a BZ2, and also consistent with

the fact that (2) and (3) correspond to Wilson lines for an odd number of copies of

the 2 representation.

Similarly, it will be useful later to write down the fusion algebra for Uð1Þ8. Here,

there are eight lines, labeled ð0Þ through ð7Þ, with conformal weights and quantum

dimensions

and the fusion algebra acts by addition, as

ðaÞ � ðbÞ ¼ ðaþ b mod 8Þ: ðA:9Þ

From the table of lines above, it is clear that there is a BZ2 corresponding to the

lines fð0Þ; ð4Þg. For use in Subsec. 5.9, we list here pertinent monodromies:

Bðð0Þ;LÞ ¼ þ1;Bð4; 0Þ ¼ Bð4; 2Þ ¼ Bð4; 4Þ ¼ Bð4; 6Þ ¼ þ1; ðA:10Þ
Bð4; 1Þ ¼ Bð4; 3Þ ¼ Bð4; 5Þ ¼ Bð4; 7Þ ¼ �1: ðA:11Þ

Uð1Þ8 h q-dim

ð0Þ 0 1

ð1Þ 1=16 1
ð2Þ 1=4 1

ð3Þ 9=16 1

ð4Þ 1 1

ð5Þ 9=16 1
ð6Þ 1=4 1

ð7Þ 1=16 1
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Appendix B. Overview of Crossed Modules

In this paper, we have described 2-groups using crossed modules. As they play an

important role in the decomposition statement in 3D Chern{Simons theories, to

make this paper self-contained, we include a brief overview here.

Brie°y, a crossed module consists of the following data:

. a pair of groups G0, G1,

. a group homomorphism d : G1 ! G0,

. a group homomorphism � : G0 ! AutðG1Þ,

such that

1. The composition

G1 !
d
G1 !

�
AutðG1Þ ðB:1Þ

is the conjugation action of G1 on itself, meaning

�ðdðg1ÞÞðhÞ ¼ g1hg
�1

1 ; ðB:2Þ

for g1;h 2 G1, or equivalently that

ðB:3Þ

commutes

2. d is equivariant for the G0 action on the source and target, meaning

dð�ðg0ÞðhÞÞ ¼ g0dðhÞg�1

0 ðB:4Þ

for g0;h 2 G0, or equivalently that

ðB:5Þ

commutes.

In the description above, Ad : G ! AutðGÞ denotes the adjoint action of G to

itself, namely, AdðgÞðxÞ ¼ gxg�1.
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Some examples of crossed modules include the following:

. For G1 any group, let G0 ¼ AutðG1Þ, with d : G1 ! AutðG1Þ the natural inclusion
(meaning dðgÞ ¼ AdðgÞ) and � : AutðG1Þ ! AutðG1Þ the identity.

. Let G0 be any group and G1 a normal subgroup of G0, with d : G1 ! G0 inclusion,

and � : G0 ! AutðG1Þ by conjugation.

A crossed module can be encoded in a four-term exact sequence:

1 ! Ker d ! G1 !
d
G0 ! Coker d ! 1: ðB:6Þ

In the case that Ker d is abelian, this is sometimes alternatively expressed as the

extension

1 ! BðKer dÞ ! � ! Coker d ! 1; ðB:7Þ

for � the 2-group corresponding to the crossed module.

Physically, in this paper, the map d encodes the action of the none®ectively-acting

BA, by mapping A to a subset of the center of the Chern{Simons gauge group, which

acts nontrivially.

For more information on crossed modules, see for example136 for further mathe-

matics background, or App. A in Ref. 74 and Sec. 2 in Ref. 75 in physics.

Appendix C. Generalities on Gauging E®ectively-Acting

One-Form Symmetries

For most of this paper, we have discussed gauging one-form symmetries in terms of

line operators, but it is worth observing that this operation can also be understood in

terms of local actions, which we will brie°y review in this section.

Suppose in general terms we have a G gauge theory, and we gauge the action of a

one-form symmetry BK, where BK acts nontrivially on the line operators of the

theory. (For example, this is the case if K is a subset of the center of G).

In general terms, when gauging the BK on a G gauge theory,

. the path integral sums over K gerbes, and

. for each K gerbe, the path integral sums over gerbe-twisted G bundles, de¯ned by

transition functions which close on triple overlaps only up to a cocycle representing

the gerbe characteristic class.

Consider for example gauging an e®ectively-acting BZn in an SUðnÞ gauge the-

ory. The twisted SUðnÞ gauge ¯elds above are all the same as ordinary SUðnÞ=Zn

T. Pantev & E. Sharpe

2250227-40



gauge ¯elds, and the gerbe characteristic classes correspond to (some) characteristic

classes of SUðnÞ=Zn bundles. Let us look at this in more detail:

1. The transition functions gij of a twisted bundle no longer close on triple overlaps,

but rather obey

gijgjkgki ¼ hijk ðC:1Þ

for a cocycle hijk representing an element ofH2ðY ;ZnÞ corresponding to the gerbe
characteristic class, and

2. Across overlaps, the gauge ¯eld A obeys

Ai ¼ gijAjg
�1

ij þ g�1

ij dgij � I�ij; ðC:2Þ

where I is the identity and �ij is a locally-de¯ned one-form ¯eld, with the

property that if the gerbe were to admit a connection B, then on the same

overlaps

Bi ¼ Bj þ d�ij: ðC:3Þ

Now, this procedure should generate all G=K bundles. One example of this

involves the relation between SUð2Þ and SOð3Þ bundles in 3D theories. As is well

known

Chern�SimonsðSUð2ÞÞ=BZ2 ¼ Chern�SimonsðSOð3ÞÞ; ðC:4Þ

for the BZ2 corresponding to the center one-form symmetry. Viewed as a BZ2

quotient of an SUð2Þ gauge theory, the path integral

. sums over Z2 gerbes, whose characteristic class is w 2 H2ðM ;Z2Þ, and

. sums over w-twisted SUð2Þ bundles, meaning that the SUð2Þ transition functions

close on triple overlaps only up to w, and that gauge transformations across

patches only have to match up to a Z2 shift.

Interpreted in terms of SOð3Þ bundles, the characteristic class w 2 H2ðM ;Z2Þ is
the second Stiefel{Whitney class of an SOð3Þ bundle. (The other possibly nonzero

characteristic class, the third Stiefel{Whitney class w3 2 H3ðM ;Z2Þ, is determined

by w2 as w3 ¼ Sq1ðw2Þ, see Subsec. 5.3). The fact that gauge transformations only

respect SUð2Þ up to Z2 shifts, and that SUð2Þ transition functions only close up to w,

are indicative of general aspects of SOð3Þ bundles.
Thus, we see that the BZ2-gauged SUð2Þ theory really does recover all SOð3Þ

bundles, even those with nonzero w3, as expected.

If we instead gauged a BA action on a G Chern{Simons theory with a trivially-

acting subgroup BK, then, for reasons detailed in Ref. 30, we would recover
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G=ðA=KÞ gauge theory, with a restriction on G=ðA=KÞ bundles. One role of de-

composition is to implement that restriction.
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