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SUMMARY
Earth’s internal magnetic field is dominated by the contribution of the axial dipole whose
temporal variations are wide ranging and reflect characteristic timescales associated with
geomagnetic reversals and large scale palaeosecular variation, ranging down to decadal and
subannual field changes inferred from direct observations. We present a new empirical power
spectrum for the axial dipole moment based on composite magnetic records of temporal
variations in the axial dipole field that span the frequency range 0.1 to 5 × 105 Myr–1 (periods
from 10 million to 2 yr). The new spectrum is used to build a stochastic representation for these
time variations, based on an order 3 autoregressive (AR) process and placed in the context of
earlier stochastic modelling studies. The AR parameter estimates depend on the frequency of
transitions in the spectral regime and may be influenced by Ohmic diffusion, advection and
torsional oscillations in Earth’s core. In several frequency ranges across the interval 200–5000
Myr–1 (5000 to 200 yr periods) the empirical power spectrum lies above the AR3 model and
may be influenced by Magneto–Coriolis (MC) waves in Earth’s core. The spectral shape and
parameter estimates provide a potentially useful guide for developing assessments of whether
numerical dynamo simulations meet criteria for being considered Earth like.

Key words: Magnetic field variations through time; Palaeointensity; Palaeomagnetic secular
variation; Statistical methods; Time-series analysis.

1 INTRODUCTION

Earth’s time-varying internal magnetic field, known as the geody-
namo, is sustained by vigorous convection in Earth’s electrically
conducting, liquid-iron outer core (Backus et al. 1996). Fluid mo-
tions in the outer core are driven by thermal and chemical buoy-
ancy lifting and twisting the fluid and creating electric currents
that can reinforce and regenerate the field. These flows drive con-
tinual temporal variations in field strength over timescales ranging
from days to hundreds of millions, perhaps even billions, of years.
Measurement of the field strength over such a wide range relies
on multiple different approaches. Satellite, observatory and survey
measurements provide direct observations of field strength and di-
rection since the mid 19th century (Finlay et al. 2016; Alken et al.
2021). Magnetic data from observatories, surveys and ship records
extending back to the 16th century allow access to centennial vari-
ations (Jackson et al. 2000). Earlier changes must be recovered
from archeomagnetic, volcanic and sedimentary palaeomagnetic
records which are used to study millennial scale (Constable et al.

2016; Panovska et al. 2018; Senftleben 2020) to million year varia-
tions (Ziegler et al. 2011). At longer timescales magnetic anomalies
recorded in the seafloor crust provide a record of the timing of ge-
omagnetic polarity reversals (Cande & Kent 1995; Ogg 2012).

The geomagnetic field at Earth’s surface is traditionally repre-
sented via a spherical harmonic expansion in terms of time varying
Gauss coefficients, {gml (t), hm

l (t)} of degree l and order m. Nu-
merous previous studies have made estimates for these Gauss co-
efficients from field observations and shown that in the resulting
geomagnetic field models, the coefficient g0

1(t) has the largest time-
averaged magnitude and, given the field’s propensity to reverse
polarity on geological timescales, it also has the greatest dynamic
range over time among the various {gml (t), hm

l (t)} describing the
observed field (Jackson et al. 2000; Ziegler et al. 2011; Olsen et al.
2014; Constable et al. 2016; Panovska et al. 2018).

In this work we focus our attention on variations in the magnitude
of the dominant axial dipole, g0

1(t), as illustrated in Fig. 1, and
further discussed in Section 2. An equivalent representation in terms
of the axial dipole moment (ADM), represented in this paper by
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16 M. Sadhasivan and C. Constable

Figure 1. Time-series for axial dipole variations drawn from models gufm1,
arhimag1k, HFM.OL1.A1, CALS10k.2, GGF100k and PADM2M. See text
for details. Vertical dashed lines in (c) and (b) indicate where oldest part of
(b) and (a), respectively, would take over on the timeline.

p(t), is often used as a scalar proxy for the overall strength of the
geomagnetic field:

p(t) = 4πr 3
e

μ0
|g0

1(t)|, (1)

where re is Earth’s radius and μ0 is the magnetic permeability in a
vacuum. The power spectrum of the ADM has been previously used
to evaluate the frequency content of large scale variations in geo-
magnetic field strength based on observations (see e.g. Constable
& Johnson 2005). Such studies enable treating p(t) as a stochastic
process suitable for statistical analyses and comparisons with out-
put from numerical dynamo simulations (see e.g. Olson et al. 2012;
Davies & Constable 2014; Avery et al. 2019). We revisit the utility
of stochastic modelling in this paper.

1.1 Why stochastic modelling is a useful approach

The spherical harmonic description of Earth’s field is derived from
the pre-Maxwell’s equation and might seem to imply that a deter-
ministic representation of the geomagnetic field as a function of
space and time lies within our grasp so that we should be able to
link various physical processes in Earth’s outer core to changes in
the ADM with time. This is not yet the case, especially for the long
timescales that we are interested in here.

Normally we might seek out periodic or quasi-periodic cycles in
geomagnetic field data as is often done for other geophysical data—
for example, the solar magnetic field and Earth’s atmosphere exhibit
detectable, quasi-periodic variability (Bengtsson 2003; Di Lorenzo
et al. 2010; Hathaway 2015). But once a timescale for geomagnetic
reversals was established (Cox et al. 1964), it became apparent that
reversals do not occur on a regular or predictable basis. So Cox
(1968) initially proposed that the magnetostratigraphic sequence of
geomagnetic reversals might be described as a memoryless Poisson
process. In such a process, the probability that a new reversal will
occur is totally independent of the record of previous reversals.
The time interval between adjacent reversals is described by an

exponential probability distribution function where the e-folding
parameter provides a measure of reversal rate.

Later refinements to the Poisson model acknowledged that the
reversal rate actually changed through time (McFadden et al. 1988;
Constable et al. 1998; Constable 2000); thus the e-folding parameter
is time-dependent. Furthermore, it is clear that the occurrences of
geomagnetic reversals cannot be considered memoryless as is con-
sidered appropriate, for example, in the classic Poisson application
of describing radioactive decay processes. Hence, a memoryless
Poisson process is too simple to describe the geomagnetic reversal
record. The initial Poisson description nevertheless set the stage for
representing geomagnetic field variability as a stochastic process,
that is where at least part of the variations are random (or at least
unpredictable) with respect to time.

Geomagnetic field variations on timescales shorter than the mil-
lions of years represented in the reversal timescale also appear
to lack predictability. For example, palaeomagnetic sedimentary
records exhibit large, irregular variations in regional and dipolar
field strength over 10–100 kyr timescales. And despite numerous
attempts to identify periodic processes in field records and cor-
relate them with external forcing processes such as Milankovitch
climate variations (Yamazaki & Oda 2002), tektite bombardments
(Glass & Heezen 1967) or claims of identifying millennial period-
icity (Nilsson et al. 2011, 2020) no strong periodic signal is found
in the ADM (Constable & Johnson 2005). Recent efforts seeking
to predict reversals from precursory geomagnetic dipole moment
variations (Gwirtz et al. 2021) have met with limited success.

The source of the unpredictable temporal variability in the geo-
magnetic field is the geodynamo, driven by complex processes in the
outer core that are described by the magnetic induction equation,

dB
dt

= ∇ × (v × B) + 1

μoσ
∇2B, (2)

where B is the magnetic field, v is the core fluid velocity, σ is the
electrical conductivity of the outer core fluid and μo = 4π × 10−7

H m–1 is the magnetic permeability in a vacuum. The magnetic in-
duction equation shows that temporal variations in the geomagnetic
field arise from an imbalance between advection of the field by
fluid flow in Earth’s outer core (the cross-product term) and Ohmic
diffusion (the Laplacian term, Backus et al. 1996).

Variations due to dominance of either advection or Ohmic diffu-
sion can occur on quite different timescales. Additionally, non-linear
coupling between the magnetic field and outer-core flow field in the
Navier–Stokes and temperature equations (Moffatt 1978) set the
stage for turbulent chaotic small-scale processes that cannot be eas-
ily predicted even in numerical dynamo simulations. Thus, we turn
to continuous stochastic models of the geomagnetic field, expand-
ing upon ideas that have evolved from the simple Poisson model
discussed above.

Continuous stochastic models were originally developed to de-
scribe a water molecule that moves under the combined influence
of viscous fluid resistance and random collisions with other water
molecules. The viscous force is treated as a deterministic process
(i.e. with a known mathematical description) while the collisions
are treated as a random-noise process (Langevin 1908). For our
purposes, the magnetic induction equation acts as a deterministic
process while fluid turbulence in Earth’s outer core causes random
fluctuations in the geomagnetic field. Hence, the interplay between
advection, Ohmic diffusion and fluid turbulence provides a plau-
sible physical basis for stochastic descriptions of the time-varying
geomagnetic field.
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The Langevin and Fokker–Planck equations can both describe an
ADM p(t) that has a deterministic, equilibrium behaviour and ran-
dom fluctuations away from the equilibrium. Previous researchers
used the Langevin (Buffett et al. 2013; Buffett & Matsui 2015) and
Fokker–Planck (Schmitt et al. 2001; Hoyng et al. 2002) equations to
model the frequency spectrum and the temporally varying probabil-
ity distribution of the ADM, respectively. These authors compared
their results with the spectra and distributions derived from various
time-series including some of those in Fig. 1.

Later adjustments made to these models accounted for the loss
of temporal resolution in palaeomagnetic observations caused by
record stacking and gradual acquisition of sedimentary magnetiza-
tion (Buffett & Puranam 2017). Most recently, Morzfeld & Buffett
(2019) implemented a feature-based maximum likelihood approach
to estimate the Langevin model parameters and compared their re-
sults with various published palaeomagnetic time-series: PADM2M,
SINT2000 and CALS10k.2 (Valet et al. 2005; Ziegler et al. 2011;
Constable et al. 2016).

Several other studies compared the results of stochastic models
with numerical (Buffett et al. 2014; Buffett & Matsui 2015) and
experimental (Berhanu et al. 2007; Pétrélis & Fauve 2008; Pétrélis
& Fauve 2010) dynamos. These comparisons among the statistical
properties of geomagnetic field data, of experimental dynamos and
of numerical dynamo simulations, provide a potential pathway to
evaluate which simulations and experiments have Earth-like prop-
erties. Finally, some studies have used stochastic models to describe
non-dipole field variations (Bouligand et al. 2016).

In this work we further develop stochastic geomagnetic models
for the dipole to cover a broad range of frequencies and physical
processes in Earth’s core. In Section 2, we present recent time-
series for the ADM that have been derived from observations and
we provide a new composite power spectrum for the ADM that
extends from timescales of years to millions of years. In Section 3,
we extend previously published stochastic models to this broader
frequency range. Section 4 provides a comparison of our model with
the composite spectrum to estimate values for our model parameters.
In Section 5, we discuss physical connections between our model
parameters and the geodynamo. Finally, in Section 6 we present our
conclusions and propose future work extending from this study.

2 PALAEOMAGNETIC RESULTS

2.1 Time-series

Over the past two decades there have been significant improve-
ments in both palaeomagnetic data compilations and palaeofield
modelling that provide us with time-series for the magnitude of g0

1

on a range of different timescales. The corresponding ADM vari-
ations, p(t), from five time-varying field models as in eq. (1), are
plotted in Figs 1(a) and (b).GGF100K (Panovska et al. 2018) covers
the interval 0-100 ka, and HFM.OL1.A1 and CALS10k.2 (Consta-
ble et al. 2016) spanning 0–10 kyr are based on palaeomagnetic
data. arhimag1k covering the millenium from 1000 to 2000 CE is
built from a combination of direct observations and archeomag-
netic and volcanic data (Senftleben 2020). gufm1.short spans the
observational period that includes direct intensity measurements in
addition to directional observations of the field (1840–1990 CE). In
Fig. 1(c), PADM2M (Ziegler et al. 2011) is a reconstruction of p(t)
based on both absolute and relative palaeointensity data covering
the past 2 Myr.

Each of the time-series in Fig. 1 has a cubic spline parametriza-
tion in time (see for example, Korte & Constable 2003) and has
been developed from regularized inversion of globally distributed
data covering the respective timelines. Their respective temporal
resolutions depend on the data quality and available chronological
constraints, and the spline knot spacing, ranging from 2.5 to 1000 yr,
has been chosen accordingly. The details are provided in Table 1,
where column 1 gives the name of the time-series, followed by the
total time spanned by the time-series in column 2, and column 3
provides the equal knot spacing for the cubic spline representation
of temporal variations, and thus a clear limitation on the temporal
resolution. The sampling interval given in column 4 is used for
the model predictions after spline interpolation that are plotted in
Fig. 1 and is what we used in our initial estimates of the power
spectrum (see Section 2.2. This sampling interval is much shorter
than the expected model resolution (column 5), which is our esti-
mate of the shortest plausible timescale on which we could interpret
the spectral structure. This is typically controlled by factors such as
sedimentation rate, and ability to identify coeval times across dif-
ferent geographic regions. This is discussed further in Section 2.2,
together with column 6 and 7 in Table 1.

It should be noted that there are some discrepancies in the models
especially in regions where models with shorter time spans overlap
the longer models with poorer temporal resolution: for example
arhimag1k has more detail than either CALS10k.2 or HFM.OL1.A1;
the high values after 10 ka inCALS10k.2 are muted and come earlier
in GGF100k; and CALS10k.2 has lower temporal variability than
HFM.OL1.A1 throughout the record (Constable et al. 2016).

In contrast to the time-series in Fig. 1 the magnetostratigraphic
timescale of Ogg (2012) seen in Fig. S1 only provides polarity in-
formation in the form of timing of geomagnetic reversals. In our
modelling we follow the strategy used by Constable & Johnson
(2005) and suppose that the intensity is constant at some arbitrary
value during a time of stable polarity, drops to zero during a reversal
for a time interval δ (here we use 40 kyr, but our results are not sen-
sitive to the exact detail) and then recovers immediately following
the reversal. During stable polarity times the dipole moment p(t)
is set to an appropriate average value. The time-series is sampled
at �T = 1 kyr for purposes of calculating the power spectrum as
described later.

2.2 New composite spectrum

A separate multitaper power spectral density (PSD) estimate was
derived for each of the time-series in Fig. 1 and the GTS12 record
of Fig. S1. In each case we used a fixed number (10) of sine mul-
titapers and pre-whitened with a 3rd order autoregressive process
(Riedel & Sidorenko 1995, 1996). The results are shown in Fig. 2
and are colour coded according to the various time-series. Dense
time sampling (�T as given in Table 1) avoids aliasing, but reveals
the limitations in resolution for each time-series. The spectral es-
timate for each time-series lies below the next higher resolution
one above some critical frequency. Using the preliminary compos-
ite spectrum in Fig. 2 we estimated the temporal resolution given
in column 5 of Table 1 for each model’s time-series and trimmed
each spectral estimate above the truncation frequencies given in
column 7 (these are just the reciprocal of the temporal resolutions).
The truncated spectrum, shown in Fig. 3, provides a more reliable
estimate for a composite spectrum. Overlapping estimates now lie
within the uncertainties provided with the exception of the lowest
frequency estimates derived from gufm1. It is possible that these
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Table 1. Properties of time-series of axial dipole moments.

Description Time span Knot spacing (yr) Sampling �T (yr) Model res (yr)
�f

(Myr−1) Trunc f (Myr−1)

GTS12 0–157.8 Ma n/a 1000 50 000 0.06 20
PADM2M 0–2 Ma 1000 1000 5000 4.2 200
GGF100k 0–100 ka 200 100 1000 85.6 1000
CALS10k.2 0–10 ka 40 20 500 854 2000
HFM.OL1.A1 0–10 ka 40 20 200 854 5000
arhimag1k 1000–2000 CE 10 5 15 7645 60 000
gufm1 short 1840–1990 CE 2.5 1 4 5.5 × 104 250 000

Figure 2. Composite power spectrum based on the times series shown in
Figs 1 and S1. Error bars are one standard deviation. See text for discussion
of reliability.

Figure 3. Trimmed composite power spectrum based on the times-series
shown in Figs 1 and S1. Error bars are one standard deviation. See text for
discussion of trimming from Fig. 2. Fig. S2 shows the frequency resolution
in the composite spectrum.

may be strongly influenced by spectral leakage due to the recent
decay in dipole strength, and they have also been trimmed in Fig. 3.
Column 6 in Table 1 is the frequency resolution of the PSD perti-
nent to each time-series which is controlled by number of sinusoidal
tapers (κ), � f = κ

N , where N is the total number of points in the
time-series. See Fig. S2 for a plot of the frequency resolution across
the composite spectrum.

As was previously noted by Constable & Johnson (2005) we can
loosely partition the spectrum into several frequency bands: For
GTS12, 0.02–.2 Myr−1 represents changes in reversal frequency;
the more or less flat part for 0.2–10 Myr−1 can be considered to rep-
resent average reversal rate; the falloff in GTS 12 above 10 Myr−1

is controlled by the product of reversal rate and specified duration
of reversals in the artificially structured series, but agrees well with
PADM2M; between 10 and 40 Myr−1 we see a general fall-off in
the PADM2M spectrum with a bump in the range 20–30 Myr−1 that
has been discussed as a possible representation of cryptochron and
excursion rates (see Constable et al. 1998; Smith-Boughner et al.
2011), but this is not a well-resolved peak; in both PADM2M and
GGF100k we see smooth decay above 40 Myr−1 and a flattening at
around 100–300 Myr−1; more hints of structure recur in the 400–
4000 Myr−1 range in the form of departures from a monotonically
decaying trend, and again above 10 000 and 100 000 Myr−1. Under-
lying these incompletely resolved bumps in our spectral estimates is
an overall red spectrum which we can characterize by successively
higher power law falloff with increasing frequency. This underlying
trend motivates stochastic modelling of dipole moment variations
in the next section, where we seek to resolve four regimes for
changes in dipole moment, based on (1) average reversal and ex-
cursion frequencies <20 Myr−1; (2) time taken for reversals and
other significant dipole moment variations on millennial timescales
≥20−5000 My−1; (3) centennial scale variations ≥5000−50 000
Myr−1 and (4) short-term variations ≥50 000 Myr−1. We return to
the question of structure in the composite spectrum in addition to
the trend in Section 5.4. In this work we do not attempt to account
for the very low frequency changes in reversal rate.

3 A NEW STOCHAST IC MODEL

Previous stochastic models have not used data extending across the
entire frequency range of the composite spectrum, and at the high-
est frequencies, the new composite spectrum transitions to steeper
spectral slopes than previous models allow. So we build a new, AR3
model for ADM variability that spans the entire frequency range
of the composite spectrum and accommodates this steeper, spectral
regime at highest frequencies.
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Figure 4. Axial dipole moment (solid, dark blue) perturbations (brown
shadow) away from and recovery (blue shadow) back to time-averaged equi-
librium (blue dashed line).

3.1 Continuous AR models

The temporal evolution of the ADM is not a memoryless process,
and the ADM at time t is influenced by:

(i) The rate at which it has changed in the past until time t, dp
dt .

(ii) The way in which that rate itself has changed until time t,
d2 p
dt2

.

(iii) Higher-order derivatives, that is d3 p
dt3

, d4 p
dt4

and so on.

Meanwhile, interactions across other parts of the geodynamo
sometimes perturb the ADM away from its tendency to behave ac-
cording to its own past. For example, fluid turbulence in the outer
core influences the geomagnetic field in a way that is not deter-
ministic with respect to time. Fluid turbulence thereby introduces
stochastic behaviour into the evolution of p(t). We represent the
turbulent source of the perturbations as uncorrelated, white noise,
ζ (t).

The ADM at time t can be written as:

p(t) = α1
dp

dt
+ α2

d2 p

dt2
+ α3

d3 p

dt3
+ . . . + ζ (t). (3)

Each αi is an amplitude that scales the relative impact of the cor-
responding derivative term on p(t). ζ (t) can also be thought of as
a forcing function that introduces new information into the system
at uncorrelated times. We call eq. (3) a ‘continuous autoregressive
(AR)’ equation. We use as many derivatives to describe the ADM
as is prudent; when the equation extends out to the nth derivative,
then we call it an ‘ARn’ equation.

3.2 A Langevin model

The AR equation is not the only way to describe the ADM’s be-
haviour with time. Buffett et al. (2013) proposed using a Langevin
description, which posits that variations of the ADM with respect
to time are, in their terminology, dictated by ‘diffusion’ or per-
turbation away from an equilibrium state and ‘drift’, or recovery
to equilibrium. Instead of calling these diffusion and drift (which
seem appropriate for water molecules) we will use the terms pertur-
bation and recovery to avoid confusion with the physical effects of
Ohmic diffusion that play an important role in magnetic field decay
in geomagnetism.

To describe this phenomenon Buffett et al. (2013) used the
Langevin equation:

dp

dt
= v(p) +

√
D(p)	(t). (4)

Here v(p) is our recovery term and
√
D(p)	(t) represents the per-

turbation. Fig. 4 illustrates what recovery and perturbation mean in
this context. The recovery term describes how the ADM returns to
equilibrium after being perturbed away, and is assumed to represent

both Ohmic diffusion and deterministic advection influencing the
geodynamo. The dashed line in Fig. 4 is the value of the ADM
when the axially dipolar geomagnetic field is in its most stable en-
ergy configuration. We assume that this equilibrium value is also the
time-averaged ADM, p̄, implying a stationary stochastic process.

As discussed before, fluid turbulence in Earth’s outer core con-
tinuously introduces stochastic behaviour into the evolution of the
ADM, p(t). At any time t, stochastic influences might perturb the
ADM away from equilibrium. This perturbation away from equilib-
rium is highlighted in light brown in Fig. 4. The probability that a
perturbation will occur and the strength of the perturbation at time
t are both described statistically.

After a perturbation occurs, the ADM recovers towards its equi-
librium state, as highlighted in light blue in Fig. 4. We suppose that
this recovery is deterministic and is linked to the magnetic induction
equation that drives the geodynamo. Hence the ADM is constantly
being perturbed away from equilibrium and then trying to recover.

The perturbation term has two parts: 	(t) describes the statistical
distribution of the perturbation at time t, including any temporal
correlations and

√
D(p) is a stochastic function that scales the am-

plitude of the perturbation. In a time-series of p(t), we can measure
the influence of the perturbation term by measuring the standard
deviation of the time-series. It turns out that D(p) has units of vari-
ance, and the square root serves to translate the units into those of
standard deviation.

3.3 Langevin → AR transformations

The AR eq. (3) is a linear differential equation whereas the Langevin
eq. (4) is non-linear with respect to p(t). Many mathematical
methods have been developed to solve linear differential equa-
tions whereas far fewer have been developed to solve non-linear
ones. Fortunately, prior work by Buffett et al. (2013), Bouligand
et al. (2016) and Buffett & Matsui (2015) has demonstrated that
we can assume specific functional forms for v(p), D(p) and 	(t) in
the Langevin equation that transform the Langevin equation into an
autoregressive one, as discussed below.

3.3.1 An AR1 model

First suppose that 	(t) is an uncorrelated (memoryless) process in
time and random in amplitude so it can be equivalently represented
as a white-noise, ζ (t), that is:

	(t) = ζ (t). (5)

To fit the Langevin model to known time-series like those of Fig. 1
for the ADM, we can make the following approximations:

v(p) ≈ − p(t) − p̄

τl
(6)

D( p̄) ≈ Deq (7)

where τ l is the average time it takes for the ADM to recover to
p̄ after a perturbation away and Deq is a constant value for the
amplitude of the perturbation. Eq. (6) states that recovery occurs on
timescale τ l and that the recovery rate v(p) for the ADM recovery is
proportional to the amplitude of the perturbation, p(t) − p̄. Eq. (7)
states that the standard deviation of the ADM across time is roughly
constant.
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20 M. Sadhasivan and C. Constable

Applying these three approximations to the Langevin eq. (4)
yields:

dp′

dt
+ p′(t)

τl
= √

Deqζ (t) (8)

where p′(t) = p(t) − p̄. Eq. (8) describes an AR1 process.

3.3.2 An AR2 model

As discussed earlier, stochastic influences in Earth’s outer core may
be responsible for the perturbation introduced by 	(t). Buffett et al.
(2013) assumed that 	(t) was uncorrelated in time and random
in amplitude. Yet, the physical sources of stochastic information
are unlikely to be well represented as totally uncorrelated noise
in the geodynamo. Bouligand et al. (2016) subsequently made the
approximation that 	(t) is an AR1 process and introduced a new
timescale, τm, that describes how 	(t) maintains memory of its
past:

τm
d	

dt
+ 	(t) = ζ (t), (9)

with some memory from d	

dt and some noisy influence from ζ (t). τm

is the correlation timescale for the stochastic process, 	(t). Another
way to look at it is by thinking of the physical sources of stochastic
information in the geodynamo as having their own equilibrium be-
haviour, and random deviations away from equilibrium. In this line
of thought, τm is the average time it takes the stochastic geodynamo
process, like turbulence, to recover its equilibrium after a pertur-
bation. When we apply the assumptions in eqs (9), (6) and (7), the
Langevin equation becomes:

τm
d2 p′

dt2
+ τm

(
1

τl
+ 1

τm

)
dp′

dt
+ 1

τl
p′(t) = √

Deqζ (t). (10)

Eq. (10) describes an AR2 process.

3.3.3 An AR2 spectrum

Taking the Fourier transform of eq. (10) and using some algebra
produces a theoretical power spectrum for the AR2 process (Buffett
& Matsui 2015):

Sp′ ( f ) = 2Deq

τ 2
m

1

((4π 2 f 2 + 1
τ2
l

)(4π 2 f 2 + 1
τ2
m

)
. (11)

The AR2 model spectrum, included as the longer, light-blue curve
in Fig. 5, is flat at lowest frequencies, then goes like f−2 at mid-
frequencies and finally like f−4 at high frequencies. Morzfeld &
Buffett (2019) implemented a feature-based maximum likelihood
approach to estimate their AR2 model parameters. The correspond-
ing AR2 model spectrum (dashed black line) is plotted against the
composite spectrum in Fig. 5. While it does a good job at low
frequencies, it provides a poor match above 103 Myr−1.

3.4 An AR3 model

In this paper, we additionally consider how to produce a theoretical
spectrum that exhibits the f−6 regime that appears at highest fre-
quencies in Fig. 3. To do this, we introduce a third timescale τ s and
assume that 	(t) is an AR2 process:

τmτs
d2	

dt2
+ τmτs

(
1

τm
+ 1

τs

)
d	

dt
+ 	(t) = ζ (t). (12)

Figure 5. AR1, AR2 and AR3 model spectra that correspond to model
parameters found by the LM algorithm (algorithm results are discussed in
Section 4). The AR1 spectrum transitions from Sp′ ( f ) ∝ 1

f 0 to Sp′ ( f ) ∝ 1
f 2

at frequency fl. The AR2 spectrum has a second transition to Sp′ ( f ) ∝ 1
f 4

at frequency fm. The AR3 spectrum has a third transition to Sp′ ( f ) ∝ 1
f 6 at

fs. The dashed black curve is an AR2 model spectrum that corresponds to
the model parameters for configuration a in table 6 of Morzfeld & Buffett
(2019).

τ s is thus another correlation timescale for 	(t). This suggests that
the stochastic geodynamo processes that govern 	(t) actually have
two, distinct, timescales that influence its recovery to equilibrium
following a perturbation.

Next, we approximate the Langevin model using eqs (12), (6)
and (7). This yields a new, AR3 equation for the temporal evolution
of the ADM with time:

d3 p′

dt3
+

(
1

τl
+ 1

τm
+ 1

τs

)
d2 p′

dt2
+

(
1

τlτm
+ 1

τlτs
+ 1

τmτs

)
dp′

dt

+
(

1

τlτmτs

)
p′(t) =

√
Deq

τmτs
ζ (t). (13)

Finally, we take the Fourier transform (FT) of eq. (13), isolate P̃( f )
which is the FT of p

′
and square its absolute value to produce the

AR3 model spectrum:

Sp′ ( f ) = 2Deq

τ 2
mτ 2

s

1

((4π 2 f 2 + 1
τ2
l

)(4π 2 f 2 + 1
τ2
m

)(4π 2 f 2 + 1
τ2
s

)
(14)

where

Sp′ ( f ) = E
(
|P̃( f )|2

)
(15)

Sp′ ( f ) is the frequency spectrum of the ADM and E is the expecta-
tion operator.

The AR3 model spectrum, included as the darkest curve in Fig. 5,
is flat at lowest frequencies, falls off like f−2 at mid-frequencies,
then goes like f−4 in the middle range of frequencies, and finally as
f−6 at highest frequencies. The AR1, AR2 and AR3 model spectra
are sketched for comparison in Fig. 5. The AR3 model spectrum
steepens at highest frequencies in a way that the AR1 and AR2
models cannot. Note how the model parameters influence the shape
of the power spectrum. In Fig. 5, we see that the transitions between
f−n regimes occur at corner frequencies labelled as {fl, fm, fs}. From
eq. (14) we obtain that our timescale parameters actually determine
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the corner frequencies:

fl = 1

2πτl
fm = 1

2πτm
fs = 1

2πτs
. (16)

So the timescale parameters determine how the shape of the AR3
model spectrum changes as we move from left to right. Meanwhile,
by setting f = 0 in eq. (14) we see that:

Sp′ (0) = Deq 2τ 2
l . (17)

So both {τ l, Deq} determine how much power the AR3 model
spectrum has at f = 0, and thereby the vertical scaling of the entire
spectrum.

4 EST IMATING MODEL PARAMETERS

We now seek an AR3 model that can accurately predict the statistical
behaviour of the geomagnetic ADM as shown by the geomagnetic
composite spectrum of Fig. 3. We look for best fitting values of {τ l,
τm, τ s, Deq} in our model eq. (14) to the composite spectrum.

Since eq. (14) is a non-linear equation with respect to the τ ’s, we
use the Levenberg–Marquardt (LM) algorithm (Levenberg 1944;
Marquardt 1963) for non-linear least squares fitting. We calculate
the uncertainties in our parameter estimates according to (Gavin
2020). To apply the LM algorithm to our problem we rewrite eq. (14)
using the equivalences in eqs (16) and (17), replacing {Deq, τ l, τm,
τ s} with {Sp′ (0), fl , fm, fs}. This yields:

Sp′ ( f ) = S(0) f 2
l f 2

m f 2
s

( f 2 + f 2
l )( f 2 + f 2

m)( f 2 + f 2
s )

. (18)

We apply the LM algorithm to fit the composite spectrum in log
domain, as in Fig. 3, to eq. (18). The results are given in Table 2
and plotted in Fig. 6.

Fig. 6 shows that the AR3 model (dark brown) generally pro-
vides a good fit to the composite spectrum with exceptions at some
frequencies between 102 and 104 Myr−1 where there seems to be
some excess power. We also show the AR2 LM solution obtained by
fitting eq. (11) to the composite spectrum. Fig. 6 shows that the AR2
model (light blue) is a decent fit to the composite spectrum until
f = 105 Myr−1. Here, the AR2 model begins to deviate from the
composite spectrum until it lies an entire order of magnitude above
the composite spectrum at f = 2.5 × 105 Myr−1. The upper/lower
bounds on the AR2 LM solution just barely enclose the composite
spectrum, while the upper/lower bounds on the AR3 LM solution
are more generous and easily enclose the composite spectrum. An
AR3 model describes the composite spectrum better than AR2 at
highest frequencies.

5 CONNECTIONS TO PHYS ICAL
PROCESSES IN THE GEODYNAMO

5.1 Diffusion versus advection

We turn now to the question of relating the τ ’s and Deq uncovered
in Table 2 to physical processes in Earth’s core. The magnetic
induction eq. (2) encapsulates two distinct aspects of changes in the
magnetic field with time, namely diffusive decay and advection of
the field by the fluid flow with velocity v. The latter might produce
either growth or active decay in the dipole moment. At the large
spatial scales represented by the axial dipole, the slowest changes in
the geodynamo (long-term changes in thermal state and boundary
conditions aside) are expected to be from Ohmic diffusion at the

large length scales pertinent to Earth’s outer core. The timescale
for pure, Ohmic diffusion can be estimated by solving the magnetic
diffusion equation that results from setting the flow velocity to zero:

dB

dt
= 1

μ0σ
∇2B. (19)

An infinite number of solutions, Bn(r, θ, φ), exist for eq. (19) (e.g.
Backus et al. 1996). All of them decay exponentially with respect
to time, and the e-folding, decay timescale for the nth mode, τ n, is
given by

τn = μoσr 2
c

(nπ )2
, (20)

where rc = 3 480 km is the approximate distance between the core–
mantle boundary and Earth’s center (Moffatt 1978), μo = 4π ×
10−7 H m–1 is the magnetic permeability in a vacuum and σ is the
electrical conductivity of the outer core. The first decay mode, n =
1, corresponds to the slowest decay timescale.

If the electrical conductivity of the outer core is known, eq. (20)
allows us to estimate the longest timescale associated with magnetic
diffusion. Recent estimates of the electrical conductivity based on
both ab initio calculations and mineral physics laboratory measure-
ments now appear to lie in an interval ranging across [0.5, 1.5] ×
106 S m–1 (Pozzo et al. 2012; Berrada & Secco 2021). Choosing
σ = 0.9 × 106 S m–1 yields τ 1 = 43 800 yr, which is about three
times as long as our estimate for the longest timescale in the AR3
model, τ l = 14 600 ± 1 700 yr. Conversely, setting τ l ≈ τ 1 in
eq. (20) to compute σ produces a value that does not fit within the
range of published values, [0.5, 1.5] × 106 S m–1. If we suppose
that we should have found τ l = 43 800 yr, this would have implied
a first corner frequency at fl ≈ 3.634 Myr−1, a value that is clearly
incompatible with our estimates of the power spectrum. We infer
that τ 1 �= τ l.

5.1.1 Higher Ohmic decay modes

In fact we should not expect that τ l = τ 1. The composite spectrum
describes a geodynamo that incorporates advection in the perturba-
tion and recovery process, while τ 1 is just the e-folding timescale
for the first decay mode of pure, Ohmic diffusion with no advection.

The idea that τ l < τ 1 has precedence. Using their AR2 model,
Buffett & Puranam (2017) found τ l = 13 333 yr while τ 1 ≈ [24 000,
73 000] yr based on the conductivity range σ ≈ [0.5, 1.5] × 106

S m–1. Previous studies using numerical geodynamo simulations at
various Rayleigh numbers have also found that τ l < τ 1 (Buffett
2014; Buffett & Matsui 2015). In the latter, the authors posited that
τ l must have roughly equal contributions from the decay modes τ 1

and τ 2.
We again take σ = 0.9 × 106 S m–1 and use eq. (20) to obtain

the Ohmic decay timescales (τ 1, τ 2 and τ 3) and associated corner
frequencies for the first 3 decay modes in Table 3. The dotted blue
curves in Fig. 7 show what happens to the AR3 model spectrum if
we suppose that τ l can be represented by each of the first 3 Ohmic
decay modes. The long-dashed blue curve is an arbitrary linear com-
bination of the dotted-blue spectra that closely matches the LM fit
to the spectrum. It is essentially equivalent to the LM fit, exhibiting
only slightly damped power near the first corner frequency. Thus,
a linear combination of pure, Ohmic decay modes in action could
provide an acceptable fit to the composite spectrum. However, this
scenario is not physically plausible on its own because the influ-
ence of advection must also be considered in order to regenerate the
dynamo.
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22 M. Sadhasivan and C. Constable

Table 2. Estimates of our AR3 model parameters pertaining to features of the AR3
process in time and frequency domains.

Frequency domain Time domain

Sp′ (0) = 11.23 ± 1.04 (ZAm2)2Myr Deq = 26440 ± 3930 (ZAm2)2

Myr

fl = 10.91 ± 1.27 Myr−1 τ l = 14580 ± 1698 yr
fm = 5.44 ± 3.28 × 103 Myr−1 τm = 29.3 ± 17.6 yr
fs = 8.30 ± 11.86 × 104 Myr−1 τ s = 1.92 ± 2.74 yr

Figure 6. Levenberg–Marquardt (LM) solution produces an AR3 curve
(dark brown) that mostly lies within the uncertainty region of the com-
posite spectrum (light brown). Uncertainties in the LM estimates produce
upper/lower bounds (dotted curves) on the LM solution. Fewer data lead to
larger uncertainty in the LM-solution curve at high frequencies.

Table 3. Corner frequencies
and e-folding timescales for
several Ohmic decay modes.

n τ n (yr) fn (Myr−1)

1 43 800 3.6
2 10 950 14.5
3 4867 32.7

Figure 7. LM-solution (dark brown) and composite spectrum (light brown)
against AR3 model spectra when τ l ≈ τ n is considered for decay modes n
= {1, 2, 3} (dotted-blue). An arbitrary linear combination of 3 decay-mode
spectra (dashed-blue) closely matches the LM-solution (so closely that the
dashed curve is visible only near transition frequency fl). However, this
cannot provide a complete physical representation for the spectrum.

5.1.2 Adding turbulence to the mix

An alternative and more physically plausible explanation for why τ l

< τ 1 makes sense involves both the higher Ohmic decay modes and
fluid turbulence. Davis & Buffett (2021) suggested, based on results
from numerical geodynamo simulations, that turbulence in Earth’s
outer core pumps energy into the dipole field and thus affects the
shape of its power spectrum. Since turbulence occurs on smaller
spatial scales, it likely produces magnetic field structures on spatial
scales that are smaller than the dipole. However, it is expected
that this energy seeps into the dipolar field; therefore, turbulence
also guides energy into the dipolar frequency spectrum. We expect
turbulence to influence the power at the highest frequencies of the
spectrum.

We therefore consider what happens when turbulence is repre-
sented in the AR models by the noisy process, 	(t), which influences
the spectrum at highest frequencies. One might infer that as turbu-
lence pushes energy into the frequency spectrum, we would see
a raised/shallower curve at highest frequencies. Yet the influence
of turbulence on the dipole spectrum seems to depend on the au-
tocorrelation we assume for 	(t). Switching from uncorrelated to
doubly correlated 	(t) introduces f−4 and f−6 regimes and steepens
the spectrum at highest frequencies. We propose two possible ex-
planations for this. First, it is possible that representing turbulence
as an uncorrelated, white-noise process pumps more energy into the
dipole field while representing turbulence as a doubly correlated
process pumps less energy into the dipole field and divests more
energy into multipolar components of the field.

Alternatively, we may consider that 	(t) spreads its influence
across the spectrum even into the lower frequencies, rather than
being concentrated at highest frequencies. When 	(t) is doubly
correlated, the resultant steepening at highest frequencies may not
necessarily imply lessened energy beneath the spectrum: we posit
that switching from uncorrelated to doubly correlated 	(t) actually
moves the energy rooted in turbulence away from the highest fre-
quencies and into the lower frequencies. This concept resembles an
inverse energy cascade that allows the f 0 regime to stay high out to
shorter timescales and pushes fl further to the right than expected
by τ 1 alone. Forward and inverse energy cascades have been shown
to occur in planetary and astrophysical magnetic fields across spa-
tial scales (Olson & Amit 2010; Huguet & Amit 2012), and in
geophysical/astrophysical contexts across frequencies (Arbic et al.
2012, 2014). Energy cascades are of particular interest in magne-
tohydrodynamic turbulence and thus pose a useful mechanism to
investigate geomagnetic field variability.

The concept that high-wavenumber flows like those of turbulence
may drive an inverse energy cascade across frequencies has the
potential to do better than the multimode purely diffusive scenario,
which underestimated power near fl between the dashed-blue and
dark brown curves in Fig. 7. This hypothesis could be investigated
by examining Earth-like numerical MHD simulations to analyse
how high-wavenumber flows influence the frequency spectrum of
the axial dipole field, but such an effort lies beyond the scope of this
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Figure 8. Three, discrete coaxial cylinders of fluid spinning either clockwise
or counter-clockwise, as indicated by dark blue arrows. The cylinders are
parallel to Earth’s axis of rotation, 
E . The fluid columns oscillate back
and forth relative to each other under competing influences of the Lorentz
(magnetic) force and fluid inertia.

work. Nevertheless, a linear combination of the three Ohmic decay
modes combined with advective influence elevating the power level
near fl, could produce the composite spectrum and the LM-fitted
AR3 model. This suggests that Ohmic diffusion and advection in
the geodynamo codrive the recovery of the ADM towards steady
state.

5.2 Torsional oscillations in Earth’s outer core

In our model the advective timescales in the geodynamo are repre-
sented by τm = 29 ± 18 yr and τ s = 1.9 ± 2.7 yr. These are too short
to correspond to overturn time of the outer core and we proposed
earlier that they may be linked to helical eddies in the outer core.
Helical turbulence has been shown to facilitate torsional oscillations
under specific physical constraints (Moffatt & Dormy 2019). As a
full evaluation of fluid turbulence is outside the scope of this paper,
we do not go into the details here. Here, we simply note that the
values of τm = 29 ± 18 yr and τ s = 1.9 ± 2.7 yr may also point
to torsional oscillations. We speculate later in Section 5.4 about the
origin of some longer term features in the composite spectrum.

Braginsky (1970) showed that large-scale, columnar flows in
Earth’s outer core arise when we assume that Lorentz (magnetic),
buoyancy and Coriolis forces equally influence fluid parcels in
Earth’s outer core. This flow structure is realistically a continuum
of coaxial cylinders ranging from the core–mantle boundary to the
inner-core boundary but as an approximation we can think of dis-
crete, coaxial cylinders parallel to Earth’s rotation axis as in Fig. 8.

To understand how torsional oscillations work, imagine an ambi-
ent magnetic field with a component that points cylindrically radi-
ally inward, Bamb, passing through a fluid column rotating counter-
clockwise. The fluid will try to align the field with the flow, pulling
field vectors azimuthally (i.e. frozen flux approximation) away from
its initial, radial state. To counter the changing radial/azimuthal
magnetic fluxes, the Lorentz force induces a current back in the
clockwise direction (i.e. Lenz’s law), causing the fluid column to
slow down. Then, fluid inertia propels the slowing column into the
opposite, clockwise, flow direction. The fluid here pulls field vec-
tors azimuthally again—this time clockwise—and then the Lorentz
force attempts to bring the magnetic flux back to its initial state by
inducing a counter-clockwise current; finally fluid inertia propels
the column into counter-clockwise flow, and the whole thing starts

over. Over time, the fluid columns oscillate back and forth relative
to each other, producing ‘torsional oscillations’.

Observational evidence suggests that torsional oscillations occur
in Earth’s outer core. Several studies have linked subdecadal varia-
tions in the geomagnetic field to torsional oscillations (Buffett et al.
2009; Cox et al. 2016). Gillet et al. (2010) inverted surface mea-
surements of the geomagnetic field to generate core flow models
that hinted at torsional oscillations operating in Earth’s outer core.
Torsional oscillations were also shown in numerical geodynamo
simulations (Wicht & Christensen 2010; Teed et al. 2014, 2015).
Several studies have related torsional oscillations to changes in the
length of day (e.g. Holme & de Viron 2005), that are believed to
occur on a 6-yr timescale.

There are actually many different modes of torsional oscillations,
each with their own frequency and wavelength. The fundamental
mode has period:

τtor = ro
(ρ0μ0

B2
amb

) 1
2 ≈ 25 yr, (21)

where again rc = 3480 km is the outer-core radius, ρ0 =
11 000 kg m−3 is the mean, outer-core density and Bamb = 0.5 mT is
the ‘steady’, background magnetic field (Finlay et al. 2010). How-
ever, the actual value of Bamb pertinent to Earth’s outer core is not
well known. If we assume that Bamb = 2 mT, we would obtain τ tor

≈ 6 yr instead (Gillet et al. 2010).
We can plausibly link the fundamental mode of τ tor ≈ 25 yr to the

value of τm = 29 yr or the length of day signature τ tor ≈ 6 yr to τ s =
1.9 yr. Note that on the logarithmic scale of the composite spectrum,
1.9 and 6 yr will look nearly the same. Without a plausible estimate
for Bamb or smaller uncertainties in our timescale estimates, we
cannot tell if τm or τ s pertain to torsional oscillations with certainty.
However, the distinct timescales in our AR3 model might suggest
the possibility of mode mixing across torsional oscillations as we
discussed earlier for diffusive processes. For now, our stochastic
model tentatively suggests that fluctuations of the ADM away from
equilibrium could be partially due to torsional oscillations in Earth’s
outer core.

5.3 The rate of dipole recovery

The perturbation scale parameter, Deq = 26440 ±
3930 (ZAm2)2 Myr−1, represents D(p) when p(t) is near its
steady-state value. In Section 3.2, we noted that D(p) is propor-
tional to the variance of the ADM. D(p) actually has units of
variance per unit time. The AR3 model variance is given by the
integral of the power spectrum over all frequencies:

σ 2
p′ ≡

∫ ∞

−∞
Sp′ ( f )d f, (22)

which is evaluated from the spectrum of eq. (14) to obtain:

σ 2
p′ = Deq

τ 2
mτ 2

s

(
γsτl + γ1τm + γ2τs

)
(23)

where the γ terms are non-linear combinations of {τ l, τm, τ 2}. We
next solve for Deq assuming that τm and τ s are so small relative to
τ l that their influence is negligible:

Deq ≈ σ 2
p′

τl
. (24)

Taking Deq and τ l from Table 2, we get σp′ = 19.6 ZAm2, which
is similar to the standard deviation of PADM2M (see Fig. 1 and
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Figure 9. A single, 2 Myr (orange) numerical realization of p
′
(t) (a zero-

mean realization of ADM) for the AR3 process. Colors correspond to the
same timescales as for Fig. 1, where PADM2M (Orange), GGF100k (blue)
and CALS10k (red) are plotted. Gray line is the mean of 12 such realizations.

Ziegler et al. 2011,who give σ PADM2M = 15.0 ZAm2). Another view
is provided by simulating realizations of the AR3 process in the time
domain using an Euler discretization procedure in Matlab. Fig. 9
shows a single realization of variations in p

′
(t) over 2 Myr, plot-

ted in the same way as the palaeomagnetic data series of Fig. 1,
although the mean value seen in the real ADMs is not reflected
in the p

′
(t) simulations shown here. The gray curve in the lower-

most panel presents an average across 12 separate realizations, with
each realization spanning 2 Myr and having a time step of 1 yr.
The average standard deviation value across all 12 realizations is
19.8 ZAm2, which is close to the standard deviation predicted by
eq. (24). The broad statistical similarities between Figs 1 and 9 is
what we would expect for a viable stochastic model, noting that the
1 yr sampling interval of our AR3 simulation naturally gives rise to
generally higher frequency variations than can be recovered from
the different and variable resolution palaeomagnetic time-series.

Eq. (24) looks like a rate of some kind. We know that the standard
deviation, σp′ , tells us approximately how much the ADM changes
each time it is perturbed. We also know that the energy stored in
the geomagnetic, axial dipole field is proportional to the squared
ADM (Griffiths 2017). Hence, the variance, σ 2

p′ , provides a measure
of how much the energy in the axial dipole field changes at each
perturbation.

Given that τ l is the timescale for recovery (as in eq. 6), eq. (24)
gives the rate at which the energy in the axial dipole field returns to
steady state after being perturbed away. It seems that the axial dipole
field is at its most stable configuration when p(t) = p̄. Perturbations
pump energy into the axial dipole field, rendering it unstable. The
field recovers its stability at the rate indicated by Deq.

5.4 Slow MC waves in Earth’s outer core

Fig. 6 shows that the composite spectrum has two bumps that deviate
from the AR3 model. These bumps occur at around 400 Myr−1

and 2000 Myr−1, loosely corresponding to timescales of 2500 and
500 yr, respectively. Both of these lie within a theoretical range of
periods for slow MC waves in Earth’s outer core: 100–10 000 yr

(Finlay et al. 2010). The lower value also corresponds to common
approximations for the overturn time of Earth’s outer core.

Slow MC waves arise when the Lorentz (magnetic) and Coriolis
forces dominate the force balance acting on fluid parcels in Earth’s
outer core. Various instabilities can initiate a slow MC wave, in-
cluding convective instabilities that introduce buoyant forces into
the system. Observations suggest that slow MC waves are plausible
in Earth’s outer core. Jackson (2003) pointed out a sequence of al-
ternating, positive and negative flux patches of radial magnetic field
near Earth’s equator. Finlay & Jackson (2003) showed that this wave
train drifts westward with wave period of approximately 270 yr. This
may be explained by a slow MC wave near the CMB that travels and
pulls magnetic field along azimuthally. Bulk, zonal winds near the
equator at the CMB could advect the entire wave westward so that
its speed and frequency appear faster in our observations at Earth’s
surface (Finlay et al. 2010).

Empirical identification of MC waves has already been claimed.
After filtering at periods below 2500 yr and removing the ax-
isymmetric field signal, Nilsson et al. (2020) identified features
in Holocene field models corresponding to westward drift at 1125
and 5000 yr in time longitude and radon drift plots. They link these
periods to westward drift of high-latitude convection rolls (which
form the major contribution to the axial dipole field) and/or mag-
netic Rossby waves.

Our AR3 model does not predict either of the two bumps in Fig. 6,
and thus lacks any physical link to slow MC waves. Accommodating
the two bumps at 2500 and 500 yr would require some differences to
the f−2 power-law regime in that interval of our AR3 spectrum, and
likely need to include explicit links to the non-axial dipole part of
the field as is implicit in the filtering approach used by Nilsson et al.
(2020). Nilsson et al. (2020) also provide observational evidence
to support deviations from a purely AR model that are attributed to
magnetic Rossby waves in the geodynamo. This is the subject of
ongoing investigations.

6 CONCLUS IONS

We have presented time-series and a new composite spectrum that
describe the secular variation of the geomagnetic ADM across
timescales spanning 1 to 106 yr. Good agreement in frequency
ranges where the composite parts overlap provide some confidence
in the underlying structure. A stochastic, AR3 model describes the
temporal variations in the ADM and successfully predicts large-
scale trends of the new, composite spectrum. The power spectrum
is used to estimate fundamental long, medium, and short timescales
describing the secular variation that point to physical processes in
the geodynamo. Based on these estimates, we inferred that torsional
oscillations perturb the ADM away from a steady-state value, after
which Ohmic diffusion and advection codrive energy transfer and
the recovery of the ADM to its steady state. Deviations from our
stochastic model in period ranges around 2500 and 500 yr likely also
contribute to fundamental processes driving changes in the ADM
and suggest additional sources of perturbations that are not well
fit by the AR3 model for the axial dipole alone. We speculate that
these deviations might be considered a fundamental characteristic
of Earth-like dynamos, linked to magnetohydrodynamic waves.
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Pétrélis, F. & Fauve, S., 2010. Mechanisms for magnetic field reversals, Phil.
Trans. A, Math., Phys., Eng. Sci., 368, 1595–605.

Pozzo, M., Davies, C., Gubbins, D. & Alfè, D., 2012. Thermal and electrical
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