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ABSTRACT

We study how Turing pattern formation on a growing domain is affected by discrete domain discontinuities. We use the Lengyel-Epstein
reaction-diffusion model to numerically simulate Turing pattern formation on radially expanding circular domains containing a variety of
obstruction geometries, including obstructions spanning the length of the domain, such as walls and slits, and local obstructions, such as small
blocks. The pattern formation is significantly affected by the obstructions, leading to novel pattern morphologies. We show that obstructions
can induce growth mode switching and disrupt local pattern formation and that these effects depend on the shape and placement of the
objects as well as the domain growth rate. This work provides a customizable framework to perform numerical simulations on different
types of obstructions and other heterogeneous domains, which may guide future numerical and experimental studies. These results may also
provide new insights into biological pattern growth and formation, especially in non-idealized domains containing noise or discontinuities.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0099753

Turing’s mechanism for pattern formation resulting from the
interaction of reaction and diffusion is a key paradigm in the
theory of morphogenesis. Most model studies of Turing pat-
terns have utilized static, uniform domains, but patterns in living
organisms typically develop on growing domains (cells, tissues,
animal skins,...), which may contain regions that inhibit or
prevent pattern formation. Here, in a chemically realistic reac-
tion-diffusion model, we explore the effects of various shapes of
obstacles, such as blocks, walls, and slits, on Turing patterns that
arise on growing domains. We identify how such obstructions can
affect the mode of growth and how that behavior changes with the
growth rate.

I. INTRODUCTION

One of the most fascinating and long-standing open problems
in developmental biology is that of embryonic patterning: How can
an initially homogeneous embryo develop into a complex hetero-
geneous organism with many localized substructures? Or, perhaps
more importantly, how does the embryo do so reliably? Despite the
existence of noise and other inhomogeneities present throughout
all stages of development, embryos and stem cells differentiate into

well-maintained structures in an extremely reproducible manner,
often referred to as morphogenesis.

Over the past century,’ biologists have attempted to under-
stand the phenomenon of morphogenesis. Two major theories
have arisen:’ positional information (sometimes referred to as the
French flag model),'~ where a simple linear gradient of a signaling
molecule leads to distinct concentration-dependent gene expres-
sion regions;""’ and Turing’s reaction-diffusion mechanism, where
patterning can spontaneously arise from the interaction between
two morphogens (usually a self-activator and an inhibitor) via a
diffusion-driven instability.** Both mechanisms have been impli-
cated in a wide variety of biological systems. For example, posi-
tional information has been indicated as an underlying mechanism
of molecular patterning in Drosophila embryos,” chick wing bud
formation,”” and the C. elegans germline."” Meanwhile, a Turing-
type mechanism has been implicated in biological phenomena, such
as fish skin patterning,'~* lung morphogenesis,”” brain folding,'®
and leopard spot formation."’~'” A Turing mechanism has also been
suggested in ecological and behavioral phenomena, such as ant nest
formation,”’~** desertification of arid ecosystems,””** and even the
distribution of criminal activity in cities.””

As more and more systems that undergo morphogenesis are
linked to either positional information or the Turing mechanism,
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researchers have begun studying how other biological phenomena
affect the two models of pattern development. Growth, which is
an essential component of any living system, is of particular inter-
est. Growth has been shown to make the patterning resulting from
both positional information™>° and Turing mechanism*~' sys-
tems more robust to changes in biological or chemical reaction
rates. Growth also significantly influences pattern development and
morphology.>**"#1=%

However, in many of the studies on the interaction of growth
and morphogenetic patterning, growth occurs in an idealized, uni-
form manner, either apically (growth along one central axis)*****
or isotropically (uniform growth in all directions).””"~" Recently,
researchers have begun to investigate heterogeneous growth and
growth with spatial discontinuities. In this regard, the study of posi-
tional informational systems is more advanced than that of the
Turing mechanism. Real biological systems with morphogenesis
linked to positional information have shown fascinating and com-
plex behavior with these types of imperfect growth. For example,
researchers studying Drosophila embryos have shown that spatially
discontinuous gradients of the omb gene can cause a retraction
of cells in the wing imaginal disk, leading to a loss of function.™
In another system, a semi-permeable diffusion barrier can lead to
increased pattern robustness in the gonad of C. elegans.'"”

Most of the research into Turing patterns (spatial patterns
resulting from the Turing mechanism) growing on nonuniform
domains involves either a spatially dependent reaction and/or dif-
fusion parameters’***" or smoothly curved nonuniform domain
boundaries.”"” To the authors’ knowledge, only one previous study
has been done on Turing pattern growth on a strongly nonuniform
domain.” In this study, Crampin et al. showed that nonuniform
growth can lead to multiple new pattern morphologies beyond those
obtained with uniform domain growth. Primarily, they showed that
on a one-dimensional domain, strongly nonuniform growth can
disrupt normal peak-splitting behavior."

In this paper, our objective is twofold: we seek to (a) extend
some of the results of Crampin et al.”’ to a physically meaningful
model on a two-dimensional spatial domain with realistic parame-
ters and (b) examine a variety of novel patterns that are possible with
Turing pattern growth on domains with discontinuities. We use
the Lengyel-Epstein (LE) model, which was developed to describe
the behavior of the chlorine dioxide-iodine-malonic acid (CDIMA)
chemical reaction.”>"> The CDIMA reaction is particularly impor-
tant in the study of Turing patterns, as it was the first experimental
system to conclusively show such patterns—almost 40 years after
Turing first proposed their existence.”"** The LE model has been
shown to accurately depict the Turing patterns found in the CDIMA
reaction in numerous past studies, including pattern resonance
under periodic forcing,”"" multifold pattern wavelength increases,”!
one-dimensional growth,” and, most recently, two-dimensional
uniform radial growth.”>*

In this study, we investigate the formation of Turing patterns
primarily in the presence of three types of obstructions: small blocks
that the Turing pattern grows to envelop, uniform walls, and walls
with a small slit removed. While this work does not reveal all of
the possible behaviors a growing Turing pattern might exhibit in
the presence of obstructions, it does provide a systematic method-
ology that could be used for any obstruction geometry. The results
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of this research will bring the study of pattern growth via a Turing
mechanism toward the level of understanding we have of grow-
ing positional information patterns on nonuniform domains. This
research may also provide insights into how discrete spatial obstruc-
tions can affect Turing patterns in systems where a Turing-type
mechanism has been implicated, such as arid ecosystem desertifi-
cation or the morphogenesis of the lung.

Il. MODEL

We utilize the Lengyel-Epstein two-variable model,” which is
given by Egs. (1) and (2):

du 4uv e )
— =a—u— u,
T 1+ u?
av b uv 4V @
— =0 u— vi,
T 1+ u?

where u and v are variables corresponding to the concentrations of
the activator (I” in the CDIMA reaction) and inhibitor (ClO; in the
CDIMA reaction), respectively. 7 is time, and a4 and b are parame-
ters associated with initial concentrations and rate constants. d is the
diffusion ratio of the inhibitor to the activator, and o is a parameter
associated with the immobilization of the activator in the gel, which
contributes to the effective difference in diffusion rates. Parameter
values used in our simulations are a = 12, 0 =50, and d =1. A
range of b values from 0.29 to 0.35 was used to generate a vari-
ety of pattern morphologies. Higher b favors the formation of spots
over stripes. b = 0.31 is used, unless otherwise stated, in most of our
simulations. All variables and parameters are dimensionless.

1. METHODS

Equations (1) and (2) were solved numerically using a finite ele-
ment method (FEM) geometry and a backward differentiation for-
mula (BDF) time-dependent solver implemented in COMSOL Mul-
tiphysics version 5.5. The schemes for the simulations are depicted
in Fig. 2. The obstruction boundary and the exterior of the pat-
terning region are defined by Neumann zero-flux boundaries. The
growth is conducted on a circular domain. In the growth simula-
tions, the radius of the pattern-forming domain increases such that
the entire zero-flux boundary moves outward. The initial conditions
of model variables are set to v(x,y) =4 and u(x,y) =2 +/— rnd(x,y),
where rnd(x,y) is a uniformly distributed random number between
0 and 1. When the radius of the domain is increased, the variables u
and v start with zero values in the expanding domain. No chemical
species are present inside the boundary of the obstructions.

The control simulations (Fig. 1) consist of three sets: First
[Fig. 1(a)], we perform simulations with no growth and no obstruc-
tions. In these simulations, the domain is set to the final size and
allowed to form an unforced Turing pattern for 1000 time units (t.u.)
beginning from the aforementioned uniformly distributed random
conditions. The second control set [Fig. 1(b)] consists of growing
Turing patterns with no obstructions. The initial domain size is
very small (radius 0.1 dimensionless space units, s.u.), far less than
the pattern wavelength, which is approximately 7 s.u. The radius
of the domain is then increased by 0.5 s.u. and simulated for the
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(a) No growth and no obstructions.
- .
(b) Growth without obstructions.

(c) Obstructions without growth.

-

W

\

FIG. 1. Schemes for control simulations. Bold black lines designate fixed bound-
aries; the red line designates a moving boundary. All boundaries are zero-flux.
The shaded gray areas indicate regions, where u and v are nonzero and Turing
patterns form. In the white areas, no Turing patterns form and no FEM mesh is
applied. (a) Turing pattern (TP) formation without growth and without obstruc-
tions. The pattern-forming area remains fixed, and Turing patterns are allowed to
develop for 1000 t.u. (b) Turing pattern formation on a growing domain without
obstructions. The domain starts at a very small initial width or radius (0.1 s.u.)
and then grows at varying growth rates (g.r.) to a maximum radius of 100 s.u. (c)
Turing pattern formation with obstructions but without growth. The Turing patterns
are allowed to form for 1000 t.u., while the domain is at the maximum radius with
the obstructions present.

appropriate amount of time with this size to achieve a desired
growth rate. These simulations are analogous to previous work on
Turing pattern formation in growing systems.”*” The last set of
control simulations [Fig. 1(c)] is the formation of Turing patterns

ARTICLE scitation.org/journal/cha

with obstructions but without growth. The Turing pattern-forming
domain is set to the maximum size (with the obstructions present)
and allowed to form a Turing pattern for 1000 t.u. without growth.

For simulations with obstructions and growth (Figs. 3-6), the
obstructions are placed to the right of the origin or arrayed around
the center in the case of circular obstructions. The time-dependent
solver simulates the Turing pattern at a small fixed size for a selected
period of time that we call time step. Then, the system radius
is increased by 0.5 s.u., after which the simulations continue for
another time step. The growth rate of the pattern is the space step,
which is always 0.5 s.u., divided by the time step. The growth con-
tinues until the radius has reached the final size of 100 s.u. The finite
element mesh is reconstructed each time the system grows in size.
The shape of the obstructions is “subtracted” from the geometry
when the mesh is constructed so that the shape of the domain where
patterns form is a circle with the obstruction “cut” from it; see Fig. 2.

We note that this approach differs from the model for growth
we have utilized in our previous work,” where there were two
domains, an illuminated domain where the Turing patterns are sup-
pressed, and a dark domain where Turing patterns form. While the
two-domain model is closer to the experimental system, the effect of
the dark/light domain boundary has an obscuring effect on pattern
orientation and growth modes. We have demonstrated previously
that the one-domain scheme employed here shows similar pattern
trends without obscuring boundary effects.”

IV. RESULTS
A. Obstructions in a system with a fast growth rate

In the radial system with no obstruction and a fast growth rate
of 1.0 s.u./t.u. (space units per time units), a Turing pattern forms
in the shape of concentric rings parallel to the growing bound-
ary (Fig. 3, leftmost image). This growth mode is called outer ring
addition (ORA).”

Our simulations show that the symmetry of the ORA mecha-
nism is broken when the growing system encounters an obstruction.
The block-type obstruction simulations produce localized effects
on the TP formation (Fig. 3). The obstruction has a “wake” that
increases in size, causing pattern disruptions that quickly propa-
gate outward as the system grows. The closer the block obstruction
is to the system center, the stronger is the pattern disruption. The
outer ring addition stripe pattern breaks down after the obstruction
interferes with the pattern growth and is replaced by perpendicular
stripes or a mixture of perpendicular stripes and spots behind the
obstruction.

With the wall-type obstruction, one might anticipate little or
no interaction between the regions on either side of the wall. How-
ever, when the wall is located near the system center, the obstruction
has a strong effect on the pattern formation. The stripes immedi-
ately before of the wall are parallel to the wall obstruction, while
on the other side, behind the wall, there is perpendicular pattern
growth (bottom “wall” image in Fig. 3). When the wall obstruc-
tion is more than about five wavelengths from the pattern center,
the ORA growth mode before the wall is practically unaffected by
the presence of the wall. The pattern behind the wall is always per-
pendicular to the direction of growth; i.e., the stripes are directed
radially, regardless of the location of the wall.
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Single slit Circular wall Circular slits

)(H©)

FIG. 2. Schemes for growing Turing patterns with domain obstructions. The leftmost scheme depicts the growth of the Turing patterns before the pattern encounters an
obstruction. The red boundary represents a moving non-zero flux boundary. The schemes to the right of the large arrow display the final system geometry with the utilized
obstruction. The block obstruction consists of a single 10 x 10 s.u. square in the vertical center of the domain, offset from the system center by 10, 20, 30, or 60 s.u. The
wall-type obstruction is a 10 s.u. thick vertical slice stretching across the entire domain. The single-slit obstruction is identical to the wall obstruction, except an additional
10 x 10 s.u. square is removed from the vertical center of the obstruction, forming a slit through which Turing patterns can form. The circular wall obstruction consists of a
5 s.u. thick circular wall. The circular slits are the same as the circular walls, but with four 10 s.u. wide gaps formed in the wall at intervals of 90°. Note that the geometries

are not shown to scale.

Results for the system with a single small slit in the wall obstruc-
tion are similar to those observed with full wall obstructions. The slit
enables interaction between the two domains, but the wall obstruc-
tion dominates, and the pattern behind and in front of the slit
obstruction is nearly unaffected by the slit opening in the wall.

The circular wall obstruction produces interesting patterns.
When the radius of the wall is smaller than two pattern wave-
lengths, the ORA growth mode is preserved inside and outside the
obstruction. At wall radii above two wavelengths, the ORA mode
persists only inside the obstruction, while on the outside, perpen-
dicular stripes form. Similar results are obtained for the circular wall
obstruction with four slits (last column in Fig. 3).

B. Obstructions in a system with an intermediate
growth rate

At the intermediate growth rate of 0.5 s.u./t.u., the growth
mode begins to switch from ORA to perpendicular pattern growth
(PPG).” After an initial period of ORA growth, stripes start to form

Single Circular Circular

Block Wall slit wall slits
v

No
obstruction

Obstruction distance from the center (s.u.)

FIG. 3. Turing patterns with a fast growth rate of 1.0 s.u./t.u. and obstructions
placed at different distances from the system center. Images show a pattern when
the system reaches its maximum radius of 100 s.u.

at the growth boundary and expand outward, orthogonal to the
growing circle. This transition can be seen in the animations in the
supplementary material.

Once the concentric ring TP has given way to these orthogonal
stripes, the small block obstacle does not appear to have a significant
impact on the resulting pattern, as shown in Fig. 4. The stripes grow
around the obstacle and continue the PPG mode. However, if the
obstruction is within the ORA initial growth regime, such as 10 s.u.
from the center (Fig. 4, bottom left), the ring symmetry is broken
and the growth mode immediately switches to PPG.

The wall and single-slit obstructions also do not significantly
change the PPG mode. Once the patterns begin to form perpendic-
ular to the growing boundary, the wall obstacle simply blocks the
patterns from growing further, and PPG continues on the other side
of the obstruction, as with the faster growth rate.

The radially oriented obstructions similarly do not strongly
change the pattern growth. For the ring obstructions with medium
radii, ring TPs form in their center and perpendicular stripes form

Circular
slits

Nl

Single Circular

No
obstruction

Obstruction distance from the center (s.u.)

FIG. 4. Turing patterns at an intermediate growth rate of 0.5 s.u./t.u. and obstruc-
tions placed at different distances from the system center. Images show a pattern
when the system reaches its maximum radius of 100 s.u.
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No
obstruction

Obstruction distance from the center (s.u.)

FIG. 5. Turing patterns at a slow growth rate of 0.1 s.u./t.u. and obstructions
placed at different distances from the system center. Inages show pattern when
the system reaches its maximum radius of 100 s.u.

beyond them. When the ring is too small to allow for more than one
pattern wavelength to form, rings form around the obstruction, as
shown in the bottom right of Fig. 4.

C. Obstructions in a system with a slow growth rate

For extremely slow growth rates, TP grow first by expanding as
the domain grows, with new wavelengths emerging in the center of
the domain. We have termed this phenomenon inner ring growth
(IRG). Although the resulting concentric rings appear similar to
those from the ORA growth mode, they emerge in a very different

V obstacle 90°

Tipat10s.u.
from center

Inverted V. 90° Wall 5x 70
Tip at40 s.u. 30s.u
from center off center

V obstacle 90°

Tipat40s.u
from center

Growth rate (s.u./t.u.)

FIG. 6. Turing patterns at high, intermediate, and low growth rates with V-shaped
and perpendicular line-shaped obstructions. The thickness of obstructions is 10
s.u. Each arm of the V-shaped obstruction is 50 s.u. long, and the line-shaped
obstruction is 70 s.u. long. Images show a pattern when the system reaches its
maximum radius, 100 s.u.

scitation.org/journal/cha

manner. This can be seen in the animation in the supplementary
material. As shown in Fig. 5, once the domain grows past a cer-
tain radius, the concentric rings break into perpendicular stripes and
grow via the PPG mode.

Generally, obstructions have a greater impact on the patterns
that form via IRG. When the blocks are close to the center, once
the domain reaches the center, the TP ring symmetry is immedi-
ately split. However, as the growth is occurring more slowly than
the relevant chemistry, the pattern has sufficient time to completely
re-form, removing any trace of the original ring symmetry. This is
shown for obstructions 10 or 20 s.u. from the origin of the growing
domain in Fig. 5.

The wall, single-slit, circular-wall, and circular-slit obstructions
behave much as they do with the intermediate growth rates. In gen-
eral, if the obstruction (regardless of the orientation) is sufficiently
close to impact the patterns formed through IRG, any vestige of the
ring symmetry will be eliminated as the pattern is given sufficient
time to reorient during the slow growth. When the growing domain
becomes large enough to naturally break down into perpendicular
patterns, the obstructions cause the patterns to behave as for faster
growth rates (Figs. 3 and 4).

D. Other obstructions

Obstructions with different geometries were also studied to
determine the impact of the obstruction’s geometry and its loca-
tion relative to the origin of the growing domain. As shown in the
first two columns of Fig. 6, regardless of the domain growth rate,
the closer the obstacle is to the origin of the growing domain, the
greater its impact on the TP morphology. When the tip of the V
obstacle is 10 s.u. from the center of the domain, no concentric rings
can form. When the tip is 40 s.u. from the center of the domain,
for fast and intermediate growth rates, concentric ring TPs form
until the domain grows into the obstacle, where the rings abruptly
break apart. For the slow growth rate, the concentric rings from
the IRG growth mode naturally rupture prior to interacting with
the obstruction. For the inverted V obstacle (3rd column of Fig. 6),
the concentric rings fracture as soon as the system intersects with
the obstruction, which in Fig. 6, column 3, is about 20 s.u. from the
origin.

The geometry of the obstruction has a smaller effect on the TP
morphology. However, for slow growth rates (such as 0.1 s.u./t.u.
in Fig. 6), this effect is non-negligible. For the perpendicular line
obstruction, the TP forms near the obstruction as stripes parallel
to the wall. This also occurs somewhat for the V obstacles. When
the TP emerges on the other side of the obstruction, such as for the
inverted V, patterns form orthogonal to the obstruction boundary.
For faster growth rates, the patterns do not adjust as markedly to the
obstruction boundary.

V. DISCUSSION AND CONCLUSION

Our results indicate that the formation of Turing patterns is
strongly influenced by the presence of obstructions. Growth is nec-
essary for the effect of the obstructions. Obstructions placed on
domains where Turing patterns are formed without growth show
little interaction between the pattern and the obstruction; see Fig. 7.
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FIG. 7. Results for control simulations with obstructions, but no growth. Obstructions are placed within the domain, and Turing patterns are allowed to form around them.

Our simulations of radial growth highlight that the effect is
strongly geometry-dependent, with both the location of the obsta-
cle relative to the origin of the growing domain and the shape of
the obstacle playing major roles. For TP arising via the ORA and
IRG modes, once the concentric ring patterns encounter an obstruc-
tion, the rings’ symmetry breaks immediately. For intermediate and
slower growth, the patterning over the entire domain then switches
to the PPG mode. Partial ring symmetry (for example, TP shown in
Fig. 3) is only maintained for fast growth rates. These results indicate
that discrete obstructions in the domain favor the PPG mode over
a much wider region in parameter space (the parameter space on
uniform domains is given in Ref. 35). Future research might explore
whether other types of domain nonuniformities (such as morphogen
gradients™’) would similarly impact Turing pattern formation on
growing domains to favor the PPG mode.

When the growing domain beyond the obstruction has a con-
nection to the initial domain through a slit, there is an increased
propensity for the Turing pattern observed to match that before
the obstruction near the slit or for an entirely different pattern to
be observed close to the obstruction due to the pattern interac-
tions. For the narrow slits shown in Figs. 3-5, the patterns closely
resemble those found with a wall obstacle at the same distance from
the center, particularly when the slit obstacle is placed far from
the center (30 or 60 s.u.). When the obstacle is located 20 s.u. or
less from the center, a small local disturbance in the pattern may
be seen immediately in front of the slit. We explore the effect of
widening the slit at slow growth rates and show in Fig. 4 of the
supplementary material that slit widths above about five pattern
wavelengths produce more significant changes in the direction of
the post-slit stripes.

We also tested how the space/time steps used to generate
the moving boundaries affect the pattern formation in the grow-
ing systems with obstacles. We observed that for a space step of
0.5 s.u. or smaller, the results are independent of the selected step

for the growth rates investigated. However, when the time step is
fixed at 10 t.u. and the radius of the domain is increased by the
appropriate space step to yvield a selected growth rate, at some
growth rates, the pattern depends on the space step. At higher
growth rates, the space step becomes comparable to the pattern
wavelength, and the pattern tends to preserve its symmetry even
after an encounter with an obstruction. However, when the space
step is kept small (0.5 s.u. and smaller) by reducing the time step,
the presence of obstructions breaks the pattern symmetry, as shown
in Fig. 8.

Importantly, the effects of the obstructions are for the most
part limited to the portion of the pattern that forms after the mov-
ing boundary contacts the obstruction. As expected, Turing patterns
already formed behind the obstruction do not shift noticeably to
accommodate the obstruction since Turing patterns are temporally
stable. Conversely, patterns that form close to or behind the obstruc-
tion are strongly influenced by its presence. This observation is
consistent with the results of Crampin et al., which show that in
the case of a one-dimensional domain, defects in the peak-splitting
behavior of a growing Turing system only occur near the edge of the
growing boundary.”

The results presented in this work demonstrate that the forma-
tion of biologically relevant Turing patterns is strongly influenced
by the combination of growth and domain shape. In the absence
of growth (Fig. 7), we observe randomly oriented patterns. The
presence of obstructions in a growing domain (Figs. 3-6) has a
significant effect on pattern orientation. The obstructions have the
highest propensity to induce growth mode changes at intermedi-
ate growth rates. Since intermediate growth rates are where changes
in patterning modalities are observed without obstructions, this
indicates that domain obstructions cause shifts in observed pattern
morphologies.

Since growth in biological systems rarely occurs on fully
homogeneous domains, this work may provide new insights into
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FIG. 8. Effect of the step size on growing Turing patterns.

morphogenesis. Future work on this topic may investigate the
behavior of additional types of obstructions, obstacles, or domains
with preexisting morphogen gradients, as well as construct sys-
tems to test the effect of obstructions on Turing pattern growth
experimentally. One could attempt to do this using the chlorine
dioxide-iodine—malonic acid (CDIMA) reaction in an unstirred
system, as in our previous study on a homogeneous domain.” Using
light to control the growth will allow for control over the growing
domain. However, significant care would have to be taken to ensure
reproducibility with regard to obstacle placement and distance from
the origin of the growing domain. Other promising directions for
further research include exploring the effects of multiple obstacles
and probing the effects of obstacles on Turing patterns in three
dimensions. Earlier research by Bansagi et al. unveiled a wide range
of experimentally verifiable three-dimensional Turing patterns, yet
little work has been done to analyze their robustness or how they are
affected by obstructions in the patterning region.” Simulations of
this and other patterning systems may lead to new insights into the
behaviors of Turing patterning systems on nonuniform domains.

SUPPLEMENTARY MATERIAL

See the supplementary material that contains parameter sweeps
of wider ranges of b values utilizing the obstructions described in
this work, as well as additional obstacle types. It also contains a fine
sweep of the geometry of the single-slit type obstacle. Additionally,
selected animations of Turing pattern growth and the finite element
mesh are provided.
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