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1 | INTRODUCTION

UEYAMA ET AL.

Abstract

Wetlands are the largest natural source of methane (CH,) to the atmosphere. The
eddy covariance method provides robust measurements of net ecosystem exchange
of CH,, but interpreting its spatiotemporal variations is challenging due to the co-
occurrence of CH, production, oxidation, and transport dynamics. Here, we estimate
these three processes using a data-model fusion approach across 25 wetlands in tem-
perate, boreal, and Arctic regions. Our data-constrained model—iPEACE—reasonably
reproduced CH, emissions at 19 of the 25 sites with normalized root mean square
error of 0.59, correlation coefficient of 0.82, and normalized standard deviation of
0.87. Among the three processes, CH, production appeared to be the most impor-
tant process, followed by oxidation in explaining inter-site variations in CH, emissions.
Based on a sensitivity analysis, CH, emissions were generally more sensitive to de-
creased water table than to increased gross primary productivity or soil temperature.
For periods with leaf area index (LAI) of 220% of its annual peak, plant-mediated trans-
port appeared to be the major pathway for CH, transport. Contributions from ebul-
lition and diffusion were relatively high during low LAI (<20%) periods. The lag time
between CH, production and CH, emissions tended to be short in fen sites (3 + 2 days)
and long in bog sites (13 + 10 days). Based on a principal component analysis, we found
that parameters for CH, production, plant-mediated transport, and diffusion through
water explained 77% of the variance in the parameters across the 19 sites, highlight-
ing the importance of these parameters for predicting wetland CH, emissions across
biomes. These processes and associated parameters for CH, emissions among and
within the wetlands provide useful insights for interpreting observed net CH, fluxes,

estimating sensitivities to biophysical variables, and modeling global CH,, fluxes.

KEYWORDS
Bayesian optimization, data-model fusion, Eddy covariance, methane emissions, methane
model, multi-site synthesis

Wetlands are the largest natural source of methane (CH,)—a po-
tent greenhouse gas contributing to climate warming. Methane
emissions from wetlands contribute approximately 20% of total
annual CH, emissions (Saunois et al., 2020). Despite their im-
portance, estimates of wetland CH, emissions are highly un-
certain (Bohn et al., 2015; Melton et al., 2013) because direct

measurements of CH, emissions (Delwiche et al., 2021) are
far fewer than those of carbon dioxide (CO,) fluxes (Pastorello
etal., 2020). In particular, the variability in CH, emissions appears
high across spatial and temporal scales (Delwiche et al., 2021;
Knox et al., 2019). As a result of the associated uncertainties,
current estimates of the global CH, budget contain large discrep-
ancies between top-down and bottom-up approaches (Jackson
et al., 2020; Saunois et al., 2020).
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Methane emissions from wetlands also exhibit a wide range of
magnitudes and responses to biophysical variables. Because CH,, is
primarily produced by anaerobic methanogens and oxidized by aero-
bic bacteria (Bridgham et al., 2013; Conrad, 2009), water table depth
(WTD) has been identified as an important thermodynamic bound-
ary and thus potential predictor of wetland CH, emissions (Brown
et al., 2014; Moore & Roulet, 1993; Rinne et al., 2018). Methanogens
produce CH, using substrates both from carbon recently fixed
through photosynthesis (Whiting & Chanton, 1993) and previously
fixed carbon (Glaser et al., 2004; Karofeld & Ténisson, 2014). Thus,
CH, emissions are often correlated with plant primary produc-
tion and/or soil respiration (Turetsky et al., 2014; Villa et al., 2020;
Whiting & Chanton, 1993). Because temperature affects CH, pro-
duction kinetics, soil temperature is typically correlated with CH,
emissions (Knox et al., 2019; Yvon-Durocher et al., 2014), albeit
substantial seasonal hysteresis was reported to occur in many sites,
likely due to substrate-temperature driver interactions (Chang
et al., 2020, 2021). In addition to production and oxidation, trans-
port pathways are also crucial in modeling CH, emissions. Because
CH, in soils is transported through plant aerenchyma, ebullition bub-
bles through standing water, and/or diffusion, CH, emissions were
shown to be often correlated with leaf area index (LAI), latent heat
flux, and/or barometric pressure (PA) (Kwon et al., 2017; Sturtevant
et al., 2016; Tokida et al., 2005; Ueyama, Hirano, & Kominami, 2020;
Ueyama, Yazaki, et al., 2020).

To better understand wetland CH, emissions, the eddy covari-
ance (EC) method has been widely used at various wetlands along
with measurements of other ancillary covariates such as WTD
and soil temperature (Delwiche et al., 2021; Knox et al., 2019;
Morin, 2018). The EC method provides quasi-continuous mea-
surements of CH,, CO,, and energy exchanges between the land
surface and the atmosphere (Baldocchi, 2014). The direct mea-
surements have been used to evaluate magnitudes of CH, emis-
sions, their interannual variations, and their responses to various
biophysical variables (Chang et al., 2021; Chu et al., 2014; Knox
et al., 2019; Rinne et al., 2018; Yuan et al., 2022). Previous stud-
ies have identified biophysical variables such as soil and air tem-
perature and WTD as the primary drivers for the temporal and
spatial variations in CH, emissions (Knox et al., 2019; Turetsky
etal., 2014; Yuan et al., 2022), but their importance varies substan-
tially among wetlands and across time scales (Knox et al., 2021;
Koebsch et al., 2015). Furthermore, complex interactions hinder
the use of simple correlation analyses for disentangling responses
of CH, emissions to biophysical variables, leading to large uncer-
tainties when interpreting observations (Chang et al., 2020; Knox
et al., 2021; Sturtevant et al., 2016). Recently, the FLUXNET-CH,
database was curated for supporting synthesis of wetland CH,
emissions using the EC methods (Delwiche et al., 2021; Knox
et al., 2019) and, for example, was used to evaluate inter-site vari-
ations in CH, emissions (Chang et al., 2021; Knox et al., 2021; Yuan
et al., 2022).

To improve the mechanistic understanding and accurate mod-
eling of CH, emissions, the relative contributions of CH, emission
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pathways have been measured or estimated with various field
measurements (Table 1). These measurements include chamber
techniques (Korrensalo et al., 2022; Tokida, Miyazaki, et al., 2007;
Tokida, Mizoguchi, et al., 2007), bubble traps (Stanley et al., 2019),
isotope techniques (Dorodnikov et al., 2011), and dissolved CH, con-
centrations in pore water (McNicol et al., 2017). Recently, a wavelet
analysis of EC measurements examined the contribution of ebulli-
tion to total CH, emissions (Gockede et al., 2019; lwata et al., 2018;
Hwang et al., 2020; Richardson et al., 2022; Schaller et al., 2019).
These analyses revealed that plant-mediated transport was the most
important pathway for wetland CH, emissions (up to 98% of the
total emissions), but the other two pathways were also important
under environmental conditions such as flooded wetlands with-
out emergent vegetation and shallow ponds. Many process-based
models (Table 1) have also shown that CH, emissions occur mostly
through plant-mediated transport (Castro-Morales et al., 2018;
Ma et al., 2017; Peltola et al., 2018; Susiluoto et al., 2018; Wania
et al., 2010), although one model found ebullition was the dominant
pathway (Ito, 2019). Although previous studies conducted across rel-
atively few wetland sites are useful for understanding CH,, transport
pathways, comparisons of transport mechanisms across multiple
wetlands remain challenging. The challenge lies in uncertainties in
measurement techniques, spatial representation of measured pro-
cesses in the field, and different model structures in process-based
models.

Data-model fusion approaches have recently been used for eval-
uating wetland CH, emissions (Ma et al., 2017; Midiller et al., 2015;
Salmon et al., 2022; Susiluoto et al., 2018; Ueyama et al., 2022).
These methods use observed data for constraining process-based
models that are often difficult to calibrate, and can be used to eval-
uate processes of CH, emissions and their sensitivity to biophysi-
cal drivers. To reduce the uncertainties in a process-based model,
Miller et al. (2015) used observed data for constraining a model
for CH, dynamics and found that detailed process-based models
were not well constrained owing to the complexity of the model.
Susiluoto et al. (2018) calibrated a detailed model using 9years of
EC-based CH, flux data in a northern fen. Their results suggested
that CH, production was the most important factor responsible for
the interannual variations in CH, emissions, whereas plant-mediated
transport was the most important CH, transport pathway. Data-
model fusion approaches to study CH, emissions have been applied
only for a limited number of individual sites; thus, their applicability
should be evaluated across wide arrays of wetland sites and biomes.

Recently, Ueyama et al. (2022) developed a process-based model
(i.e., inferring Processes for Ecosystem-Atmosphere CH, Exchange—
iPEACE) for partitioning CH, emissions using a data-model fusion
approach for a cool temperate bog in Japan. Their approach con-
strained the model using CH, emissions and associated biophysical
variables from the EC tower with the goal to determine a parameter
set for reproducing daily CH, emissions under various environmen-
tal conditions. These conditions included growing and dormant sea-
sons, wet and dry conditions, high and low LAI, and various ranges
of gross primary production (GPP), soil temperature, and PA. The
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model reasonably identified processes that were qualitatively con-
sistent with previous field experiments to shed light on processes in
the bog. Findings include: (1) ebullition and plant-mediated transport
as the important CH,, transport pathways, (2) high contributions of
the deep organic layer (i.e., <30cm) to total CH, emissions due to
very low CH, concentrations in the surface organic layer (Tokida,
Miyazaki, et al., 2007), and (3) gaseous-bubble accumulation in deep
organic layer (Tokida et al., 2005; Tokida, Miyazaki, et al., 2007,
Tokida, Mizoguchi, et al., 2007). A chamber-based study further
suggested that contributions of bubble transport to total CH, emis-
sions ranged from 67%-95% during the snow-free season in the bog
(Tokida et al., 2005; Tokida, Miyazaki, et al., 2007; Tokida, Mizoguchi,
et al., 2007), which was close to the iPEACE model estimates (64%).

Here, we modified iPEACE to simulate CH, fluxes and infer
processes related to CH, emissions (i.e., production, oxidation, and
transport pathways) from 25 wetlands across mid- to high-latitudes
included in the FLUXNET-CH, database. Applying the data-model
fusion method (Ueyama et al., 2022) across these wetland sites
spanning temperate, boreal, and Arctic regions, our objectives were
to: (1) evaluate the model's suitability for simulating CH, emissions
across wetland types, (2) quantify inter-site variations in estimated
processes related to CH, emissions, (3) evaluate the sensitivities of
CH,, emissions to GPP, soil temperature, and WTD, and (4) examine
inter-site variations in parameters for improved predictions of wet-

land CH, emissions.

2 | MATERIALS AND METHODS
2.1 | Dataset and model inputs

We used daily EC CH,, flux data archived in the FLUXNET-CH, da-
tabase (Delwiche et al., 2021). We selected all mid- to high-latitude
freshwater wetland sites from the database (Table 2) that contained
all relevant forcing variables (i.e., soil and air temperature, WTD, PA,
and GPP). The selected 25 sites represent wetland types of bog (om-
brotrophic), fen (minerotrophic), marsh, wet tundra, and rice paddy
in temperate, boreal, and Arctic regions. The mean annual air tem-
perature ranged from -5°C to 17°C across the sites, and minimum
WTD ranged from -0.62 to 0.68m.

We used daily gap-filled CH, fluxes and the ancillary biophysical
variables at the tower sites. The daily mean values of the gap-filled
half-hourly variables were provided in the FLUXNET-CH, data-
base (Delwiche et al., 2021). We used two types of daily CH,, fluxes
(i.e., FCH4_F and FCH4_F_ANN_median) in the database. FCH4_F
was gap-filled using a multidimensional scaling (MDS) approach in
REddyProc (Delwiche et al., 2021), but still contained periods of time
with long data gaps (<2months). FCH4_F_ANN_median was gap-
filled based on an artificial neural network method, which fills all data
gaps (Knox et al., 2019). As input drivers from the FLUXNET-CH,
database, daytime-based GPP (GPP_DT) in the database (Lasslop
et al., 2010), air temperature (TA_F), barometric pressure (PA_F), soil
temperature (TS), and WTD (WTD_F) were used. The gaps in the

meteorology (i.e., TA_F, and PA_F) were filled using the ERA-Interim
reanalysis data (Vuichard & Papale, 2015), whereas those of WTD
and soil temperatures were filled using the MDS method. We used
soil temperature at two depths for representing the surface and
deep layers in the model. For sites affected by permafrost (RU-Ch2,
US-lcs, and US-Uaf), we assumed that the deepest soil temperature
measurement was representative of the bottom of the active layer.
Data for RU-Ch2, US-Ics, US-Bzf, and US-Bzb sites did not include
WTD data in the FLUXNET-CH, database, but WTD data were di-
rectly provided from principal investigators. Since WTD for RU-Ch2
was based on discrete manual measurements, we linearly interpo-
lated the data to the daily timescale.

We prepared daily LAl as a model input based on satellite-based
LAl smoothed using GPP. First, the four-day LAl data (MCD15A3H;
collection 6) was downloaded from MODIS land products subsets.
The spatial resolution of the product is 500m. We used a single grid
cell of data centered on the site location. The LAl data were first
set to zero for the snow periods, and were then smoothed using a
Savitzky-Golay filter (Chen et al., 2004). The snow conditions were
determined based on the MODIS reflectance products (MCD43A4;
collection 6) from the MODIS land products subsets. Because
smoothed LAI often failed to explain seasonal peaks when peak LAI
was missing, daily LAl was then modeled using the smoothed LAI
and daily GPP normalized with a maximum GPP (nGPP). LAl at day (i)
was modeled with a non-centered moving mean of the normalized

GPP multiplying a scale factor,

1

LAl =L, z nGPP; /(D + 1). (1)
j=i-D

Two empirical parameters of the scale factor for explaining maximum
LAI (L)) and moving window for explaining a lag between GPP and LAl
(D) were the parameters determined based on a differential evolution
method. Since there was no clear relationship between LAl and GPP
for NZ-Kop, LAI for NZ-Kop was estimated simply based on 10-day
moving mean of the satellite-based LAI. The smoothed LAI well mim-
icked the satellite-derived LAI, where mean and standard deviation of
root mean square error (RMSE) and correlation coefficient (R) were
0.46+0.24 and 0.84 +0.11, respectively, across the sites.

2.2 | TheiPEACE model

Partitioning CH, emissions from the EC measurements was con-
ducted by the optimization of a process-based model with the data.
We used the iPEACE model (Ueyama et al., 2022), which was origi-
nally proposed to infer CH, dynamics at a temperate bog in Japan,
but has been generalized for the current analysis (Figure 1).

The iPEACE model consists of two soil layers, a surface layer
susceptible to oxic conditions and a deep layer prone to anoxic con-
ditions, and considers CH, production and oxidation in each layer,
as well as three transport pathways: plant-mediated transport, eb-
ullition, and diffusion. The modeled mechanisms are similar to those
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FIGURE 1 Schematic representation of the model structure for methane (CH,) flux. The model consists of two soil layers: a surface layer
susceptible to oxic conditions and a deep layer prone to anoxic conditions. Ecosystem-atmosphere CH, fluxes are the net result of CH,
production (pproduction and Q,), oxidation (p_;4.tion) @and transport processes. Transport is the sum of diffusion (pdifmsmga15 and pdiffusion_water),
plant-mediated transport (pplant), and ebullition (p,p ,ition @Nd ppressure). Substrate for CH, production associated with gross primary

productivity (GPP) is divided into surface and deep layers (z_ ), considering root distribution (f

). The model is driven by biophysical

root:

variables: soil temperature (Ts) in the two soil layers, water table depth (WTD), leaf area index (LAI), GPP, and barometric pressure (PA).
Calibrated parameters are shown with parentheses, and dashed lines represent a major flow of causality.

used in current process-based models (Raivonen et al., 2017; Riley
etal., 2011; Walter & Heimann, 2000; Wania et al., 2010). The simple
formulation of iPEACE allows to effectively fit the model to data at
reduced computational costs. The model is driven with GPP for sub-
strate availability, LAl for transport potential through plant stems,
soil temperature in the two layers for driving kinetics, oxygen (O,)
concentration for redox potential, WTD for diffusivity and hydro-
static pressure that drives ebullition, and PA for ebullitive transport.
The O, concentration was not included in the FLUXNET-CH, data-
base, and thus was determined from WTD. When the water table
position is above or below a soil layer, the layer is assumed to be
anoxic or fully oxic, respectively. When WTD is within a soil layer,
O, concentration in that layer is linearly related to that fraction of
the layer that is inundated between fully oxic to anoxic conditions.

To explore the underlying processes, the model contains 10 pa-
rameters and two initial values of the CH, pools in each soil layer
(mol-CH, m™3), which are calibrated with data (Table 3). For adapting
the model to the current analysis, the thickness of the surface layer
and root fraction (described below) in the surface layer are calibrated
for each site, whereas the previous study (Ueyama et al., 2022) used
a fixed value.

Thickness of the surface layer (z,, m) is the parameter con-
strained by the data. Thickness of the deep layer is calculated as the
difference between total soil thickness (1 m, except for permafrost
sites) and the thickness of the surface layer. For sites affected by
permafrost, total soil thickness is defined as the active layer depth
(0.5 m for RU-Ch2, 1.0 m for US-ICs, and 0.6 m for US-Uaf). Seasonal
changes in soil thickness associated with soil thaw are not consid-

ered in the model for simplicity. Surface root fraction (fs is the

I'OOt)

parameter explaining how roots are concentrated in the surface
layer relative to the total roots. The model assumes that root density
is higher in the surface layer than the deep layer.

Methane production is assumed to depend on substrate availabil-
ity from GPP, kinetics as determined by soil temperature, and anaero-
bic status as determined by O, concentration. The fraction of GPP to
CH,, substrate (

ity (Q,) are both empirical parameters. Modeled CH, production in-

Pproduction’ mmol-CH, g™! C) and temperature sensitiv-
creases with soil temperature and substrate availability but decreases
with increased O, concentration. The Pproduction PArameter is the ag-
gregated parameter for explaining the fraction of root exudates from
GPP and the efficiency from exudates to CH, production and relates
to the base productionrate ina Q,, equation (Chen, 2021). The model
does not explicitly consider anaerobic peat decomposition; thus, CH,
production by decomposition are implicitly incorporated through a
decrease in the CH, pools. Partitioning of CH, substrate in each soil
layer is assumed to be a function of the root distribution between
the surface and deep soil layers. CH, oxidation is calculated with a
Michaelis—-Menten equation (Wania et al., 2010) with CH, concentra-
tion and O, concentration, where the maximum CH, oxidation rate
(Poyidations Mol-CH, m™s7Y) is a calibrated parameter.

Plant-mediated transport is calculated by the concentration gra-
dient between a soil layer and the atmosphere, root fraction in each
layer, and LAI. The transfer efficiency under a given concentration

gradient ( 1073 day™}) is a calibrated parameter. The model does

pplant;
not consider CH, transport by dead plants, which are not accounted
for by LAI, with the assumption that collapsed aerenchymatous
tissue in senesced leaves has low transport capacity (Korrensalo

etal., 2022).
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TABLE 3 Ranges of parameters for mathematical optimization and prior distributions for Bayesian optimization for the iPEACE model.
The range of uniform distributions were determined by adding plus/minus to the values determined by the differential evolution method for

each site (Table S1).

Parameter
Initial CH, value at the surface layer
Initial CH, value at the deep layer

Base production rate per gross primary

Unit
mol-CH, m
mol-CH,, m=

mmol-CH, g ct

Lower range in

Upper range in

productivity (p,

production)
Temperature sensitivity of CH, production -

(Qloproducton)

-2 1

Maximum CH, oxidation rate (p i .iion) mol-CH, m™s

Nondimensional conductivity for gaseous -
transfer (pepuiition)
Diffusion coefficient for plant-mediated 1073 day™

transport (pplant)

Diffusion coefficient multiplier for water -
(Pitfusion-water)

Diffusion coefficient multiplier for gas -
(pdiffusion»gas)

Sensitivity of ebullition to barometric hPa™

pressure (P, occre)

Thickness of the surface layer (z m

surf)
Surface root fraction (fs ) =
Residuals of the model mg CH, m2 day™
Ebullitive transport is calculated based on a concentration
threshold scheme (Peltola et al., 2018), which has two empirical
parameters: nondimensional conductivity for bubble transport
(Pepuiition) @nd a parameter for explaining episodic CH, bubble trans-
hPa™). Since

the model assumes that CH, is not immediately emitted as ebullition

port driven by barometric pressure changes (p,, e res
but accumulated as bubbles, p,, o F€Presents the transport effi-
ciency of bubbles. The Ppressure PArameter empirically explains the
sensitivity to decreasing barometric pressure, i.e., the relative in-
crease in ebullition per 1 hPa decrease in mean PA. In the model, the
ebullition flux from each layer is assumed to be directly transported
to the atmosphere, when WTD is within the top 10 cm of the soil
based on a field study (Stanley et al., 2019). When WTD is deeper
than 10 cm, CH, transport through ebullition is added to the surface
layer CH, pool, which is a modification from the original model of
Ueyama et al. (2022).

Diffusive flux is calculated using Fick's first law. The diffusion co-
efficients for gas and water are calculated based on Riley et al. (2011),
and then their calibrated correction factors (pdiffusion_gas and

Pgittusion-water) @€ Multiplied to the respective diffusion coefficients.

2.3 | Model applications
The model parameters, initial conditions, and model error () were
determined from the observed data by the Bayesian method as

follows:

mathematical mathematical Prior range in Prior
optimization optimization Bayesian inference distribution
0 0.5 +0.1 Uniform

0 4 +0.2 Uniform

1 6 +0.5 Uniform
0.00001 5 +1 Uniform
0.000000125 0.000125 +log(1.0) Uniform

0 0.01 b Uniform
0.001 3 +1 Uniform
0.001 2 +0.3 Uniform
0.001 2 +0.3 Uniform

0 1 +0.05 Uniform
0.05 0.80 0.05-0.80 Uniform
0.05 1.00 0.05-1.00 Uniform

- - - Log normal

Fos ~ Normal(FyopeL, 62) )

where the function Normal represents the normal distribution, Fyg is
the observed CH, emission, and Fy,,py, is the modeled CH, emission.
The a priori distribution of ¢ was assumed to be a log normal distribu-
tion with mean of log(0.5) mg CH, m~2 day™* and standard deviation
of 0.1 mg CH, m2 day’i, where the hierarchical structure was used to
reduce computational costs. Equation 2 assumes that variance for the
model-observation mismatch was temporally uniform without incor-
porating temporal correlation in the observed data.

The a priori distributions of the parameters were generally as-
sumed to be uniform (Table 3). The range of uniform distributions
were determined by adding plus/minus to the values determined by
the differential evolution method for each site (Table S1). The pre-
constraint of a priori distribution effectively reduces computational
costs without decreasing model performance and improves model
convergence, based on a preliminary analysis. For constraining the
behavior that root density must be higher in the surface layer than
the deep layer in the Bayesian optimization, the thickness of the
surface layer and root distribution were determined without results
from the mathematical optimization. For the parameter optimiza-
tion, we did not assume the hierarchy in the statistical model.

The posterior distributions of the parameters were estimated
using a Markov Chain Monte Carlo (MCMC) method with the No-U-
Turn Sampler (NUTS). NUTS is an extension of Hamiltonian Monte
Carlo and provides very effective samples without requiring user
intervention or costly tuning runs (Hoffman & Gelman, 2014). The
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efficiency of NUTS was more than 1000 times that of Metropolis or
Gibbs sampling. Posterior distributions of the parameters were esti-
mated using four chains with 1000 samples after warm-up based on
1000 sampling. Bayesian inference was performed using the PyStan
library (version 2.19.1.1). Owing to a complex and multimodal pa-
rameter space, consistent solutions from each chain were not ob-
tained or some chains were not converged for some sites. In this
case, we used results from chains that estimated the lowest model
errors. The conservative treatment was required because bad chains
seem to converge to local minima rather than to mathematically
meaningful multimodal distributions and the problem was not fixed
using different a priori, different initial values or further sampling.
The trace plots and probability density functions for all parameters
in all sites are shown in Figure S1, which shows that at least two
chains were well converged. Convergence of MCMC was evaluated
by the Gelman-Rubin method with the potential scale reduction fac-
tor (PSRF), which showed that all parameters for all sites were well
converged (PSRF <1.05) except slightly high PSRF for two parame-
ters for US-Uaf (PSRF <1.12; Table S3). Computational costs of the
Bayesian inference ranged from 0.35 h to 2.5days per site with an
average of 6.16 h (Table S4).

Model parameters were estimated using daily CH, fluxes and the
ancillary biophysical variables. Specifically, we used daily gap-filled
CH,, flux (FCH4_F), which contained only long data gaps (>2 months),
and did not assume embedded functional relationships. In addition,
we used FCH4_F_ANN_median when uncertainties in the neural
network (FCH4_uncertainty) were less than absolute of FCH4_F_
ANN_median. The use of gap-filled fluxes with low uncertainties
could prevent propagating uncertainties associated with long-term
gap-filling data into the parameter estimation. We also evaluated
how the gap-filled data influenced modeled processes, where we
eliminated data records where daily CH, emission contained more
than 80% gaps in half-hourly data, in constraining the model. Apart
from this issue, some high-latitude and rice paddy sites provided only
growing-season fluxes, which hampered constraining the model for
cold non-growing and fallow seasons, respectively. We also found
that flux data for the first few days of a model run were important
for constraining the initial CH, pools (i.e., initial conditions). Without
the data, initial conditions were not well converged, and estimated
dormant season emissions were unrealistic. Consequently, when
FCH4_F was missing, we used the gap-filled CH, flux (FCH4_F_
ANN_median) during the first days of a model run and for the winter
period (air temperature <-10°C). The benefits of selectively using
gap-filled data could outweigh the propagation of gap-filled errors,
where unrealistic CH, emissions were not estimated.

The model constraints for each site were evaluated by RMSE
normalized by mean, R, and normalized standard deviation (SD) in
daily CH, flux. For further interpreting and analyzing modeled re-
sults, we eliminated unconstrained site-data where normalized
RMSE was >0.9, R was <0.6, normalized SD was <0.7, or normalized
SD was >1.3.

The sensitivities to the forcing variables were performed using
the models successfully constrained for each site. First, we applied

perturbations to the inputs of: (1) 1°C increase to the observed soil
temperatures, (2) 10% increase in GPP and LA, (3) 10 cm increase
in WTD, and (4) 10 cm decrease in WTD with all other inputs held
at measured conditions. Next, we examined the changes in modeled
CH, emissions with unperturbed input (control experiment). We
conducted the sensitivity analysis for sites spanning at least 3years
of data because the uncertainties are high in models constrained by
short-term data (Ueyama et al., 2022).

To understand the variabilities in the estimated parameters
across the sites, we applied principal component analysis (PCA) to-
ward seven parameters: pproduction' QlOproduction’ poxidation' pebullition’

and p The parameter for gas diffusion

pplant’ pdiffusion-water’ pressure”

(pdiffusion_gas) was not included in the PCA because Pgifusion-gas did not
show a bell-shaped density curve at approximately half of the sites
(Figure S1). The parameters were first standardized with mean and
SD and then compressed into two principal components (PC) using
the scikit-learn library in python. We chose two principal compo-
nents because they explained more than 70% of the variance in the

parameters across the sites.

3 | RESULTS
3.1 | Model performance

Across the 25 sites, 19 sites had reliable performance that satis-
fied the criterion for normalized RMSE, R, and normalized SD (sec-
tion 2.3). According to the Taylor diagram (Figure 2), model-data
agreement was the best (R>0.9) for RU-Ch2, FI-Lom, SE-Deg, FI-Sii,
and CA-SCB. Among the accepted 19 sites, the median of normalized
RMSE, R, and normalized SD were 0.59, 0.82, and 0.87, respectively.
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FIGURE 2 Taylor diagram of the model performances in daily
methane (CH4) fluxes for each site. The benchmark corresponding
to observations is shown as Obs with red dots. RMSE, root mean
square error.
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Except for the five sites with good model fit noted above, the model based only on measured CH, fluxes for 3years. Overall, there was no
underestimated the SD of CH, flux, where the mean and SD of the significant difference in the model performance in terms of wetland
normalized SD was 0.84 +0.13 across all sites. For the six sites ex- type and the number of years used for calibration.
cluded from subsequent analyses due to low performance (US-Sne, In general, there were no obvious differences in modeled results
DE-Hte, DE-Zrk, DE-Sfn, US-Bzf, and US-Wpt), the mean seasonality with the optimized data containing fully gap-filled data or data when
was inconsistent between observations and models (Figure 3), de- excluding days with >80% gaps. However, five sites (US-Sne, DE-
spite a moderate R and normalized RMSE. The low performance may Hte, DE-Zrk, FR-LGt, and NZ-Kop) did not meet the standard for a
represent a lack of important processes in the model and insufficient well constrained model with the non-gap-filled data (Figure S2). The
data to constrain the model. For example, US-Sne is a newly restored median of normalized RMSE, R, and normalized SD were 0.57, 0.83,
wetland and has a heterogeneous surface of open water and emer- and 0.90, respectively, in the model with the data not containing
gent vegetation, which make it difficult to constrain the processes fully gap-filled data. The estimated CH, transport, production, and
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FIGURE 3 Mean seasonal variations of observed and modeled methane (CH,) fluxes and the transport components of plant-mediated
transport, ebullition, and diffusion. The seasonality is calculated as a mean across years, and then a seven-day moving mean is applied for
smoothing. Note differences in y-axis ranges among panels. Frames colored by blue are the sites having acceptable model performance
(normalized root mean square error was >0.9, correlation coefficient was <0.6, normalized standard deviation was <0.7, or normalized
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oxidation were also consistent among the two models constrained
with two data criteria, except for sites having low record numbers
(e.g., RU-Ch2 and JP-Mse) (Figure S3). Other results, including inter-
site differences in CH, emission processes and sensitivity to bio-
physical drivers, were generally consistent among the two models
constrained with two data criteria.

3.2 | Estimated transport processes

Based on model results, plant-mediated transport and ebullition
were more important pathways for CH, emissions than diffusive
transport across sites (Figures 3 and 4; Table 2). In most cases,
plant-mediated transport tended to be the major pathway for fen
sites (72% +10%, n = 8; mean +SD) and bog sites (55% + 16%, n = 8;
mean =+ SD) (Figure 4). Ebullition accounted for 27% + 10% of the total
emission for the fen sites and 26% +10% for the bog sites. In con-
trast, ebullition was estimated to be the major pathway at the two
tundra sites (64% +4%) owing to shallow WTD (Figure 4). Because
the modeled plant-mediated transport increased with LA, relative
contribution of ebullition and/or diffusion was found high during
periods of low LAI. When LAI was 220% of the annual peak, plant-
mediated transport was the major pathway (70% + 14%), except for
three sites (RU-Ch2, US-Bzb, and KR-Crk) during the growing season
(Figure 3; Table 2). Diffusion was a minor pathway at most sites, but
tended to be high in two marsh sites (US-Myb and US-Tw1) and a bog
site (SE-Sto). For the three sites, the model predicted an anoxic sur-
face layer, negligible oxidation, and high CH, concentrations in the
surface layer at high WTD sites, allowing for surface diffusion. Since
US-Myb was a restored wetland, the contribution of diffusion was

approximately half of the CH, emissions in open water conditions
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FIGURE 4 Ternary plot for modeled annual methane (CH,,)
transport pathways of plant-mediated transport, ebullition, and
diffusion.
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FIGURE 5 Lagtime between modeled methane (CH,)
production and CH, flux based on a cross-correlation analysis,
plotted against the correlation coefficient between CH,, fluxes and
lagged CH,, production.

(2010-2011) and then decreased to 31% + 6% with the expansion of
emergent vegetation from 2012 to 2018.

Based on cross-correlation analysis, CH, emissions lagged CH,
production by 1-32 days (Figure 5). There was more than a 30-day lag
between CH, production and CH, emissions at US-Uaf. Lags tended
to be, on average, longer in bogs (13 + 10days; n = 7; mean + SD) than
in fens (3+2days; n = 5), rice paddies (11 +3days; n = 2), or tundra
(6+3days; n = 2). Even in a long-lagged site (>30days for US-Uaf),
the correlation between CH, production and CH, emission was
good (R>0.70), indicating that CH, production controlled temporal
variations in CH, emission.

Inter-site variations in CH, production explained inter-site varia-
tions in CH, emissions (R2 =0.72; p = .01), except for sites where the
ratio of oxidation to production was high (Figure 6a). For sites with
high oxidative fraction to production, CH, emissions were relatively
low considering their production (Figure 6a). These sites with high
oxidation generally exhibited low minimum WTD (Figure éb). CH,
production and emission were positively correlated with soil tem-
perature and GPP across the sites having low oxidation (Figure 6c-f).
This result is unexpected because the model was constrained in
each site using temporal variations in the variables, as there was no
assumption about inter-site variations in constraining the model.
Based on the variable importance analysis using random forest re-
gression, soil temperature and GPP almost equally explained the
inter-site variations in CH, production. In contrast to production and
oxidation, inter-site variations in three transport pathways did not

correlate with CH, emissions.

3.3 | Estimated parameters

Most parameters in our model were well converged (Table S3), but

Pitfusion-gas did not show a bell-shaped density curve with a single

peak at 8 of the 19 sites (Figure S1). Substrates for CH, production
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FIGURE 6 Relationships between modeled methane (CH,) production and CH,, flux (a), between minimum water table position and ratio
of oxidation to production (b), between mean annual soil temperature and modeled CH, production (c), between gross primary productivity
(GPP) and modeled CH, production (d), between soil temperature and modeled CH, flux (e), and between GPP and CH, flux (f). Annual
mean or minimum for the study period are shown. Blue lines in (a, c, d, e, f) represent linear regression (all p<.001) based on sites where
modeled oxidation contributed less than 70% of CH, production, where shading represents the prediction interval (p = .1). Dashed line in
(a) represents the 1:1 line between production and flux. The high CH, production for NZ-Kop (525mg CH,, m~2 dayY) is too high to fit the
range in the figure (a, c, d). Points represent mean values over the observation period, and their colors represent the ratio of CH, oxidation

to production.

per GPP (
range (median = 1.1mmolm™ g C* m?) over the 19 sites. The me-

ppmduction) were converged on the lower end of a priori
dian and SD of Q,, of CH, production was 3.7 + 1.9, where there was
a weak negative correlation between p, 4 yion and Qqq across the
sites (R? = 0.31; p = .01). The maximum oxidation parameter was

estimated to be in the middle of the prescribed upper and lower
range at most sites. Estimated p_,ition @Nd Ppjant Were not correlated
with contributions from ebullition and plant-mediated transport to
CH, emission, respectively. Ebullition from 9 sites had a marginal
sensitivity to pressure decline (<2% hPa™!), where there was no
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correlation between p, ... and contributions of ebullition to the
total emission across the sites. There was no significant difference
(p<.05) in all parameters aggregated by aerenchymatous and moss
vegetation.

Based on the PCA analysis, 77% of the variance in the parame-
ters among the sites was compressed with two PCs (Figure 7). The
first PC represented a tradeoff of two parameters for CH, produc-
tion between high Pproduction and low Q,, and vice versa, represent-
ing 61% of the parameter distribution across the sites. The second
PC explained 16% of the distribution and represented a tradeoff
between CH, production and transport through plants and gas dif-
fusion. There were weak clusters for bog sites with relatively high
Qo tundra sites with low transport parameters, and rice paddies
with high transport parameters. No clusters were apparent for fen
and marsh sites.

The thickness of the surface layer, z was the conceptual

surf?
depth separating surface oxic and deeper anoxic layers, and thus
negatively correlated to WTD for sites where minimum WTD
-1.2 * WTD-0.05m; R? = 0.48; p = .03;

n = 10). The regression analysis showed that z_  was close to

was below -0.1 m (z ¢ =
minimum WTD. In contrast, there was no significant trend in the
surface layer thickness for sites with high mean annual WTD (>
-0.1 m). For sites with high WTD (i.e., always above the ground
surface), the thickness of the soil layers did not control the degree
of redox conditions for the two layers because the surface layer

was always anaerobic.

3.4 | Sensitivity to biophysical variables

Based on the sensitivity analysis, CH, emissions increased by 9.6% or
3.5gCH, m~2 year ! (median relative increase), with 10% increase in
GPP across the sites, with the increases higher in the sites with high
annual soil temperatures (Figure 8a). The sensitivity analysis was
performed on sites that had at least 3years of data (14 sites) among
the 19 sites. The sensitivities aggregated for high or low WTD sites
(sites having mean water table position above or below the ground
surface) indicated that the relative increases in CH, emissions did
not differ significantly between the two WTD classes (p = .35 in
Welch's t test; inset in Figure 8a).

The 1°C increases in soil temperatures increased CH, emissions
by 6.6% or 2.5gCH, m~2 year ! (median relative increase) (Figure 8b).
The increases were similar in magnitude to those from the 10% in-
crease in GPP. Compared with the sensitivity to GPP, the increased
magnitudes appeared to not be clearly related to the mean annual
soil temperatures and WTD, likely because temperature sensitivity
(Q1o) for CH, production differed by site. The increases in CH, emis-
sions also did not differ significantly between the two WTD classes
(p = .80; inset in Figure 8b).

The increase in CH, emissions with 1°C increases were lower
than those estimated based on an empirical Q,, relationship be-
tween daily mean soil temperature and CH, emissions (Figure 9).
Eight of the 14 sites were estimated to have higher CH, emission
sensitivity using the empirical Q,, model than iPEACE. Across all 14
sites, the relative increases in CH, emissions tended to be higher in
the empirical Q;, model (12%) than the iPEACE model (8%) across
the sites (p = .12) (US-Uaf was not included in relative changes in
emission owing to the small magnitude in emission).

Decreased CH, emissions associated with a 10 cm decrease
in WTD were greater than increased CH, emissions with a 10 cm
increase in WTD (Figure 8c,d). A decrease in WTD decreased CH,
emissions at most sites and vice versa, where the median changes by
the decrease and increase in WTD were-31% and +6.5%, respec-
tively. A site with a WTD permanently well above the ground surface
(US-Myb) did not exhibit significant responses to changing WTD, as
WTD always remained above the surface. The relative changes in
CH, emissions did not differ significantly between sites with low and
high WTD with 10 cm increases in WTD (inset in Figure 8c; p = .34)
and 10 cm decrease in WTD (inset in Figure 8d; p = .15).

There were two mechanisms for reduced CH, emissions by de-
creased WTD. The first mechanism is associated with changes in the
frequency with which the surface layer becomes oxic conditions. In
this mechanism, CH, production from the surface layer decreases
when the WTD decreases with the perturbed input mostly fluctuat-
ing within the surface layer throughout the year. The second mech-
anism is related to the long-lasting change in redox conditions in the
deep layer. We argue that reduced anaerobic conditions in the deep
layer, which was rarely affected by oxic conditions with the unper-
turbed WTD, but was affected by the perturbed decrease in WTD.
Owing to the loss of anaerobic conditions, CH, in the deep layer
was consumed through oxidation; thus, the effects were relatively
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FIGURE 8 Modeled sensitivity of annual mean methane (CH,) flux to perturbed input of 10% high gross primary productivity (GPP) (a),
biased input of 1°C high soil temperatures (Ts) (b), 10 cm high water table position (WTP) (c), and 10 cm low WTP (d). The changes in fluxes
were shown on climate space of mean annual soil temperature and mean annual WTP over the observation period for each site. Boxplots
represent the relative changes in flux for aggregated sites having annual high and low mean WTP (higher and lower above the ground,
respectively), where dots represent outliers. The relative changes by boxplots did not include US-Uaf, because the flux was too low and the
ratio was anomalously high due to low denominator. The sensitivity analysis was done for sites having at least 3years of data.

long-lasting until CH, concentrations built-up again. The median
decrease in CH, production was -6.9 gCH, m2 year !, and median
increase in CH, oxidation was 12.9 gCH, m2 year™, indicating that
the second mechanism was the major process responsible for the
reduction in CH, emissions. As an exceptional response examined
at NZ-Kop, the decreased WTD could change sustained anoxic con-
ditions to oxic conditions in the deep layer, resulting in decreased
CH, production, reduced CH, pool, and finally decreased oxidation.

4 | DISCUSSION

The estimated processes for CH, emissions provide meaningful in-
sights for interpreting observed data and estimating sensitivities to
the forcing variables. The current analysis aims to shed light on the
relative importance of processes involved in CH, production, trans-
port, and oxidation across 25 freshwater wetland sites in temper-
ate, boreal, and Arctic regions. The observed data included in the
FLUXNET-CH, database were used to constrain a process-based
model which has a similar structure used in previous modeling stud-
ies (Riley et al., 2011; Walter & Heimann, 2000; Wania et al., 2010).

Flux partitioning is typically applied to net CO, fluxes for estimating
GPP and ecosystem respiration (Reichstein et al., 2005), and has suc-
cessfully provided deeper insights on their biotic and abiotic controls
(Jung et al., 2017; Mahecha et al., 2010). Compared to the partitioning
of CO, fluxes, more complex models are required to explain wetland
CH, emissions and partition net CH, flux observations (Chen, 2021;
Grant et al., 2019; Riley et al., 2011; Wania et al., 2010). Partitioned
CH, fluxes can be useful for evaluating inter-site differences in fluxes
(Figures 3 and 4), time lags between surface emissions and produc-
tion (Figure 5), different responses of CH, processes (e.g., produc-
tion, oxidation, and transport) to biophysical variables (Figures 6 and
8), and model parameterizations (Figure 7). Key processes and param-
eters estimated in this study need to be better constrained with fur-

ther long-term observations and different data streams.

4.1 | Inter-site variations in estimated processes

The inter-site variations in CH, emissions were found to be primarily
associated with those in CH, production rather than those in oxi-
dation and transport (Figure 6), especially for sites with high WTD
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and low CH, oxidation. These results could explain the correlation
of annual CH, emissions with mean annual air or soil temperature
across global wetlands in the FLUXNET-CH, database (Delwiche
etal.,2021; Knoxetal., 2019), where temperature was found to be an
important driver of methanogenesis substrates (Chang et al., 2021)
and CH,, production (Yvon-Durocher et al., 2014). In contrast, oxida-
tion increased with decreasing WTD (Figure 6b), resulting in oxida-
tion as the second most important process for explaining inter-site
variations in CH, emissions. These results are also consistent with
global syntheses, which showed that a positive correlation between
CH, emissions and WTD was only detected in sites with relatively
low WTD (i.e., mean annual WTD was below the soil surface) (Knox
etal., 2019, 2021).

Transport processes were estimated to regulate the time-lag be-
tween CH,, production and emissions (Figure 5), albeit we found no
significant effect on total CH, emissions because annual emissions
were mainly controlled by CH, production (Figure é). The lag be-
tween production and emission occurred due to the time required
to increase the CH, concentrations to drive CH, transport. The lag
of CH, emissions to soil temperature or GPP was reported in stud-
ies using FLUXNET-CH, (Chang et al., 2020; Delwiche et al., 2021;
Knox et al., 2021; Yuan et al., 2022). For example, Knox et al. (2021)
estimated that on average CH, emissions lagged soil temperature
and GPP by 5.4days and 20.7days, respectively, across wetlands
globally. The lag between CH, emission and production (Figure 5)
nonetheless partly explained the lag between emission and biophys-
ical variables, as time is required for building up sufficient CH, con-

centrations driving CH, emissions.

4.2 | Sensitivities of CH, emissions to
biophysical drivers

The estimated sensitivity of CH, emissions to GPP (Figure 8a, b) indi-
cates the importance of substrate availability. A strong relationship
between net ecosystem production and CH, emissions was previ-
ously reported across wetlands extending from subarctic peatlands
to subtropical marshes associated with substrate availability (Whiting
& Chanton, 1993). The estimated sensitivity occurred because CH,
production in iPEACE was driven by GPP and soil temperature, re-
flecting the concept that increased GPP will increase substrate avail-
ability and thereby CH, emissions. The strong relationship with GPP
(Figure 8a) was unexpected, however, because the sensitivity to
GPP (ppmduction) was calibrated in each site and thus was expected
to show high variability among the sites. It is worth noting that the
estimated sensitivity to GPP might be caused by model assumptions.
The model assumed that substrates for CH, were only provided by
GPP but old peat previously fixed is also known to be a substrate
for CH, production (Chasar et al., 2000). Substrates from recent pri-
mary production and peat organic carbon should be incorporated
into future modeling with iPEACE.

Based on our sensitivity analyses, CH, emissions were sensitive
to a decrease in WTD for most sites (Figure 8). The most important
mechanism associated with decreased WTD was increased oxida-
tion at the deep layer. Because the buildup of the CH, pool after
loss of anaerobic conditions is time consuming, the effects can be
long-lasting. This result is consistent with previous studies. Brown

et al. (2014) indicated that a long recovery time was required for
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CH, emissions after re-wetting following a drop in WTD at a site
where the mean WTD was below the surface. They proposed a rea-
son for the long recovery time as breaking the critical zone for CH,
emissions by low WTD conditions. Simultaneously, when increased
WTD resulted in aerobic layers switching to anaerobic conditions,
CH, emissions increased, but the response was smaller than those to
a decreasing WTD. This difference occurs because increased WTD
increased the frequency of anoxic conditions at the surface layer,
but the surface layer was still susceptible to oxic conditions even
with perturbation increase in WTD, resulting in limited increases in
CH, concentration. When deep soil remained anaerobic owing to
shallow WTD, increases in soil temperature and GPP were equally
important drivers of CH, emissions through kinetics and substrate

availability, respectively (Figure 8).

4.3 | Comparison of estimated processes to
observations from previous studies

Estimated transport flux was compared to EC measurements at vari-
ous sites (Table 1). The high ebullition (50% of total emissions) was
measured with chamber measurements at JP-Bby (Tokida, Miyazaki,
et al., 2007, Tokida, Mizoguchi, et al., 2007), which was consistent
with the current study. Windham-Myers et al. (2018) measured ebul-
lition with a static chamber during 5days in summer at US-Tw1, and
ebullition contributions to the total emission (10-30%) were compa-
rable to those by the current study (26%). In contrast, plant-mediated
transport estimated with chambers for FI-Sii (31%) and FI-Si2 (21%)
was smaller than our model estimates (91% for FI-Sii and 67% for
FI-Si2). However, Susiluoto et al. (2018) reported contributions
similar to the current study based on process-based models also
constrained using EC data (75%-95%) for FI-Sii. Kwon et al. (2017)
measured lower contributions of plant-mediated transport (25%)
and ebullition (2%) in RU-Ch2 than the model estimates. McNicol
et al. (2017) measured ebullition by bubble traps (<1.3%) and dif-
fusion by dissolved CH, (<4.1%) from open water bodies within the
flux footprint US-Myb, values which are smaller than the current
estimates (18% and 24%, respectively). One reason for the incon-
sistency might be the spatial heterogeneity at US-Myb. Their study
did not consider areas of emergent vegetation where contributions
by ebullition can be higher (Villa et al., 2021). Hwang et al. (2020)
estimated smaller ebullition (10%-17%) than the current study (61%)
based on the wavelet analysis of EC data at KR-Crk. For KR-Crk data
in the FLUXNET-CH, database, WTD under drainage was provided
as 0 cm; thus, the model predicted more saturated conditions at the
surface than the actual conditions, resulting in higher contributions
by ebullition.

Based on the site-scale validation, iPEACE estimates were
consistent with production, ebullition, or diffusive flux observa-
tions at two sites, but inconsistent with observations from four
sites. A comprehensive validation of estimated transport fluxes
is challenging at the site scale owing to limited sites with both EC

S e L

data and process studies available at the same location (Table 1).
Furthermore, no study has in-situ measured the three transport
fluxes simultaneously, resulting in uncertainties in how transport
fluxes by process studies are consistent with CH, emissions mea-
sured with EC towers. Plant-mediated transport could be the prior-
ity for in-situ measured transport fluxes to validate CH, emissions,
since it was estimated to be a major pathway in most sites (Table 2)
and in other modeling studies (Table 1). Differences in spatial rep-
resentativeness between EC towers and process studies could also
contribute to inconsistencies.

Our estimated wetland CH, emissions were within the range of
those measured or predicted with process-based models regardless
of difficulties in direct comparisons at the site scale. Although the
contributions of each transport flux were highly variable among
previous studies (Table 1), plant-mediated transport and ebullition
tended to be major transport pathways, consistent with our cur-
rent estimates (Figure 4). Previous models also estimated plant-
mediated transport as the major pathway (Table 1), although the
VISIT model predicted ebullition as the major pathway for Arctic
wetlands (Ito, 2019). In contrast, iPEACE tended to estimate higher
contributions from ebullition and lower contributions from diffusion.
This difference could be caused by the assumption that ebullition
occurs when WTD is greater than 10 cm below the ground (Stanley
et al., 2019). The contribution of plant-mediated transport was simi-
lar to previous modeling studies because of similar model structure,
but tended to be higher than measurements (Table 1). Rhizospheric
oxidation (Bansal et al., 2020; Korrensalo et al., 2022) is a potential
reason for low CH, emissions through vegetation, which was not
considered in the current version of iPEACE.

4.4 | Toward refined parameterizations

Based on the PCA (Figure 7), modeling wetland CH,, emissions could
be improved with refined parameterization and representation of
CH, production, plant-mediated transport, and diffusion through
water. The importance of parameterizations for production and
plant-mediated transport was also estimated in a study constrain-
ing a global CH, model with observed CH, emissions at 16 wetland
sites (Miller et al., 2015). The high explanatory power in the first
PC by the production parameters suggests that CH, production was
important for inter-site variations in CH, emissions. Considering the
structure of iPEACE, sites with high Pproduction could be more limited
by substrate availability, whereas sites with high Q,, could be more
limited by kinetics. The second PC explained CH, emissions that are
limited by production and/or transport. A similar trade-off between
parameters of production and plant-mediated transport was also in-
ferred in an optimized process-based model (Salmon et al., 2022).
These results suggest that a model for explaining variabilities in
parameters of production and plant-mediated transport across wet-
lands is needed for refined simulations rather than determining one

set of parameters.
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4.5 | Next steps in modeling wetland
CH, emissions

The estimated processes were the most likely processes for explain-
ing observed CH, emissions under the model structure of iPEACE
(section 2.2), suggesting that careful interpretation is required. iP-
EACE considers important processes to explain CH, emissions that
have been incorporated in some previous modeling studies (Riley
et al., 2011; Walter & Heimann, 2000; Wania et al., 2010). However,
definitions and formulations of CH,-related processes are often dif-
ferent among models (Melton et al., 2013). For instance, iPEACE
does not include processes included in more mechanistic models
(e.g., Salmon et al., 2022; Susiluoto et al., 2018). We need to better
define processes in the model and to validate modeled processes,
where the model-data fusion could be useful to bridge model and
observation.

To improve our understanding of CH, emissions from wetlands,
future improvements are possible with increased availability of EC
data, additional observations, and by incorporating more processes
into the model. First, in-situ observations of transport fluxes and
production parameters with incubations would be useful to con-
strain the model because Bayesian optimization can effectively
incorporate the additional constraints from observations. Second,
more long-term data are required for better constraining the model.
The period of the current study ranged from one to 9years with a
median of 4years. Ueyama et al. (2022) indicated that long-term
data (e.g., >3years) effectively constrained the partitioned fluxes.
Furthermore, we did not focus on tree-dominated wetlands (e.g.,
swamps) owing to the importance of unaccounted processes,
such as CH, transport to the atmosphere by tree stems (Pangala
et al., 2013), or from O, transport to the rhizosphere via aerial roots
(Purvaja et al., 2004). In this study, we predicted O, concentration
in the soil based on WTD, but the relationship between O, concen-
trations and WTD is complex (Ueyama, Hirano, & Kominami, 2020;
Ueyama, Yazaki, et al., 2020). Thus, measurements of WTD and
O, concentrations are strongly recommended for evaluating CH,
emissions in wetlands. The current model considers a 1 m thick
soil but anaerobic peat deeper than 1 m could play a role in CH,
emissions (Peltola et al., 2018; Tokida, Miyazaki, et al., 2007; Tokida,
Mizoguchi, et al., 2007). Since flux tower measurements did not con-
tinuously monitor the O, and CH, concentrations in the deep peat,
constraining processes at the deep peat were difficult in this study.
Finally, refined modeling wetland CH, emission will be possible by
evaluating how partitioned emissions are consistent across different
models constrained with the same data.

The Bayesian inference in this study might be improved after con-
sidering the outlined limitations. We did not obtain reliable results
for 6 of 23 sites. The inability could be caused by lack of important
processes, but might be resolved with improved mathematical tech-
niques. The error distribution was assumed with Gaussian distribu-
tion, which lacked the ability to fit long-tail, such as data containing

outliers. Use of other error distributions might improve posterior

inference (Hamura et al., 2022). For 12 sites, at least one chain was
not well converged (Figure S1), possibly due to a problem of slow
convergence associated with complex multimodal parameter distri-
butions. Introducing Extended Ensemble Monte Carlo (Iba, 2001),
such as the replica exchange method, could improve convergence.
The techniques for complex parameter distributions could improve
the parameter optimization, where some parameters in the current
study hit the range of prior distributions (Figure S1) possibly owing
to the equifinality problem (Schulz et al., 2001).
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