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towers (30 sites from 4 wetlands types: bog, fen, marsh, and wet tundra) to construct a causality-constrained
machine learning (ML) framework to explain the regulative factors and to capture CH4 emissions at sub-

seasonal scale. We found that soil temperature is the dominant factor for CH4 emissions in all studied wetland
types. Ecosystem respiration (CO2) and gross primary productivity exert controls at bog, fen, and marsh sites
with lagged responses of days to weeks. Integrating these asynchronous environmental and biological causal
relationships in predictive models signifcantly improved model performance. More importantly, modeled CH4
emissions differed by up to a factor of 4 under a +1°C warming scenario when causality constraints were
considered. These results highlight the signifcant role of causality in modeling wetland CH4 emissions especially
under future warming conditions, while traditional data-driven ML models may reproduce observations for the
wrong reasons. Our proposed causality-guided model could beneft predictive modeling, large-scale upscaling,
data gap-flling, and surrogate modeling of wetland CH4 emissions within earth system land models.

1. Introduction

Methane (CH4) has been the second most important contributor to
post-industrial global warming after carbon dioxide (CO;), with a Global
Warming Potential (GWP) of 28-34 times of CO, over a 100-year time
horizon (Bergamaschi et al., 2013; IPCC, 2013). Wetland CH4 emissions
are the largest natural global sources, contributing around 20-30% to
global emissions (Bousquet et al., 2006; Chen and Prinn, 2006; Saunois
et al., 2020). Global warming (Koff et al., 2020), anthropogenic emis-
sions (Boothroyd et al., 2017), wetland expansion (Zhang et al., 2017),
and increasing methanogenic substrate availability (Schuur et al., 2008)
are expected to increase CH,4 emissions and thereby amplify climate
warming (Tao et al., 2020). Freshwater wetlands remain the largest and
most uncertain natural CH4 source to the atmosphere (Peltola et al.,
2019; Saunois et al., 2020), but with considerable discrepancies among
bottom-up biogeochemistry models, top-down atmospheric inversion
models, and data-driven machine learning models (Koff et al., 2020;
Peltola et al., 2019; Saunois et al., 2020). Therefore, improvements in
the understanding of uncertainty sources and development of robust
modeling frameworks for CH4 emissions are required to estimate
present-day and future wetland CH4 emissions (Dean et al., 2018).

Wetland CH4 emissions are affected by multiple environmental (e.g.,
temperature, redox conditions) and biological (e.g., plant photosyn-
thesis, microbial enzyme activity) factors (Delwiche et al., 2021; Knox
etal., 2021). Wetland CHy, is produced by methanogens under anaerobic
conditions (Mayer and Conrad, 1990), with the production rate
controlled by multiple drivers such as temperature, availability of sub-
strate (Bergman et al., 2000; Schaufer et al., 2010; Whalen, 2005), O,
and alternative electron acceptors (Pasut et al., 2021). After production,
CH, can be emitted to the atmosphere through various pathways (e.g.,
diffusion, ebullition, plant aerenchyma transport) that are affected by
temperature, water depth, air pressure, and plant aerenchyma proper-
ties (Bastviken, 2009; Knox et al., 2021; Morin et al., 2014; Rey-Sanchez
etal., 2018; Villa et al., 2020). CH4 can be oxidized by aerobic bacteria
when passing through oxic soil or water during transport (Wahlen,
1993) or even via anaerobic pathways (anaerobic oxidation of methane,
AOM) (Fan et al., 2021). The impacts of environmental and biological
factors on CH4 emissions are often non-linear and operate over a range
of time scales (Sturtevant et al., 2016). For example, the response of CH,4
production to temperature is observed to be hysteretic (Chang et al.,
2021) due to seasonal substrate availability and microbial activity
(Chang et al., 2020). The response of CH, emissions to GPP may be
delayed and the relationship between them has been observed to be
lagged by hours to days (Hatala et al., 2012a; Rinne et al., 2018), while
CH,4 emission responses to water table Fuctuations can be lagged by days
to months (Chen et al., 2021; Goodrich et al., 2015; Sturtevant et al.,
2016). The multi-driver dependency, nonlinearity, and time-lagged
characteristics make it challenging to understand how CH4 emissions
interact with environmental and biological factors and to accurately
represent them in predictive models (Kim et al., 2020; Sturtevant et al.,
2016; Turner et al., 2021).

In most ecosystem biogeochemical models, wetland CH4 production
is represented as a function of net primary production and/or

heterotrophic respiration (as a proxy for microbial activity), with both
constrained by environmental scalars (Melton et al., 2013; Wania et al.,
2013; Xu et al., 2016). For example, temperature sensitivity scalars have
been proposed based on observed CH,4 emissions (Yvon-Durocher et al.,
2014). However, in situ observations reveal high variability and uncer-
tainty in CH, emissions even with nearly identical environmental con-
ditions (Chadburn et al., 2020; Granberg et al., 1997; Hemes et al., 2018;
Kochetal., 2014; Rinne et al., 2018; Villaet al., 2021; Zona et al., 2016),
implying much more complex functional relationships between CHy
emissions and environmental and biological factors. A few ecosystem
models explicitly represent more of the underlying microbial, plant, and
abiotic processes leading to wetland CH,4 emissions (e.g., ecosys (Grant
et al., 2015; Grant et al., 2017a; Grant et al., 2017b), BAMS4 (Pasut
et al., 2021), and JSBACH-methane (Castro-Morales et al., 2018)) and
confrm that these nonlinear interactions should be considered to
improve model predictions of methane emissions (Chang et al., 2019).

In addition to the ecosystem biogeochemical models, Machine
Learning (ML) models are becoming useful tools for capturing complex
nonlinear relationships, and have achieved good performance in gap
Fflling CH,4 emission data (Hatala et al., 2012a; Hatala et al., 2012b;
Irvin et al., 2021; Kim et al., 2020; Knox et al., 2019; Morin et al., 2014)
and spatial upscaling (Peltola et al., 2019). However, widely-applied ML
frameworks do not accurately represent lagged CH4 emission de-
pendencies (Kim et al., 2020). Including lagged variables as predictors
may improve ML model performance, but risks overftting, especially for
multiple-driver dominated ecosystems with limited temporal observa-
tions (Kim et al., 2020). Furthermore, commonly used ML models do not
consider causality constraints (Pearl, 2019; Reichstein et al., 2019).
Such ML models may ft an observational dataset well while not being
driven by causal relationships (Pearl, 2019; Runge et al., 2019a). In this
study, we explore whether an ML model that represents lagged re-
sponses and considers underlying causal relationships can improve
process understanding and wetland CH4 emission predictions.

We used CH,4 emission measurements at 30 eddy covariance towers
covering 4 wetland types (bog, fen, marsh, and wet tundra), to test three
hypotheses: (1) It is possible to infer with statistical confdence causal
relationships between drivers and CH4 emissions. (2) The environmental
drivers signifcantly affecting methane emissions differ among the
wetlands by their type and location. (3) Future model predictions that
are well calibrated based on current fux observations, but differ in their
assumed causal relationships between drivers and methane emissions,
will diverge signifcantly. To test these hypotheses, we develop an in-
tegrated framework that combines causality and ML to improve un-
derstanding of causal relationships affecting CH4 emissions and
modeling of wetland CH,4 emissions across various wetland ecosystems.
In this work, a causal relationship exists between predictor (X) and CH4
emissions if, when excluding the confounding effects from other pre-
dictors and from the history of CH4 emissions, knowing the predictor (X)
could signifcantly reduce the uncertainty in predicting CH4 emissions
(Abdul Razak and Jensen, 2014; Runge et al., 2019a). The overarching
goal of this study is to develop, train, and validate a ML model to
improve predictive modeling of wetland CH4 emission for diverse
wetlands.
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2. Methodology
2.1. Study sites and data description

The dataset used in this study is from the FLUXNET-CH,4 synthesis
activity, which compiles, standardizes, and gap-Fflls available daily eddy
covariance CH,4 emission data, via the regional networks of AmeriFlux,
EuroFlux, OzFlux, and AsiaFlux (Delwiche et al., 2021; Knox et al.,
2019). We focus on four types of natural freshwater wetlands (bog, fen,
marsh, and wet tundra), and use 30 wetland sites, each with at least one
year of CH,4 observations (Fig. 1; Table 1). The wetland classifcation is
based on the site-specifc literature (Delwiche et al., 2021). Daily CH4
emissions (Fcy,) and 13 potential drivers are considered in our analysis:
Air Temperature (T,), Topsoil Temperature (Ts) (detailed information of
soil temperature depth can be seen in Delwiche et al. (2021)), Water
Table Depth (D), Precipitation (P), Soil Water Content (0), Relative
Humidity (RH), Vapor Pressure Defcit (VPD), Atmospheric Pressure
(PA), Wind Speed (WS), and Incoming Shortwave Radiation (SW); and
biological factors: Gross Primary Production (GPP), Ecosystem Respi-
ration (RECO), and Net Ecosystem Exchange (NEE) (See variable
availability for each site in Table S1). These variables are widely
acknowledged as important driving factors for wetland CH,4 emissions
(Knox et al., 2021; Oertel et al., 2016). Details of data standardization
for the FLUXNET-CH, dataset are presented in Knox et al. (2019). In this
study, we used the observed non-gap-flled measurements to maintain
the original dynamic patterns and avoid potential biases from the
gap-Flling algorithms that have their own assumed causal relationships.

2.2. Transfer entropy analysis

We employ a transfer entropy approach with PCMCI framework
(Runge et al., 2019b) to identify non-linear directional relationships
between environmental and biological factors and Fcy,. Transfer en-
tropy is a powerful tool to reveal the causality for non-linear and
asynchronous systems (Bouskill et al., 2020; Liu et al., 2019; Schreiber,
2000). The approach quantifes information entropy fow from source
variables (e.g., Ty) to the target variable (Fcn,) by measuring the infor-
mation entropy reduction in the target variables when excluding effects
from various confounders (Yuan et al., 2022; Li et al., 2022). If transfer
entropy is statistically signifcant, the causal relationship from a source
variable to the target variable is confrmed. For each pair of variables of
interest, we calculate the transfer entropy (T) from source variable X to a
target variable Y considering the confounders of Z (Schreiber, 2000):
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Fig. 1. (a) Geographic locations and wetland types of the 30 selected eddy
covariance sites. (b) Mean annual temperature and precipitation of each site.
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T(X-Y) = Zp(ynz,x,[l])logzlw
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where | is the corresponding time lag of source variable X. p is the
probability density. Compared with the linear and nonlinear correlation
based methods (e.g., mutual information in Knox et al. (2021)), transfer
entropy can explicitly exclude confounding effects when detecting the
causal strength from one variable to Fcy, through removing shared in-
formation between confounders (Z) and the target variable (Y).

In theory, all potential confounders should be included when iden-
tifying causal relationships. However, in practice, too many confounders
will cause high dimensionality and statistical instability issues (Runge
et al., 2019a; Yuan et al., 2021). For simplicity, previous studies often
considered the immediate history of a target variable as the confounder,
assuming that it contributes the most confounding information to the
target (Ruddell and Kumar, 2009; Yuan et al., 2021). However, wetland
Fch, can be jointly regulated by multiple factors including the history of
Fch,. To minimize the interferences from important confounders and to
avoid high dimensionality, we adaptively considered three confounders
that have the strongest control on the variation of Fcy, through the
PCMCI framework (Runge et al., 2019b). PCMCI contains two key steps:
(1) PC (named after its inventors Peter and Clark) (Spirtes et al., 2000)
and (2) Momentary Conditional Independency (MCI) (Runge et al.,
2019b). To infer the causal strength from a source variable to the target
variable, we frstly used the transfer entropy method in PC to rank the
contribution of all potential confounders (e.g., air temperature, soil
water content) with relative lower dimensionality (Spirtes et al., 2000),
and used transfer entropy in MCI to calculate the causal strength from a
source variable to the target variable by excluding the information en-
tropy from the most important confounders (Runge et al., 2019b). We
iteratively conducted the causal inference process for each variable to
obtain the causal strength (Fig. S1).

The shuffed surrogate method (Kantz and Schirmann, 1996) was
employed to test the statistical signifcance of transfer entropy. This
method randomly shuffes source and target time series to destroy time
correlations. Shuffed surrogate transfer entropy was computed 100
times through Monte Carlo simulations. A one-tailed signifcance test is
then applied to determine the 95% confdence of the transfer entropy
(Ruddell and Kumar, 2009).

2.3. CHg4 emission predictive models

We develop a causality constrained interpretable ML model based on
the Long-Short-Term-Memory framework (Guo et al., 2019a; Hochreiter
and Schmidhuber, 1997; Li et al., 2020) for prediction (hereafter
causal-LSTM). We compared the causal-LSTM model performance, in-
ternal functional relationships, and model sensitivity against its baseline
LSTM model (described below), to illustrate the beneft of including
causality constraints in prediction.

2.3.1. Baseline model

The baseline naive LSTM model has been widely used in time
sequence predictions (Alahi et al., 2016; Li et al., 2020). One of the
advanced features of LSTM is the gate mechanism that controls the in-
formation fow to be memorized or forgotten, which enables capturing
short-term and long-term dependencies underlying data sequences.
Here, we use the LSTM model for prediction, given the lagged responses
of emissions to environmental and biological factors. The recursive
representations of LSTM and prediction can be represented as:

T+1 — mr 1

where X (t is time step, 0<t < T) is the input vector, c; is the cell memory
state vector, and h; represents the hidden state vector with useful
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Table 1
FLUXNET-CHy, site information of the 30 sites used in this analysis.
Wetland Site ID  Site name IGBP LAT LON Startyear Endyear  Data DOI References
Type
Bog CA- Scotty Creek Bog WET 61 -121 2014 2017 DOI: 10.18140/FLX/ (Sonnentag and Helbig,
SCB 1669613 2020a)
CA- Scotty Creek Landscape ENF 61 -121 2013 2016 DOI: 10.18140/FLX/ (Sonnentag and Helbig,
scc 1669628 2020b)
DE- Schechenflz Nord WET 48 11.33 2012 2014 DOI: 10.18140/FLX/ (Schmid and Klatt, 2020)
SfN 1669635
FI-Si2 Siikaneva Il WET 62 24.2 2012 2016 DOI: 10.18140/FLX/ (Vesala et al., 2020a)
1669639
JP- Bibai bog WET 43 141.8 2015 2018 DOI: 10.18140/FLX/ (Ueyama et al., 2020)
BBY 1669646
Nz- Kopuatai WET -37 1756 2012 2015 DOI: 10.18140/FLX/ (Campbell and Goodrich,
Kop 1669652 2020)
us- Bonanza Creek Thermokarst Bog WET 65 -148 2014 2016 DOI: 10.18140/FLX/ (Euskirchen and Edgar
BZB 1669668 2020a)
Us-Uaf  University of Alaska, Fairbanks ENF 65 -148 2011 2018 DOI: 10.18140/FLX/ (Iwata et al., 2020)
1669701
Fen DE- Huetelmoor/Rodewiese WET 54 12.18 2011 2018 DOI: 10.18140/FLX/ (Koebsch and Jurasinski,
Hte 1669634 2020)
DE-Zrk Zarnekow WET 54 12.89 2013 2018 DOI: 10.18140/FLX/ (Sachs and Wille, 2020)
1669636
Fl-Lom  Lompolojankké WET 68 2421 2006 2010 DOI: 10.18140/FLX/ (Lohila et al., 2020)
1669638
FI-Sii Siikaneva | (FI-Sii) WET 62 24.19 2013 2018 DOI: 10.18140/FLX/ (Vesala et al., 2020b)
1669640
SE-Deg  Degero WET 64 19.56 2014 2018 DOI: 10.18140/FLX/ (Nilsson and Peichl, 2020)
1669659
SE-St1 Stordalen Mire WET 65 19.05 2012 2014 DOI: 10.18140/FLX/ (Jansen et al., 2020)
1669660
us- Bonanza Creek Rich Fen WET 65 -148 2014 2016 DOI: 10.18140/FLX/ (Euskirchen and Edgar
BZF 1669669 2020b)
US-Los Lost Creek WET 46 -90 2014 2018 DOI: 10.18140/FLX/ (Desai and Thom, 2020)
1669682
Marsh us- Disney Wilderness Preserve Wetland WET 28 -81.4 2013 2017 DOI: 10.18140/FLX/ (Hinkle and Bracho, 2020)
DPW 1669672
us- Salvador WMA Freshwater Marsh WET 30 -90.3 2011 2013 DOI: 10.18140/FLX/ (Holm et al., 2020)
LA2 1669681
us- Mayberry Wetland WET 30 -122 2011 2018 DOI: 10.18140/FLX/ (Matthes et al., 2020)
Myb 1669685
us- Olentangy River Wetland Research WET 40 -83 2011 2015 DOI: 10.18140/FLX/ (Bohrer and Morin, 2020)
ORv Park 1669689
US-Sne  Sherman Island Restored Wetland GRA 38 -122 2016 2018 DOI: 10.18140/FLX/ (Shortt et al., 2020)
1669693
us- Twitchell Wetland West Pond WET 38 -122 2011 2018 DOI: 10.18140/FLX/ (Valach et al., 2020)
Twil 1669696
us- Twitchell East End Wetland WET 38 -122 2013 2018 DOI: 10.18140/FLX/ (Eichelmann et al., 2020)
Tw4 1669698
us- Winous Point North Marsh WET 41 -83 2011 2013 DOI: 10.18140/FLX/ (Chen and Chu, 2020)
WPT 1669702
Wet tundra RU- Chersky Reference WET 69 161.4 2014 2016 DOI: 10.18140/FLX/ (Gockede, 2020; Gockede
Ch2 1669654 et al., 2019)
us- Barrow Environmental Observatory WET 71 -157 2013 2014 DOI: 10.18140/FLX/ (Zona and Oechel, 2020a)
Beo (BEO) tower 1669664
US-Bes Barrow-Bes (Biocomplexity WET 71 -157 2013 2015 DOI: 10.18140/FLX/ (Zona and Oechel, 2020b)
Experiment South tower) 1669665
US-ICs Imnavait Creek Watershed Wet Sedge WET 69 -149 2014 2016 DOI: 10.18140/FLX/ (Euskirchen et al., 2020)
Tundra 1669678
US-Ivo Ivotuk WET 68 -156 2013 2016 DOI: 10.18140/FLX/ (Zona and Oechel, 2020c)
1669679
us- NGEE Arctic Barrow SNO 71 -157 2012 2018 DOI: 10.18140/FLX/ (Torn and Dengel, 2020)
NGB 1669687

information for predictions. In this study, x; represents the biotic and
abiotic drivers across sites; ht is the hidden state vector at the last time

step T; \7“1 is the predicted Fcy, at the time step T+1; and W, and by are
the parameters that need to be learned. The f in Eq. (2) is an integrated
function that includes fve individual equations:

fi = 0(Wyxi + Wighi1 + by)

i = 6(Wx, + Wyihe_1 + b;)

0y = G(onxf + Whnhl—l + bo) (3)
=0 ¢y + i © tanh(Wyex, + Wich,—y + b,)

h, = 0, ® tanh(c,)

where fi, i, and o; are gating vectors that control how much information
for the cell memory to forget, input/update, and output, respectively; ¢
is the sigmoid activation function; © is element-wise product; Wy, Wiy,
Wyi, Whi, Wxo, Who, Wy, and Wi are linear transformation matrices that
need to be learned; and by, bj, by, and b, are corresponding bias vectors
obtained through model training.

For the LSTM, we used the recursive feature elimination (RFE)
method (Guyon et al., 2002) to remove spurious predictors. Specifcally,
we iteratively removed one predictor, used the remained predictors to
train the LSTM, and calculated the correlation coeffcient between
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observations and predictions after removing the predictor. Then, we
removed the weakest predictor which showed the lowest impacts on
model performance, and repeated the predictor elimination process
until only one predictor was left. Finally, we present LSTM modeling
results based on the subset of predictors selected by RFE method that
have the highest model performance.

2.3.2. Causality constrained LSTM

Although baseline LSTM is capable of capturing short-term and long-
term dependencies in the input time series, it works as a black-box and
cannot explicitly select important driving variables and lacks inter-
pretability of its predictions. Also, the dependencies identifed within
the LSTM model are based on correlations rather than causality (a more
informative directional relationship). To this end, the LSTM model can
be improved through attention mechanism, an effective weight assign-
ment method, to increase its transparency (Alahi et al., 2016; Guo et al.,
2019a; Li et al., 2020; Liang et al., 2018; Qin et al., 2017; Vaswani et al.,
2017). The weight mechanism explicitly and dynamically assigns larger
weights to more important variables, thereby improving model perfor-
mance and interpretability (Guo et al., 2019a; Li et al., 2020). However,
without the guide or constraint of causality, the correlation-based ML
models may represent wrong processes (e.g., mis-capture dominant
causal drivers) (Moraffah et al., 2020; Pearl, 2019; Runge et al., 2019b),
making the model unreliable, especially for predictions using multiple
drivers with similar seasonal trends (confounding) information under
climate change (Runge et al., 2019a). In addition, we further imposed
additional constraints using causal relationships from input variables to
the target variable and led to the causal-LSTM model. The causal-LSTM
model frst calculated the causal relationship using transfer entropy.
And then through optimization, it reduced the model biases on both
prediction error and structure difference between model captured var-
iable dependency and observation-based causal strength. Below, we
introduce the weight assignment mechanism (attention mechanism) in
the LSTM approach and describe details of how we incorporate causality
constraints in the model.

Similar to the baseline LSTM, the ith driving variable at time step t
can be iteratively transformed to a hidden state vector hi through the
gate mechanism Guo et al., 2019a; Hochreiter and Schmidhuber, 1997;
Lietal., 2020; Qin et al., 2017). To represent the importance of the ith
variable at time step t, a weight, w} or w} is dynamically calculated
through Egs. (4) and ((5), and assigned to hi. Then, the weighted sum-
mation hy,, of ht across time steps is obtained to represent the summa-
rized information for the ith driving variable:

wf = tanh(W,,hf) 4)
. eW:
W= (5)
T o
. T S .
W=, Wil (6)

Where W, is a parameter matrix that needs to be learned, and tanh is
the hyperbolic tangent function. T is the total number of time steps.

To further represent the relative importance of the ith driving vari-
able compared to other driving variables, a weight, «;, is obtained and
normalized as a; :

a; = tanh(W, [k, h]) (7)
/ e%i

A == 4 8

s ®)

where W, is a learnable parameter matrix.
Finally, using the weighted sum of all driving variables, the model

generates the prediction \7“1:
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01 = W, [H,, hy] + b, €)

?T+1 = Z:;Oiai, (10)

where the linear function with weight W, and bias b,, along with weight
@ produce the Fnal prediction.

To make the internal structure of the model more consistent with
underlying physical processes, we use transfer entropy inferred causal
relationships to constrain the variable importance (variable weight) in
the predictive model. A larger transfer entropy from a driver (e.g., soil
temperature) to Fcn, implies variations of the driver can cause larger
variations in CH4 emissions, compared to other drivers (Ruddell and
Kumar, 2009). Similarly, a larger variable weight (&;') indicates that the
i variable plays more important roles in modeling the target variable
(Guoetal., 2019a; Li et al., 2020; Liang et al., 2018; Qin et al., 2017). To
guide the model to learn dependencies between causally dominant
drivers and Fcn,, we measure the difference between transfer entropy
inferred feature importance vector are and that of the model captured
feature importance vector ay for each sample k, and integrate the dif-
ference along with modeled errors into the Fnal loss function (Eq. (11)).
In the vector arte, atg, represents the transfer entropy from the ith driving
variable to Fcp,. In ay, o represents the ith variable weight, ai, for a
sample k. Each vector is divided by its summation to obtain a probability
distribution ranging from 0 to 1, and KL-Divergence (Kullback and
Leibler, 1951) (the second item in the loss function, Eq. (11)) is used to
measure the distribution difference between the two vectors:

Loss = %Z:/:] (Yi— ¥ + }”Zszlz:’:laTE‘

where A is a structural punishment parameter, and a larger A means that
the model puts more emphasis on structural similarity instead of errors.
In Eq. (11), the frst right hand side term is the errors between obser-
vations and predictions, while the second term is the structural simi-
larity between causality inferred feature importance and importance the
model captured. N is the number of predicted data samples, and n is the
number of variables. The baseline LSTM uses only the frst term on the
right-hand side for the loss function, while the causal-LSTM has addi-
tional constraint from causal relationships via the second term (Eq.
(11)).

The model parameters are learned via a back-propagation algorithm
(Rumelhart et al., 1986) by minimizing the integrated loss (Eq. (11))
with a variational dropout to avoid overftting (Gal and Ghahramani,
2016). We used the intra-site validation scheme to test model perfor-
mance on capturing intra-site temporal variations of Fcn,. Specifcally,
in each experiment, for each site, we randomly sampled 80% of data as a
training dataset, remained 10% as a validation dataset (used to avoid
overftting during training (Prechelt, 1998)), and retained the remaining
10% as a test dataset (a holdout dataset used to unbiasedly evaluate the
Fnal model). We repeated each experiment 20 times to reduce model
bias due to random data selection. We compared the model performance
with different A values (Fig. S2), and selected the best one (A=0.005)
that has the lowest prediction errors. To evaluate the lag effects for
model improvement, we varied the lengths (one-week vs. one-month) of
time series input used in the models. In addition, we also used the
leave-one-site-out scheme (here referred as inter-site validation) (Jung
et al., 2011) to test model performance on spatial extrapolation of Fcy,
on each tested site. Other detailed experimental settings of each model
are listed in Table S2.

QT
log— 11
og - (11)

3. Results
3.1. Causal relationships derived from transfer entropy

Transfer entropy analysis revealed that daily Fcn, was most strongly
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driven by soil temperature (Ts) in the four analyzed wetland ecosystem
types (bog, fen, marsh, and wet tundra; Fig. 2a), with a range of different
time lags. The statistics of dominant drivers at each individual site also
showed that T, dominated in most sites (Fig. S3). Furthermore, the
strength of the Ts — Fcn, relationship declined with increasing mean air
temperature (slope = -0.0014, R value = -0.63, p value <0.05) (Fig. 2b).
This inverse relationship suggested that CH4 emissions in colder regions
were more sensitive to temperature than in warmer areas. The control
from air temperature (T,) was weaker than that from T; and was
prominent only at fen and marsh wetlands (Fig. 2a).

Two biological factors, Ecosystem Respiration (RECO) and plant
Gross Primary Production (GPP), also exerted strong controls on daily
Fch, in bog, fen, and marsh wetlands. These strong relationships be-
tween Fcy, and vegetation carbon turnover are consistent with the
fndings of many previous studies (Hatala et al., 2012a; Mitra et al.,
2020; Rinne et al., 2018). Plant GPP stimulates CH,4 production indi-
rectly by providing carbon input, mainly via root exudates fueling mi-
crobial activity, which produces substrates (such as acetate and CO5) for
acetotrophic and hydrogenotrophic methanogenesis (Bastviken, 2009;
Mitra et al., 2020; Strom et al., 2012; Whiting and Chanton, 1993).
Additionally, GPP can be seen as a proxy of plant-mediated CH4 trans-
port via aerenchyma tissue (Bastviken, 2009; King et al., 1998; Turetsky
etal., 2014). Previous studies argued that the relationship between GPP
and Fcy, may be due to covariation with confounding drivers (e.g., soil
temperature) (Chang et al., 2021; Knox et al., 2019). In this study, we
confrmed the existence of a strong coupling from GPP and RECO with
Fcn, by removing confounding effects when identifying the causal re-
lationships across multiple wetland types.

Compared with temperature and biological factors, the controls from
other variables on Fcy, were much weaker (Figs. 2a, S3) and less
consistent across wetland types. For example, VPD controlled Fcn, more
at bog and fen ecosystems, while PA showed weak causal relationships
with Fcn, across all sites. For water-related factors, signifcant controls
on Fcp, existed only at a few sites, which may be attributed to limited
observations of water table depth (D, 16 sites) and soil water content
(0, 9 sites), and limited variations of soil wetness across studied sites
(more details are discussed in Section 4.1).

3.2. Fcn, predictions with causal constraints

Because causal relationships varied across wetland ecosystems, we
trained independent ML models for each wetland type (bog, fen, marsh,
and wet tundra). Two types models were considered: Long Short-Term
Memory (LSTM) and causality-constrained interpretable LSTM (causal-
LSTM). We found that Causal-LSTM performed consistently better than
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LSTM for all four wetland types with higher Pearson correlation coef-
Fcient (R) and lower relative MAE (mean absolute error) when inputting
four weeks of historical drivers (Table S3 and S4). For example, R values
in LSTM ranged from 0.861 to 0.908 and relative MAE ranged from
0.271 to 0.433, while R in causal-LSTM ranged from 0.904 to 0.921 and
relative MAE ranged from 0.217 to 0.368 (Fig. 3, Tables S3 and S4).
Consistently, with one week of inputs, the causal-LSTM also showed
signifcantly higher R and lower relative MAE compared with LSTM in
all wetland types (p < 0.05, Tables S5 and S6). We also compared the
causal-LSTM approach with four other widely used ML algorithms
(random forest, decision tree, artifcial neural networks, and support
vector machine), and found that causal-LSTM had the highest prediction
accuracy (Fig. S4), with R value of 0.94 between observations and
predictions of causal-LSTM across all sites (Fig. S5).

For model evaluation with the inter-site validation scheme, causal-
LSTM also performed reasonably well with R value of 0.75 between
observations and predictions (Fig. S6) and lower biases than that of
LSTM (Table S7). However, the inter-site validation performance of
causal-LSTM dropped, compared with the intra-site validation scheme
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Fig. 3. Model performance comparison with different input lengths for LSTM
(green and purple boxes) and causal-LSTM (yellow and red boxes), in terms of
(a) correlation coeffcient (R), and (b) relative MAE between predictions and
observations. The boxes represent 25th to 75th percentiles, and the whiskers
represent 5th to 95th percentiles of R or MAE for each wetland type.
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especially for the marsh (the mean R value dropped to 0.81 in bog, 0.81
in fen, 0.86 in wet tundra, and 0.69 in marsh), which may be due to the
strong spatial heterogeneity of Fcyy, magnitude (e.g., mean CH,4 emission
ranged from 2.706 nmol m~2 s~! to 165.472 nmol m2 s~! across
different sites) and environmental conditions (e.g., annual precipitation
in marsh varied from —~200 to —~1400 mm/year). Overall, we conclude
that the causal-LSTM provides the most effective approach to model
wetland Fep, .

The results showed that model performance tended to be improved
as the length of input time series increased from one to four weeks for
both causal-LSTM (Fig. 3a and b, yellow vs. red bars) and LSTM models
(Fig. 3a and b, green vs. purple bars). For R, the performance of both
models at bog, and marsh was signifcantly (p < 0.05; Tables S8 and S9)
improved as the input data length increased. Similarly, in terms of
relative MAE, the causal-LSTM model showed signifcantly lower biases
(p < 0.05; Table S10) in bog, marsh, and wet tundra ecosystems, and
LSTM showed signifcant lower biases in bog and wet tundra (p<0.05,
Table S11). Overall, longer histories of drivers (i.e., memories) can
provide additional information for predictions, especially in bog, marsh,
and wet tundra.

4. Discussions
4.1. Soil temperature versus soil water control on Fcp,

Wetland CH4 emissions are regulated by multiple biotic (i.e., pro-
duction, oxidation) and abiotic (i.e., advection, diffusion) processes,
with each posting different dependencies on environmental factors.
Therefore, the emergent relationships between wetland methane emis-
sions and the corresponding environmental factors are expected to be
complex and diverse across different wetland ecosystem types and
across sites with different climate conditions (Turetsky et al., 2014).
Among those environmental variables, previous studies have identifed
temperature and soil water content as major abiotic drivers for wetland
CH4 emissions (Knox et al., 2021; Song et al., 2011; Strachan et al.,
2015) because soil water saturation and warm soil conditions are two
prerequisites for anaerobic production of wetland CH4 (Riley et al.,
2011).

Here, we found strong soil temperature control on CH, emissions
across bog, fen, marsh, and wet tundra ecosystems. The stronger causal
relationship of Ts — Fcn, compared to Ty — Fep, is consistent with the
hypothesis that air temperature may decouple from soil temperature in
colder ecosystems (e.g., wet tundra) due to snow insulation of the
ground (Kim et al., 2007). Similar strong correlations between Ts and
wetland Fcy, have been reported in numerous site-level studies (Gran-
berg et al., 1997; Knox et al., 2021; Morin, 2019).

We also found relatively weak control from soil water related vari-
ables (Fig. 2), admit low confdence because of limited data. For
example, soil water content had weak control in fen ecosystems, and
water table depth had moderate control in bog and marsh ecosystems,
but not in fen or wet tundra ecosystems. The lack of sensitivity may
partly be due to the data quality of water related variables (Dy: is
available in ~50% of our studied 30 sites, and 6 is available in only
~30% of the 30 sites (Table S1)). Another potential reason is the fact
that the sites used in this study all experienced relatively low variation of
Dwt (mean standard deviation is 10.6 cm). Strong seasonal fuctuations
of soil water are more expected at rice paddy or tropical swamp eco-
systems (Jauhiainen et al., 2005; Mezbahuddin et al., 2014), which are
not included in this study. For example, water table depth could vary
~80 cm at a managed rice paddy site in northern California and plays an
important role in driving CH4 emissions during both growing season and
fallow periods (Knox et al., 2016). Although not frequently occurred,
extreme droughts may result in signifcantly different water table at fen
and bog sites that will reduce the methane emission (Brown et al., 2014;
Rinne et al., 2020). However, ML model was trained with majority of the
data to capture non-extreme conditions. In addition, we note that
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several studies reported weak dependencies between Dy and Fcp,
(Jackowicz-Korczynski et al., 2010; Rinne et al., 2007; Rinne et al.,
2018). Given the limitations in sites and water-related data availability,
our results highlight the need for more eddy covariance and ancillary
measurements in bog, fen, marsh, and wet tundra ecosystems, particu-
larly measurements under long-term drying and rewetting conditions, or
experiencing natural fooding and water table Ffuctuation. These ob-
servations will facilitate a more complete picture of how various factors
affect wetland CH,4 emissions within these wetland ecosystems.

4.2. Causal relationships inform model evaluation and development

In addition to commonly used model evaluation metrics (e.g., MAE
and R), causal inference provided additional metrics to evaluate and
benchmark models in terms of internal causal structures. Causal re-
lationships may also help select process-based models with model causal
structures similar to those in observations. In this analysis, we found that
methane ML models can achieve comparable performance even though
they have diverse causal relationships. We visualized variable impor-
tance within LSTM and causal-LSTM models and validated the modeled
relationships against observed causal relationships identifed by transfer
entropy analysis (Fig. 4). The feature importance of causal-LSTM and
LSTM were calculated according to attention weight statistics (Guo
et al., 2019b; Li et al., 2020) and the feature importance derived from
RFE (Guyon etal., 2002; Meyer et al., 2019) of 20 repeated experimental
results, respectively, and were both normalized to 0~1. We found that
LSTM mainly used dependencies from wind, atmospheric pressure, soil
and air temperature, and total ecosystem respiration to estimate Fcy,,
which were different from those inferred from observations and
causal-LSTM (Fig. 4). The feature importance in the causal-LSTM model
is much more consistent with observations, confrming the effectiveness
of the causality constraints.

The inferred causal relationships from biological and environmental
variables on CH4 emissions vary across different wetland types and time
windows. Our results show that soil temperature dominantly controls
Fch, inwet tundra, while biotic variables along with soil temperature co-
dominate Fcy, in fens, bogs, and marshes. The different controls imply
that different ecosystems need to be considered separately in machine
learning model development (Turetsky et al., 2014). Also for each
wetland ecosystem, the responses of Fcy, rely on processes with short
time lags (e.g., CH4 transport, microbial activity) and long time lags (e.g.,
fne-root turnover). Integrating both short and long causal relationships
may also improve model performance.
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Fig. 4. Comparison of feature importance in (a) LSTM, (b) causal-LSTM, and
(c) observations. Colors show the corresponding normalized feature importance
that is normalized between 0 and 1, with higher value indicating
higher importance.
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4.3. Implications of considering causal relationships in CH, emission
projections

Our results, in line with previous studies, suggest that data-driven
ML models may accurately reproduce observations with the wrong
reasons (Pearl, 2019; Reichstein et al., 2019; Runge et al., 2019a). The
different causal relationships built within predictive models are criti-
cally important for climate change projections, since the responses of
CH4 emissions to climate change strongly depend on the strength of the
underlying causal relationships. Thus we hypothesized that although
both LSTM and causal-LSTM performed reasonably well under
present-day conditions, their predictions under warming climate could
differ due to their differences in internal functional relationships, or
altered combinations of forcing mechanisms. To test this hypothesis, we
conducted a theoretical soil warming experiment (+1 °C) at all sites
through modeling. We acknowledged that more complex changes can
occur in a real soil warming experiment (e.g., soil drying caused by
warming) (Pries et al., 2017). However, this simple soil warming
experiment isolates impacts from other environmental or biological
variables and focuses only on the temperature effect.

For each wetland type, we calculated the mean change in Fcy, due to
soil warming across all site years. We defned response ratio to warming
by percentage change of Fcy, under warmed and controlled conditions.
Large differences between the LSTM and causal-LSTM existed in
response to warming, especially for bogs (4.9% vs 21.8%) and fens
(2.7% vs 10.1%) (Fig. 5). The differences in causal-LSTM predictions are
signifcantly larger than those of LSTM for bog, fen, marsh and wet
tundra sites (p < 0.05; Table S12). Overall, the LSTM model estimated
lower methane emission in response to warming than causal-LSTM
model, primarily due to the less important role of soil temperature in
its internal model functions (Fig. 4a). Therefore, this work highlights the
importance of considering causal relationships in modeling CH4 emis-
sions under a changing climate. We advocate the use of these types of
causal relationship constraints for other ecosystem variables calculated
through machine learning approaches (e.g., FLUXNET-MTE GPP (Jung
et al., 2011)). In addition, causality constrained ML models could serve
as surrogate modules for effcient parameterization and high accuracy
prediction, especially for processes that lack theoretical understanding
and mathematical model structures.

5. Conclusions

Based on in situ eddy covariance measurements of daily CH4 emis-
sions (Fch,) at 30 eddy covariance sites in bog, fen, marsh, and wet
tundra wetlands, we found consistent causal regulations from soil tem-
perature on Fcn, using a transfer entropy approach. We also confrmed
important causal relationships with ecosystem respiration (RECO) and
gross primary production at bog, fen, and marsh wetlands. The transfer
entropy approach explicitly excludes confounding variables and there-
fore reduces the possibility that the observed causal relationship be-
tween Fcy,and RECO or GPP was due to covariation with other
environmental drivers, such as temperature (Chu et al., 2014; Knox
et al., 2019). We then developed a predictive model that integrated the
transfer entropy inferred causal relationships for Fcy, simulations. The
causality constrained model outperformed other baseline ML models in
terms of accuracy (relative MAE and R); more importantly, we demon-
strated that including underlying causal relationships in predicting Fcp,
under a 1°C soil warming could differ by up to a factor of 4, compared
with traditional ML models. Our results highlighted that those causal
relationships can be used to benchmark, evaluate, and improve wetland
methane emission models. Our proposed causality constrained model
could beneft large-scale upscaling, data gap-flling, and surrogate
modeling of wetland CH,4 emissions within earth system land models.
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