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Abstract

Learning the underlying equation from data is a fundamental problem in many
disciplines. Recent advances rely on Neural Networks (NNs) but do not provide
theoretical guarantees in obtaining the exact equations owing to the non-convexity
of NNs. In this paper, we propose Convex Neural Symbolic Learning (CONSOLE)
to seek convexity under mild conditions. The main idea is to decompose the
recovering process into two steps and convexify each step. In the first step of
searching for right symbols, we convexify the deep Q-learning. The key is to
maintain double convexity for both the negative Q-function and the negative reward
function in each iteration, leading to provable convexity of the negative optimal Q
function to learn the true symbol connections. Conditioned on the exact searching
result, we construct a Locally-Convex equation Learner (LOCAL) neural network
to convexify the estimation of symbol coefficients. With such a design, we quantify
a large region with strict convexity in the loss surface of LOCAL for commonly
used physical functions. Finally, we demonstrate the superior performance of the
CONSOLE framework over the state-of-the-art on a diverse set of datasets.

1 Introduction
Identifying the underlying mathematical expressions from data plays a key role in multiple domains.
For example, scientific discovery naturally requires learning analytical solutions to fit data. Engi-
neering systems also need to frequently re-estimate system equations due to events, maintenance,
upgrading, and new constructions [1], etc. In general, the problem, known as Symbolic Regres-
sion (SR) [2], learns the underlying equations y = g(x) constructed via certain symbols, where x
and y represent the input/output vector of the equations. If successfully learned, the equation can
enjoy many important properties like high interpretability and generalizability, which will in turn
significantly benefit scientific understanding and engineering planning, monitoring, and control.

Promising as it might be, SR is NP-hard [3, 4]. Mathematically, one can cast SR as an optimization
problem over both discrete variables to select symbols and continuous variables to represent the
symbol coefficients. Traditional solutions employ evolutionary algorithms like Genetic Programming
(GP) [5]. These methods start from an initial set of expressions and continue evolving via operations
like crossover or mutation. With fitness measures, GP-based algorithms can evaluate and select the
best equations. However, these methods have poor scalability and limited theoretical guarantees [3].

More recent SR studies leverage Neural Networks (NNs) with high representational power. For the
NN-based SR, we mainly categorize them into two groups based on the roles of the NNs. The first
group employs NNs to directly model the equations, where sparsity of the NN weights is enforced to
select symbols [6–10]. Thus, the problem is transformed into training the designed NN with sparsity
regularization. However, due to the non-convexity of NNs, the weight selection and updating can be
easily stuck in local optima, failing to find the exact equations.

The second group employs NNs to search the symbol connections, and non-linear optimizations like
BFGS [11] can be employed to estimate symbol coefficients. For the searching procedure, [3, 12–14]
leverage a Recursive Neural Network (RNN) as a policy network to iteratively generate optimal

36th Conference on Neural Information Processing Systems (NeurIPS 2022).



actions that can select and connect symbols. [15] employs large-scale pre-training to directly map
from data to the symbolic equations. While these methods restrict the utilization of NNs in the
search phase, the non-convexity of NNs can still suffer the risk of sub-optimal decisions to formulate
equations. To mitigate this issue, some efforts have been made such as risk-seeking policy gradient to
find the best equations [3], restricting the searching space via domain knowledge [16] and entropy
regularization [13], and re-initialization [13], etc. However, they have limited theoretical guarantees.

In this paper, we propose Convex Neural Symbolic Learning (CONSOLE) with convexity under
moderate conditions. To our best knowledge, we are the first to provide provable guarantees to learn
the exact equations. In general, we decompose the SR problem into two sub-problems and seek
convexity, respectively. In the first problem of searching symbols, we propose a double-convexified
deep Q-learning to maintain the convexity of negative Q-function and negative reward functions
with continuous action variables. Specifically, we use the Input Convex Neural Network (ICNN)
[17] to represent both the negative Q-function and the negative reward function in each iteration.
Subsequently, we prove that such a design (1) guarantees an optimal action selection at each step
and (2) ensures the negative optimal Q-function, if successfully found, to be convex. Therefore, the
convex negative optimal Q-function can yield global optimal decisions of equation constructions.

In the second problem of coefficient estimation, we use the search result to build a Locally-Convex
Equation Learner (LOCAL) neural network. The key insight is that if the search result is correct,
the loss surface of LOCAL has local regions that contain the global optima and has strict convexity.
Moreover, we quantify the local regions and show the range of the region is large under mild
assumptions. Therefore, initializations based on prior knowledge can often lie in the convex region,
bringing the accurate coefficient estimation. Finally, we demonstrate that our CONSOLE outperforms
state-of-the-art methods on a diverse set of datasets.

2 Related Work
Symbolic regression using neural networks. In addition to the review in the Introduction, there are
studies treating NNs as a data augmentation tool to create high-quality data for SR [18, 2].

Neural architecture search. Searching the connections of LOCAL falls into the area of Neural
Architecture Search (NAS). NAS tries to find an optimal architecture of a target NN with the best
performance [19]. The searching algorithms can be divided into RL-based, evolutionary algorithm-
based, sequential optimization-based, and gradient descent-based methods. For RL-based methods,
[20] employs an RNN model to sample the architecture and utilizes the accuracy of the sampled
network as the reward. [21] uses tabular Q-learning to find the connections of a target NN. However,
tabular Q-learning can hardly be applicable when the state and action spaces are large, e.g., SR
problem. The evolutionary algorithm employs methods such as GP [22] and tournament selection [23].
However, these methods may lack the scalability for SR problem [3]. The sequential optimization-
based method is more scalable as the model complexity increases in a sequential manner [24]. Finally,
the gradient descent-based method [25] builds a large and over-parameterized network to search and
train. Then, regularizations like dropout are added to find the best connections. However, for these
methods, the theoretical guarantees remain opaque for SR problem.

Global optimum in neural networks. Many studies have been conducted to seek global optimality
in NNs, and they can be categorized into finding global optima for weights or input variables. The
weight optimization is directly linked to finding symbol coefficients in LOCAL. Specifically, [26]
investigates a single hidden layer with unbounded neurons and non-Euclidean regularization. The
authors show the training can be done via convex optimization problems. [27] considers finite neurons
and develops a novel duality theory to train two-layer NNs with convexity. [28] establishes a strong
result that every local optimum is a global optimum for deep non-linear networks under several
assumptions. [29] eliminates these assumptions and finds that with weight decay regularization
(e.g., l2 norm), the loss function of NN with ReLU activations is piece-wise strongly convex in local
regions. However, LOCAL doesn’t fit the above conditions. The second group of input variable
optimization can help search for optimal inputs. [17] proposes ICNN such that the output of ICNN is
convex in input variables. The key of ICNN is to restrict some weights and activation functions to
preserve convexity. ICNN facilitates to design a convexified search algorithm.

3 Convex Neural Symbolic Learning

3.1 LOCAL to Hierarchically Represent the Equations and Learn Symbol Coefficients
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SR problem can be decomposed into searching the symbol connections and estimating the symbol
coefficients. The link of these two sub-problems is a proper representation of the underlying equation
with unknown structures and weights. Then, we need to search the structures and estimate the weights.
We utilize a neural network to represent the multi-input multi-output equations due to the efficiency
[6]. We prove in Theorem 3 that under mild conditions and given correct structures of the NN, there
are local regions in the loss surface with strict convexity. Thus, we name our NN as Locally Convex
Equation Learner (LOCAL).

Figure 1: An example of LOCAL structure and the state transition calculation.
LOCAL should have the capacity to represent the true equation. We assume the underlying equation
y = g(x) follows compositionality and smoothness assumptions in [2], which are often the case
in physics and many other scientific applications. Then, we build LOCAL that can be trained via
input/output pairs {xi,yi}Ni=1, where xi ∈ X and yi ∈ Y are the ith samples and N is the number
of data. X and Y are the input and output data spaces, respectively. By the compositionality, we
propose to hierarchically map x to y with correct symbols. Fig. 1 shows an example of the LOCAL
structure. Specifically, each input entry first goes through the activation functions from a symbol
library Φ. For example, in Fig. 1, we denote Φ = {x, x2, cos(wx)} to correspond with three neurons
from top to bottom in the dotted black box, where w is a learnable weight. As for weights of x and
x2, they only need to appear in the later summation layer. Then, some activation outputs will be
selected as multipliers for the multiplication. Subsequently, the multiplied outputs are selected and
summed together. The repetition of symbolic activation, multiplication, and summation formulates
final equations. For instance, the LOCAL structure in Fig. 1 can correctly represents y1 and y2 shown
on the top right of Fig. 1.

The layer-wise connectivity and the weights of LOCAL are optimization variables for the SR problem.
Mathematically, we denote Zk ∈ {0, 1}nk×nk+1 and W k ∈ Rnk×nk+1 as the indicator and weight
matrix between the kth and the (k + 1)th layer of the LOCAL, respectively. nk is the number of
neurons for the kth layers. Zk[i, j] = 1 indicates that the connection exists between the ith neuron
in the kth layer and the jth neuron in the (k + 1)th layer, where Zk[i, j] is the (i, j)th entry of
Zk. We assume there are (K + 1) layers in LOCAL and denote hk ∈ Rnk to be the output of
the kth layer. Naturally, we have h0 = x and hK = ŷ, where ŷ is the output of LOCAL. For
the symbolic activation or summation layer, we have hk+1 = ZT

k ◦ W T
k hk, where ◦ represents

the Hadamard product and helps to zero out some connections. For the multiplication layer, we
have hk+1[j] =

∏
Zk[i,j]=1 hk[i] with no weight matrix involved. In general, we denote LOCAL as

f(x; {Zk}K−1
k=0 , {W k}K−1

k=0 ). The search algorithm identifies {Zk}K−1
k=0 and the estimation process

learns the corresponding weights in {W k}K−1
k=0 using {xi,yi}Ni=1.

3.2 Search LOCAL Structures with Double Convex Deep Q-Learning

State and action definitions in the search process. To search the structure of LOCAL, we treat the
status of each layer of LOCAL as a state and the connections between layers, i.e., Zk in LOCAL, as
actions. Specifically, we denote ak ∈ {0, 1}na as the kth action vector where ak[(i− 1)nk + j] = 1
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implies that the connection ij exists for the ith neuron in the kth layer and the jth neuron in
the (k + 1)th layer. na = max{nknk+1}K−1

k=0 is the dimensionality of the action space. Also,
we denote sk ∈ Zns as the state vector to represent the current state for the kth layers, where
ns = max{nk}Kk=0 + 1 is the dimensionality of the state space. More specifically, the state vector
sk is composed of the values for each neuron in the kth layer and an entry of state index k. The
appending of the value k can avoid the duplicate state vectors for different layers. Otherwise, the
duplicated states may exist and require different optimal actions, deteriorating the correct search for
the true structure of LOCAL. To further quantify state vectors, we utilize a linear transformation to
represent the state transition process. ∀0 ≤ k ≤ K − 1, we define

s0 = [1,0]T , sk+1 = (Z
′

k)
Tsk + c =

[
Mat(ak) 0

0 1

]T
sk + c, (1)

where the number of 1s in s0 corresponds to the input dimension. Mat(·) is the operation to reshape
a vector to a matrix, and we utilize 0s for padding to maintain the dimensions. c = [0, 0, · · · , 1]T
is a constant vector to increase the entry of the state index from k to k + 1. We show this linear
state transition is essential to guarantee the convexity of negative optimal Q-function in Theorem
1. For the calculation example of state transition, one can refer to Fig. 1. Then, we can obtain Zk

from Mat(ak) by deleting the filled 0s. Then, the search will always start at s0 and end at sK in one
episode. Thus, we define a trajectory as a sequence of searched state-action pairs for {(sk,ak)}K−1

k=0 .
This trajectory formulates {Zk}K−1

k=0 in the LOCAL function f(x; {Zk}K−1
k=0 , {W k}K−1

k=0 ).

The above states, actions, state transitions, initial state s0, and a discount factor γ can form a
Controlled Markov Process (CMP) [30, 31], which is a Markov Decision Process (MDP) without
a reward function [31]. In the following part, we define our reward function based on an end-of-
trajectory reward [30]. Although the reward function is non-Markov, we prove in Theorem 1 that
under our settings, there exists an optimal Q-function. The proof can be seen in Appendix A.3.

Double convex deep Q-learning to search optimal actions. To optimize over the defined CMP for
optimal actions, we seek certain convexity with provable optimal results. Thus, we propose a double
convex deep Q-learning with the convex negative reward function and negative value function (i.e.,
Q-function). Based on Bellman equations [32], this design will ensure the convexity of the negative
optimal Q-function and global optimal solutions. More proof details can be referred to Theorem 1
and Appendix A.3.

Specifically, we utilize an Input Convex Neural Network (s) [17] to model the reward function
−R(sk,ak) such that −R(sk,ak) is convex in states and actions. −R(sk,ak) requires proper
training to do the correct evaluation. In the tth episode, we collect the tth trajectory sample
{(stk,at

k)}
K−1
k=0 . Then, the output can be defined as the end-of-trajectory reward to evaluate the

obtained LOCAL which is denoted as ft(x;Wt), where Wt is the weight set of LOCAL. Basically,
we utilize gradient method (e.g., Adam [33]) to train ft(x;Wt) and obtain the optimal set of weights
W ∗

t for the tth episode of LOCAL by minimizing the Mean Square Error (MSE). Then, we can
calculate the Normalized Root-Mean-Square Error (NRMSE) [3] of the trained ft(x;W

∗) such that

NRMSEt =
1
σy

√
1
N

∑N
i=1(yi − ft

(
xi;W ∗

t )
)2

, where σy is the standard deviation of the outputs.
The output of the reward function can be calculated as Rt = 1

1+NRMSEt
. Therefore, we can train

−R(·) using {{stk,at
k}

K−1
k=0 ,−Rt}.

Although training R(·) utilizes the samples of discrete states and actions, we aim to solve the
continuous convex optimization for optimal sequential decisions. Thus, we first show that R(·) can
be defined over the continuous action space. By definitions of the discrete actions, we restrict the
continuous action space in a hypercube conv({0, 1}na), i.e., a convex hull of the discrete actions.
Then, the discrete actions are the endpoints of the hypercube. Notably, it is doable to utilize a
continuous convex function to fit these endpoints with end-of-trajectory rewards. Especially, the
strictly minimal reward value −Rt only lies in the endpoint that guarantees the correct structure
of LOCAL. Therefore, one can utilize piece-wise linear functions with convexity to represent R(·)
over conv({0, 1}na) and ensure one endpoint has the minimal value. The piece-wise linearity can be
achieved via using ReLu activations to R(·).
With the defined continuous action space, we utilize another ICNN to represent −Q(sk, ãk) such
that −Q(sk, ãk) is convex in the continuous action ãk ∈ conv({0, 1}na) given fixed sk. To update
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Q values, we have the following iterative computations based on the temporal difference [21]:

Qt+1(sk, ãk) = Qt(sk, ãk) + α
(
R(sk, ãk) + γmax

ã
Qt(sk+1, ã)−Qt(sk, ãk)

)
, (2)

where Qt(sk, ãk) is the Q value at the tth episode for state sk and action ãk. α and γ are pre-defined
learning rate and discount factor, respectively. Therefore, one can solve a convex optimization
problem maxa Qt(sk+1, ã) to obtain the (approximately) global optimal action for Equation (2) in
each iteration. Thus, the optimization problem is:

ã∗ = argmin
ã

−Q(s, ã), ã ∈ conv({0, 1}na). (3)

Based on [17], this convex optimization problem can be solved via a bundle entropy method. After
obtaining a continuous solution ã∗, we discretize it to a discrete vector a∗ to build LOCAL. One
simple method is to enforce a∗[i] = 1 if ã∗[i] ≥ 0.5, and otherwise a∗[i] = 0. Thus, both
Q(sk, ãk) and Q(sk,ak) can be trained using Equation (2). Practically, we introduce ϵ-greedy
strategy [34], experience replay [35] and a target Q-network [36] to update Q-function, thus boosting
the convergence to the optimal Q-function. The overview of our framework is in Appendix A.1,
Algorithm 1. The specific algorithm is in Appendix A.2, Algorithm 2. Finally, by Theorems 1-2, the
discrete optimal actions can generate the correct structures of LOCAL and exact equations.

Symbolic static and dynamic constraints. Constraints can be added to accelerate the search process
[3, 2]. For example, in Algorithm 2, we propose a constraint checking program for the state-action
pairs to avoid the invalid search, suitable for arbitrary restrictions. Then, we emphasize a general
type of constraint, symbolic constraint, for the SR problem. The symbolic static constraint requires
that each equation contains only a subset of symbols. For example, the equation y1 = x1x2 · · ·x100

shouldn’t exist since it is too complicated for real-world systems. This constraint eliminates part of
the action space and can be checked by counting the number of 1s in the action vector. The symbolic
dynamic constraint can gradually reduce the search space based on symbol correlations. Specifically,
we investigate the (K − 1)th layer’s neurons that are linearly summed to form the equation. If
some of these neurons have strong linear correlations to the output neuron (e.g., Pearson correlation
coefficient larger than 0.99), they should be kept subsequently. Namely, we can maintain the path
from input neurons to the neurons to be kept and reduce the search space.

4 Theoretical Analysis
We employ explorations, experience replay, and a target Q-network to boost the convergence to the
optimal Q function. However, our extra requirement of the convex shape for the negative Q-function
may deteriorate the convergence performance. Thus, we first prove that in CONSOLE, the negative
optimal Q-function is also convex so that the convex design doesn’t affect the convergence. Then, we
prove that the convexity of the negative optimal Q-function eventually yields the exact equations.

Theorem 1. ∀0 ≤ k ≤ K − 1, the negative optimal Q-function −Q∗(sk, ãk) in the proposed
CONSOLE framework exists and is convex in sk and ãk, where sk is the discrete state and ãk is the
continuous action at the kth stage.

The proof can be seen in Appendix A.3. Based on the convexity of negative optimal Q-function,
the optimal sequence of states (s0, s∗1, · · · , s∗K) and actions (a∗

0,a
∗
1, · · · ,a∗

K−1) can be found via
solving the convex optimization problem. Then, we have the following theorem.

Theorem 2. Let f∗(·;W ) denote the LOCAL constructed by the optimal sequences of states
(s0, s

∗
1, · · · , s∗K) and actions (a∗

0,a
∗
1, · · · ,a∗

K−1) from −Q∗(·), where W is the set of weights
of f∗(·;W ). If f∗(·;W ) can be trained with noiseless datasets and the training can achieve the
global optimal weights W ∗, f∗(·;W ∗) can be simplified to the true equation g(·).

For the optimal search structure of LOCAL, i.e., f∗(·;W ), the optimal weight set W ∗ is also trained
via gradient method like Adam [33]. The proof can be seen in Appendix A.4. Theorem 2 requires
that LOCAL can learn the global optimal weights. The requirement is generally hard to achieve due
to the non-linearity and non-convexity of LOCAL. However, we show that with mild assumptions,
there are local regions in the LOCAL loss surface with strict convexity. Then, if we have proper
initializations, the gradient-based weight updating can find the global optimum. Specifically, we have
the following theorem.
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Theorem 3. Assume the following conditions hold: (1) the equation g(x) is C2 smooth and has
bounded second derivatives with respect to weights, (2) ∃x ∈ X , g(x) has non-zero gradients with
respect to weights, (3) the structure of LOCAL is correctly searched to exactly represent symbols
and symbol connections in g(x), and (4) the training dataset of LOCAL is noiseless. Then, for the
MSE loss surface of LOCAL, each global optimal point has a strictly convex local region.

The proofs can be seen in Appendix A.5. Note that Assumptions 1-2 easily hold for common physical
equations in nature [2]. Assumption 3 relies on the search algorithm, and we show, both theoretically
and numerically, that our double convex deep Q-learning has good performances. Assumption 4
relies on the quality of data and we focus on the noiseless data in this paper. What’s more, Equation
(6) in the proof suggests that if the absolute noise values are small, the locally convex region still
exists. We also numerically prove CONSOLE is robust under certain noise levels in Section 5.5. To
summarize, these assumptions are acceptable. To quantify the range of the local region for a LOCAL
with a certain complexity, we have the following theorem.

Theorem 4. Suppose Assumptions 1-4 in Theorem 3 hold. For a LOCAL with one symbolic
activation, multiplication, and summation layer, the set of local convex regions with global optima is

U = {W
∣∣∣ ∣∣ d

dt

∣∣
t=0

ŷ(xi,W+tX)
∣∣2

η
∣∣ d
dt

∣∣
t=0

ŷ(xj ,W+tX)
∣∣ > |ŷ(xk,W )− yk|}, where notations are defined in the proof.

The proofs can be seen in Appendix A.6. We explain the region range is large for a stable system that
satisfies all assumptions in Theorem 4.

Physical interpretations of the convex region size. Physical systems in scientific and engineering
domains have certain stability that can withstand parameter changes to some extent. Further, this
ability should hold for arbitrary x ∈ X and y ∈ Y . Thus, we can assume d

dt

∣∣
t=0

ŷ(xi,W + tX) ≈
d
dt

∣∣
t=0

ŷ(xj ,W + tX) ≈ d
dt

∣∣
t=0

ŷ(xk,W + tX) for xi,xj ,xk ∈ X . Then, the inequality in set U
can be approximately rewritten as 1

η > ||w −w∗||2, where w and w∗ are the vectorized W and W ∗,
respectively. Namely, the distance between any point W in the region to the global optimal point
W ∗ in the region is bounded by 1

η . Based on Equation (19), η is the bound of the ratio of second
derivative to the first derivative. For a stable system, this ratio should be small. Otherwise, the system
can easily crash with a small parameter disturbance. Thus, 1

η is relatively large and so is the region
of U . An example of the range is displayed in Section 5.2. Finally, the above analysis also holds
when the LOCAL of the system equation has more than one symbolic activation, multiplication, and
summation layers. This is because Equation (20) always holds as long as we can find a η to bound
the ratio of the second derivative to the first derivative, which is irrelevant to the structure of LOCAL.

5 Experiments
5.1 Settings

Datasets. We use the following datasets for testing. (1) Synthetic datasets. We create two datasets,
Syn1 and Syn2, for testing. Syn1 has the following equations: y1 = 3x2

1 cos(2.5x2), y2 = 4x1x3,
and y3 = 3x2

3. Syn2 is more complex with the following equations y1 =
√
2.2x1x2 + x1x

2
2,

y2 = sin(1.8x1)
(
log(3x2)+

√
x3

)
, y3 =

√
3.7x3 log(1.6x1)+x2

1. For the training data, each input
variable is randomly sampled from a uniform distribution of U(1, 2) to avoid invalid values like
log(0). Totally, we create 2, 000 samples for training. Then, in the test phase, we utilize another
2, 000 samples whose input variables are sampled from U(3, 4). The symbolic activation pools are
{x, x2, cos(x)} and {

√
x, x, x2, log(x), sin(x)} for Syn1 and Syn2, respectively. (2) Power system

dataset. Power flow equation determines the operations of electric systems [37]. For node i in an M -
node system, the equation can be written as pi =

∑|M |
m=1 Gim(uium + vivm) +Bim(vium − uivm)

and qi =
∑M

m=1 Gim(vium−uivm)−Bim(vium−uivm), where ui and vi are the real and imaginary
components of the voltage phasor at node i. pi and qi are the active and reactive power at node i. Gim

and Bim represent the physical parameters of line im. If line im does not exist, Gim = Bim = 0.
Therefore, we can treat x = [u1, v1, · · · , uM , vM ]T and y = [p1, q1, · · · , pM , qM ]T . The target is
to learn the underlying system topology and parameters, which has broad impacts on the power
domains [38]. In this experiment, we implement simulation from a 5-node system using MATPOWER
[39] and two year’s hourly data. The first 8, 760 points are used for training while the remaining
samples are used for testing. The symbolic activation pool is {x}. We denote this dataset as
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Pow. (3) Mass-damper system dataset. Equations of the mass-damper system can be written as:
q̇ = −DRD⊤M−1q, where q̇ is a vector of momenta, D is the incidence matrix of the system, R
is the diagonal matrix of the damping coefficients for each line of the system, and M is the diagonal
matrix of each node mass of the system. Thus, we can set y = q̇ and x = q and the goal is to
learn the parameter matrix −DRD⊤M−1. We conduct the simulation via MATLAB for a 10-node
system and obtain 6, 000 points for 1min simulation with a step size to be 0.01s. The first 3, 000
samples are used for training while the rest samples are used for testing. The symbolic activation
pool is {x}. Then, we denote the dataset as Mas.

Benchmark methods. The following benchmark methods are utilized. (1) Deep Symbolic Regression
(DSR) [3]. DSR develops an RNN-based framework to search the expression tree. Especially, the
risk-seeking policy gradient is utilized to seek the best performance. Then, BFGS [11] can solve the
non-linear optimization and estimate the symbol coefficients. (2) Vanilla Policy Gradient (VPG) [3].
VPG is a vanilla version of DSR with a normal policy gradient rather than the risk-seeking method.
(3) Equation Learner (EQL) [6, 7]. EQL creates an end-to-end NN to select symbols and estimate
the coefficients. The sparse regularization is enforced for the NN weights to search symbols. (4)
Multilayer Perceptron (MLP). We also employ a standard MLP to learn the regression from x to y.
We only evaluate the extrapolation capacity of MLP in the test dataset. For DSR, VPG, and EQL
methods, based on the input datasets, we adjust the symbol and operator library to enable the same
searching space as CONSOLE for fair comparisons. We run the benchmark methods 5 times with
different random seeds and present their best results. As for our method, we only run 1 time and
obtain good results due to the convex design and the ϵ-greedy strategy.

Metrics for evaluation. We employ the following metrics. (1) Average coefficient estimation percent-
age error Ec. For an equation with H symbols, We calculate the error as Ec =

1
H

∑
h PE(wh, ŵh),

where wh and ŵh represents the true and the estimated coefficients for the hth symbol, respectively.
PE is the operation to calculate the percentage error. If there is no matched symbol for the hth true
symbol, we denote PE(wh, ŵh) = 100%. Note that when calculating Ec, proper simplifications may
be needed. For example, cos

(
2.5(

√
x)2

)
= cos(2.5x). (2) NRMSE in the test dataset. We measure

the extrapolation capacity in the test dataset and utilize NRMSE employed in Section 3.2. Finally,
the hyper-parameter settings can be seen in Appendix A.7.

Figure 2: Illustrations of convex mechanisms using a toy example.

5.2 Verification and 3-D Visualization of Convex Mechanisms

We first utilize a toy example to verify the benefits of convex designs for two sub problems.
Specifically, we consider to learn y1 = 3x2

1 cos(2.5x2) with the loss function L =
∑N

i (yi[1] −
w1xi[1]

2 cos(w2xi[2])
2, where the data sample notations are defined in Section 3.1. As shown in

Fig. 2a, we design a 4-layer LOCAL with two learnable parameters w1 and w2 to represent the
coefficients. Thus, in the search phase, the goal is to identify the action a1. We plot −Qt(·) when
t = 1, 5, 10 in Fig. 2b. The convexity always exists so that the algorithm can quickly find the global
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optimal solutions in red dots. Next, as the agent update Q values with true rewards, the Q-function
converges to the optimal function within 10 episodes. Finally, the convex −Q∗(·) remains unchanged
and can bring the optimal action and the true equation, which supports Theorem 2.

Subsequently, we plot the loss surface of L in Fig. 2c. We find that around the two global optima
(3, 2.5) and (3,−2.5), there are convex regions that have an approximate quadratic shape. To further
quantify the range for proper initialization, we vary the initial weight w0 ∈ {−10,−9, · · · , 10} for
w1 and w2 in LOCAL. Fig. 2 reports the final training loss with respect to different w0, and we find
the safe range for initialization is [−3, 7] \ {0}. This range is relatively large when compared to the
optimal values. These observations support our Theorems 3 and 4. Finally, w0 = 0 does not work
since ∂L

∂w2

∣∣
w2=0

= 0 always holds, which prevents the weight updating using gradient methods.

Table 1: The learned equations for Syn1 and Syn2.
CONSOLE DSR

Syn1
y1 = 3x2

1 cos(2.5x2)
y2 = 3.999x1x3

y3 = 3x2
3 cos(0.005x1)

y1 = 0.905x2 + 3.88 cos(2.48x2) + 1.74x2
1 cos(1.98x1)

y2 = 4.02x1x3

y3 = 3x2
3

Syn2
y1 = 1.48

√
x1x2 + 1.00x1x

2
2

y2 = sin(1.8x1)
(
log(2.999x2) + 0.999

√
x3

)
y3 = 1.933

√
x3 log(1.598x1) + 1.002x2

1

y1 = 1.223
√
x1x2 + 0.181x1 log(x3) + 0.925x1x

2
2

y2 = sin(1.633x1) log(2.965x2)
+0.874 sin(1.723x1)

√
x3

y3 = 2.081
√
x3x2 + 1.045x2

1

VPG EQL

Syn1

y1 = −0.364x2
1 cos(1.56x3)

+4.707x2 + 0.854x2
2 cos(1.98x1)

y2 = 3.293x2 + 0.554 cos(2.82x2)
y3 = 3x3

3

y1 = 0.23x1 + 0.021x2
3 + 0.283x3

y2 = 0.03x1x3 + 0.488x1

+0.045x2
3 + 0.6x3

y3 = 0.366x1 + 0.03x2
3 + 0.45x3

Syn2

y1 = 1.462 log(x1)x2 + 0.830x1x
2
2

y2 = sin(1.220x1) log(3.024x2)
+0.248 sin(1.454x1)x

2
2 + 0.567 sin(1.56x3)

y3 = 2.081
√
x3x2 + 1.045x2

1

y1 = 0.44x2 + 0.2x2
1 + 0.14x1x

2
2 + 0.45x1x2

+0.51x1 + 0.24x2
2 + 0.55x2 + 0.705

y2 = 0.018x2
1 + 0.012x1x

2
2 + 0.0636

y3 = 0.383x2 + 0.357x3 + 0.31x1x2 + 0.487

5.3 Convexity Guarantees of CONSOLE to Learn Correct Equations

In this subsection, we report the results of the equation learning. First, we list the learned equations
for Syn1 and Syn2 in Table 1. Table 1 presents that CONSOLE has the best performance in most of
the equations while DSR ranks second. In particular, CONSOLE can accurately learn all equations in
Syn1 and Syn2. The superior performance is mostly due to the convex design of the search and the
coefficient estimation process with provable guarantees. In addition, we observe that for the result
of CONSOLE in learning y3 of Syn1, we have 3x2

3 cos(0.005x1) ≈ 3x2
3. This shows that there is a

possibility that the search result of CONSOLE might not be optimal (i.e., an extra consine term exists
but is close to 1), but the learned equation is still highly accurate. Such an observation nonetheless
guides further study of the coupling relationship between the search and the estimation procedures.

(a) The average percentage error Ec(%) of coefficients. (b) NRMSE of test datasets.

Figure 3: Results of equation learning for different methods and datasets.

DSR doesn’t perform well when the underlying equation is relatively complex, e.g., y1 in Syn1 and y1
and y2 in Syn2. This is because DSR may still fall into a local optimal solution despite risk-seeking
policy design. VPG method performs worse than DSR since VPG considers an expected reward [3].
Finally, EQL performs the worst as it merges the symbol search and the coefficient estimation in one
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NN model, which provides few guarantees of accurate learning. The above observations and analyses
are consistent with the result of coefficient estimation errors and prediction errors in Fig. 3a and 3b.
For the Pow and Mas, CONSOLE doesn’t learn completely exact equations within T = 600 episodes.
This is because they have a large number of variables to be considered. However, CONSOLE is still
better than other methods.

5.4 Ablation Study: Exploration and Convex Search are Essential
We conduct an ablation study to further understand what factors are important in the CONSOLE.
We test the result with Syn1 and Syn1 and report the Ec(%) values. Specifically, we investigate the
following cases. (1) No ablation. (2) Drop exploration in deep Q-learning. We delete the ϵ-greedy
strategy. (3) Drop double-convex deep-Q learning. We replace this design with a traditional deep-Q
learning. (4) Drop coefficient estimation using LOCAL. After learning the structure of LOCAL, we
reformulate a non-linear optimization and utilize BFGS [11] in DSR, instead of gradient descent in
LOCAL, to estimate the coefficient. (5) Drop static symbolic constraint. (6) Drop dynamic symbolic
constraint. These two constraints are mentioned in Section 3.2. Then, Fig. 4 shows that cases (2) and
(3) cause large errors. For case (2), if no exploration strategy is added, the updating of the Q-function
and the reward function is slow. For case (3), the non-convex search induces many sub-optimal
actions in the search process. Thus, these two cases cause a slow search process and significant errors
after T = 600 episodes. For symbolic constraints in (5) and (6), removing them increases the error
for Syn2 and Syn1, respectively. This shows these constraints are beneficial to the search process.
Finally, we find that utilizing BFGS in (4) can bring good results with initialization in the locally
convex region. Since the non-linear optimization has the same loss surface as LOCAL, the locally
convex region in Theorems 3 and 4 can prove the good performance of BFGS.

Figure 4: Ec(%) of ablation study.
(a) Ec(%) w.r.t. SNRs. (b) Ec(%) w.r.t. data volumes.

Figure 5: Ec(%) of sensitivity analysis.

5.5 CONSOLE is Robust with Changing Noise Levels and Data Volume
We utilize Syn1 and Syn2 to examine the robustness of the framework with changing noise
levels and data volumes. For the noise level, we consider the Signal-to-Noise Ratio (SNR)
such that SNR ∈ {80, 90, 100, 110, 120}. For the data volume, we fix SNR = 100 and vary
N ∈ {500, 1000, 1500, 2000, 2500}. Fig. 5a and 5b demonstrate the results. We find that when
SNR ≥ 100, the error can be less than 1%. This noise level is suitable to real-word systems. For
example, SNR = 125 for electric measurements [38]. For the data volume, the overall error is less
than 1.5% when N ≥ 500, which shows a robust performance of CONSOLE.

6 Conclusions and Future Work
In this paper, we propose CONSOLE, a novel Convex Neural Symbolic Learning method, which
enjoys convexity with certain conditions to tackle Symbolic Regression with guaranteed performances.
Specifically, we convexify the search problem by proposing a double convex deep-Q learning. In the
meantime, we prove the local and strict convexity of the coefficient estimation in our Locally-Convex
equation Learner (LOCAL). To our best knowledge, CONSOLE is the first method that provides
guarantees with reasonable assumptions to learn exact equations. Besides, CONSOLE has, at a
minimum, a broader impact on the following domains. (1) Convex control for physical systems using
Reinforcement Learning. (2) Neural networks in engineering applications with local convexity.
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A Appendix

A.1 Model Overview with Pseudo Codes

In this subsection, we provide a high-level summary of our framework for better understanding. We
present the summary in the form of pseudo codes, shown in Algorithm 1.

Algorithm 1 The Overview of the Proposed Framework.

Input: Training dataset {xi,yi}Ni=1.
Step 1: Design LOCAL. LOCAL has repeated blocks of symbolic activation, multiplication, and
summation layers. For example, Fig. 1 presents a LOCAL with 2 blocks.
Step 2: Denote LOCAL Function. LOCAL represents the map f(x; {Zk}K−1

k=0 , {W k}K−1
k=0 )

from x to y. With global optimal solutions of Zk and W k, f(x) can be simplified to the true
equation g(x).
while LOCAL does not have the optimal performance do

Step 3: Search LOCAL Structure.
Step 3.1: Model the Search Process. Build the CMP and the reward function R(·) based on

states and actions defined over LOCAL. Formulate a sequential optimization.
Step 3.2: Solve the Optimization. Utilize the proposed double convex Q-learning to find

optimal actions. Generate a search result of {Zk}K−1
k=0 .

Step 4: Estimate LOCAL Parameters. Train the searched LOCAL by minimizing the MSE
via Adam. Estimate values in {W k}K−1

k=0 .
Step 5: Evaluate the Search and Estimation Results. The results can formulate ft(x) for

the tth episode. Calculate the end-of-trajectory reward Rt to evaluate ft(x).
Output: LOCAL with the best performance and the corresponding equations.

A.2 Training Algorithm for CONSOLE.

The training algorithm can be seen in Algorithm 2.

A.3 Proofs of Theorem 1

Theorem. ∀0 ≤ k ≤ K − 1, the negative optimal Q-function −Q∗(sk, ãk) in the proposed
CONSOLE framework exists and is convex in sk and ãk, where sk is the discrete state and ãk is the
continuous action at the kth stage.

Proof. First, we show our state transition satisfies the Markov property. Specifically, Equation (1)
in our paper shows that the next state sk+1 equals the matrix multiplication between the current
state sk and the matrix Zk that is a matricization of the current action ak, where k is the index of
the state. Therefore, the state transition satisfies Markov property with the transition probability
P (sk+1|sk,ak) = 1.

Due to the Markov property of the state transition, we define our search process as Controlled Markov
Process (CMP) [31, 30]. By the CMP definition [30], our CMP is composed of our state, action, state
transition probability, a discounter factor γ, and a start state (i.e., s0 in Equation (1)). In general,
CMP is a Markov Decision Process (MDP) without a reward function [31].

For one CMP, Trajectory Ordering (TO) ranks trajectories of state action pairs [31]. In our paper,
we define the trajectory from (s0,a0) to (sK−1,aK−1) for K-layer LOCAL. Then, our reward
function R(·) realizes a TO for our defined trajectories [31] since the ordering of trajectories can be
determined by R(·). More specifically, R(·) is trained with the end-of-trajectory reward Rt for the
tth trajectory in our paper and can rank trajectories. A reward bundle is an automation-like structure
to produce rewards for a CMP [30]. By Corollary 2 of [30], there exists a reward bundle for our
defined CMP and TO realized by R(·).
We pair our CMP with the reward bundle to form a Split Partially Observable MDP (Split-POMDP)
[30]. Then, by Proposition 1 and Corollary 1 in [30], our Split-POMDP will always have an optimal
deterministic policy that only depends on states in our CMP. By the proof of Proposition 1 in [30],
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Algorithm 2 CONSOLE: Convex Neural Symbolic Learning

Input: Training dataset {xi,yi}Ni=1.
Initialize: LOCAL layer number K, initial state s0 = [1,0]T , discount factor γ ∈ (0, 1), ϵ for
ϵ-greedy strategy, λ as a threshold to stop searching, ICNN for reward function −R(s,a), ICNN
for Q-function −Q(s,a), replay buffer B = ∅, maximum episode T , target network Q

′
(·) = Q(·),

and target network update interval T0.
while t ≤ T do

while k ≤ K do
Solve Optimization in Equation (3) with −Q(stk,a) to obtain ã∗

k.
Use ϵ-greedy to select ãt

k from ã∗
k and a random action. ▷ ϵ-greedy strategy.

Discretize ãt
k to obtain at

k.
Execute at

k and use Equation (1) to obtain skk+1.
Check if at

k and skk+1 satisfy certain constraints. Otherwise, delete this state transition and
restart the iteration from stk. ▷ Constraint checking.

Formulate LOCAL, train LOCAL with {xi,yi}Ni=1, and calculate Rt.
Train the reward function −R(·) using training data {{stk,at

k}
K−1
k=0 ,−Rt}.

∀0 ≤ k ≤ K, insert (stk,a
t
k, s

t
k+1, Rt) and (stk, ã

t
k, s

t
k+1, R(stk, ã

t
k)) to B0.

Sample a random minibatch B0 ⊂ B
for (sm,am, sm+1, Rm) ∈ B0 do ▷ Experience replay.

Solve Optimization in Equation (3) with −Q
′
(sm+1,a) to obtain ãm+1.

ym = Rm + γQ
′
(sm,am).

Train Q(·) using training data {sm+1,am+1, ym}m, where {sm+1,am+1}m are the input and
{ym}m are the output.

if t mod T0 = 0 then
Q

′
(·) = Q(·) ▷ Update target Q-network.

if |Rt − 1| ≤ λ then
End the search process.

Output: LOCAL with the best performance and the corresponding equations.

the optimal policy optimizes the value function over states in CMP. Further, the value function is
an evaluation of trajectories for our TO by the proof in Corollary 2 in [30]. Additionally, our TO is
realized by our proposed reward function R(·). Therefore, the optimal Q-function exists for our CMP
and our proposed R(·).
Then, we consider the Bellman Equation of Q∗(·):

−Q∗(sk, ãk) = −E[R(sk, ãk) + γmax
a

Q∗(sk+1, ã)] = −R(sk, ãk)− γmax
ã

Q∗(sk+1, ã), (4)

where the second equality holds since our state transitions are deterministic by Equation (1). We
prove the convexity from the induction method. When k = K − 1, the (k + 1)th state is the terminal
state without action selections. Thus, we have

−Q∗(sK−1, ãK−1) = −R(sK−1, ãK−1).

Since −R(·) is an ICNN and is convex in input, −Q∗(sK−1, ãK−1) is convex in sK−1 and ãK−1.

When 0 ≤ k < K − 1 and assume −Q∗(sk+1, ãk+1) is convex in sk+1 and ãk+1, we have
−maxã Q∗(sk+1, ã) = minã −Q∗(sk+1, ã) is convex in sk+1 given the fixed optimal action. Let
H denote the Hessian matrix of minã −Q∗(sk+1, ã) with respect to sk+1. Due to the convexity,
H is positive semi-definite. Thus, by Equation (1) and the chain rule, the Hessian matrix of
minã −Q∗(sk+1, ã) with respect to sk can be written as:

H
′
= (Z

′

k)
THZ

′

k.

H
′

is also positive semi-definite. Therefore, minã −Q∗(sk+1, ã) is convex in sk. Since −R(sk, ãk)
is convex in sk, −Q∗(sk, ãk) is convex in sk.
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Similarly, vectorizing the state transition equation can give:

sk+1 = (sTk
⊗

Ins
)a

′

k,

where Ins
is the ns × ns identity matrix and

⊗
is the Kronecker product. a

′

k = [(ak)
T ,0]T is the

concatenation of the discrete action ak and a zero vector to maintain the fixed dimensionality of
action vectors. With similar proofs based on the Hessian matrix and the fact that −Q∗(sk+1, ãk) is
convex in sk+1, we have minã −Q∗(sk+1, ã) is convex in a

′

k and also ak. Subsequently, arbitrary
ãk ∈ conv({0, 1}na) can be written as a convex combination of the discrete actions ak. Thus,
minã −Q∗(sk+1, ã) is convex in ãk. Since −R(sk, ãk) is convex in ãk, −Q∗(sk, ãk) is convex in
ãk. Eventually, −Q∗(sk, ãk) is convex in sk and ãk, which concludes the proof. ■

A.4 Proofs of Theorem 2

Theorem. Let f∗(·;W ) denote the LOCAL constructed by the optimal sequences of states
(s0, s

∗
1, · · · , s∗K) and actions (a∗

0,a
∗
1, · · · ,a∗

K−1) from −Q∗(·), where W is the set of weights
of f∗(·;W ). If f∗(·;W ) can be trained with noiseless datasets and the training can achieve the
global optimal weights W ∗, f∗(·;W ∗) can be simplified to the true equation g(·).

Proof. If f∗(·;W ) can’t represent the exact equations, there are two cases: (1) the structure of
f∗(·;W ) is correct to represent the equations, but the learned weights W ∗ don’t represent the
symbol coefficients, and (2) the structure of f∗(·;W ) can’t represent the equations. Case (1) doesn’t
hold since we assume W ∗ is the global optimal weights for noiseless data. If case (2) holds,
∃0 ≤ j ≤ K − 1, b∗j = minãj

−Q∗(sj , ãj) and b∗j doesn’t represent the symbol connections in the
underlying equations. Further, we assume ∀0 ≤ i < j, a∗

i = minãi
−Q(si, ãi) and a∗

i represents
the true connections.

If j = K − 1, Equation (4) implies that ã∗
j = minãj

−Q∗(sj , ãj) = argminã −R(sj , ã). Since
−R(sj , ã) is convex in ã, we know the discrete version of ã∗

j , namely a∗
j , represents the true

connection of the last layer for the underlying equations. Otherwise, the reward is not maximized.
However, by definition of b∗j , b∗j ̸= a∗

j .

If j < K − 1, Equation (4) implies:

min
ãj

−Q∗(sj , ãj) = min
ãj

−R(sj , ãj) + γmin
ãj

min
ãj+1

−R
(
sj+1(ãj), ãj+1

)
+ · · ·+ γK−1−j min

ãj

· · · min
ãK−1

−R(sK−1(ãj , · · · , ãK−2), ãK−1).
(5)

By definition of b∗j , b∗j is not the solution of Equation (5). This is because b∗j can’t achieve the
minimum value for each summation term on the right hand side of Equation (5), according to the
convexity of the reward function. In general, b∗j ̸= minãj

−Q∗(sj , ãj), which contradicts the
definition of b∗j . Thus, b∗j doesn’t exist. Therefore, case (2) doesn’t hold and f∗(·;W ∗) represents
the exact equations. ■

A.5 Proofs of Theorem 3

Theorem. Assume the following conditions hold: (1) the equation g(x) is C2 smooth and has
bounded second derivatives with respect to weights, (2) ∃x ∈ X , g(x) has non-zero gradients with
respect to weights, (3) the structure of LOCAL is correctly searched to exactly represent symbols
and symbol connections in g(x), and (4) the training dataset of LOCAL is noiseless. Then, for the
MSE loss surface of LOCAL, each global optimal point has a strictly convex local region.

Proof. To simplify the proof, we consider scalar output of the LOCAL, i.e., one equation, and the
proof can be easily extended to the multi-output case. We follow the idea of [29] to study the second
derivative of LOCAL with perturbations. Let ŷ(x,W ) denote the LOCAL with input to be x and the
weight set to be W . Let X be a perturbation direction of W and t be a small step size. For the ith

noiseless instance (xi, yi), we denote e(xi,W + tX) = ŷ(xi,W + tX)− yi. Obviously, the loss
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function can be written as L(W + tX) = 1
2N

∑N
i=1(e(xi,W + tX))2. Then, we can calculate the

second-order derivative based on the chain rule:

d2

dt2
∣∣
t=0

L(W + tX) =
1

N

d

dt

∣∣
t=0

N∑
i=1

e(xi,W + tX)
d

dt
ŷ(xi,W + tX),

=
1

N

N∑
i=1

( d

dt

∣∣
t=0

ŷ(xi,W + tX)
)2

+ e(xi,W )
d2

dt2
∣∣
t=0

ŷ(xi,W + tX).

(6)

Next, we denote the global optimal solution to be W ∗. Based on the Assumptions (3)

and (4), ∀i, ŷ(xi,W
∗) = g(xi) = yi. Therefore, we have d2

dt2

∣∣
t=0

L(W ∗ + tX) =
1
N

∑N
i=1

(
d
dt

∣∣
t=0

ŷ(xi,W
∗)
)2

> 0, where the inequality strictly holds. This is because by As-
sumptions (3), ŷ(x,W ∗) can be mathematically simplified to obtain g(x). Then, by Assumption (2),
1
N

∑N
i=1

(
d
dt

∣∣
t=0

ŷ(xi,W
∗)
)2

> 0. Finally, by Assumption (1) and (3), d2

dt2

∣∣
t=0

ŷ(xi,W + tX) is

bounded and there is a local region around W ∗ such that d2

dt2

∣∣
t=0

L(W + tX) > 0, which concludes
the proof. ■

A.6 Proofs of Theorem 4

Theorem. Suppose Assumptions 1-4 in Theorem 3 hold. For a LOCAL with one symbolic activation,
multiplication, and summation layer, the set of local convex regions with global optima is U =

{W
∣∣∣ ∣∣ d

dt

∣∣
t=0

ŷ(xi,W+tX)
∣∣2

η
∣∣ d
dt

∣∣
t=0

ŷ(xj ,W+tX)
∣∣ > |ŷ(xk,W )− yk|}, where notations are defined in the proof.

Proof. For the target LOCAL, we similarly consider the scalar output and write the function analyti-
cally:

ŷ(x,W ) = W T
1 Ψ

(
Φ(W T

0 x)
)
, (7)

where W 0 ∈ Rn0×n1 is the weight matrix for activation, Φ : Rn1 → Rn1 represents the activation
with symbol functions like x2, cos(x), and log(x), etc. Ψ : Rn1 → Rn2 is the function to select
some activated neurons for multiplications, and W 1 ∈ Rn2×n3 (n3 = 1) represents the weight for
summation. We rewrite Equation (7) with the help of exponential and logarithm mappings.

ŷ(x,W ) = W T
1 exp

(
ST log

(
Φ(W T

0 x)
))

, (8)

where S ∈ Rn1×n2 represents a selection matrix such that S[i, j] = 1 if and only if the ith neuron
is selected as the multiplicative factor for the jth neuron in the multiplication layer. Given the
fixed structure of ŷ(·) from the deep Q-learning, S is a known matrix. log(·) and exp(·) represent
the element-wise logarithm and exponential functions. Notably, the corresponding element in
Φ(W T

0 x) should be positive in Equation (8). If there are negative entries, one can utilize W T
1 s ◦

exp

(
ST log

(
|Φ(W T

0 x)|
))

to take place of the right hand side term in Equation (8), where s[i] =

(−1)n
i
− and 0 ≤ ni

− ≤ n1 represents the number of negative entries selected for the ith neuron of
the multiplication layer. ◦ represents the Hadamard product. However, both expressions have the
same values and gradients. Thus, we utilize Equation (8) in later derivations.

Then, let X be a perturbation direction such that X = {X0,X1}. Thus, for a small step t, we have:

ŷ(x,W + tX) = (W 1 + tX1)
T exp

(
ST log

(
Φ((W 0 + tX0)

Tx)
))

. (9)
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Based on Equation (9), we can compute:

d

dt
ŷ(xi,W + tX) = XT

1 exp

(
ST log

(
Φ((W 0 + tX0)

Txi)
))

+ (W 1 + tX1)
T

[
exp

(
ST log

(
Φ((W 0 + tX0)

Txi)
))

◦ ST 1

Φ((W 0 + tX0)Txi)
◦ Φ

′
((W 0 + tX0)

Txi) ◦XT
0 xi

]
,

(10)

where 1
Φ((W 0+tX0)Txi)

∈ Rn1 is the element-wise division and Φ
′

is the element-wise first derivative

of Φ
′
. Without special notifications, we assume all the division for vectors is element-wise in the

following derivations. Then, we denote

u(xi,W + tX) = exp

(
ST log

(
Φ((W 0 + tX0)

Txi)
))

,

v(xi,W + tX) = ST 1

Φ((W 0 + tX0)Txi)
◦ Φ

′
((W 0 + tX0)

Txi) ◦XT
0 xi,

w(xi,W + tX) = ST 1

Φ′((W 0 + tX0)Txi)
◦ Φ

′′
((W 0 + tX0)

Txi) ◦XT
0 xi.

(11)

With above definitions, we can calculate:

d

dt

∣∣
t=0

ŷ(xi,W + tX) = XT
1 u(xi,W ) +W T

1

[
u(xi,W ) ◦ v(xi,W )

]
. (12)

Further, we calculate the second derivative based on Equation (10) and the fact that element-wise
operations for vectors are commutative:

d

dt2
ŷ(xi,W + tX) = XT

1

[
u(xi,W + tX) ◦ v(xi,W + tX)

]
+XT

1

[
u(xi,W + tX) ◦ v(xi,W + tX)

]
+ (W 1 + tX1)

T
[
u(xi,W + tX) ◦ v(xi,W + tX) ◦ v(xi,W + tX)

]
− (W 1 + tX1)

T
[
u(xi,W + tX) ◦ v(xi,W + tX) ◦ v(xi,W + tX)

]
+ (W 1 + tX1)

T
[
u(xi,W + tX) ◦ v(xi,W + tX) ◦w(xi,W + tX)

]
,

(13)

When t → 0, we have:

d

dt2
∣∣
t=0

ŷ(xi,W + tX) = 2XT
1

[
u(xi,W ) ◦ v(xi,W )

]
+W T

1

[
u(xi,W ) ◦ v(xi,W ) ◦w(xi,W )

]
(14)

The above equation can reflect the relationship between the second and the first derivative. However,
we first identify the inequality between these two derivatives to enable a strictly convex region.

Let ŷ
′

= [ ddt
∣∣
t=0

ŷ(x1,W + tX), · · · , d
dt

∣∣
t=0

ŷ(xN ,W + tX)]T , ŷ
′′

= [ d
dt2

∣∣
t=0

ŷ(x1,W +

tX), · · · , d
dt2

∣∣
t=0

ŷ(xN ,W + tX)]T , and e = [e(x1,W ), · · · , e(xN ,W )]T . Equation (6) implies
that:

d2

dt2
∣∣
t=0

L(W + tX) =
1

N
(||ŷ

′
||22 + eT ŷ

′′
)

≥ 1

N
(||ŷ

′
||22 − ||e||2||ŷ

′′
||2)

(15)

To find a region to restrict the convexity, we restrict the lower bound of the second derivative to be
positive and compute:

||e||2 <
||ŷ

′
||22

||ŷ′′ ||2
(16)
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The right hand side of Equation (16) can be easily bounded by:

||ŷ
′
||22

||ŷ′′ ||2
≥

√
N min(|ŷ

′
|)2

max(|ŷ′′ |)
=

√
N
∣∣ d
dt

∣∣
t=0

ŷ(xi,W + tX)
∣∣2∣∣ d

dt2

∣∣
t=0

ŷ(xj ,W + tX)
∣∣ , (17)

where |·| for a vector is to calculate the absolute value for each element of the vector, i = argmin(|ŷ
′
|)

and j = argmax(|ŷ
′′
|). Namely, we consider a sufficient condition for convexity.

√
N
∣∣ d
dt

∣∣
t=0

ŷ(xi,W + tX)
∣∣2∣∣ d

dt2

∣∣
t=0

ŷ(xj ,W + tX)
∣∣ > ||e||2 (18)

Next, Equation (14) indicates that:∣∣ d

dt2
∣∣
t=0

ŷ(xj ,W + tX)
∣∣ = ∣∣∣∣XT

1

[
u(xj ,W ) ◦ 2v(xj ,W )

]
+W T

1

[
u(xj ,W ) ◦ v(xj ,W ) ◦w(xj ,W )

]∣∣∣∣
≤ η

(∣∣∣∣XT
1 u(xj ,W ) +W T

1

[
u(xj ,W ) ◦ v(xj ,W )

]∣∣∣∣)
= η

∣∣ d
dt

∣∣
t=0

ŷ(xj ,W + tX)
∣∣,

(19)
where η is a positive constant. Note that η < ∞ by Assumptions (1) and (2) in Theorem 3. Therefore,
we have the following sufficient condition to make d2

dt2

∣∣
t=0

L(W + tX) > 0 always hold.
√
N
∣∣ d
dt

∣∣
t=0

ŷ(xi,W + tX)
∣∣2

η
∣∣ d
dt

∣∣
t=0

ŷ(xj ,W + tX)
∣∣ >

√
N |ŷ(xk,W )− yk| ≥ ||e||2, (20)

where k = argmax(|e|). The above equation leads to a set U of local regions that have strong
convexity. Namely,

U = {W
∣∣∣ ∣∣ d

dt

∣∣
t=0

ŷ(xi,W + tX)
∣∣2

η
∣∣ d
dt

∣∣
t=0

ŷ(xj ,W + tX)
∣∣ > |ŷ(xk,W )− yk|}. (21)

Clearly, the global optimal solution W ∗ ∈ U since ŷ(xk,W
∗) − yk = 0. Note that there may be

multiple global optimal solutions of the loss minimization in LOCAL. Thus, U is the set of local
convex regions that contain global optima. This implies that for each W ∗ ∈ U , we can find a locally
and strictly convex region U∗ = U ∩B(r), where B(r) = ||w −w∗||2 ≤ r is a norm ball and we
vectorize W and W ∗ to obtain w and w∗, respectively. Subsequently, range r can be set relatively
large such that U∗ ⊂ B(r) and U∗∗ ∩ B(r) = ∅, where U∗∗ is the local region for another global
optimal point W ∗∗ if it exists. Then, the range for U∗ still depends on the inequality in Equation
(21). ■

A.7 Implementing details of CONSOLE

Hyper-parameters of CONSOLE exist for both the double convex deep Q-learning and the LOCAL.
In the deep Q-learning, we set γ = 0.2, ϵ = 0.4, T = 600, λ = 10−2, T0 = 10 for Algorithm 2.
Furthermore, to train the negative Q-function and the reward function, we set the learning rate to be
5× 10−3 and the number of epochs for training to be 50. Then, we set the batch size for the negative
Q-function to be 100. If the number of data in the replay buffer is less than 100, no training happens
for the negative Q-function. Additionally, all the data gathered in one episode are used to train the
negative reward function. As for the LOCAL, we set K = 3, the learning rate to be 1× 10−2 and
the number of training epochs to be 8. We make these training epochs to be small since training the
LOCAL is the most time-consuming part of CONSOLE. Furthermore, if the structure of LOCAL is
correctly searched, a small number of iterations can help LOCAL to gain the global optimal weights.
Finally, we initialize all trainable weights in LOCAL to be 1. The following results show that a
relatively large area is suitable for an initial guess of LOCAL.
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