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T w o- di m e nsi o n al p + i p s u p er c o n d u ct ors a n d s u p er fl ui ds ar e s yst e ms t h at f e at ur e c hir al b e h a vi or

e m er gi n g fr o m t h e  C o o p er p airi n g of el e ctr o ns or n e utr al f er mi o ni c at o ms  wit h n o n z er o a n g ul ar  m o m e n-

t u m.  T h eir r e ali z ati o n h as b e e n a l o n gst a n di n g g o al b e c a us e t h e y o ff er gr e at p ot e nti al utilit y f or q u a nt u m

c o m p ut ati o n a n d  m e m or y.  H o w e v er, t h e y h a v e s o f ar el u d e d e x p eri m e nt al o bs er v ati o n b ot h i n s oli d-st at e

s yst e ms as  w ell as i n ultr a c ol d q u a nt u m g as es.  H er e,  w e pr o p os e t o l e v er a g e t h e tr e m e n d o us c o ntr ol o ff er e d

b y r ot ati n g t w o- di m e nsi o n al tr a p p e d-i o n cr yst als i n a P e n ni n g tr a p t o si m ul at e t h e d y n a mi c al p h as es

of t w o- di m e nsi o n al p + i p s u p er fl ui ds.  T his is a c c o m plis h e d b y  m a p pi n g t h e pr es e n c e or a bs e n c e of a

C o o p er p air i nt o a n e ff e cti v e s pi n- 1/ 2 s yst e m e n c o d e d i n t h e i o ns’ el e ctr o ni c l e v els.  We s h o w h o w t o i nf er

t h e t o p ol o gi c al pr o p erti es of t h e d y n a mi c al p h as es, a n d dis c uss t h e r ol e of b e y o n d  m e a n- fi el d c orr e cti o ns.

M or e br o a dl y, o ur  w or k o p e ns t h e d o or t o us e tr a p p e d-i o n s yst e ms t o e x pl or e e x oti c  m o d els of t o p ol o gi c al

s u p er c o n d u cti vit y a n d als o p a v es t h e  w a y t o g e n er at e a n d  m a ni p ul at e s k yr mi o ni c s pi n t e xt ur es i n t h es e

pl atf or ms.

D OI: 1 0. 1 1 0 3/ P R X Q u a nt u m. 3. 0 4 0 3 2 4

I. I N T R O D U C TI O N

T h e o bs er v ati o n a n d cl assi fi c ati o n of d y n a mi c al b e h a v-
i ors i n q u a nt u m  m a n y- b o d y s yst e ms c o nstit ut e a c or e
mil est o n e i n q u a nt u m s ci e n c e.  O n e f as ci n ati n g a n d pr o mis-
i n g p ar a di g m c o m pris es t h e d y n a mi c al p h as es pr e di ct e d
t o e m er g e fr o m q u e n c h es of s u p er c o n d u ct ors a n d s u p er-
fl ui ds [ 1 – 3 ], s yst e ms t h at f e at ur e  C o o p er p airi n g of
el e ctr o ns or n e utr al f er mi o ni c at o ms. I n p arti c ul ar, t o p o-
l o gi c al p + i p B ar d e e n- C o o p er- S c hri e ff er ( B C S) s u p er-
c o n d u ct ors (i n c h ar g e d el e ctr o ns) or s u p er fl ui ds (i n n e utr al
at o ms) —s yst e ms t h at f e at ur e n o ntri vi al t o p ol o gi c al pr o p-
erti es [ 4 ] a n d g a pl ess, c hir al e d g e st at es t h at cir c ul at e

* at hr e y as @iis c. a c.i n
† ar e y @jil a u 1. c ol or a d o. e d u

P u blis h e d b y t h e  A m eri c a n  P h ysi c al S o ci et y u n d er t h e t er ms of
t h e Cr e ati v e  C o m m o ns  Attri b uti o n 4. 0 I nt er n ati o n al li c e ns e.  F ur-
t h er distri b uti o n of t his  w or k  m ust  m ai nt ai n attri b uti o n t o t h e
a ut h or(s) a n d t h e p u blis h e d arti cl e’s titl e, j o ur n al cit ati o n, a n d
D OI.

ar o u n d t h e b o u n d ar y — ar e es p e ci all y e x citi n g gi v e n t h eir
p ot e nti al us e f or t o p ol o gi c al q u a nt u m c o m p ut ati o n.

D es pit e i nt e nsi v e t h e or eti c al e ff orts, p + i p s u p er fl ui ds
h a v e el u d e d e x p eri m e nt al o bs er v ati o n,  wit h t h e o nl y c o n-
fir m e d r e ali z ati o n b ei n g t h e  A p h as e of 3 H e,  w hi c h ir o ni-
c all y is o n e of t h e ol d est- k n o w n s u p er fl ui ds b ut is als o h ar d
t o c o ntr ol a n d  m a ni p ul at e.  T h e r e ali z ati o n of p + i p s u p er-
fl ui ds i n ultr a c ol d f er mi o ni c q u a nt u m g as es,  w hi c h ar e
c urr e ntl y t h e l e a di n g pl atf or m f or q u a nt u m si m ul ati o n of
c orr el at e d  m att er, h as als o pr o v e d t o b e di ffi c ult.  T h e r e a-
s o n is t h at, i n s pit e of all t h e attr a cti v e f e at ur es of ultr a c ol d
q u a nt u m g as es, t h e c o ntr ol a n d  m a ni p ul ati o n of p - w a v e
i nt er a cti o ns i n t h es e s yst e ms h as r e m ai n e d a c h all e n g e
si n c e p - w a v e i nt er a cti o ns ar e  w e a k u n d er st a n d ar d c o n di-
ti o ns a n d r e q uir e F es h b a c h r es o n a n c es t o e n h a n c e t h e m.
T h e l att er u nf ort u n at el y i ntr o d u c e str o n g t hr e e- b o d y pr o-
c ess es t h at  m a k e t h e g as u nst a bl e a n d d estr o y t h e d esir e d
p airi n g pr o c ess es [ 5 – 8 ], alt h o u g h s c h e m es cir c u m v e nti n g
t his pr o bl e m h a v e b e e n pr o p os e d [9 – 1 1 ].  T h e or y pr o p os als
h a v e als o s u g g est e d t h e o bs er v ati o n of t o p ol o gi c al s u p er-
fl ui ds b y s u d d e nl y bri n gi n g  w e a kl y i nt er a cti n g at o ms cl os e
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t o a F es h b a c h r es o n a n c e [1 2 ], b ut t o d at e e x p eri m e nt al
e ff orts r e m ai n u ns u c c essf ul.

I n t h e pr es e nt  w or k,  w e pr o p os e a p at h w a y t o w ar ds t h e
o bs er v ati o n of n o n e q uili bri u m d y n a mi c al p h as es of t o p o-
l o gi c al p + i p s u p er fl ui ds b y usi n g a t w o- di m e nsi o n al ( 2 D)
cr yst al of i o ns i n a P e n ni n g tr a p.  T his pl atf or m o ff ers a
hi g h d e gr e e of c o ntr ol a n d fl e xi bilit y i n st at e i niti ali z ati o n,
i nt er a cti o n c o ntr ol, a n d r e a d o ut t h at h a v e b e e n pr e vi o usl y
l e v er a g e d f or t h e s e nsi n g of  w e a k el e ctri c fi el ds a n d f or
t h e si m ul ati o n of q u a nt u m  m a g n ets [1 3 ,1 4 ]. I n t his s ys-
t e m,  w e pr o p os e t o e n c o d e a s pi n- 1/ 2 d e gr e e of fr e e d o m i n
t w o el e ctr o ni c st at es of t h e i o ns,  w hi c h, vi a t h e  A n d ers o n
ps e u d os pi n  m a p pi n g [ 1 5 ], ar e us e d t o si m ul at e t h e pr es-
e n c e or t h e a bs e n c e of a  C o o p er p air.  A cr u ci al a d v a nt a g e
of t his a p pr o a c h is t h at t h e f er mi o ni c d e gr e es of fr e e d o m
ar e e n c o d e d i n a s y nt h eti c i nt er n al di m e nsi o n ( el e ctr o ni c
l e v els) t h at c a n b e c o ol e d d o w n t o a z er o t e m p er at ur e,
p ur e st at e vi a o pti c al p u m pi n g.  T his is i n stri ki n g c o n-
tr ast t o a ct u al f er mi o ni c s yst e ms  w h er e  m oti o n al d e gr e es
of fr e e d o m ar e h ar d t o c o ol d o w n.

O ur pr o p os al t a k es a d v a nt a g e of t h e f a ct t h at t h e i o n
cr yst al i n a P e n ni n g tr a p is r ot ati n g i n t h e l a b fr a m e [ 1 6 ].
T his f e at ur e h as n e v er b ef or e b e e n e x pl oit e d i n t h e c o nt e xt
of q u a nt u m si m ul ati o n a n d, i n f a ct, it is oft e n vi e w e d as
a n i m p e di m e nt, e. g., t o p erf or m si n gl e sit e a d dr essi n g.  We
s h o w t h at b y t u ni n g t h e ori e nt ati o n a n d p ar a m et ers of t h e
l as er b e a ms t h at ar e t y pi c all y us e d t o c o u pl e t h e el e ctr o ni c
a n d  m oti o n al d e gr e es of fr e e d o m of t h e cr yst al,  w e c a n
e n gi n e er c o ntr oll a bl e e ff e cti v e i nt er a cti o ns t h at si m ul at e
t h e  H a milt o ni a n of a p + i p s u p er fl ui d.  T u ni n g t h e l as er
p ar a m et ers als o all o ws us t o (i) pr e p ar e i niti al st at es t h at
r es e m bl e t h e l o w- e n er g y c o n diti o ns of a p - w a v e s u p er-
fl ui d, (ii) c o ntr ol t h e r el ati v e str e n gt h b et w e e n t h e ki n eti c
e n er g y a n d p airi n g i nt er a cti o n t er ms i n or d er t o o bs er v e
t h e t hr e e di ff er e nt  m e a n- fi el d d y n a mi c al p h as es pr e di ct e d
t o e xist i n p + i p s u p er fl ui ds [ 4 ], a n d (iii)  m e as ur e a s u p er-
c o n d u cti n g or d er p ar a m et er f or cl assif yi n g t h e d y n a mi c al
p h as es.  M or e o v er, si n c e st at e- of-t h e- art i o n cr yst als ar e
n ot i n t h e t h er m o d y n a mi c li mit b ut ar e i nst e a d li mit e d t o

5 0 0 i o ns, t h e y n at ur all y o p e n a p at h t o e x pl or e  m o d-
i fi c ati o ns t o t h e n o n e q uili bri u m d y n a mi cs arisi n g fr o m
b e y o n d- m e a n- fi el d e ff e cts.

A k e y a p p e al of p + i p s u p er fl ui ds c o m p ar e d t o or di-
n ar y s u p er fl ui ds is t h e p ossi bilit y of f e at uri n g st at es  wit h
n o ntri vi al t o p ol o gi c al or d er. I n a n or di n ar y s u p er fl ui d or
s u p er c o n d u ct or, t h e  B C S a n d t h e  B E C ( B os e  Ei nst ei n c o n-
d e ns at e) r e gi m es — w hi c h r es p e cti v el y f a v or  w e a kl y b o u n d
C o o p er p airs a n d a  B os e- Ei nst ei n c o n d e ns at e of ti g htl y
b o u n d  m ol e c ul es  m a d e of t w o f er mi o ns — ar e c o nti n u o usl y
c o n n e ct e d a n d ar e o nl y disti n g uis h e d b y t h e str e n gt h of
t h e p airi n g. I n c o ntr ast, t h e t w o r e gi m es e x hi bit di ff er e nt
t o p ol o gi c al b e h a vi ors i n 2 D p + i p s u p er fl ui ds,  wit h a g e n-
ui n e q u a nt u m p h as e tr a nsiti o n s e p ar ati n g t h e t o p ol o gi c all y
n o ntri vi al  B C S p h as e fr o m t h e t o p ol o gi c all y tri vi al  B E C
p h as e i n t h e e q uili bri u m sit u ati o n.  T his f e at ur e e xt e n ds i nt o

t h e n o n e q uili bri u m r e gi m e,  w h er e t h e d y n a mi c al p h as es
e x hi bit a d y n a mi c al t o p ol o gi c al q u a nt u m p h as e tr a nsiti o n
[4 ].  H er e,  w e s h o w h o w t o e n gi n e er b ot h t o p ol o gi c all y
tri vi al a n d n o ntri vi al d y n a mi c al p h as es i n o ur s yst e m a n d
d e m o nstr at e h o w t h eir t o p ol o gi c al c h ar a ct er c a n b e disti n-
g uis h e d b y i nf erri n g a n a p pr o pri at e  wi n di n g n u m b er a n d
a d diti o n all y c o n fir m e d b y  m e as ur e m e nts of t h e e ff e cti v e
C o o p er p air distri b uti o n f u n cti o n.

II.  T W O- DI M E N SI O N A L p + i p S U P E R F L UI D S

We c o nsi d er i d e nti c al f er mi o ns i n t w o di m e nsi o ns,
f or  w hi c h t h e P a uli e x cl usi o n pri n ci pl e f or bi ds s c att er-
i n g i n t h e s- w a v e c h a n n el.  As a r es ult, t h e n e xt hi g h er
a n g ul ar  m o m e nt u m c h a n n el, n a m el y p - w a v e s c att eri n g
(l = 1), d o mi n at es  wit h l > 1 c h a n n els b ei n g n e gli gi bl e
at l o w e n er gi es.  T h e a n g ul ar d e p e n d e n c e of t w o- b o d y
p - w a v e i nt er a cti o ns i n t w o di m e nsi o ns is P l= 1 (c os ξ ) =
c os ξ ,  w h er e t h e P l(x ) ar e  L e g e n dr e p ol y n o mi als a n d ξ is
t h e a n gl e b et w e e n t h e t w o- di m e nsi o n al f er mi o n  m o m e nt a
b ef or e ( q ) a n d aft er (p ) c ollisi o n i n t h e c e nt er- of- m ass
fr a m e. F urt h er m or e, f or a g e n eri c s h ort-r a n g e p ot e nti al,
t h e i nt er a cti o n i n t h e lt h c h a n n el d e p e n ds o n t h e  m a g ni-
t u d e of t h e  m o m e nt a o n l o n g s c al es as p lq l,  w h er e p a n d
q ar e t h e  m a g nit u d es of p a n d q .  T h e a b o v e c o nsi d er-
ati o ns i m pl y t h at t h e si m pl est a n d  m ost n at ur al p - w a v e
i nt er a cti o ns b et w e e n i d e nti c al f er mi o ns i n t w o di m e n-
si o ns ar e pr o p orti o n al t o p · q .  T h er ef or e,  w e arri v e at t h e
H a milt o ni a n

Ĥ =
p

p 2

2 m
ĉ †

p ĉ p −
λ

2 m
k ,p ,q

p · q ĉ
†
k / 2 + p ĉ

†
k / 2 − p ĉ k / 2 − q ĉ k / 2 + q .

( 1)

H er e, m is t h e el e ctr o n  m ass a n d ĉ
†
p , ĉ p ar e f er mi o ni c

cr e ati o n a n d a n ni hil ati o n o p er at ors f or a f er mi o n  wit h
m o m e nt u m p .  T h e first t er m d es cri b es t h e si n gl e- p arti cl e
dis p ersi o n, i. e., t h e ki n eti c e n er g y of f er mi o ns at di ff er e nt
m o m e nt a p .  T h e s e c o n d t er m h as t h e f or m of attr a c-
ti v e  B C S p - w a v e i nt er a cti o ns (λ > 0, di m e nsi o nl ess) [ 1 7 ].
H er e, k d e n ot es t h e c e nt er- of- m ass  m o m e nt u m of a  C o o p er
p air of f er mi o ns,  w hil e ± q a n d ± p r es p e cti v el y d es cri b e
t h e  m o m e nt a of t h es e f er mi o ns i n t h e c e nt er- of- m ass fr a m e
b ef or e a n d aft er t h e c ollisi o n.

I n t h e t h e or y of s u p er c o n d u cti vit y, t h e l o w- e n er g y
p h ysi cs is d et er mi n e d b y  C o o p er p airs  wit h z er o c e nt er- of-
m ass  m o m e nt u m,  w hi c h all o ws us t o r et ai n o nl y t h e k = 0
t er ms i n  E q. ( 1), r es ulti n g i n

Ĥ =
p

p 2

2 m
ĉ †

p ĉ p −
λ

2 m
p ,q

p · q ĉ †
p ĉ

†
− p ĉ − q ĉ q . ( 2)

T his  H a milt o ni a n ass u m es t h at  C o o p er p airs ar e o nl y cr e-
at e d a n d d estr o y e d  wit h z er o c e nt er- of- m ass  m o m e nt u m
a n d n e gl e cts p air- br e a ki n g pr o c ess es.
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U n d er t h es e c o n diti o ns, t h e l o w- e n er g y p h ysi cs c a n b e
m a p p e d o n t o t h e d y n a mi cs of a c oll e cti o n of i nt er a cti n g
s pi n- 1 / 2 s yst e ms vi a t h e  A n d ers o n ps e u d os pi n  m a p pi n g
[1 5 ] t h at i ntr o d u c es s pi n- 1/ 2 o p er at ors at e a c h  m o m e n-
t u m p :

2 ŝ Z
p = ˆ c †

p ĉ p + ˆ c
†
− p ĉ − p − 1,

ŝ +
p = ˆ c †

p ĉ
†
− p , ŝ −

p = ˆ c − p ĉ p . (3 )

H er e, t h e pr es e n c e or a bs e n c e of a  C o o p er p air at  m o m e n-
t u m p c orr es p o n ds t o t h e ei g e nst at es | ↑ p , | ↓ p of ŝ Z

p wit h
ei g e n v al u es ± 1 / 2, r es p e cti v el y, a n d t h e r aisi n g a n d l o w-
eri n g o p er at ors ŝ ±

p d e s cri b e t h e cr e ati o n a n d a n ni hil ati o n
of t his  C o o p er p air. I n t er ms of t h e  A n d ers o n ps e u d os pi n
o p er at ors,  H a milt o ni a n ( 2) c a n b e e x pr ess e d as [ 1 8 ]

Ĥ =
p

p 2

m
ŝ Z
p −

2 λ

m
p ,q

p · q ŝ +
p ŝ −

q . ( 4)

E q u ati o n ( 4) d es cri b es a n all-t o- all i nt er a cti n g s pi n  m o d el.
We n ot e t h at alt h o u g h f er mi o ns i nt er a ct vi a s h ort-r a n g e d
i nt er a cti o ns i n r e al s p a c e, t his s pi n  m o d el d es cri b es t h e
p - w a v e i nt er a cti o ns i n  m o m e nt u m s p a c e,  w h er e t h e i nt er-
a cti o ns ar e all t o all, as d es cri b e d b y  E q. ( 2).

T h e gr o u n d st at e of t h e s pi n  m o d el ( 4) is d o u bl y d e g e n-
er at e: it is eit h er a p x + i py or a p x − i py s u p er fl ui d. It
p oss ess es t h e pr o p ert y t h at t h e s pi n ori e nt ati o n is c orr e-
l at e d  wit h t h e a zi m ut h al a n gl e φ p i n  m o m e nt u m s p a c e,
gi vi n g ris e t o c hir al s pi n t e xt ur es as d e pi ct e d i n Fi g. 1( a) .

T h e gr o u n d st at e br e a ks t h e U (1 ) s y m m etr y of  E q. ( 4)
as all s u p er c o n d u ct ors d o a n d i n t his c as e it als o br e a ks
t h e ti m e-r e v ers al s y m m etr y.  A  wi n di n g n u m b er Q c a n b e
as cri b e d t o t h e s pi n t e xt ur e, b as e d o n  w hi c h t h e st at e c a n
b e cl assi fi e d as b el o n gi n g t o a t o p ol o gi c all y n o ntri vi al  B C S
p h as e ( Q = 1) or a t o p ol o gi c all y tri vi al  B E C p h as e ( Q =
0). P h ysi c all y, ass u mi n g t h at s pi ns at l ar g e  m o m e nt a ar e
al w a ys h el d fi x e d i n | ↓ , t h e s pi n t e xt ur e is t o p ol o gi c all y
n o ntri vi al if t h e c e ntr al s pi n at p = 0 is i n | ↑ ,  w h er e as it
is tri vi al if t his s pi n is i n | ↓ .

T h e q u e n c h d y n a mi cs of p + i p s u p er c o n d u ct ors  w er e
t h e or eti c all y st u di e d [4 ] b y c o nsi d eri n g a c hir al v ari a nt of
t h e s pi n  m o d el ( 4) gi v e n b y

Ĥ =
p

p 2

m
ŝ Z
p −

λ

m
p ,q

p q e − i( φ p − φ q ) ŝ +
p ŝ −

q , ( 5)

w h er e p a n d φ p ar e t h e  m a g nit u d e a n d a zi m ut h al a n gl e
f or t h e 2 D  m o m e nt u m p .  T his  H a milt o ni a n br e a ks ti m e-
r e v ers al s y m m etr y e x pli citl y, a n d pr ef er e nti all y s el e cts t h e
p x − i py o v er p x + i py p airi n g,  w hi c h ar e d e g e n er at e i n t h e
ti m e-r e v ers al-i n v ari a nt  H a milt o ni a n ( 4).  T h e attr a cti v e n ess
of  E q. ( 5) is t h at, u nli k e t h e f ull  H a milt o ni a n ( 4), t h e
i nt er a cti o n is s e p ar a bl e a n d b el o n gs t o t h e cl ass of i nt e-
gr a bl e p airi n g  m o d els t h at d eri v e fr o m  G a u di n al g e br a
[1 9 ], all o wi n g f or a n a n al yti c al s ol uti o n of t h e d y n a mi c al
p h as es.  N e v ert h el ess, b ot h  H a milt o ni a ns p oss ess t h e s a m e
p + i p gr o u n d st at e a n d d y n a mi c al p h as es i n t h e t h er m o-
d y n a mi c li mit [ 4 ]. I n t his  w or k,  w e f o c us o n t h e q u a nt u m
si m ul ati o n of t h e c hir al  m o d el ( 5).

( a) ( b) ( c)

FI G. 1. Pr o bi n g d y n a mi c al p h as es of p + i p s u p er fl ui ds usi n g i o n cr yst als i n P e n ni n g tr a ps. ( a)  T h e f er mi o ni c  m o d el is  m a p p e d
o n t o s pi ns e n c o d e d i n t h e i nt er n al st at es of t h e i o ns,  w h er e s pi n u p ( d o w n) r e pr es e nts t h e pr es e n c e ( a bs e n c e) of a  C o o p er p air
( A n d ers o n ps e u d os pi n  m a p pi n g).  H er e  w e s h o w r e pr es e nt ati v e s pi n t e xt ur es t h at c a n b e e n gi n e er e d f or t h e t o p ol o gi c all y n o ntri vi al
B C S a n d tri vi al  B E C p h as es. ( b)  T h e d y n a mi c al p h as es ar e cl assi fi e d a c c or di n g t o t h e l o n g-ti m e b e h a vi or of t h e  m a g nit u d e of a n or d er
p ar a m et er — p h as e I, | (t)| → 0; p h as e II, | (t)| → n o n z er o c o nst a nt; p h as e III, | (t)| dis pl a ys p ersist e nt os cill ati o ns. ( c) S c h e m ati c
of o ur e x p eri m e nt al pr o p os al. St at e i niti ali z ati o n, p - w a v e i nt er a cti o ns a n d r e a d o ut ar e all a c hi e v e d usi n g a p pr o pri at e p ar a m et ers f or
a p air of o pti c al di p ol e f or c e ( O D F) l as ers a n d a p air of c o pr o p a g ati n g  R a m a n l as ers. I n c o ntr ast t o pri or i m pl e m e nt ati o ns, t h e  O D F
di ff er e n c e  w a v e v e ct or δ k h as b ot h a n o ut- of- pl a n e a n d i n- pl a n e c o m p o n e nt (s e e si d e vi e w).  T h e r es ult is a tilt e d tr a v eli n g- w a v e l atti c e
t h at cr oss es t h e cr yst al pl a n e sli g htl y o bli q u el y a n d t h us c o u pl es t h e i o ns’ el e ctr o ni c d e gr e es of fr e e d o m, t h e o ut- of- pl a n e c e nt er- of-
m ass  m o d e, a n d t h e i n- pl a n e cr yst al r ot ati o n.  T h e s pi n-s p a c e dir e cti o ns Z i n p a n el ( a) a n d Z i n p a n el ( c) ar e r el at e d b y a r ot ati o n, as
dis c uss e d i n S e c. III.
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I n t h e t h er m o d y n a mi c li mit,  w h er e  m e a n- fi el d t h e or y is
e x a ct, t h e d y n a mi cs c a n b e pi ct ur e d as e a c h s pi n pr e c essi n g
a b o ut a l o c al  m a g n eti c fi el d:

d

dt
ŝ p = ŝ p × B p . (6 )

H er e, ŝ p i s t h e e x p e ct ati o n v al u e of t h e s pi n v e ct or at
m o m e nt u m p a n d B p i s t h e l o c al  m a g n eti c fi el d  wit h
c o m p o n e nts

B X
p = − p c os ( φp )R e[ ] − p si n( φp )I m[ ],

B Y
p = p c os ( φp )I m[ ] − p si n( φp )R e[ ],

B Z
p = −

p 2

m
, ( 7)

writt e n i n t er ms of a n or d er p ar a m et er gi v e n b y

(t) = −
2 λ

m
p

p e iφ p ŝ −
p (t) . ( 8)

M e a n- fi el d t h e or y pr e di cts t h e e m er g e n c e of t hr e e d y n a mi-
c al p h as es  w h e n t h e s yst e m is i niti ali z e d i n its gr o u n d st at e
a n d t h e p airi n g str e n gt h λ is q u e n c h e d.  T h e y h a v e b e e n
cl assi fi e d a c c or di n g t o t h e l o n g-ti m e b e h a vi or of | (t)| as
ill ustr at e d i n Fi g. 1( b) ,  w h er e  w e pl ot a di m e nsi o nl ess a n d
n or m ali z e d v ersi o n of t h e or d er p ar a m et er [s e e  E q. ( 1 3)].
I n p h as e I, t h e si n gl e- p arti cl e ki n eti c e n er g y t er m (B Z

p )
d o mi n at es a n d | (t)| → 0. I n p h as es II a n d III i nt er a c-
ti o ns i nst e a d st a bili z e a fi nit e or d er p ar a m et er. I n p h as e II,
| (t)| t e n ds t o a n o n z er o c o nst a nt v al u e,  w hil e i n p h as e III,
als o k n o w n as a s elf- g e n er at e d Fl o q u et p h as e [ 1 ], | (t)|
f e at ur es p ersist e nt os cill ati o ns.

T h e t o p ol o gi c al pr o p erti es of t h e d y n a mi c al p h as es ar e
b est u n d erst o o d i n t er ms of a s e c o n d  wi n di n g n u m b er W ,
w hi c h c a n t a k e o n a n o ntri vi al v al u e of 1 i n p h as es II a n d
III.  Alt h o u g h t his q u a ntit y is f or m all y d e fi n e d i n t er ms
of r et ar d e d si n gl e- p arti cl e  Gr e e n f u n cti o ns [ 4 ], it c a n b e
p h ysi c all y i nt er pr et e d i n p h as e II as t h e  wi n di n g of t h e
m a g n eti c fi el d t e xt ur e i n a n a p pr o pri at e r ot ati n g fr a m e. I n
t h e t h er m o d y n a mi c li mit,  m e a n- fi el d t h e or y pr e di cts t h at
t h e l o n g-ti m e or d er p ar a m et er i n p h as e II c a n b e  writt e n as

(t) = ∞ e − 2 iμ ∞ t, (9 )

w h er e ∞ i s t h e  m a g nit u d e i n t h e li mit t → ∞ a n d μ ∞ i s a
d y n a mi c al c h e mi c al p ot e nti al. I n a fr a m e r ot ati n g at 2 μ ∞ ,
t h e s pi ns pr e c ess u n d er a st ati c e ff e cti v e  m a g n eti c fi el d B p

w h os e t e xt ur e c a n b e a n al o g o us t o t h e s pi n t e xt ur e i n a p +
i p gr o u n d st at e.  T h e  wi n di n g n u m b er W is c o m p ut e d as

W =
1

4 π
d p x d p y B̂ p ·

d B̂ p

d p x
×

d B̂ p

d p y
, ( 1 0)

w h er e B̂ p d e n ot es t h e c orr es p o n di n g u nit v e ct or i n t h e

r ot ati n g fr a m e. I n p arti c ul ar, t h e Z c o m p o n e nt of B p i s

gi v e n b y B
Z

p = B Z
p + 2 μ ∞ ê Z .  W hil e t h e s pi ns at l ar g e

m o m e nt a p → ∞ e x p eri e n c e a fi el d B p ≈ − (p 2 / m ) ê Z t h at
p oi nts d o w n, t h e c e ntr al s pi n at p = 0 is is ol at e d fr o m
t h e ot h er s pi ns a n d e x p eri e n c es a n e ff e cti v e  m a g n eti c
fi el d B 0 = 2 μ ∞ ê Z .  T h er ef or e, t h e  m a g n eti c fi el d t e xt ur e is
B C S-li k e a n d t o p ol o gi c all y n o ntri vi al ( W = 1) f or μ ∞ > 0
(B 0 p oi nti n g u p)  w hil e it is  B E C-li k e a n d t o p ol o gi c all y
tri vi al (W = 0) f or μ ∞ < 0 ( B 0 p oi nti n g d o w n).

III. I M P L E M E N T A TI O N  WI T H  P E N NI N G  T R A P S

We n o w dis c uss h o w t h e s pi n  m o d el ( 5) c a n b e si m ul at e d
wit h i o n cr yst als i n a P e n ni n g tr a p,  w h er e t h e ps e u d os pi n-
1 / 2 s yst e m is e n c o d e d i n t w o l o n g-li v e d h y p er fi n e st at es of
e a c h tr a p p e d i o n. I n t his tr a p, i o ns s elf- or g a ni z e i nt o a pl a-
n ar cr yst al  wit h a n a p pr o xi m at e tri a n g ul ar l atti c e str u ct ur e
u n d er t h e i n fl u e n c e of st ati c tr a p pi n g fi el ds [ 2 0 ].  A n el e c-
tri c q u a dr u p ol e fi el d E a c c o m plis h es a xi al tr a p pi n g a n d
c o n fi n es t h e i o ns t o a si n gl e pl a n e.  T h e a d diti o n of a str o n g
a xi al  m a g n eti c fi el d B l e a ds t o a n E × B drift of t h e i o ns
i n t his pl a n e.  T his r ot ati o n pr o vi d es r a di al c o n fi n e m e nt
a n d t h e c orr es p o n di n g r ot ati o n fr e q u e n c y ω r c a n b e pr e-
cis el y c o ntr oll e d b y a d diti o n al el e ctr o d es.  T h e o ut- of- pl a n e
m oti o n of a cr yst al of N i o ns is d es cri b e d usi n g N n or m al
m o d es of vi br ati o n, c all e d t h e dr u m h e a d  m o d es.  T h e hi g h-
est fr e q u e n c y dr u m h e a d  m o d e is t h e c e nt er- of- m ass ( c. m.)
m o d e  wit h fr e q u e n c y ω 1 ,  w hi c h is  w ell s e p ar at e d fr o m t h e
r est of t h e  m o d es a n d h e n c e c a n b e  w ell r es ol v e d [1 6 ].

I n o ur  m o d eli n g, t h e dr u m h e a d c. m.  m o d e is tr e at e d
q u a nt u m  m e c h a ni c all y a n d d es cri b e d b y b os o ni c cr e ati o n

a n d a n ni hil ati o n o p er at ors â
†
1 , â 1 .  O n t h e ot h er h a n d, t h e

pl a n ar  m oti o n is d o mi n at e d b y t h e cr yst al r ot ati o n, a n d is
h e n c e tr e at e d cl assi c all y  wit h t h e x j a n d y j c o or di n at es of
i o n j u n d er g oi n g u nif or m cir c ul ar  m oti o n at r a di us r j fr o m
t h e tr a p c e nt er,  wit h fr e q u e n c y ω r a n d a zi m ut h al p h as e
o ffs et φ j .

As a first st e p t o r e ali z e  H a milt o ni a n ( 5),  w e e n gi n e er a
J a y n es- C u m mi n gs-t y p e i nt er a cti o n b et w e e n e a c h s pi n a n d
t h e dr u m h e a d c. m.  m o d e,  wit h t h e c o u pli n g d e p e n di n g
o n t h e pl a n ar p ositi o n of t h e i o n as vi e w e d i n t h e cr yst al
r ot ati n g fr a m e.  As  w e e x pl ai n s h ortl y, t h e  H a milt o ni a n  w e
e n gi n e er is gi v e n b y

Ĥ 2 c h =

N

j = 1

B 1 r̃
2
j ŝ

Z
j + δ 1 â

†
1 â 1

−

N

j = 1

G

i
√

N
r̃ j ( ŝ

−
j â

†
1 e

iφ j − ˆa 1 ŝ
+
j e − iφ j ). ( 1 1)

T his  H a milt o ni a n is  writt e n i n a r ot at e d s pi n s p a c e Z ≡
− X , X ≡ Z , Y ≡ Y , a n d ŝ j d e n ot es s pi n o p er at ors i n
t his r ot at e d s p a c e.  H er e, r̃ j = r j / R is t h e r a di al c o or di-
n at e n or m ali z e d t o t h e cr yst al r a di us R , B 1 i s a fr e q u e n c y
c o ntr olli n g t h e dis p ersi o n of t h e s pi ns, δ 1 i s a n e ff e cti v e
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d et u ni n g of t h e c. m.  m o d e fr o m t h e s pi ns, a n d G is a
fr e q u e n c y c o ntr olli n g t h e s pi n- m o d e c o u pli n g str e n gt h. I n
p arti c ul ar, t h e a m plit u d e a n d p h as e of t h e c o u pli n g of s pi n
j t o t h e c. m.  m o d e r es p e cti v el y d e p e n d o n r̃ j a n d φ j .

E q u ati o n ( 1 1) d es cri b es t h e  H a milt o ni a n f or t h e s o-
c all e d t w o- c h a n n el  m o d el of a p - w a v e s u p er c o n d u ct or.
T h e c. m.  m o d e pl a ys t h e r ol e of t h e b os o ni c  m ol e c ul ar
c h a n n el,  w hil e e a c h i o n e n c o d es a n  A n d ers o n ps e u d os pi n
i n its el e ctr o ni c st at es.  H er e, s pi n u p ( d o w n) i n di c at es t h e
pr es e n c e ( a bs e n c e) of a  C o o p er p air.  W hil e t h e  A n d ers o n
ps e u d os pi ns li v e i n a l atti c e i n  m o m e nt u m s p a c e  w h er e t h e
c o or di n at es ar e (p x , p y ), t h e r ol e of  m o m e nt u m is i nst e a d
pl a y e d h er e b y t h e p ositi o n (x j , y j ) of e a c h i o n j i n t h e
cr yst al pl a n e. “ M o m e nt u m ”- d e p e n d e nt r at es a p p e ar i n t h e
si n gl e- p arti cl e a n d i nt er a cti o n t er ms t hr o u g h t h e r a di us r j

a n d t h e p h as e f a ct ors e ± iφ j .
S u bs e q u e ntl y, a n e ff e cti v e s pi n  m o d el c a n b e d eri v e d i n

t h e sit u ati o n  w h e n δ 1 G , B 1 .  Usi n g e ff e cti v e  H a milt o-
ni a n t h e or y [ 2 1 ] a n d ass u mi n g t h at t h e c. m.  m o d e is i n t h e
m oti o n al gr o u n d st at e,  w e o bt ai n t h e o n e- c h a n n el  m o d el
gi v e n b y

Ĥ 1 c h = K
j

r̃ 2
j ŝ

Z
j −

J

N
j = k

r̃ j r̃ k ŝ
+
j ŝ −

k e − i( φj − φ k ) , ( 1 2)

w h er e J = G 2 / δ 1 a n d K = B 1 − J / N .  E q u ati o n ( 1 2) is
ess e nti all y t h e o n e- c h a n n el p - w a v e  H a milt o ni a n ( 5) t h at
w e  wis h t o si m ul at e.  T h e r ati o K / J is a  m e as ur e of t h e
i n v ers e i nt er a cti o n str e n gt h (∼ 1 / λ) si n c e it q u a nti fi es t h e
r el ati v e i m p ort a n c e of t h e ki n eti c e n er g y a n d i nt er a cti o n
t er ms.

We n o w bri e fl y o utli n e h o w  H a milt o ni a n ( 1 1) c a n b e
e n gi n e er e d  w hil e pr es e nti n g t h e d et ail e d d eri v ati o n i n
A p p e n di x A .  C o u pli n g b et w e e n t h e s pi ns a n d t h e cr yst al
m oti o n is e n a bl e d b y t h e a p pli c ati o n of a n o pti c al di p ol e
f or c e ( O D F) t h at gi v es ris e t o s p ati all y d e p e n d e nt a c St ar k
s hifts o n t h e s pi n st at es [ 2 2 ].  T h e  O D F is g e n er at e d b y
t w o tr a v eli n g- w a v e l as ers  wit h di ff er e n c e  w a v e v e ct or k
a n d b e at n ot e fr e q u e n c y μ r . I n t y pi c al a p pli c ati o ns, o nl y
t h e a xi al  m oti o n is c o u pl e d t o t h e s pi n a n d h e n c e k ê z

[1 3 ,1 4 ].  H o w e v er, i n t his  w or k,  w e c o nsi d er t h e k t o h a v e
n o n z er o c o m p o n e nts b ot h al o n g t h e ê z a n d ê x dir e cti o ns
[ Fi g. 1( c) ].  T h e r es ult is a s p ati all y v ar yi n g a c St ar k s hift
t h at d e p e n ds o n b ot h t h e i n- pl a n e a n d o ut- of- pl a n e  m oti o ns
of t h e i o ns, t h er e b y c o u pli n g t h e s pi ns t o t h e  m oti o n al o n g
b ot h t h e dir e cti o ns.  T h e s pi n- m oti o n c o u pli n g str e n gt h G
i n  E q. ( 1 1) c a n b e c o ntr oll e d b y t h e i nt e nsit y of t h e  O D F
b e a ms a n d t h e e ff e cti v e  L a m b- Di c k e p ar a m et ers t h at g o v-
er n t h e c o u pli n g t o t h e o ut- of- pl a n e a n d i n- pl a n e  m oti o ns,
as e x pl ai n e d i n  A p p e n di x A .

A s e c o n d i n gr e di e nt i n o ur pr o p os al c o nsists of a p air
of c o pr o p a g ati n g  R a m a n l as ers t h at dri v es s pi n fli ps  wit h-
o ut c o u pli n g t o t h e  m oti o n.  We ass u m e t h at t h e t w o  R a m a n
l as ers h a v e a n i d e nti c al b ut t u n a bl e b e a m  w aist w , l e a di n g
t o a n e ff e cti v e t w o- p h ot o n  R a bi fr e q u e n c y t h at is r a di all y

v ar yi n g as B (r) = B 0 e
− r 2 / w 2

a n d c orr es p o n di n g  H a milt o-
ni a n Ĥ R a m a n, j = B (r j ) ŝ

X
j . F or w R ,  w h er e R is t h e cr yst al

r a di us,  w e c a n a p pr o xi m at e B (r) ≈ B 0 − B 0 r
2 / w 2 .

T h e r ol e of t h e  R a m a n dri v e is t w of ol d a n d b e c o m es
a p p ar e nt i n t h e r ot at e d s pi n s p a c e (s e e  A p p e n di x A ). First,
t h e s p ati all y h o m o g e n e o us dri v e  wit h str e n gt h B 0 s er v es
t o br e a k t h e s y m m etr y b et w e e n a J a y n es- C u m mi n gs a n d
a n a nti-J a y n es- C u m mi n gs-t y p e i nt er a cti o n of t h e s pi ns a n d
t h e dr u m h e a d c. m.  m o d e t h at aris e d u e t o t h e  O D F.  T h e
J a y n es- C u m mi n gs t er m c a n t h e n b e s el e cti v el y br o u g ht
n e ar r es o n a n c e b y t u ni n g t h e  O D F b e at n ot e fr e q u e n c y t o b e
μ r = B 0 + ω 1 + ω r − δ 1 ,  w h er e δ 1 i s t h e e ff e cti v e d et u ni n g
t h at a p p e ars i n  E q. ( 1 1).  T h e fr e q u e n c y μ r i s t u n e d cl os e t o
ω 1 + ω r (δ 1 , B 0 ω 1 , ω r ; s e e  A p p e n di x B ) a n d n ot si m-
pl y ω 1 i n or d er t o e n h a n c e t h e si m ult a n e o us c o u pli n g t o
t h e c. m.  m o d e a n d t h e pl a n ar r ot ati o n t h at is e n a bl e d b y
t h e tilt e d  O D F b e a ms. S e c o n d, t h e b e a m  w aist w s er v es
as a c o ntr ol k n o b f or t u ni n g t h e si n gl e- p arti cl e dis p ersi o n,
i. e., B 1 = B 0 R

2 / w 2 .  We n ot e t h at t h e  R a m a n b e a ms c a n
b e r e pl a c e d  wit h a  mi cr o w a v e dri v e t h at li mits t h e t u n-
a bilit y of B 1 b ut all o ws f or a si m pl er i m pl e m e nt ati o n a n d
r e d u c e d d e c o h er e n c e (s e e  A p p e n di x B ).  T h e a bilit y t o c o n-
tr ol G , δ 1 a n d B 1 i n t ur n e n a bl es us t o t u n e t h e r ati o K / J i n
t h e o n e- c h a n n el  m o d el.

We pr es e nt p ot e nti al e x p eri m e nt al p ar a m et ers f or r e al-
i zi n g o ur pr o p os al i n  A p p e n di x B a n d st u d y t h e a d v ers e
i m p a ct of o ff-r es o n a nt t er ms i n  A p p e n di c es C a n d D .
O ur st u d y s u g g ests t h at, i n c urr e nt tr a ps, it is p ossi bl e
t o o p er at e i n p ar a m et er r e gi m es  w h er e t h e o ff-r es o n a nt
t er ms h a v e o nl y a s m all e ff e ct.  Alt h o u g h o ur st u d y of
o ff-r es o n a nt t er ms is e xt e nsi v e, o ur a n al ysis of t h eir
i m p a ct is n ot e x h a usti v e b e c a us e of t h e s h e er n u m b er
of s u c h t er ms.  T h eir i m p a ct a n d t h e p ar a m et er r e gi m es
w h er e t h e y ar e n e gli gi bl e c o ul d p ot e nti all y b e e x pl or e d
dir e ctl y o n t h e q u a nt u m si m ul at or. I n a d diti o n, f or t y p-
i c al o p er ati n g c o n diti o ns,  w e esti m at e t h at d e c o h er e n c e
fr o m o ff-r es o n a nt li g ht s c att eri n g  m a y li mit t h e si m ul ati o n
ti m e ( A p p e n di x B 4 ).  H o w e v er,  w e n ot e t h at t h e r el ati v e
str e n gt h of c o h er e nt i nt er a cti o n t o d e c o h er e n c e c a n b e
i n cr e as e d, f or i nst a n c e, b y t h e c h oi c e of i o n s p e ci es a n d
tr a nsiti o n, b y e n h a n ci n g c o h er e nt c o u pli n g vi a p ar a m etri c
a m pli fi c ati o n [ 2 3 ] or b y  w or ki n g at a di ff er e nt o p er at-
i n g p oi nt f or t h e o pti c al di p ol e f or c e.  N e v ert h el ess, t o
d e m o nstr at e t h e p ot e nti al of t his a p pr o a c h, i n t h e f oll o w-
i n g  w e pr es e nt r es ults o bt ai n e d fr o m n u m eri c al si m ul ati o ns
of  E qs. ( 1 2) a n d ( 1 1) a n d n e gl e ct t h e d e c o h er e n c e a n d
o ff-r es o n a nt t er ms.

A. I niti ali z ati o n a n d r e a d o ut

T o o bs er v e d y n a mi c al p h as es g e n er at e d b y  H a milt o ni a n
( 1 2), t h e s pi ns  m ust b e i niti ali z e d i n a st at e p oss essi n g a
c hir al s pi n t e xt ur e  wit h a n o n z er o or d er p ar a m et er, s u c h
as t h os e s h o w n i n Fi g. 1( a) . I n t h e c as e of t h e tr a p p e d-i o n
cr yst al, it is c o n v e ni e nt t o  w or k  wit h a n or m ali z e d or d er
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p ar a m et er d e fi n e d as

(t) =
2

N

N

j = 1

r̃ j e
iφ j ŝ −

j (t) . ( 1 3)

F or e n gi n e eri n g i nt er a cti o ns, t h e  O D F b e at n ot e fr e q u e n c y
μ r i s t u n e d t o c o u pl e t h e s pi ns, t h e dr u m h e a d c. m.  m o d e,
a n d t h e pl a n ar r ot ati o n. F or pr e p ari n g c hir al i niti al st at es,
w e i nst e a d t u n e μ r t o o nl y c o u pl e t h e s pi ns t o t h e pl a-
n ar r ot ati o n  wit h o ut i n v ol vi n g t h e dr u m h e a d c. m.  m o d e.
B y a d diti o n all y t u ni n g t h e b e a m  w aist w O D F of t h e  O D F
l as ers, b ot h  B C S- a n d  B E C-li k e i niti al s pi n t e xt ur es c a n b e
pr e p ar e d.  T h e i niti ali z ati o n  H a milt o ni a n is of t h e f or m

Ĥ i nit =
0

2
j

e
− r 2j / w 2

O D F r̃ j ( ŝ
+
j e − iφ j + ŝ −

j e iφ j ), ( 1 4)

w h er e 0 i s a n e ff e cti v e dri v e str e n gt h.  T his  H a milt o ni a n
dri v es si n gl e-s pi n r ot ati o ns  w h er e t h e a xis of r ot ati o n f or
i o n j d e p e n ds o n t h e a zi m ut h al a n gl e φ j i n t h e r ot ati n g
fr a m e. St arti n g  wit h all s pi ns i niti ali z e d i n | ↑ Z , s etti n g
w O D F R , a n d usi n g a p uls e ar e a 0 T = π r es ults i n a
B C S-li k e s pi n t e xt ur e [ e. g., Fi g. 1( a) ] t h at c a n b e us e d t o
o bs er v e p h as es I a n d II.  H er e,  w e h a v e e x pl oit e d t h e f a ct
t h at t h e  m a g nit u d e of t h e  R a bi fr e q u e n c y i n cr e as es  wit h
t h e r a di us s o t h at t h e c e ntr al s pi n is u n a ff e ct e d  w hil e t h e
o ut er m ost s pi ns ar e r ot at e d t o | ↓ Z .  A  B E C-li k e s pi n t e x-
t ur e [ e. g., Fi g. 1( a) ] c a n b e e n gi n e er e d b y s etti n g w O D F < R
a n d st arti n g  wit h all s pi ns i n | ↓ Z . I n t his  w a y, i o ns at t h e
c e nt er,  w h er e r̃ j ∼ 0, ar e u n a ff e ct e d,  w h er e as i o ns at t h e

cr yst al b o u n d ar y ar e als o l eft u n c h a n g e d si n c e t h e b e a m
i nt e nsit y t a p ers t o z er o.  O n t h e ot h er h a n d, i o ns i n t h e i nt er-
m e di at e r e gi o n e x p eri e n c e s o m e d e gr e e of s pi n r ot ati o n
a n d t h er e b y gi v e ris e t o a  B E C-li k e t e xt ur e. F or o bs er vi n g
p h as e III d y n a mi cs, a  B C S-li k e i niti al st at e  wit h a s h ar p
d o m ai n  w all b et w e e n | ↓ Z a n d | ↑ Z s pi ns a n d a s m all
v al u e of | (0 )| is s uit a bl e [ e. g., t o p p a n el of Fi g. 2( c) ]
[4 ]. St arti n g  wit h all s pi ns i n | ↓ Z , a d o m ai n  w all c a n b e
r e ali z e d b y usi n g a n o pti c al p u m pi n g b e a m t o s el e cti v el y
a d dr ess i o ns i n t h e c e ntr al r e gi o n a n d pr e p ar e t h e m i n | ↑ Z .
N e xt, a gl o b al π / 2 p uls e r ot at es Z → Z s o t h at i o ns i n
t h e c e ntr al r e gi o n a n d t h os e o utsi d e ar e r es p e cti v el y pr e-
p ar e d i n | ↑ Z a n d | ↓ Z .  A s m all i niti al | (0 )| c a n t h e n b e
i n d u c e d b y a s h ort-ti m e a p pli c ati o n of  H a milt o ni a n ( 1 4).
A d et ail e d d es cri pti o n of st at e i niti ali z ati o n is pr es e nt e d i n
A p p e n di x G .

M e as ur e m e nt of t h e r e al a n d i m a gi n ar y p arts of t h e or d er
p ar a m et er is als o e n a bl e d b y  H a milt o ni a n ( 1 4).  T o d e m o n-
str at e t his,  w e first i ntr o d u c e sit e- d e p e n d e nt ort h o g o n al
a x es,

ê X j
= si n φ j ê X − c os φ j ê Y ,

ê Y j
= c o s φ j ê X + si n φ j ê Y ,

( 1 5)

s u c h t h at ê X j
× ê Y j

= ê Z . I n t er ms of t h es e a x es,  w e c a n

writ e

R e[ ] =
2

N
j

r̃ j ŝ
Y j

j , I m[ ] =
2

N
j

r̃ j ŝ
X j

j ,

( 1 6)

( a) ( b) ( c)

D T W A

D T W A

FI G. 2.  M a nif est ati o n of d y n a mi c al p h as es i n a 2 0 0 i o n cr yst al. I niti al  B C S-li k e s pi n t e xt ur es (t o p p a n els) a n d ti m e e v ol uti o n of
| (t)| i n p h as es ( a) I, ( b) II, a n d ( c) III. I n ( a) K / J = 1 0,  w hil e i n ( b) a n d ( c) K / J = 1.  T h e d y n a mi cs of | (t)| ar e c o m p ut e d b ot h
usi n g  m e a n- fi el d t h e or y a n d t h e dis cr et e tr u n c at e d  Wi g n er a p pr o xi m ati o n ( D T W A)  m et h o d.  T h e  D T W A r es ults s h o w t h at t h e fi nit e
si z e of t h e cr yst al l e a ds t o a d e c a y of | (t)| e v e n i n p h as es II a n d III.  H o w e v er, t h e b uil d u p of q u a nt u m c orr el ati o ns i n t h es e p h as es
is c a pt ur e d b y a s e c o n d or d er p ar a m et er ˜ [ E q. ( 2 0)]. I n all c as es, t h e d e c a y of | (t)| i n t h e a bs e n c e of i nt er a cti o ns is pl ott e d f or
r ef er e n c e.  Cr yst al p ar a m et ers ar e d et ail e d i n  A p p e n di x B a n d c hir al s pi n st at es ar e i niti ali z e d a c c or di n g t o  A p p e n di x G .
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a n d  wit h w O D F R ,  H a milt o ni a n ( 1 4) c a n b e e x pr ess e d as

Ĥ i nit = 0

j

r̃ j ŝ
Y j

j . ( 1 7)

Aft er r u n ni n g t h e q u a nt u m si m ul ati o n u p t o s o m e ti m e T ,
w e e v ol v e t h e s yst e m u n d er  H a milt o ni a n ( 1 7) f or a f urt h er
ti m e t.  T his l e a ds t o

ŝ Z
j (T + t) = ŝ Z

j (T ) c os ( 0 r̃ j t) − ŝ
X j

j (T ) si n( 0 r̃ j t)

≈ ŝ Z
j (T ) − ( 0 r̃ j ŝ

X j

j (T ) )t, ( 1 8)

w h er e t h e a p pr o xi m ati o n h ol ds f or s h ort r ot ati o n ti m es.
S u m mi n g o v er all t h e i o ns,  w e g et

Ĵ Z (T + t) − Ĵ Z (T ) ≈ −
N 0

2
I m[ (T )]t, ( 1 9)

w h er e Ĵ Z = j ŝ Z
j .  T h e i m a gi n ar y p art of t h e or d er

p ar a m et er d et er mi n es t h e r at e of c h a n g e of Ĵ Z (T + t) as
t h e r ot ati o n ti m e t is i n cr e as e d.  T his q u a ntit y is a c c essi-
bl e b y a gl o b al fl u or es c e n c e  m e as ur e m e nt aft er a p pl yi n g a
gl o b al π / 2 p uls e t o r ot at e Z → Z . F urt h er m or e, a p h as e
o ffs et of π / 2 c a n b e i ntr o d u c e d i n  H a milt o ni a n ( 1 4) b y
s hifti n g t h e p h as e of t h e  O D F b e at n ot e,  w hi c h c a n b e us e d
t o  m e as ur e  R e[ (T )] i n a si mil ar  m a n n er.

I V.  P R O BI N G  T H E  D Y N A MI C A L  P H A S E S

H a vi n g est a blis h e d pr ot o c ols f or i niti ali zi n g  B C S-li k e
a n d  B E C-li k e i niti al st at es, f or e n gi n e eri n g i nt er a cti o ns,
a n d f or  m e as uri n g t h e or d er p ar a m et er,  w e n o w pr o c e e d
t o dis c uss h o w t h e d y n a mi c al p h as es c a n b e o bs er v e d i n
a cr yst al st or e d i n a P e n ni n g tr a p. Fi g ur e 2 s h o ws r e pr e-
s e nt ati v e e x a m pl es of t h e t hr e e d y n a mi c al p h as es,  w hi c h
ar e o bt ai n e d usi n g di ff er e nt  B C S-li k e i niti al c o n diti o ns a n d
i nt er a cti o n str e n gt hs, t h e l att er c h ar a ct eri z e d b y t h e r ati o
K / J . I n e a c h c as e, t h e i niti al s pi n t e xt ur e is s h o w n i n t h e
t o p p a n el. P h as es I a n d II us e t h e s a m e i niti al s pi n t e xt ur e
b ut ar e o bt ai n e d usi n g K / J = 1 0 a n d K / J = 1, r es p e c-
ti v el y.  O n t h e ot h er h a n d, p h as e III is o bt ai n e d usi n g a
di ff er e nt i niti al s pi n t e xt ur e b ut  wit h t h e s a m e v al u e of
K / J = 1 as i n p h as e II.  T h e p ur pl e li n es i n Fi g. 2 s h o w
t h e  m e a n- fi el d pr e di cti o ns f or t h e ti m e e v ol uti o n of | (t)|
i n e a c h p h as e.  T h e  m a g nit u d e | (t)| d e c a ys t o 0 i n p h as e
I, s at ur at es t o a n o n z er o c o nst a nt i n p h as e II, a n d dis-
pl a ys p ersist e nt os cill ati o ns i n p h as e III.  H o w e v er, gi v e n
t h e fi nit e n u m b er of i o ns (N = 2 0 0),  w e ar e  m oti v at e d t o
i n v esti g at e t h e v ali dit y of  m e a n- fi el d t h e or y i n d es cri bi n g
o ur s yst e m.  T o w ar ds t his e n d,  w e si m ul at e t h e d y n a mi cs
u n d er Ĥ 1 c h vi a t h e dis cr et e tr u n c at e d  Wi g n er a p pr o xi m a-
ti o n ( D T W A)  m et h o d t h at a c c o u nts f or t h e q u a nt u m n ois e
of t h e i niti al st at e [ 2 4 ] (s e e  A p p e n di x E ).  T h e r es ults of t h e
D T W A si m ul ati o ns ar e s h o w n b y t h e r e d li n es i n Fi g. 2 .

T h e  D T W A a n d  m e a n- fi el d r es ults a gr e e  w ell i n p h as e I
w h er e t h e si n gl e- p arti cl e d e p h asi n g d o mi n at es t h e i nt er a c-
ti o ns. I n c o ntr ast, t h e  D T W A r es ults d e vi at e si g ni fi c a ntl y
fr o m t h e  m e a n- fi el d pr e di cti o ns i n p h as es II a n d III. I n
b ot h c as es, q u a nt u m n ois e c a us es t h e or d er p ar a m et er t o
e v e nt u all y d e c a y t o z er o i n t h e l o n g ti m e li mit.

I m p ort a ntl y, t h e d e c a y of t h e  m e a n- fi el d or d er p ar a m et er
| (t)| i n p h as es II a n d III is a c c o m p a ni e d b y t h e d e v el o p-
m e nt of q u a nt u m c orr el ati o ns,  w hi c h is c a pt ur e d i n a  m or e
a p pr o pri at e or d er p ar a m et er ˜ d e fi n e d as

˜ =
2

N
j = k

r̃ j r̃ k ŝ +
j ŝ −

k e − i( φj − φ k )
1 / 2

. ( 2 0)

We n ot e t h at ˜ is j ust a  m e as ur e of t h e i nt er a cti o n p art of
H a milt o ni a n Ĥ 1 c h [ E q. ( 1 2)].  W hil e is t h e st a n d ar d or d er
p ar a m et er i n s u p er c o n d u ct ors, ˜ c o ul d b e t h o u g ht of as
t h e d e nsit y of t h e  C o o p er p airs  wit h o ut c o n c er n t o  w h et h er
t h e y ar e c o n d e ns e d.  T his is si mil ar t o t h e  B E C p h as e of
t h e  B C S- B E C c o n d e ns at es, k e pt a b o v e t h e s u p er c o n d u ct-
i n g tr a nsiti o n t e m p er at ur e a n d b el o w t h e t e m p er at ur e of
t h e f or m ati o n of p airs [2 5 ]. Fi g ur e 2 s h o ws t h at ˜ st a bi-
li z es t o a n o n z er o c o nst a nt i n p h as es II a n d III, i n di c ati n g
t h e p ersist e n c e of d y n a mi c al p - w a v e s u p er fl ui dit y i n t h es e
p h as es.

E v e n t h o u g h t h e  m e a n- fi el d or d er p ar a m et er | (t)| dis-
a p p e ars at l o n g ti m es, t h e t hr e e p h as es c a n b e disti n g uis h e d
i n t h e s h ort ti m e d y n a mi cs of t his o bs er v a bl e. Fi g ur e 2
s h o ws t h at, f or Jt 2 0, t h e  m e a n- fi el d a n d  D T W A r es ults
ar e i n a p pr o xi m at e a gr e e m e nt i n all t hr e e p h as es.  T h e  m a g-
nit u d e | (t)| d o es n ot d e c a y i n p h as e II,  w h er e as it e x hi bits
str o n g a m pli fi c ati o n i n p h as e III. I n a n e x p eri m e nt, t h e st a-
bili z ati o n of s u p er fl ui dit y b y i nt er a cti o ns c a n b e s h ar pl y
d e m o nstr at e d b y c o m p ari n g t h e d y n a mi cs of | (t)| i n t h e
pr es e n c e a n d a bs e n c e of t h e  O D F dri v e; i n t h e a bs e n c e of
i nt er a cti o ns, | (t)| d e c a ys t o w ar ds z er o e v e n o n s h ort ti m e
s c al es ( gr a y li n es i n Fi g. 2 ).

V. I N F E R RI N G  T O P O L O G Y

I n c o ntr ast t o s- w a v e s u p er c o n d u ct ors, gr o u n d st at es a n d
d y n a mi c al p h as es of p - w a v e s u p er c o n d u ct ors c a n p oss ess
n o ntri vi al t o p ol o gi c al pr o p erti es.  We n o w dis c uss h o w t h e
t o p ol o g y of t h e d y n a mi c al p h as es c a n b e pr o b e d i n t h e i o n
si m ul at or. F or t his st u d y,  w e us e t h e i niti al s pi n t e xt ur e
s h o w n i n Fi g. 3( a) ,  w hi c h is a p pr o xi m at el y  B E C-li k e i n
t h e s e ns e t h at t h e Z c o m p o n e nt of t h e s pi ns first i n cr e as es
wit h r a di us, r e a c h es a  m a xi m u m, a n d t h e n d e cr e as es  wit h
a f urt h er i n cr e as e i n r a di us. Fi g ur e 3( b) s h o ws t h e  wi n d-
i n g n u m b er W [ E q. ( 1 0)] c o m p ut e d i n  m e a n- fi el d t h e or y
as t h e r ati o K / J is t u n e d f or a cr yst al of N = 2 0 0 i o ns
i n t h e P e n ni n g tr a p (s e e  A p p e n di x F f or d et ails of t his
c al c ul ati o n o n t h e dis cr et e cr yst al l atti c e).  T h e d y n a mi-
c al c h e mi c al p ot e nti al μ ∞ ,  w hi c h d et er mi n es t h e r ot ati n g
fr a m e i n  w hi c h  E q. ( 1 0) is e v al u at e d, is o bt ai n e d fr o m a
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I n

Ti
me

C o C

S o

( a) ( b)

( c) ( d) ( e)

FI G. 3. I nf erri n g t o p ol o gi c al pr o p erti es of t h e d y n a mi c al p h as es. ( a) I niti al  B E C-li k e s pi n t e xt ur e. ( b)  M e a n- fi el d, l o n g-ti m e  wi n di n g
n u m b er of t h e e ff e cti v e  m a g n eti c fi el d t e xt ur e as t h e r el ati v e str e n gt h of t h e si n gl e- p arti cl e ( K ) a n d i nt er a cti o n (J ) t er ms ar e v ari e d. I n
t h e str o n g i nt er a cti o n c as e (K / J < 0. 6), t h e t e xt ur e is  B E C-li k e a n d t o p ol o gi c all y tri vi al,  w hil e i n t h e  w e a k i nt er a cti o n c as e ( K / J >
0. 6), it is  B C S-li k e a n d t o p ol o gi c all y n o ntri vi al.  R e pr es e nt ati v e fi el d t e xt ur es ar e s h o w n,  w h er e e a c h arr o w n o w i n di c at es t h e u nit
v e ct or of t h e e ff e cti v e  m a g n eti c fi el d a cti n g at t h at sit e, a n d t h e c ol or c o d e i n di c at es t h e n or m ali z e d B Z c o m p o n e nt. ( c),( d)  T h e s e ns e
of r ot ati o n of t h e or d er p ar a m et er i n t h e c o m pl e x pl a n e r e v e als t h e  wi n di n g n u m b er of t h e u n d erl yi n g  m a g n eti c fi el d t e xt ur e.  T h e
t o p ol o gi c all y tri vi al ( n o ntri vi al) d y n a mi c al p h as e is ass o ci at e d  wit h a c o u nt er cl o c k wis e ( cl o c k wis e) r ot ati o n of (t).  W hil e  m e a n- fi el d
pr e di cts a st a bl e li mit c y cl e ( gr a y d as h e d li n e),  D T W A c al c ul ati o ns ( c ol or e d cir cl es) s h o w t h e or d er p ar a m et er s pir ali n g i n t o w ar ds
t h e ori gi n at l o n g ti m es ( pl ott e d h er e u ntil Jt = 1 0 0).  T h e c ol or gr a di e nt i n di c at es t h e arr o w of ti m e. ( e)  T h e  C o o p er p air distri b uti o n
f u n cti o n ( C P D F) dis pl a ys a n e v e n ( o d d) n u m b er of z er o cr ossi n gs i n t h e t o p ol o gi c all y tri vi al ( n o ntri vi al) c as e.  T h es e f e at ur es ar e
pr es er v e d e v e n at ti m es Jt ∼ 1 0 0,  w h e n t h e or d er p ar a m et er h as d e c a y e d c o nsi d er a bl y d u e t o q u a nt u m fl u ct u ati o ns. F or c o m p aris o n,
t h e d as h e d li n es s h o w t h e  C P D F c o m p ut e d usi n g  m e a n- fi el d t h e or y.  Cr yst al p ar a m et ers ar e d et ail e d i n  A p p e n di x B a n d c hir al s pi n
st at es ar e i niti ali z e d a c c or di n g t o  A p p e n di x G .

F o uri er tr a nsf or m of t h e ti m e s eri es of (t).  R e pr es e nt a-
ti v e e x a m pl es of t h e e ff e cti v e  m a g n eti c fi el d t e xt ur e ar e
als o s h o w n,  w hi c h d e m o nstr at e t h e tr a nsiti o n fr o m a t o p o-
l o gi c all y tri vi al  B E C-li k e t e xt ur e (K / J < 0. 6, W ≈ 0) t o
a t o p ol o gi c all y n o ntri vi al  B C S-li k e t e xt ur e ( K / J > 0. 6,
W ≈ 1).  R e m ar k a bl y, t h e t o p ol o gi c all y tri vi al a n d n o n-
tri vi al p h as es c a n b e disti n g uis h e d b y  m e as ur e m e nts of
t h e r e al a n d i m a gi n ar y p arts of t h e or d er p ar a m et er. Fr o m
E q. ( 9), t h e s e ns e of r ot ati o n of t h e or d er p ar a m et er i n t h e
c o m pl e x pl a n e — cl o c k wis e ( μ ∞ > 0) or c o u nt er cl o c k wis e
(μ ∞ < 0) —is a dir e ct  m e as ur e m e nt of t h e si g n of μ ∞ a n d,
c o ns e q u e ntl y, e n a bl es us t o i nf er t h e  B C S-li k e or  B E C-li k e

n at ur e of t h e e ff e cti v e  m a g n eti c fi el d t e xt ur e. Fi g ur es 3( c)
a n d 3( d) s h o w t h at t h e s e ns e of r ot ati o n of t h e or d er p ar a m-
et er is di ff er e nt f or K / J = 0. 3 5 a n d K / J = 0. 8 5, cl e arl y
i n di c ati n g t h e tr a nsiti o n fr o m a t o p ol o gi c all y tri vi al t o a
t o p ol o gi c all y n o ntri vi al d y n a mi c al p h as e as t h e r ati o K / J
is t u n e d.  W hil e  m e a n- fi el d t h e or y pr e di cts t h e or d er p ar a m-
et er t o pr e c ess  wit h a n a p pr o xi m at el y c o nst a nt r a di us i n t h e
c o m pl e x pl a n e, t h e b uil d u p of q u a nt u m c orr el ati o ns c a us es
t h e or d er p ar a m et er t o s pir al i n t o w ar ds t h e ori gi n at l o n g
ti m es, c o nsist e nt  wit h Fi g. 2( b) .  N e v ert h el ess, t h e d e c a y
d o es n ot  m o dif y t h e t o p ol o gi c al n at ur e of t h e d y n a mi c al
p h as es.
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T h e pr es er v ati o n of t h e t o p ol o g y i n t h e r e gi m e  w h er e t h e
or d er p ar a m et er is d e c a yi n g c a n b e c o n fir m e d b y  m e as ur-
i n g t h e s o- c all e d  C o o p er p air distri b uti o n f u n cti o n ( C P D F)
γ ( p ) [4 ].  T his f u n cti o n c h ar a ct eri z es t h e n o n e q uili bri u m
distri b uti o n of t h e q u asi p arti cl e s p e ctr u m i n t h e as y m pt oti c
st e a d y st at e a n d pr o vi d es i nf or m ati o n a b o ut t h e t o p ol o g y
of t h e d y n a mi c al p h as es: t h e t o p ol o g y of t h e d y n a mi c al
p h as e is tri vi al ( n o ntri vi al) if t h e n u m b er of z er o cr ossi n gs
of t his f u n cti o n is e v e n ( o d d) [ 4 ]. I n s u p er c o n d u ct ors t h e
C P D F c a n b e  m e as ur e d vi a ti m e-r es ol v e d, a n gl e-r es ol v e d
p h ot o e missi o n s p e ctr os c o p y ( A R P E S) [ 2 6 ]. I n t h e tr a p p e d-
i o n i m pl e m e nt ati o n, γ ( p ) m a ps t o γ ( r j , t),  w h er e r j i s t h e
p ositi o n of i o n j , a n d c orr es p o n ds t o t h e pr oj e cti o n of t h e
l o c al s pi n v e ct or ŝ j (t) o nt o t h e l o c al e ff e cti v e  m a g n eti c

fi el d B j (t) at ti m e t:

γ ( r j , t) =
ŝ j (t) · B j (t)

ŝ j (t) · ŝ j (t) B j (t) · B j (t)

. ( 2 1)

H er e, t h e o v er b ar d e n ot es t h at t h e s pi n a n d e ff e cti v e  m a g-
n eti c fi el d ar e  m e as ur e d i n a fr a m e r ot ati n g at 2 μ ∞ a n d
t h e d e n o mi n at or e ns ur es t h at t h e q u a ntit y is t h e dir e c-
ti o n c osi n e of t h e s pi n v e ct or  wit h r es p e ct t o t h e l o c al
m a g n eti c fi el d. Fi g ur e 3( e) s h o ws t h e  C P D F as a f u n c-
ti o n of i o n r a di us fr o m t h e tr a p c e nt er f or K / J = 0. 3 5
a n d K / J = 0. 8 5 c o m p ut e d b y r u n ni n g t h e si m ul ati o n u p
t o a ti m e Jt = 1 0 0.  T h e  C P D F is e v al u at e d at t h e fi n al
ti m e Jt = 1 0 0,  w hil e t h e v al u e of μ ∞ i s o bt ai n e d fr o m a
F o uri er tr a nsf or m of (t) o v er t h e t ot al si m ul ati o n ti m e.
T h e s oli d c ur v es i n Fi g. 3( e) h a v e b e e n c o m p ut e d a c c o u nt-
i n g f or q u a nt u m fl u ct u ati o ns, f or  w hi c h t h e d e c a y of t h e
or d er p ar a m et er is cl e arl y visi bl e i n Fi gs. 3( c) a n d 3( d) . We
fi n d t h at t h e p arit y of z er o cr ossi n gs of t h e  C P D F e n a bl es
a n i nf er e n c e of t h e t o p ol o g y e v e n aft er si g ni fi c a nt d e c a y of
t h e or d er p ar a m et er.  We n ot e t h at t h e  C P D F c a n i n pri n-
ci pl e b e esti m at e d fr o m t h e e x p eri m e nt b y sit e-r es ol v e d
a n d ti m e-r es ol v e d  m e as ur e m e nts of t h e s pi n c o m p o n e nts,
fr o m  w hi c h b ot h μ ∞ a n d t h e l o c al B j (t) at e a c h sit e c a n
b e esti m at e d i n p h as e II [s e e  E qs. ( 7) a n d t h e s u bs e q u e nt
dis c ussi o n i n S e c. II].

VI.  R E A LI ZI N G  A  T W O- C H A N N E L  M O D E L

S o f ar,  w e h a v e f o c us e d o n a r e gi m e  w h er e t h e c. m.
m o d e is c o u pl e d o ff r es o n a ntl y t o t h e s pi ns a n d c a n h e n c e
b e a di a b ati c all y eli mi n at e d, gi vi n g ris e t o a n e ff e cti v e
o n e- c h a n n el  m o d el d es cri pti o n i n t er ms of t h e  A n d ers o n
s pi ns al o n e.  T h e c. m.  m o d e pl a ys t h e r ol e of t h e b os o ni c
m ol e c ul ar c h a n n el i n t h e t w o- c h a n n el p - w a v e  m o d el.  B y
s uit a bl y t u ni n g t h e  O D F di ff er e n c e fr e q u e n c y μ r , a n e ar-
r es o n a nt c o u pli n g  wit h t h e c. m.  m o d e c a n b e e n gi n e er e d,
t h er e b y e n a bli n g si m ul ati o n of t h e  m or e g e n er al t w o-
c h a n n el  H a milt o ni a n ( 1 1).  T h us, o ur tr a p p e d-i o n si m ul at or
all o ws t h e e x pl or ati o n of t h e disti n ct p h ysi c al b e h a vi ors

FI G. 4.  R e ali zi n g t h e t w o- c h a n n el  m o d el.  T h e dr u m h e a d c. m.
m o d e pl a ys t h e r ol e of t h e  m ol e c ul ar c h a n n el i n t h e t w o- c h a n n el
p - w a v e  m o d el.  As t h e c o u pli n g t o t h e c. m.  m o d e is t u n e d fr o m o ff
r es o n a nt (δ 2

1 / G 2 1) t o n e ar r es o n a n c e ( δ 2
1 / G 2 ∼ 0), its e ff e cts

c a n b e cl e arl y o bs er v e d i n t h e ti m e e v ol uti o n of | (t)|.  H er e,
w e fi x B 1 = G /

√
1 0 a n d v ar y δ 1 t o o bt ai n t h e di ff er e nt c ur v es.

Cr yst al p ar a m et ers ar e d et ail e d i n  A p p e n di x B a n d c hir al s pi n
st at es ar e i niti ali z e d a c c or di n g t o  A p p e n di x G .

f e at ur e d b y b ot h t h e o n e- c h a n n el a n d t w o- c h a n n el  m o d-
els i n t h e s a m e e x p eri m e nt al s etti n g. Fi g ur e 4 s h o ws t h e
ti m e e v ol uti o n of | (t)| as t h e c o u pli n g t o t h e c. m.  m o d e
is t u n e d fr o m a f ar o ff-r es o n a nt r e gi m e (δ 2

1 / G 2 1) t o
t h e r es o n a nt r e gi m e (δ 2

1 / G 2 ∼ 0).  T h e c ur v es ar e c o m p ut e d
a c c o u nti n g f or t h e i niti al q u a nt u m n ois e of t h e s pi ns,  w hi c h
ar e i niti ali z e d i n a  B C S-li k e st at e [t o p p a n el of Fi g. 2( a) ],
as  w ell as t h at of t h e c. m.  m o d e,  w hi c h is ass u m e d t o b e
i niti ali z e d i n t h e gr o u n d st at e. I n t h e o ff-r es o n a nt r e gi m e,
t h e b e h a vi or is si mil ar t o t h e o n e- c h a n n el  m o d el as t h e
o c c u p ati o n of t h e c. m.  m o d e r e m ai ns s m all at all ti m es.
H o w e v er, | (t)| e x hi bits pr o n o u n c e d os cill at or y b e h a vi or
i n t h e n e ar-r es o n a nt a n d r es o n a nt r e gi m es  w h er e e x cit a-
ti o ns ar e str o n gl y e x c h a n g e d b et w e e n t h e s pi ns a n d t h e
c. m.  m o d e. I nt er esti n gl y, t h es e r es ults i n di c at e t h at, f or
fi x e d B 1 , t h er e is a n o pti m al δ 1 i n or d er t o st a bili z e | (t)|
f or a l o n g er ti m e. I n a d diti o n t o pr o bi n g t h e r ol e of t h e
m ol e c ul ar c h a n n el, n e ar-r es o n a nt c o u pli n g als o e n h a n c es
t h e i nt er a cti o n str e n gt h a n d h e n c e  m a y e x hi bit str o n g er
si g n at ur es of t h e i nt er a cti o n d y n a mi cs i n t h e ti m e b ef or e
s o ur c es of d e c o h er e n c e s u c h as li g ht s c att eri n g fr o m t h e
O D F b e a ms ki c k i n ( A p p e n di x B ).

VII.  C O N C L U SI O N  A N D  O U T L O O K

We h a v e pr o p os e d a pr ot o c ol t o si m ul at e t h e q u e n c h
d y n a mi cs of p + i p s u p er fl ui ds usi n g i o n cr yst als st or e d
i n a P e n ni n g tr a p.  B y utili zi n g t h e  A n d ers o n ps e u d os pi n
m a p pi n g,  w e  m a k e a f er mi o ni c  H a milt o ni a n a m e n a bl e
t o si m ul ati o n usi n g s pi ns e n c o d e d i n t h e i nt er n al st at es
of i o ns. I n t his  w a y,  w e n ot o nl y l e v er a g e t h e v ers atil e
t o ol b o x of t h e tr a p p e d-i o n pl atf or m b ut  w e als o cir c u m-
v e nt li mit ati o ns t h at aris e  wit h dir e ct si m ul ati o ns of t h e
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f er mi o ni c  m o d el usi n g ultr a c ol d q u a nt u m g as es,  w h er e
p - w a v e s u p er fl ui ds h a v e b e e n hi g hl y el usi v e t o d at e.

We d e m o nstr at e d h o w si g n at ur es of all t hr e e d y n a mi c al
p h as es c a n b e o bs er v e d usi n g cr yst als  wit h a b o ut 2 0 0 i o ns.
I n t h e t h er m o d y n a mi c li mit, t h e 2 D p + i p m o d el b e c o m es
i nt e gr a bl e a n d t h e d y n a mi cs is  w ell d es cri b e d b y  m e a n-
fi el d t h e or y.  H o w e v er, b e y o n d- m e a n- fi el d e ff e cts ki c k i n at
a fi nit e n u m b er of f er mi o ns; t h e r el ati v el y s m all n u m b er of
s pi ns i n t h e tr a p p e d-i o n cr yst al n at ur all y o p e ns t h e a v e n u e
t o o bs er v e b e y o n d- m e a n- fi el d e ff e cts i n t h e q u e n c h d y n a m-
i cs of p + i p s u p er fl ui ds a n d als o f a cilit at es t h e e m ul ati o n
of s m all s u p er c o n d u cti n g gr ai ns [ 2 7 ].

We s h o w e d h o w t h e t o p ol o gi c al c h ar a ct er of t h e d y n a m-
i c al p h as es c a n b e i nf err e d vi a t h e s e ns e of r ot ati o n of
t h e or d er p ar a m et er i n t h e c o m pl e x pl a n e. Si n c e o ur pr o-
p os al  m a ps t h e f er mi o ni c  m o m e nt u m o n t o t h e r e al-s p a c e
p ositi o n of i o ns, t h e a d diti o n of sit e-r es ol v e d d et e cti o n
of s pi ns i n t h e tr a p c a n pr o vi d e ti m e- a n d  m o m e nt u m-
r es ol v e d  m e as ur e m e nts of t h e si m ul at e d s yst e m, a n al o g o us
t o t e c h ni q u es us e d i n s oli d-st at e  m at eri als s u c h as  A R P E S
[2 8 ].  Al o n g t h es e li n es,  w e s h o w e d h o w t h e  C o o p er p air
distri b uti o n f u n cti o n c a n b e us e d t o pr o b e t h e t o p ol o g y of
t h e d y n a mi c al p h as e.

Alt h o u g h t h e p + i p m o d el is i nt e gr a bl e, its q u a nt u m
si m ul ati o n is n e v ert h el ess a n i m p ort a nt  mil est o n e b e c a us e
t his  m o d el r e pr es e nts a n i nt er a cti n g s yst e m  wit h n o ntri vi al
t o p ol o gi c al pr o p erti es. Its e x p eri m e nt al i m pl e m e nt ati o n i n
a c o ntr oll a bl e s etti n g  will pr o vi d e a c c ess t o o bs er v a bl es
t h at, alt h o u g h i n pri n ci pl e ar e o bt ai n a bl e vi a t h e  B et h e
a ns at z, c a n b e c h all e n gi n g t o c o m p ut e i n pr a cti c e.  W hil e
c o n v e nti o n al  m e a n- fi el d t h e or y is s u ffi ci e nt t o d es cri b e t h e
d y n a mi cs of t h e or d er p ar a m et er i n t h e t h er m o d y n a mi c
li mit, a d e e p u n d erst a n di n g of t h e u n d erl yi n g q u a nt u m
b e h a vi or r e q uir es a c c essi n g o bs er v a bl es t h at ar e b e y o n d
t h e r e a c h of si m pl e  m e a n- fi el d tr e at m e nt.  As a n e x a m pl e,
r e c e nt t h e or y  w or k h as s h o w n t h at if a p + i p s u p er c o n-
d u ct or is q u e n c h e d o ut of t h e criti c al p oi nt s e p ar ati n g
its t o p ol o gi c al a n d n o nt o p ol o gi c al p h as es, its  L os c h mi dt
e c h o f e at ur es si n g ul ariti es o c c urri n g p eri o di c all y i n ti m e,
a f e at ur e t h at is n ot e x p e ct e d t o o c c ur i n s- w a v e s u p er c o n-
d u ct ors [ 2 9 ]. It  w as f o u n d t h at t h e c orr e ct c al c ul ati o n of t h e
L os c h mi dt e c h o r e q uir es  m or e el a b or at e t e c h ni q u es t h at g o
b e y o n d c o n v e nti o n al  m e a n- fi el d t h e or y.  Tr a p p e d-i o n si m u-
l at ors h a v e alr e a d y d e m o nstr at e d t h e c a p a bilit y t o  m e as ur e
L os c h mi dt e c h o es [ 1 4 ] a n d t h us  w e e x p e ct t h at s u c h si m-
ul at ors c a n pr o b e n ot j ust fi nit e-si z e q u a nt u m e ff e cts, b ut
als o b e y o n d- m e a n- fi el d e ff e cts t h at p ersist i n t h e t h er m o-
d y n a mi c li mit.  As a s e c o n d e x a m pl e,  w e s h o w i n Fi g. 2
t h at, f or a fi nit e-si z e s yst e m,  w hil e t h e  m e a n- fi el d or d er
p ar a m et er d e c a ys t o z er o, t h e  m a n y- b o d y c orr el ati o ns
ar e still c a pt ur e d i n a  m or e a p pr o pri at e or d er p ar a m et er ˜ .
T his r ais es s e v er al i nt er esti n g iss u es, s u c h as t h e p ersis-
t e n c e a n d c h ar a ct eri z ati o n of t o p ol o g y b e y o n d  m e a n- fi el d
wi n di n g n u m b ers, t h e r ol e of e nt a n gl e m e nt i n st a bili zi n g
t h e d y n a mi c al p h as es, a n d t h e b e h a vi or of e nt a n gl e m e nt

e ntr o p y (i n  m o m e nt u m s p a c e) a cr oss t h e d y n a mi c al t o p o-
l o gi c al p h as e tr a nsiti o n d e m o nstr at e d i n Fi g. 3 .  T h es e ar e
iss u es t h at c o ul d b e e x pl or e d dir e ctl y o n t h e q u a nt u m
si m ul at or, si n c e t h e c o m p ut ati o n of b e y o n d- m e a n- fi el d
pr o p erti es c a n b e c h all e n gi n g i n pr a cti c e.

We als o d e m o nstr at e d t h at b y t u ni n g cl os er t o r es o n a n c e
wit h t h e c. m.  m o d e, a t w o- c h a n n el p - w a v e  m o d el c a n b e
r e ali z e d a n d t h e n o n z er o o c c u p ati o n of a  m ol e c ul ar c h a n-
n el c a n b e a d diti o n all y si m ul at e d a n d i n v esti g at e d. It  will
b e i nt er esti n g t o e x pl or e c o n diti o ns  w h er e a d y n a mi c all y
a cti v e m ol e c ul ar c h a n n el c a n e n h a n c e s u p er fl ui dit y [ 3 0 ],
i n a  w a y r e mi nis c e nt of a n al o g o us p h e n o m e n a r e c e ntl y
st u di e d i n s oli d-st at e q u a nt u m o pti cs [ 3 1 – 4 1 ]. F or e x a m-
pl e, o ur s yst e m c a n b e us e d t o st u d y t h e r es p o ns e  w h e n
t h e c. m.  m o d e (i. e., t h e  m ol e c ul ar c h a n n el) is dri v e n or
e v e n s q u e e z e d vi a p ar a m etri c a m pli fi c ati o n [ 2 3 ,4 2 ]. F ur-
t h er m or e, alt h o u g h  w e h a v e c o nsi d er e d a r e gi m e  w h er e
t h e ot h er dr u m h e a d  m o d es ar e o ff r es o n a nt, str o n g s pi n-
m o d e c o u pli n g c a n l e a d t o  w e a k e x cit ati o ns of  m or e t h a n a
si n gl e  m o d e, l e a di n g t o t h e e m er g e n c e of s p ati al i n h o m o-
g e n eiti es t h a n c a n e m ul at e t h e p h e n o m e n o n of  C o o p er p air
t ur b ul e n c e [4 3 ].

B e y o n d t h e si m ul ati o n of p + i p s u p er c o n d u ct ors,
tr a p p e d i o ns c o ul d als o b e us e d t o st u d y f urt h er e x oti c
s u p er c o n d u cti n g s yst e ms s u c h as c hir al d x 2 − y 2 + i dx y
s u p er fl ui ds [ 4 4 ]. S u c h s yst e ms c a n b e si m ul at e d i n t h e P e n-
ni n g tr a p b y e n gi n e eri n g t h e p h as e of t h e  O D F b e a ms t o
h a v e s p ati al v ari ati o ns,  w hi c h is p ossi bl e  wit h t h e us e of
d ef or m a bl e  mirr ors [ 4 5 ].

Fi n all y,  w e n ot e t h at t h e f er mi o ni c st atisti cs of t h e ori g-
i n al p - w a v e  m o d el is n ot pr es e nt i n t h e c orr es p o n di n g s pi n
m a p pi n g, a n d t h er ef or e o ur pr o p os al c a n n ot b e us e d t o pr o-
d u c e  M aj or a n a f er mi o ns [ 4 6 ,4 7 ].  H o w e v er, t h e pr ot o c ols
w e h a v e d e v el o p e d c a n b e us e d t o b ot h pr o d u c e s k yr mi o ni c
s pi n t e xt ur es as  w ell as st a bili z e t h e m usi n g i nt er a cti o ns,
w hi c h c o ul d fi n d a p pli c ati o ns i n d e m o nstr ati n g s k yr mi o n
q u bits f or q u a nt u m c o m p uti n g [ 4 8 ].

A C K N O W L E D G M E N T S

We t h a n k  Allis o n  C art er f or pr o vi di n g esti m at es f or
t h e d e c o h er e n c e r at es fr o m li g ht s c att eri n g.  We t h a n k
Di e g o  B ar b er e n a a n d  Br y c e  B ull o c k f or a c ar ef ul r e a d-
i n g a n d c o m m e nts o n t h e  m a n us cri pt.  T his  w or k is s u p-
p ort e d b y t h e  E ur o p e a n  U ni o n’s  H ori z o n 2 0 2 0 r es e ar c h
a n d i n n o v ati o n pr o gr a m u n d er  Gr a nt  A gr e e m e nts  N o.
8 1 7 4 8 2 ( P as q u a ns), b y t h e Si m o ns  C oll a b or ati o n o n  Ultr a-
Q u a nt u m  M att er,  w hi c h is a gr a nt fr o m t h e Si m o ns F o u n-
d ati o n ( 6 5 1 4 4 0, P.  Z.), a n d b y  L A S C E M vi a  A F O S R
N o. 6 4 8 9 6- P H- Q C. S u p p ort is als o a c k n o wl e d g e d fr o m
t h e  A F O S R u n d er  Gr a nts  N o. F A 9 5 5 0- 1 8- 1- 0 3 1 9 a n d
N o. F A 9 5 5 0- 1 9- 1- 0 2 7 5, b y t h e  N S F P H Y- 1 8 2 0 8 8 5,  N S F
JI L A- P F C P H Y- 1 7 3 4 0 0 6,  Q L CI- O M A- 2 0 1 6 2 4 4, b y t h e
U. S.  D e p art m e nt of  E n er g y,  O ffi c e of S ci e n c e,  N ati o n al
Q u a nt u m I nf or m ati o n S ci e n c e  R es e ar c h  C e nt ers,  Q u a nt u m
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S yst e ms  A c c el er at or, a n d b y  NI S T. J.J. B. a c k n o wl e d g es
s u p p ort fr o m t h e  D A R P A  O NI S Q pr o gr a m a n d  A F O S R
u n d er  Gr a nt  N o. F A 9 5 5 0- 2 0 1- 0 0 1 9.

A P P E N DI X  A:  D E RI V A TI O N  O F  E F F E C TI V E
H A MI L T O NI A N S

We s h o w h o w t h e c o m bi n ati o n of  O D F a n d  R a m a n
b e a ms  wit h s uit a bl e g e o m etri es l e a ds t o e ff e cti v e o n e-
c h a n n el a n d t w o- c h a n n el  m o d els f or p - w a v e i nt er a cti o ns
i n i o n cr yst als st or e d i n a P e n ni n g tr a p.

1.  O pti c al di p ol e f o r c e  wit h tilt e d  w a v e v e ct o rs

T h e  H a milt o ni a n c orr es p o n di n g t o o nl y t h e  O D F i nt er-
a cti o n is

Ĥ =

N

j = 1

ω s ŝ
Z
j +

N

n = 1

ω n â
†
n â n

+ 2

N

j = 1

δ A C si n ( k x x j + k z ẑ j − μ r t) ŝ
Z
j , ( A 1)

w h er e ω s i s t h e s pi n tr a nsiti o n fr e q u e n c y, δ A C i s t h e
str e n gt h of t h e o pti c al di p ol e f or c e, k = k x ê x + k z ê z

i s t h e di ff er e n c e  w a v e v e ct or of t h e  O D F b e a ms, a n d μ r

i s t h eir di ff er e n c e fr e q u e n c y.  T h e o ut- of- pl a n e  m oti o n is
tr e at e d q u a nt u m  m e c h a ni c all y a n d is r e pr es e nt e d b y t h e
o p er at or ẑ j . I n t er ms of t h e dr u m h e a d  m o d es, it c a n b e
e x pr ess e d as

k z ẑ j =

N

n = 1

η n M j n( â n + ˆa †
n ), ( A 2)

w h er e â n , â
†
n ar e a n ni hil ati o n a n d cr e ati o n o p er at ors f or

m o d e n wit h fr e q u e n c y ω n , η n = k z /( 2 m ω n ) is t h e
L a m b- Di c k e p ar a m et er, m is t h e i o n  m ass, a n d M j n i s
t h e dis pl a c e m e nt of i o n j u n d er t h e i n fl u e n c e of  m o d e n .
I n c o ntr ast, t h e i n- pl a n e  m oti o n is d o mi n at e d b y t h e cr ys-
t al r ot ati o n a n d is r e pr es e nt e d b y t h e cl assi c al c o or di n at e
x j (t) = r j c os ( ωr t + φ j ),  w h er e r j i s t h e dist a n c e of t h e i o n
fr o m t h e tr a p c e nt er a n d φ j i s t h e a zi m ut h al a n gl e i n t h e
r ot ati n g fr a m e.

N ot e o n pl a n ar  m o d es. — T h e c o m pl et e pl a n ar  m oti o n
c o nsists of N c y cl otr o n  m o d es a n d N E × B m o d es  w h os e
m oti o n is s u p er p os e d o n t h e cr yst al r ot ati o n.  T h e c y cl otr o n
m o d es h a v e hi g h fr e q u e n c y a n d l o w a m plit u d e, s o  w e
e x p e ct t h eir i m p a ct t o b e n e gli gi bl e.  T h e a m plit u d e of t h e
E × B m o d es c a n b e a p pr e ci a bl e, b ut t h e y o nl y c o u pl e
w e a kl y a n d o ff r es o n a ntl y t o t h e l as ers  wit h o ur c h oi c e of
p ar a m et ers, s o t h eir e x p e ct e d i m p a ct is still s m all.

2.  C o p r o p a g ati n g  R a m a n b e a ms

We n o w i ntr o d u c e a p air of  R a m a n b e a ms t h at dri v e r es-
o n a nt t w o- p h ot o n tr a nsiti o ns b et w e e n t h e s pi n st at es.  T h e

b e a ms ar e ass u m e d t o b e c o pr o p a g ati n g s o t h at t h eir di ff er-
e n c e  w a v e v e ct or a p pr o xi m at el y v a nis h es [ 4 9 ] a n d h e n c e
d o es n ot i n d u c e a n y s pi n- m oti o n c o u pli n g. I n a fr a m e r ot at-
i n g at ω s , t h e t ot al  H a milt o ni a n i n cl u di n g t h e  O D F a n d t h e
R a m a n b e a ms is

Ĥ =

N

j = 1

B j ŝ
X
j +

N

n = 1

ω n â
†
n â n

+ 2

N

j = 1

δ A C si n ( k x x j + k z ẑ j − μ r t) ŝ
Z
j . ( A 3)

H er e, B j i s t h e e ff e cti v e t w o- p h ot o n  R a bi fr e q u e n c y at t h e
sit e of i o n j .  Ass u mi n g a b e a m  w aist w R f or t h e  R a m a n
l as ers,  w h er e R is t h e cr yst al r a di us,  w e c a n a p pr o xi m at e
B j ≈ B 0 − B 0 r

2
j / w 2 .

We n o w a n al y z e t h e s pi n d y n a mi cs i n a r ot at e d s pi n
s p a c e s u c h t h at ŝ Z ≡ −ˆ s X a n d ŝ X ≡ ˆ s Z . F urt h er tr a nsf or m-
i n g t o a fr a m e r ot ati n g at B 0 , t h e  H a milt o ni a n i n t h e r ot at e d
s pi n s p a c e is

Ĥ =

N

j = 1

B 0

r 2
j

w 2
ŝ Z

j +

N

n = 1

ω n â
†
n â n

+

N

j = 1

δ A C si n ( k x x j + k z ẑ j − μ r t)

× ( ŝ +
j e − i B0 t + ŝ −

j e i B0 t). ( A 4)

We c a n n o w s e e t h e t w of ol d r ol e pl a y e d b y t h e  R a m a n
dri v e: b y pr o vi di n g a s plitti n g 2 B 0 b et w e e n ŝ +

j a n d ŝ −
j ,

it  will e n a bl e r et e nti o n of o nl y d esir e d i nt er a cti o ns a n d
e n a bl e “r ot ati n g o ut ” u n w a nt e d i nt er a cti o ns. S e c o n d, t h e
b e a m  w aist w a cts as a k n o b t o t u n e t h e si n gl e- p arti cl e
dis p ersi o n.

3. S m all- a n gl e a p p r o xi m ati o n

We n o w c o nsi d er t h e si n e f u n cti o n a p p e ari n g i n
E q. ( A 4). F or t hr e e ar g u m e nts A = k x x j , B = k z ẑ j , C =
− μ r t,  w e c a n e x p a n d

si n(A + B + C ) = si n(A + B ) c os (C ) + c os (A + B ) si n(C ).
( A 5)

We ass u m e t h at A , B 1 a n d e x p a n d t h e r el e v a nt tri g o n o-
m etri c f u n cti o ns i n t h e s m all- a n gl e li mit.  T h e r es ult, c or-
r e ct t o s e c o n d or d er i n A , B , is

si n(A + B + C ) ≈ (A + B ) c os C

+ 1 −
A 2 + B 2

2
− A B si n C . ( A 6)
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4.  O bt ai ni n g t h e t w o- c h a n n el  m o d el

We e x pr ess t h e r es o n a n c e r e q uir e m e nts as a s u m of
fr e q u e n ci es a p p e ari n g i n t h e ar g u m e nt of c o m pl e x e x p o-
n e nti als  m ulti pl yi n g e a c h i nt er a cti o n t er m.  T o d o s o,
w e first n ot e t h at t h e  m oti o n al o n g x c a n b e  writt e n
as x j = r j c os ( ωr t + φ j ) = (r j / 2 )(e i( ωr t+ φ j ) + e − i( ωr t+ φ j ) ),
w hil e t h e  m oti o n al o n g z c a n b e e x p a n d e d as

k z ẑ j (t) =

N

n = 1

η n M j n( â n e
− iω n t + ˆa †

n e
iω n t). ( A 7)

T his e x p a nsi o n ass u m es t h at  w e h a v e  m o v e d t o a n i nt er-
a cti o n pi ct ur e  wit h r es p e ct t o t h e fr e e p h o n o n fr e q u e n-
ci es ω n .  T h e h o m o g e n e o us  R a m a n dri v e s ets a fr e q u e n c y
B 0 f or t h e s pi ns as s e e n fr o m  E q. ( A 4). Fi n all y, t h e
t er ms c os(− μ r t), si n(− μ r t) c a n b e e x p a n d e d  wit h c o m-
pl e x e x p o n e nti als of t h e f or m e ± iμ r t. F or dis c ussi n g t h e
r es o n a n c e r e q uir e m e nts (s e e  A p p e n di x C ),  w e n e gl e ct t h e
s m all c o ntri b uti o n arisi n g fr o m t h e s p ati all y i n h o m o g e-
n e o us c o m p o n e nt of t h e  R a m a n b e a ms, i. e.,  w e ass u m e t h at
t h e b e a m  w aist w → ∞ .

We t u n e μ r t o s el e cti v el y i n d u c e a c o u pli n g b et w e e n
t h e s pi ns (B 0 ), t h e dr u m h e a d c. m.  m o d e (ω 1 ), a n d t h e
pl a n ar r ot ati o n ( ω r ). I n p arti c ul ar,  w e a dj ust μ r s u c h
t h at B 0 − μ r + ω 1 + ω r = δ 1 .  T h e n, t h e o nl y n e ar-r es o n a nt
t er m st e ms fr o m t h e A B si n C -t y p e t er m i n  E q. ( A 6), a n d is
of t h e f or m

Ĥ I = −

N

j = 1

G

i
√

N
r̃ j ( ŝ

−
j â

†
1 e

i( δ1 t+ φ j ) − ŝ +
j â 1 e

− i( δ1 t+ φ j ) ),

( A 8)

w h er e r̃ j = r j / R is t h e i o n r a di us n or m ali z e d t o t h e cr yst al
r a di us R ( ass u mi n g a n e arl y cir c ul ar cr yst al) a n d G is gi v e n
b y

G =
δ A C η 1 ( k x R )

4
. ( A 9)

H er e, η 1 = k z /( 2 m ω 1 ) is t h e  L a m b- Di c k e p ar a m e-
t er f or t h e c. m.  m o d e.  T h e q u a ntit y k x R c a n b e t h o u g ht
of as a n e ff e cti v e  L a m b- Di c k e p ar a m et er f or t h e i n- pl a n e
m oti o n.  We  will l at er c o nsi d er t h e e ff e ct of o ff-r es o n a nt
t er ms i n  A p p e n di c es C a n d D .

T h e a b o v e a n al ysis is c arri e d o ut ass u mi n g t h at t h e b e a m
w aist of t h e  R a m a n l as ers w → ∞ .  R est ori n g a fi nit e w a n d
p erf or mi n g a fr a m e tr a nsf or m ati o n f or t h e c. m.  m o d e,  w e
arri v e at t h e e ff e cti v e  H a milt o ni a n

Ĥ 2 c h =

N

j = 1

B 1 r̃
2
j ŝ

Z
j + δ 1 â

†
1 â 1

−

N

j = 1

G

i
√

N
r̃ j ( ŝ

−
j â

†
1 e

iφ j − ŝ +
j â 1 e

− iφ j ), ( A 1 0)

w h er e B 1 = B 0 R
2 / w 2 .

5.  E ff e cti v e s pi n- e x c h a n g e i nt e r a cti o n

We n o w eli mi n at e t h e c. m.  m o d e fr o m  E q. ( A 1 0) usi n g
e ff e cti v e  H a milt o ni a n t h e or y [ 2 1 ].  We e x pr ess e n er g y r es-
o n a n c e r e q uir e m e nts o n c e a g ai n as c o m pl e x e x p o n e nti als

b y d e fi ni n g δ
j
1 = δ 1 − B 1 r̃

2
j .  Usi n g a fr a m e tr a nsf or m ati o n

f or t h e s pi ns a n d t h e c. m.  m o d e,  E q. ( A 1 0) c a n b e  writt e n
as

Ĥ I = −

N

j = 1

G

i
√

N
r̃ j ( ŝ

−
j â

†
1 e

i( δ
j
1 t+ φ j ) − ŝ +

j â 1 e
− i( δ

j
1 t+ φ j ) ).

( A 1 1)

B y ass u mi n g t h at t h e δ
j
1 ar e l ar g e c o m p ar e d t o t h e  m a xi-

m u m i nt er a cti o n str e n gt h G , a s pi n-s pi n  H a milt o ni a n c a n
b e d eri v e d usi n g e ff e cti v e  H a milt o ni a n t h e or y.  T h e r es ult
is

Ĥ e ff =

N

j ,k = 1

G 2

N h ( δ
j
1 , δ

k
1 )

r̃ j r̃ k [â
†
1 ŝ

−
j e i( δ

j
1 t+ φ j ) , â 1 ŝ

+
k e − i( δ k

1 t+ φ k ) ],

( A 1 2)

w h er e h (a , b ) is t h e h ar m o ni c  m e a n of a , b .  T h e c o m m ut a-
t or e v al u at es t o

[â
†
1 ŝ

−
j , ŝ +

k â 1 ] =
− ŝ −

j ŝ +
k , j = k ,

− 2 â
†
1 â 1 ŝ Z

j − ŝ +
j ŝ −

j , j = k .
( A 1 3)

T h e t er m c o nt ai ni n g â
†
1 â 1 c a n b e n e gl e ct e d if t h e c. m.

m o d e is i niti all y i n t h e gr o u n d st at e s u c h t h at â
†
1 â 1 = 0.

Si n c e t h e n u m b er o p er at or of t h e c. m.  m o d e o nl y a p p e ars
i n t h e j = k t er m, a s m all n o n z er o t h er m al o c c u p ati o n of
t h e c. m.  m o d e o nl y c h a n g es t h e si n gl e- p arti cl e dis p ersi o n
( ki n eti c e n er g y) a n d d o es n ot a ff e ct t h e i nt er a cti o n t er ms.
T h er ef or e, it d o es n ot a ff e ct t h e a bilit y t o s e e t h e disti n ct
d y n a mi c al p h as es i n a n e x p eri m e nt.

T h e e ff e cti v e  H a milt o ni a n is t h er ef or e

Ĥ e ff = −

N

j ,k = 1

G 2

N h ( δ
j
1 , δ

k
1 )

r̃ j r̃ k ŝ
+
j ŝ −

k e − i[( δ
j
1 − δ k

1 )t+ ( φj − φ k )].

( A 1 4)

T h e ti m e d e p e n d e n c e c a n b e r e m o v e d vi a a fr a m e tr a nsf or-
m ati o n t o gi v e

Ĥ e ff =

N

j = 1

B 1 r̃
2
j −

G 2

N δ
j
1

r̃ 2
j ŝ Z

j

−

N

j = 1 k = j

G 2

N h ( δ
j
1 , δ

k
1 )

r̃ j r̃ k ŝ
+
j ŝ −

k e − i( φj − φ k ) . ( A 1 5)
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Si n c e δ 1 G 2 / δ 1 a n d B 1 i s c o m p ar a bl e t o t h e l att er fr e-

q u e n c y, as a first a p pr o xi m ati o n  w e c a n ass u m e t h at δ
j
1 ≈

δ k
1 ≈ δ 1 a n d n e gl e ct sit e d e p e n d e n c y i n t h e d e n o mi n at ors

of t h e e ff e cti v e fr e q u e n ci es.  T his l e a ds t o t h e f oll o wi n g
H a milt o ni a n f or t h e o n e- c h a n n el  m o d el:

Ĥ 1 c h = K

N

j = 1

r̃ 2
j ŝ

Z
j −

J

N

N

j = 1 k = j

r̃ j r̃ k ŝ
+
j ŝ −

k e − i( φj − φ k )

( A 1 6)

wit h J = G 2 / δ 1 a n d K = B 1 − J / N .  We n ot e t h at t h e t ot al

m a g n eti z ati o n Ĵ Z = j ŝ Z
j i s c o ns er v e d b y t his  H a milt o-

ni a n.

A P P E N DI X  B:  E X P E RI M E N T A L  P A R A M E T E R S
F O R I M P L E M E N T A TI O N

I n t his s e cti o n,  w e pr o vi d e e x p eri m e nt al p ar a m et ers f or
i m pl e m e nti n g o ur pr o p os al.  T h es e p ar a m et ers ar e b as e d o n
s etti n gs us e d i n t h e  NI S T P e n ni n g tr a p,  w h er e 2 D cr yst als
of t e ns t o h u n dr e ds of 9 B e + i o ns ar e r o uti n el y pr e p ar e d f or
q u a nt u m si m ul ati o n a n d s e nsi n g.

1.  T r a p pi n g p a r a m et e rs

T w o- di m e nsi o n al cr yst als of 9 B e + i o ns ar e f or m e d i n t h e
P e n ni n g tr a p b y a c o m bi n ati o n of a n el e ctri c q u a dr u p ol e
fi el d pr o vi di n g a xi al c o n fi n e m e nt a n d a str o n g a xi al  m a g-
n eti c fi el d B ≈ 4. 4 6  T [ c y cl otr o n fr e q u e n c y ω c /( 2 π ) ≈
7. 6  M H z] t h at ai ds i n r a di al c o n fi n e m e nt.  T h e s pi n- 1 / 2
d e gr e e of fr e e d o m is e n c o d e d i n t w o l o n g-li v e d h y p er fi n e
l e v els of e a c h 9 B e + i o n, i. e., | ↑ ≡ | 2 S 1 / 2 , 1/ 2 a n d | ↓ ≡
|2 S 1 / 2 , − 1 / 2 . F or a cr yst al  wit h N = 2 0 0 i o ns, t h e cr yst al
r a di us is R ∼ 1 0 0 μ m.  H er e  w e c o nsi d er t w o s ets of tr a p-
pi n g p ar a m et ers. I n c as e  A,  w e s et t h e r ot ati o n fr e q u e n c y
t o ω r /( 2 π ) = 1 8 0 k H z a n d c h o os e t h e a xi al tr a p pi n g fr e-
q u e n c y,  w hi c h is als o t h e dr u m h e a d c. m. fr e q u e n c y, t o
b e ω 1 /( 2 π ) = 1. 5 9  M H z. I n c as e  B,  w e c h o os e a f ast er
r ot ati n g cr yst al  wit h a hi g h er a xi al tr a p pi n g fr e q u e n c y,
vi z. ω r /( 2 π ) = 9 0 0 k H z a n d ω 1 /( 2 π ) = 3. 4 2  M H z. I n
t h e f oll o wi n g,  w e e x pli citl y r ef er t o t h e di ff er e nt c as es
w h e n s p e cif yi n g p ar a m et ers t h at ar e n ot t h e s a m e i n t h e
t w o c as es.  W hil e c as e  A r e pr es e nts t h e c o m m o nl y us e d
tr a p pi n g p ar a m et ers, t h e r e as o n  w e c o nsi d er t w o s ets of
p ar a m et ers  will b e c o m e cl e ar i n  A p p e n di x D ,  w h er e  w e
s h o w t h at c ert ai n o ff-r es o n a nt t er ms ar e o nl y n e gli gi bl e
f or t h e f ast er r ot ati n g cr yst al, i. e., c as e  B.  N e v ert h el ess,
w e h a v e us e d c as e- A tr a p pi n g p ar a m et ers f or t h e fi g ur es
pr es e nt e d i n t h e  m ai n t e xt, si n c e t h os e r es ults h a v e b e e n
o bt ai n e d n e gl e cti n g t h e o ff-r es o n a nt t er ms. I n t his sit u a-
ti o n, b ot h c as e- A a n d c as e- B cr yst als gi v e q u alit ati v el y
si mil ar r es ults.

I n g e n er al, b ot h t h e  O D F b e a ms a n d t h e  R a m a n b e a ms
i nt ers e ct t h e cr yst al pl a n e at a n o n z er o a n gl e.  H o w e v er, f or
t h e q u a nt u m si m ul ati o n,  w e r e q uir e t h at t h es e b e a ms h a v e

a r a di all y v ar yi n g i nt e nsit y pr o fil e i n t h e cr yst al pl a n e.  T his
c a n b e a c hi e v e d b y usi n g l as er b e a ms  wit h elli pti c al b e a m
w aists,  w h os e cr oss s e cti o n i n t h e cr yst al pl a n e  will h a v e a
r a di al i nt e nsit y pr o fil e.

2.  O D F i nt e r a cti o n

T h e o pti c al di p ol e f or c e is r e ali z e d usi n g a p air of l as ers
t h at i nt ers e ct t h e cr yst al at a p pr o xi m at el y e q u al a n d o p p o-
sit e a n gl es r el ati v e t o t h e cr yst al pl a n e; s e e Fi g. 1( c) . T h es e
l as ers i n d u c e s p ati all y v ar yi n g a c St ar k s hifts o n t h e ps e u-
d os pi n st at es b y c o u pli n g t h es e st at es t o t h e |2 P 3 / 2 m a ni-
f ol d a n d gi v e ris e t o a  H a milt o ni a n of t h e f or m d es cri b e d
i n  E q. ( A 1).

Fr o m Fi g. 1( c) , t h e  w a v e v e ct ors of t h e  O D F l as ers ar e
gi v e n b y

k u = (k c os θ ) ê x − (k si n θ ) ê z ,

k l = [k c os ( θ + δ θ ) ]ê x + [k si n ( θ + δ θ ) ]ê z ,
( B 1)

w h er e u , l d e n ot e t h e u p p er a n d l o w er  O D F b e a ms, r es p e c-
ti v el y, a n d k = | k u | = |k l|.  D e n oti n g k x = k c os θ , k z =
k si n θ ,  w e c a n  writ e

k u = k x ê x − k z ê z ,

k l ≈ (k x − k z δ θ ) ê x + (k z + k x δ θ ) ê z .
( B 2)

T h e di ff er e n c e  w a v e v e ct or c a n t h e n b e e x pr ess e d as

k = k z δ θ ê x − (2 k z − k x δ θ ) ê z ≡ k x ê x + k z ê z . ( B 3)

T h e  w a v e- v e ct or  m a g nit u d e of e a c h  O D F l as er is k ≈
2 × 1 0 7 m − 1 .  T h e  L a m b- Di c k e p ar a m et er al o n g t h e a xi al
dir e cti o n is η 1 = k z l

z p
1 ,  w h er e k z ≈ 2 k si n ( θ ) is t h e

di ff er e n c e  w a v e v e ct or al o n g t h e z dir e cti o n a n d l
z p
1 =

/( 2 m ω 1 ) is t h e z er o- p oi nt  m oti o n of t h e c. m.  m o d e.
H er e,  w e h a v e n e gl e ct e d t h e s m all c orr e cti o n t o k z t h at
aris es fr o m a n o n z er o  mis ali g n m e nt δ θ .  T o o bt ai n a v al u e
η 1 , t h e  O D F l as ers  m ust b e ori e nt e d at a n gl es ± θ wit h
r es p e ct t o t h e cr yst al pl a n e,  wit h θ = si n − 1 [η 1 /( 2 kl

z p
1 )].

F or η 1 ≈ 0. 3,  w e fi n d t h at θ ≈ 2 3. 4 ◦ f or c as e  A a n d θ ≈
3 5. 7 ◦ f or c as e  B.

A n a n al o g o us s m all p ar a m et er al o n g t h e x dir e cti o n is
gi v e n b y η x = k x R ,  w h er e k x = k δ θ si n θ is t h e di ff er-
e n c e  w a v e v e ct or i n t h e cr yst al pl a n e.  T o o bt ai n a v al u e η x ,
t h e r e q uir e d  mis ali g n m e nt is gi v e n b y δ θ = η x /( k R si n θ ) .
F or η x ≈ 0. 3,  w e fi n d t h at δ θ ≈ 0. 0 1 7 ◦ f or c as e  A a n d
δ θ ≈ 0. 0 1 6 ◦ f or c as e  B.  E x p eri m e nt all y, it is p ossi bl e t o
c o ntr ol t h e tilt of t h e 1 D o pti c al l atti c e at t h e r e q uir e d
l e v el b y  m o nit ori n g si d e b a n d e x cit ati o ns at t h e r ot ati o n fr e-
q u e n c y.  T his t e c h ni q u e h as pr e vi o usl y b e e n us e d t o ali g n
t h e o pti c al di p ol e l atti c e  w a v e v e ct ors t o b e p er p e n di c u-
l ar t o t h e cr yst al pl a n e t o b ett er t h a n 0. 0 1◦ i n t h e  NI S T
P e n ni n g tr a p [ 5 0 ].  We n ot e t h at  w a v efr o nt c o ntr ol c a n b e
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f a cilit at e d i n f ut ur e  w or k b y usi n g a s p ati al li g ht  m o d ul at or
[4 5 ].

We ass u m e t h at δ A C /( 2 π ) ≈ 4 0 k H z.  T h e n, t h e i nt er-
a cti o n str e n gt h G f or t h e t w o- c h a n n el  m o d el is gi v e n
b y

G

2 π
=

δ A C η 1 η x

4 (2 π )
= 9 0 0  H z. ( B 4)

B y ass u mi n g a d et u ni n g of δ 1 /( 2 π ) = 2 k H z fr o m t h e c. m.
m o d e,  w e c a n arri v e at t h e e ff e cti v e o n e- c h a n n el  m o d el
c o u pli n g str e n gt h J as

J

2 π
=

G 2

δ 1
= 4 0 5  H z. ( B 5)

I n t his p ar a m et er r e gi m e, t h e r ati o δ 2
1 / G 2 ∼ 5 a n d, t h er e-

f or e, t h e si m ul ati o n  will h a v e a s m all t w o- c h a n n el c h ar a c-
t er t o it i n a d diti o n t o t h e d o mi n a nt o n e- c h a n n el  m o d el (s e e
Fi g. 4 ).

3.  R a m a n b e a ms

T w o- p h ot o n  R a m a n tr a nsiti o ns b et w e e n t h e ps e u d os pi n
st at es c a n b e e n gi n e er e d b y i ntr o d u ci n g a p air of c o pr o p a-
g ati n g  R a m a n l as ers t h at c o u pl e t h es e st at es t o t h e |2 P 3 / 2

m a nif ol d i n a f ar d et u n e d r e gi m e.  T h e p ur p os e of t h e
R a m a n b e a ms is t w of ol d. First, t h e s p ati all y h o m o g e-
n e o us t w o- p h ot o n  R a bi fr e q u e n c y B 0 br e a ks t h e s y m m etr y
b et w e e n t h e ŝ + a n d ŝ − t er ms; s e e  E q. ( A 4).  We t a k e t his
v al u e t o b e B 0 /( 2 π ) = 1 0 k H z. S e c o n d, t h e r a di all y v ar y-
i n g i nt e nsit y of t h e  R a m a n b e a ms t u n es t h e dis p ersi o n K of
t h e s pi ns.  We esti m at e t h e s c al e of t h e r e q uir e d b e a m  w aist
w as t h e v al u e at  w hi c h K ≈ J , i. e.,

K ≈
B 0 R

2

w 2
= J = ⇒ w ≈ 4 9 7 μ m. ( B 6)

A n alt er n ati v e  m e c h a nis m t o g e n er at e a  R a m a n b e a m
i nt e nsit y gr a di e nt is b y utili zi n g t h e  D o p pl er s hifts aris-
i n g fr o m t h e cr yst al r ot ati o n.  Alt h o u g h t h e  R a m a n b e a ms
ar e c o pr o p a g ati n g, t h eir di ff er e n c e  w a v e v e ct or | k R | = 0
b e c a us e of t h e fr e q u e n c y s plitti n g ω s of t h e s pi n st at es, i. e.,
| k R | = ω s / c ,  w h er e c is t h e s p e e d of li g ht i n v a c u u m.
Ass u mi n g t h at t h e  R a m a n b e a ms ar e pr o p a g ati n g i n t h e
x -z pl a n e a n d  m a k e a n a n gl e θ R wit h t h e cr yst al pl a n e, t h e
H a milt o ni a n f or a si n gl e i o n i nt er a cti n g  wit h t h e  R a m a n
b e a ms is gi v e n b y

Ĥ R ,j = ω s ŝ
Z
j +

B 0

2
( ŝ +

j e i[| k R | c os θ R x j (t)− ω R t]

+ ˆ s −
j e − i[| k R | c os θ R x j (t)− ω R t]). ( B 7)

I n t h e  D o p pl er-fr e e c as e, t w o- p h ot o n r es o n a n c e is s atis fi e d
b y s etti n g ω R = ω s . I n t his c as e, tr a nsf or mi n g t o a fr a m e

r ot ati n g at ω s l e a ds t o t h e i nt er a cti o n  H a milt o ni a n

Ĥ I
R ,j =

B 0

2
( ŝ +

j e i| k R | c os θ R x j (t) + ˆ s −
j e − i| k R | c os θ R x j (t) ). ( B 8)

T h e  D o p pl er s hift is ti m e  m o d ul at e d b e c a us e x j (t) =
r j c os ( ωr t + φ j ).  D e fi ni n g η R

j = | k R | c os θ R r j ,  w e c a n
us e t h e J a c o bi- A n g er e x p a nsi o n t o  writ e

e
− iη R

j c os ( ωr t+ φ j )
=

∞

n = − ∞

(− i)n J n ( η R
j )e − i n( ωr t+ φ j ) , ( B 9)

w h er e J n (x ) is t h e n t h  B ess el f u n cti o n of t h e first ki n d.  T h e
n = 0 t er m is t h e n gi v e n b y

Ĥ I ,(0 )
R ,j = B 0 J 0 ( η R

j ) ŝ X
j ≈ B 0 1 −

( η R
j ) 2

4
ŝ X
j

= B 0 −
B 0 ω

2
s R

2

4 c 2
r̃ 2
j ŝ X

j . ( B 1 0)

T h e a p pr o xi m ati o n is v ali d f or ( η R
j ) 2 1.  T o v erif y t his,

w e c o nsi d er t h e sit u ati o n  w h e n t h e l ar g est v al u e of η R
j

o c c urs, i. e.,  w h e n θ R = 0 a n d r j = R ∼ 1 0 0 μ m.  Usi n g
ω s /( 2 π ) = 1 2 4  G H z,  w e esti m at e η R

j ≈ 0. 2 6 a n d ( η R
j ) 2 ≈

0. 0 6 7 1.  T h e a c hi e v a bl e v al u e of B 1 i n t his c as e is gi v e n
b y

B 1 =
ω 2

s R
2

4 c 2
B 0 ≈ 0. 0 1 7 B 0 ≈ 2 π × 1 7 0  H z, ( B 1 1)

w h er e  w e h a v e us e d B 0 /( 2 π ) = 1 0 k H z.  T h er ef or e, it
a p p e ars t h at B 1 c a n b e p arti all y r e ali z e d e v e n  wit h o ut a
b e a m  w aist b y si m pl y e x pl oiti n g t h e cr yst al r ot ati o n.

We n ot e t h at t h e dis p ersi o n B 1 arisi n g fr o m t h e  D o p pl er
s hifts c a n als o b e a c hi e v e d if  R a m a n b e a ms ar e r e pl a c e d
wit h a  mi cr o w a v e dri v e t h at is tilt e d  wit h r es p e ct t o t h e
s p ati al z a xis. S u c h a n i m pl e m e nt ati o n  m a y b e si m pl er
a n d  will als o eli mi n at e o ff-r es o n a nt s c att eri n g fr o m t h e
R a m a n b e a ms (s e e b el o w).  H o w e v er, t h e l o n g  w a v el e n gt h
of  mi cr o w a v es pr e cl u d es c o ntr ol of t h e b e a m  w aist at t h e
1 0 0- μ m l e v el f or a d diti o n al t u ni n g of B 1 t h at  m a y b e
r e q uir e d f or s o m e as p e cts of o ur pr o p os al.

4.  D e c o h e r e n c e f r o m o ff- r es o n a nt li g ht s c att e ri n g

We s e p ar at el y esti m at e t h e c o ntri b uti o ns fr o m t h e  O D F
b e a ms a n d t h e  R a m a n b e a ms a n d fi n d t h e m t o b e [ 5 1 ,5 2 ]

O D F

2 π
≈ 3 8  H z,

R a m a n

2 π
≈ 1 5  H z. ( B 1 2)

T h e t ot al d e c o h er e n c e r at e is t h e n t ot/( 2 π ) = ( O D F +

R a m a n ) /(2 π ) ≈ 5 3  H z.
Wit h t h e c h os e n p ar a m et ers,  w e esti m at e t h e t y pi c al

ti m e u p t o  w hi c h t h e si m ul ati o n c a n b e r u n as Jt ≈
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J (1 / t ot) ∼ 7. 6.  As  w e  m e nti o n i n t h e  m ai n t e xt, t h e r ati o
of t h e c o h er e nt i nt er a cti o n t o t h e d e c o h er e n c e r at e c a n
b e e n h a n c e d b y a n u m b er of  m e a ns, i n cl u di n g c h o osi n g
a di ff er e nt i o n s p e ci es a n d tr a nsiti o n, e n h a n ci n g c o h er e nt
c o u pli n g b y p ar a m etri c a m pli fi c ati o n, a n d b y  w or ki n g at a
di ff er e nt  O D F o p er ati n g p oi nt.

We n ot e t h at b e c a us e of t h e  m ultil e v el str u ct ur e of t h e
el e ctr o ni c e x cit e d st at es, t h e f ull d e c o h er e n c e  m o d el f or t h e
O D F b e a ms a n d f or t h e  R a m a n b e a ms c o nt ai ns a n u m b er
of i n d e p e n d e nt d e c a y c h a n n els  wit h n o ntri vi al r at es a n d
j u m p o p er at ors t h at ar e str o n gl y  m o di fi e d b y  m ultil e v el
i nt erf er e n c e e ff e cts.  Alt h o u g h  w e c o nsi d er t h e f ull d e c o-
h er e n c e  m o d el [ 5 1 ,5 2 ],  w e h a v e o nl y r o u g hl y esti m at e d t h e
d e c o h er e n c e r at e b y i ns p e cti n g a n al yti c al e q u ati o ns f or t h e
r at e of d e c a y of i n di vi d u al s pi n c o m p o n e nts. I n t h e f ut ur e,
a d et ail e d st u d y of t h e i m p a ct of d e c o h er e n c e c a n b e p er-
f or m e d f or s p e ci fi c e x p eri m e nt al s etti n gs b y i n cl u di n g t h e
f ull d e c o h er e n c e  m o d el i n t h e n u m eri c al si m ul ati o n.

A P P E N DI X  C:  R O T A TI N G- W A V E
A P P R O XI M A TI O N S

I n d eri vi n g t h e t w o- c h a n n el  m o d el,  w e ass u m e d t h at all
ot h er t er ms i n t h e e x p a nsi o n e q u ati o n ( A 6) c o ul d b e c o n-
si d er e d r a pi dl y os cill ati n g.  We n o w c h e c k  w h et h er t his is
tr u e b y first listi n g t h e v ari o us r es o n a n c e c o n diti o ns a n d
esti m ati n g t h eir v al u es usi n g r e al e x p eri m e nt al p ar a m et ers.

We first c o nsi d er t h e t er m of t h e f or m A B si n C ŝ −
j , f or

w hi c h t h e p ossi bl e ar g u m e nts of t h e c o m pl e x e x p o n e n-
ti als ar e ( u p t o a n o v er all si g n,  w hi c h gi v es t h e  H er miti a n
c o nj u g at e pr o c ess  wit h ŝ +

j )

T 1 1 ≡ B 0 − μ r + ω n + ω r = δ n ,

T 1 2 ≡ B 0 − μ r + ω n − ω r = δ n − 2 ω r ,

T 1 3 ≡ B 0 − μ r − ω n + ω r = δ n − 2 ω n ,

T 1 4 ≡ B 0 − μ r − ω n − ω r = δ n − 2 ω n − 2 ω r ,

T 1 5 = B 0 + μ r + ω n + ω r = δ n + 2 μ r ,

T 1 6 ≡ B 0 + μ r + ω n − ω r = δ n + 2 μ r − 2 ω r ,

T 1 7 ≡ B 0 + μ r − ω n + ω r = δ n + 2 μ r − 2 ω n ,

T 1 8 ≡ B 0 + μ r − ω n − ω r = − δ n + 2 B 0 . ( C 1)

We n e xt c o nsi d er t h e t er m of t h e f or m B 2 si n C ŝ −
j .  H er e,

w e h a v e

T 2 1 ≡ B 0 − μ r + ω n + ω k = δ 1 + ( ωn + ω k ) − ( ω1 + ω r ),

T 2 2 ≡ B 0 − μ r + ω n − ω k = δ 1 + ( ωn − ω k ) − ( ω1 + ω r ),

T 2 3 ≡ B 0 − μ r − ω n + ω k = δ 1 + ( ωk − ω n ) − ( ω1 + ω r ),

T 2 4 ≡ B 0 − μ r − ω n − ω k = δ 1 − ( ωn + ω k ) − ( ω1 + ω r ),

T 2 5 ≡ B 0 + μ r + ω n + ω k = δ 1 + 2 μ r + ( ωn + ω k )

− ( ω1 + ω r ),

T 2 6 ≡ B 0 + μ r + ω n − ω k = δ 1 + 2 μ r + ( ωn − ω k )

− ( ω1 + ω r ),

T 2 7 ≡ B 0 + μ r − ω n + ω k = δ 1 + 2 μ r + ( ωk − ω n )

− ( ω1 + ω r ),

T 2 8 ≡ B 0 + μ r − ω n − ω k = δ 1 + 2 μ r − ( ωn + ω k )

− ( ω1 + ω r ). (C 2 )

N e xt,  w e c o nsi d er t er ms of t h e f or m A 2 si n C ŝ −
j . F or t h es e

t er ms,  w e g et

T 3 1 ≡ B 0 − μ r + ω r + ω r = δ n + ω r − ω n ,

T 3 2 ≡ B 0 − μ r + ω r − ω r = δ n − ω r − ω n ,

T 3 3 ≡ B 0 − μ r − ω r + ω r = δ n − ω r − ω n ,

T 3 4 ≡ B 0 − μ r − ω r − ω r = δ n − 3 ω r − ω n ,

T 3 5 ≡ B 0 + μ r + ω r + ω r = δ n + 2 μ r + ω r − ω n ,

T 3 6 ≡ B 0 + μ r + ω r − ω r = δ n + 2 μ r − ω r − ω n ,

T 3 7 ≡ B 0 + μ r − ω r + ω r = δ n + 2 μ r − ω r − ω n ,

T 3 8 ≡ B 0 + μ r − ω r − ω r = δ n + 2 μ r − 3 ω r − ω n . ( C 3)

N o w,  w e c o nsi d er t er ms of t h e f or m si n C ŝ −
j .  H er e, t h e

c o m pl e x e x p o n e nti als ar e si m pl y T 4 1 ≡ B 0 + μ r a n d T 4 2 ≡
B 0 − μ r ,  w hi c h r es p e cti v el y e v al u at e t o δ n + 2 μ r − ω n −
ω r a n d δ n − ω n − ω r .

We n o w t ur n t o t h e t er m of t h e f or m B c os C ŝ −
j .  H er e,

w e h a v e t h e d et u ni n gs

T 5 1 ≡ B 0 − μ r + ω n = δ n − ω r ,

T 5 2 ≡ B 0 − μ r − ω n = δ n − 2 ω n − ω r ,

T 5 3 ≡ B 0 + μ r + ω n = δ n + 2 μ r − ω r ,

T 5 4 ≡ B 0 + μ r − ω n = δ n + 2 μ r − 2 ω n − ω r . ( C 4)

Fi n all y,  w e c o nsi d er t h e t er m of t h e f or m A c os C ŝ −
j .  H er e,

w e g et

T 6 1 ≡ B 0 − μ r + ω r = δ n − ω n ,

T 6 2 ≡ B 0 − μ r − ω r = δ n − 2 ω r − ω n ,

T 6 3 ≡ B 0 + μ r + ω r = δ n + 2 μ r − ω n ,

T 6 4 ≡ B 0 + μ r − ω r = δ n + 2 μ r − 2 ω r − ω n . ( C 5)

I n or d er t o esti m at e t h es e e x pr essi o ns,  w e c o m p ut e t h e
e q uili bri u m cr yst al str u ct ur e f or c as es  A a n d  B, a n d o bt ai n
t h e dr u m h e a d  m o d e s p e ctr u m t o o bt ai n t h e fr e q u e n ci es ω n .
I n  T a bl e I,  w e pr o vi d e t h e  m a xi m u m a n d  mi ni m u m v al u es
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T A B L E I.  Mi ni m u m a n d  m a xi m u m v al u es of v ari o us r es o-
n a n c e c o n diti o ns f or b ot h tr a p pi n g p ar a m et ers, vi z. c as e  A a n d
c as e  B.  T h e fr e q u e n ci es ar e r e p ort e d i n u nits of kil o h ert z.

T er m C as e  A C as e  B

T 1 1 (− 5 2 4, − 1 9) (− 5 0 5, − 2 1)
T 1 2 (− 8 8 4, − 3 5 8) (− 2 3 0 5, − 1 7 9 8)
T 1 3 (− 3 1 7 8, − 2 6 5 2) ( − 6 8 4 9, − 6 3 4 3)
T 1 4 (− 3 5 3 8, − 3 0 1 2) ( − 8 6 4 9, − 8 1 4 3)
T 1 5 ( 3 0 3 2, 3 5 5 8) ( 8 1 6 3, 8 6 6 9)
T 1 6 ( 2 6 7 2, 3 1 9 8) ( 6 3 6 3, 6 8 6 9)
T 1 7 ( 3 7 8, 9 0 4) ( 1 8 1 8, 2 3 2 5)
T 1 8 ( 1 8, 5 4 4) ( 1 8, 5 2 5)

T 2 1 ( 3 6 0, 1 4 1 2) ( 1 5 1 4, 2 5 2 8)
T 2 2 (− 2 2 9 4, − 1 2 4 2) ( − 4 8 3 0, − 3 8 1 7)
T 2 3 (− 2 2 9 4, − 1 2 4 2) ( − 4 8 3 0, − 3 8 1 7)
T 2 4 (− 4 9 4 8, − 3 8 9 6) ( − 1 1 1 7 5, − 1 0 1 6 2)
T 2 5 ( 3 9 1 6, 4 9 6 8) ( 1 0 1 8 2, 1 1 1 9 5)
T 2 6 ( 1 2 6 2, 2 3 1 4) ( 3 8 3 7, 4 8 5 0)
T 2 7 ( 1 2 6 2, 2 3 1 4) ( 3 8 3 7, 4 8 5 0)
T 2 8 (− 1 3 9 2, − 3 4 0) (− 2 5 0 8, − 1 4 9 4)

T 3 1 (− 1 4 0 8, − 1 4 0 8) ( − 2 5 2 4, − 2 5 2 4)
T 3 2 (− 1 7 6 8, − 1 7 6 8) ( − 4 3 2 4, − 4 3 2 4)
T 3 3 (− 1 7 6 8, − 1 7 6 8) ( − 4 3 2 4, − 4 3 2 4)
T 3 4 (− 2 1 2 8, − 2 1 2 8) ( − 6 1 2 4, − 6 1 2 4)
T 3 5 ( 2 1 4 8, 2 1 4 8) ( 6 1 4 4, 6 1 4 4)
T 3 6 ( 1 7 8 8, 1 7 8 8) ( 4 3 4 4, 4 3 4 4)
T 3 7 ( 1 7 8 8, 1 7 8 8) ( 4 3 4 4, 4 3 4 4)
T 3 8 ( 1 4 2 8, 1 4 2 8) ( 2 5 4 4, 2 5 4 4)

T 4 1 ( 1 7 8 8, 1 7 8 8) ( 4 3 4 4, 4 3 4 4)
T 4 2 (− 1 7 6 8, − 1 7 6 8) ( − 4 3 2 4, − 4 3 2 4)

T 5 1 (− 7 0 4, − 1 7 8) (− 1 4 0 5, − 8 9 8)
T 5 2 (− 3 3 5 8, − 2 8 3 2) ( − 7 7 4 9, − 7 2 4 3)
T 5 3 ( 2 8 5 2, 3 3 7 8) ( 7 2 6 3, 7 7 6 9)
T 5 4 ( 1 9 8, 7 2 4) ( 9 1 8, 1 4 2 5)

T 6 1 (− 1 5 8 8, − 1 5 8 8) ( − 3 4 2 4, − 3 4 2 4)
T 6 2 (− 1 9 4 8, − 1 9 4 8) ( − 5 2 2 4, − 5 2 2 4)
T 6 3 ( 1 9 6 8, 1 9 6 8) ( 5 2 4 4, 5 2 4 4)
T 6 4 ( 1 6 0 8, 1 6 0 8) ( 3 4 4 4, 3 4 4 4)

p ossi bl e f or e a c h of t h es e t er ms a n d f or c as es  A a n d  B.
If t h e  m a xi m u m a n d  mi ni m u m v al u es ar e l ar g e c o m p ar e d
t o |δ 1 | a n d h a v e t h e s a m e si g n t h e n t h er e ar e n o a c ci d e n-
t al r es o n a n c es a n d t h e t er ms c a n b e s af el y n e gl e ct e d.  We
h a v e e x cl u d e d t h e c. m. t er m  w h e n e v al u ati n g t h e r a n g e of
T 1 1 a s t his is pr e cis el y t h e t er m of i nt er est  wit h δ 1 /( 2 π ) ≤
2 k H z.  Alt h o u g h at first gl a n c e all of t h es e t er ms a p p e ar
t o b e f ar o ff r es o n a nt,  w e e x pl or e t h e i m p a ct of l o w- or d er
o ff-r es o n a nt t er ms i n a q u a ntit ati v e  m a n n er i n t h e n e xt
s e cti o n.

A P P E N DI X  D:  O N E- C H A N N E L  M O D E L  A N D
O F F- R E S O N A N T  T E R M S

F or si m ul ati n g t h e o n e- c h a n n el  m o d el,  w e ass u m e d t h at
δ 1 /( 2 π ) = 2 k H z c o nstit ut es a l ar g e d et u ni n g b as e d o n

w hi c h t h e c. m.  m o d e c a n b e a di a b ati c all y eli mi n at e d.  T h e
r es ulti n g i nt er a cti o n is f o urt h or d er i n t h e s m all p ar a m-
et ers A , B of t h e s m all- a n gl e e x p a nsi o n,  E q. ( A 6).  T his
r ais es t h e q u esti o n  w h et h er s o m e of t h e ot h er t er ms i n
E q. ( A 6), alt h o u g h o ff r es o n a nt, c o ul d p ot e nti all y c o m p et e
wit h t h e e ff e cti v e o n e- c h a n n el i nt er a cti o ns b e c a us e t h e y
ar e of l o w er or d er i n t h e s m all p ar a m et ers. I n t his s e cti o n,
w e c o nsi d er t h e e ff e ct of t er ms t h at ar e z er ot h a n d first
or d er i n t h e s m all p ar a m et ers o n t h e e ff e cti v e d y n a mi cs
of t h e o n e- c h a n n el  m o d el.  We als o esti m at e o ff-r es o n a nt
e ff e cts t h at aris e fr o m t h e s e c o n d- or d er t er m A B si n C si n c e
s o m e t er ms i n t his gr o u p ar e n ot v er y f ar o ff r es o n a nt.

1.  T h e si n C t e r m

T his t er m is of t h e f or m

Ĥ 4 =
j

δ A C

2 i
( ŝ +

j e − i( μr + B j )t + ŝ −
j e − i( μr − B j )t) + H. c.

( D 1)

Usi n g e ff e cti v e  H a milt o ni a n t h e or y ( E H T) a n d ass u mi n g
t h at B j μ r a n d B j ≈ B 0 l e a ds t o

Ĥ 4, e ff =
j

δ 2
A C B 0

μ 2
r

ŝ Z
j . ( D 2)

T his t er m r e pr es e nts a s m all a c St ar k s hift t h at l e a ds t o
c oll e cti v e s pi n pr e c essi o n at a fr e q u e n c y of a b o ut 5  H z f or
c as e  A a n d a b o ut 0. 9  H z f or c as e  B.  H e n c e, its e ff e ct c a n
b e c o nsi d er e d n e gli gi bl e.

2.  T h e A c os C t e r m

T his t er m is of t h e f or m

Ĥ 6 =
j

δ A C η x r̃ j

4
ŝ +

j e − i[( μr + ω r + B j )t+ φ j ]

+ ŝ +
j e − i[( μr − ω r + B j )t− φ j ] + ŝ −

j e − i[( μr + ω r − B j )t+ φ j ]

+ ŝ −
j e − i[( μr − ω r − B j )t− φ j ] + H. c. ( D 3)

Usi n g  E H T l e a ds t o

Ĥ 6, e ff = −
j

δ 2
A C η 2

x r̃
2
j

8

1

μ r + ω r + B j
+

1

μ r − ω r + B j

−
1

μ r + ω r − B j
−

1

μ r − ω r − B j
ŝ Z

j . ( D 4)

Ass u mi n g t h at B j ∼ B 0 ω r , μ r , w e g et

Ĥ 6, e ff =
j

δ 2
A C B 0 η

2
x r̃

2
j

4

1

( μr + ω r ) 2
+

1

( μr − ω r ) 2
ŝ Z

j .

( D 5)
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T his t er m r es ults i n a r a di us- d e p e n d e nt a c St ar k s hift.  We
esti m at e its  m a xi m al v al u e b y s etti n g r̃ j = 1, f or  w hi c h  w e
fi n d a pr e c essi o n fr e q u e n c y of a b o ut 0. 5  H z f or c as e  A a n d
a b o ut 0. 0 4  H z f or c as e  B.  T h es e ar e v er y s m all c o m p ar e d
t o t h e dis p ersi o n g e n er at e d b y t h e  R a m a n b e a m  w aist a n d
h e n c e  w e n e gl e ct t h es e t er ms.

3.  T h e B c os C t e r m

T his t er m is of t h e f or m

Ĥ 5 =
j ,n

δ A C η n M j n

2
ŝ +

j â n e
− i( μr + B 0 + ω n )t

+ ŝ +
j â †

n e
− i( μr + B 0 − ω n )t + ŝ −

j â n e
− i( μr − B 0 + ω n )t

+ ŝ −
j â †

n e
− i( μr − B 0 − ω n )t + H. c. ( D 6)

F or a p pl yi n g  E H T,  w e e v al u at e t h e c o m m ut at ors

[ŝ +
j â n , ŝ

−
k â †

m ] = 2 â †
m â n ŝ

Z
j δ j k + δ n m ŝ

+
j ŝ −

k ,

[ŝ +
j â †

n , ŝ
−
k â m ] = 2 â m â †

n ŝ
Z
j δ j k − δ n m ŝ

+
j ŝ −

k ,

[ŝ −
j â n , ŝ

+
k â †

m ] = − 2 â †
m â n ŝ

Z
j δ j k + δ n m ŝ

−
j ŝ +

k ,

[ŝ −
j â †

n , ŝ
+
k â m ] = − 2 â m â †

n ŝ
Z
j δ j k − δ n m ŝ

−
j ŝ +

k . ( D 7)

We o nl y c o nsi d er t h e e ff e cti v e r ol e of e a c h t er m i n t h e
E q. ( D 6) i n d e p e n d e ntl y.  Wit h t h e ass u m pti o n of gr o u n d-

st at e c o oli n g,  w e  m a k e t h e r e pl a c e m e nts â
†
m â n → 0 a n d

â m â
†
n → δ n m .  We t h e n h a v e t h e e ff e cti v e  H a milt o ni a n

Ĥ 5, e ff = −
j n

δ 2
A C η 2

n M
2
j n

4

1

μ r + B 0 + ω n
+

1

μ r + B 0 − ω n
−

1

μ r − B 0 + ω n
−

1

μ r − B 0 − ω n
ŝ Z

j

−
j = k n

δ 2
A C η 2

n M j nM k n

4

1

μ r + B 0 + ω n
−

1

μ r + B 0 − ω n
+

1

μ r − B 0 + ω n
−

1

μ r − B 0 − ω n
ŝ +

j ŝ −
k . ( D 8)

As a first a p pr o xi m ati o n,  w e n e gl e ct t er ms  wit h μ r + ω n

i n t h e d e n o mi n at or si n c e t h e y ar e s m all c o m p ar e d  wit h
t er ms t h at h a v e μ r − ω n i n t h e d e n o mi n at or.  Usi n g t h e f a ct
t h at B 0 μ r − ω n ,  w e arri v e at t h e a p pr o xi m at e e ff e cti v e
H a milt o ni a n

Ĥ 5, e ff =
j ,k

J 5, j kŝ
+
j ŝ −

k , ( D 9)

w h er e t h e i nt er a cti o n  m atri x J 5 h as el e m e nts gi v e n b y

J 5, j k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n

δ 2
A C B 0 η

2
n M

2
j n

2 ( μr − ω n ) 2
, j = k ,

n

δ 2
A C η 2

n M j nM k n

2 ( μr − ω n )
, j = k .

( D 1 0)

T h e e ff e cti v e  H a milt o ni a n Ĥ 5, e ff m e di at es a c hir al s pi n-
e x c h a n g e-t y p e i nt er a cti o ns t h at dir e ctl y c o m p et e  wit h t h e
c hir al s pi n- e x c h a n g e t h at  w e  wis h t o e n gi n e er.  We st u d y
t h e i m p a ct of t his t er m n u m eri c all y i n Fi g. 5 f or c as e  A
a n d c as e  B usi n g  m e a n- fi el d t h e or y.  We fi n d t h at i n c as e  A
t his i nt er a cti o n c a us es | (t)| t o r a pi dl y d e c a y t o w ar d z er o
o n s h ort ti m es c al es,  w h er e as i n c as e  B t h e i m p a ct of t his
t er m is r at h er s m all. Fr o m t h e f or m of t h e el e m e nts i n t h e

c o u pli n g  m atri x J 5 , a l ar g er r ot ati o n fr e q u e n c y ω r i n cr e as es
t h e d e n o mi n at or, i. e.,  m a k es t h es e t er ms s m all er a n d h e n c e
t h eir i m p a ct is s m all er i n c as e  B.

4.  T h e A B si n C t e r m

T h e i nt er a cti o n gi vi n g ris e t o t h e t w o- c h a n n el  m o d el
is pr es e nt i n t his s e c o n d- or d er t er m a n d  w as dis c uss e d
pr e vi o usl y.  H er e,  w e esti m at e t h e c o ntri b uti o n of ot h er
i nt er a cti o ns pr es e nt i n t his t er m si n c e s o m e of t h e m ar e
n ot v er y f ar o ff r es o n a nt.

T his t er m is of t h e f or m

Ĥ 1 = −
j ,n

δ A C η x r̃ j η n M j n

4 i
ŝ +

j â †
n e

− i[( μr − ω n − ω r + B 0 )t− φ j ]

+ ŝ +
j â †

n e
− i[( μr − ω n + ω r + B 0 )t+ φ j ]

+ ŝ −
j â †

n e
− i[( μr − ω n − ω r − B 0 )t− φ j ]

+ ŝ −
j â †

n e
− i[( μr − ω n + ω r − B 0 )t+ φ j ] + H. c. ( D 1 1)

I n  writi n g t h e a b o v e e q u ati o n,  w e h a v e alr e a d y i g n or e d
t h e t er ms t h at h a v e e x p o n e nti als c o nt ai ni n g t h e c o m bi n a-
ti o n μ r + ω n . F oll o wi n g a c al c ul ati o n si mil ar t o t h e B c os C
t er m,  w e fi n d a n e ff e cti v e  H a milt o ni a n gi v e n b y
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( a) ( b)

FI G. 5. I m p a ct of o ff-r es o n a nt i nt er a cti o ns o n t h e o n e- c h a n n el  m o d el d y n a mi cs f or cr yst als f or m e d u n d er t w o di ff er e nt tr a p pi n g
p ar a m et ers: ( a) c as e  A a n d ( b) c as e  B (s e e  A p p e n di x B 1 ). I n b ot h c as es,  w e pr o gr essi v el y a d d t er ms t o t h e p ur e o n e- c h a n n el  m o d el
a n d st u d y t h eir i m p a ct.  We a d d t h e f oll o wi n g t er ms i n t h e s p e ci fi e d or d er:  C hir al s pi n e x c h a n g e b y all  m o d es ( J 1 2 ), a nti c hir al s pi n
e x c h a n g e b y all  m o d es ( J 1 1 ), a n d a c hir al s pi n e x c h a n g e b y all  m o d es (J 5 ).  H er e,  w e st art fr o m a  B C S-li k e i niti al st at e [t o p p a n el of
Fi g. 2( a) ] a n d us e t h e e x p eri m e nt al p ar a m et ers dis c uss e d i n  A p p e n di x B . We h a v e us e d B 1 ≈ J ,  w h er e t h e v al u e of J /( 2 π ) ≈ 4 0 5  H z.

Ĥ 1, e ff =
j ,k

J 1 1, j k ŝ
+
j ŝ −

k +
j ,k

J 1 2, j k ŝ
+
j ŝ −

k , ( D 1 2)

w h er e t h e i nt er a cti o n  m atri c es J 1 1 , J 1 2 h a v e el e m e nts gi v e n b y

J 1 1, j k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

n

δ 2
A C η 2

x r̃
2
j η

2
n M

2
j n

1 6 ( δn − 2 B 0 )
, j = k ,

−
n

δ 2
A C η 2

x r̃ j r̃ k η
2
n M j nM k n

1 6

1

δ n − 2 B 0
+

1

δ n − 2 ω r
e i( φj − φ k ) , j = k ,

J 1 2, j k =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
n

δ 2
A C η 2

x r̃
2
j η

2
n M

2
j n

1 6 δ n
, j = k ,

−
n

δ 2
A C η 2

x r̃ j r̃ k η
2
n M j nM k n

1 6

1

δ n − 2 ω r
+

1

δ n
e − i( φj − φ k ) , j = k .

( D 1 3)

T h e J 1 2 m atri x n o w r e pr es e nts t h e c hir al s pi n- e x c h a n g e
i nt er a cti o ns arisi n g fr o m all dr u m h e a d  m o d es.  O n t h e ot h er
h a n d, t h e J 1 1 m atri x d es cri b es a nti c hir al i nt er a cti o ns  m e di-
at e d b y t h es e  m o d es.  We esti m at e t h e i m p a ct of t h es e t er ms
n u m eri c all y i n Fi g. 5 a n d fi n d t h at t h e y d o n ot si g ni fi c a ntl y
i m p a ct t h e o n e- c h a n n el  m o d el d y n a mi cs i n b ot h c as es  A
a n d  B.

O ur st u d y of o ff-r es o n a nt i nt er a cti o ns s h o ws t h at tr a p-
pi n g p ar a m et ers c a n b e f o u n d  w h er e t h e i m p a ct of t h es e
t er ms c a n b e n e gl e ct e d f or r e ali zi n g t h e o n e- c h a n n el
m o d el. I n t h e c as e of t h e t w o- c h a n n el  m o d el, pr eli mi n ar y
n u m eri c al r es ults i n di c at e t h at, e v e n i n c as e  A, t h e a d v ers e
i m p a ct of o ff-r es o n a nt t er ms o n s h ort ti m es c al es (Gt 3 0)
is r e d u c e d as t h e c. m.  m o d e is br o u g ht n e ar r es o n a n c e, s u g-
g esti n g t h at t w o- c h a n n el d y n a mi cs c o ul d b e pr o b e d e v e n
wit h c as e- A tr a p pi n g p ar a m et ers.  T h e p ur e o n e- c h a n n el
a n d p ur e t w o- c h a n n el  m o d el r es ults pr es e nt e d i n t h e  m ai n

t e xt h a v e b e e n c o m p ut e d usi n g t h e c as e- A e q uili bri u m
cr yst al.  We h a v e c h e c k e d t h at all t h e r es ults f or t h e c as e- B
e q uili bri u m cr yst al ar e q u alit ati v el y si mil ar t o t h e c as e- A
r es ults  w h e n o ff-r es o n a nt t er ms ar e n e gl e ct e d.

We e n d t his s e cti o n b y n oti n g t h at  w e h a v e n ot e xt e n-
si v el y c o nsi d er e d t h e i m p a ct of cr oss t al k b et w e e n di ff er e nt
t er ms as  w ell as t h e r ol e of t er ms at t hir d a n d hi g h er or d ers
i n t h e s m all p ar a m et ers, b e c a us e of t h e s h e er n u m b er of
t er ms a n d t h eir c o m bi n ati o ns.  T h eir i m p a ct a n d t h e p ar a m-
et er r e gi m es  w h er e t h e y ar e n e gli gi bl e c o ul d p ot e nti all y b e
e x pl or e d dir e ctl y o n t h e q u a nt u m si m ul at or.

A P P E N DI X  E:  N U M E RI C A L  M E T H O D S

W hil e t h e cl assi fi c ati o n of d y n a mi c al p h as es is b as e d
o n a  m e a n- fi el d st u d y i n t h e t h er m o d y n a mi c li mit, t h e
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fi nit e si z e of o ur s yst e m h as  m oti v at e d us t o c o n-
si d er b e y o n d- m e a n- fi el d t e c h ni q u es f or n u m eri c al s ol u-
ti o n.  H er e,  w e pr es e nt t h e  m e a n- fi el d e q u ati o ns f or t h e o n e-
c h a n n el a n d t w o- c h a n n el  m o d els, dis c uss h o w  w e i n cl u d e
t h e q u a nt u m n ois e of t h e i niti al st at e usi n g t h e  D T W A
m et h o d, a n d b e n c h m ar k t h e p erf or m a n c e of  D T W A usi n g
s p e ci al cr yst als  w h er e t h e g e o m etr y all o ws f or e x a ct
n u m eri c al s ol uti o n of t h e S c hr ö di n g er e q u ati o n.

1.  M e a n- fi el d e q u ati o ns of  m oti o n f o r o n e- c h a n n el a n d
t w o- c h a n n el  m o d els

I n t h e  m e a n- fi el d t h e or y f or t h e o n e- c h a n n el  m o d el,
w e r e pl a c e t h e s pi n v e ct or o p er at or ŝ j at e a c h sit e j b y

a v e ct or of c n u m b ers s j ≡ (s X
j , s Y

j , s Z
j ).  T h e c o m m ut a-

ti o n r el ati o ns ar e r e pl a c e d b y P oiss o n br a c k ets, {s a
j , s

b
k } =

i a b c s
c
j δ j k.  D e fi ni n g s ±

j = s X
j ± is Y

j , t h e d y n a mi cs u n d er
H a milt o ni a n ( A 1 6) ar e gi v e n b y

d

dt
s +

j = i K r̃ 2
j s

+
j + i J r̃ j s

Z
j e iφ j ∗

j ,

d

dt
s Z

j = − J r̃ j I m[s +
j e − iφ j

j ],

( E 1)

w h er e j = (2 / N ) k = j r̃ k s
−
k e iφ k .

T o o bt ai n t h e  m e a n- fi el d e q u ati o ns f or t h e t w o- c h a n n el
m o d el g o v er n e d b y  H a milt o ni a n ( A 1 0),  w e a d diti o n all y
r e pl a c e t h e a n ni hil ati o n o p er at or â 1 of t h e c. m.  m o d e b y
a c o m pl e x a m plit u d e α 1 .  T h e r es ulti n g e q u ati o ns ar e

d

dt
s +

j = i B1 r̃
2
j s

+
j +

2 G
√

N
α ∗

1 s Z
j r̃ j e

iφ j ,

d

dt
s Z

j = −
2 G
√

N
r̃ j R e[ s +

j α 1 e
− iφ j ],

d

dt
α 1 = − iδ 1 α 1 +

√
N G

2
, ( E 2)

wit h = (2 / N ) j r̃ j s
−
j e iφ j .

F or  m e a n- fi el d si m ul ati o ns, t h e a b o v e e q u ati o ns ar e
n u m eri c all y e v ol v e d st arti n g fr o m i niti al c o n diti o ns  w h er e
t h e c n u m b ers ar e assi g n e d t h e e x p e ct ati o n v al u es of t h e
c orr es p o n di n g q u a nt u m o p er at ors i n t h e i niti al st at e.

2.  A c c o u nti n g f o r i niti al q u a nt u m n ois e

F or fi nit e-si z e s yst e ms, q u a nt u m c orr e cti o ns t o t h e
m e a n- fi el d d y n a mi cs b e c o m e i m p ort a nt.  T o e x pl or e t h eir
e ff e cts,  w e si m ul at e t h e e ff e cts of t h e q u a nt u m n ois e of
t h e i niti al st at e b y e v ol vi n g s e v er al tr aj e ct ori es u n d er t h e
m e a n- fi el d e q u ati o ns st arti n g fr o m r a n d o ml y dr a w n i ni-
ti al c o n diti o ns. F or t h e s pi n d e gr e es of fr e e d o m,  w e first

fi n d t h e  m e a n s pi n dir e cti o n ê j i n t h e i niti al st at e.  N e xt,  w e

i d e ntif y t w o  m ut u all y ort h o g o n al s pi n dir e cti o ns, ê ⊥ , 1
j , ê ⊥ , 2

j ,

i n t h e pl a n e p er p e n di c ul ar t o t h e  m e a n s pi n.  T h e i niti al s pi n
v e ct or c a n t h e n b e  writt e n as

s j = s j ê j + s ⊥ , 1
j ê ⊥ , 1

j + s ⊥ , 2
j ê ⊥ , 2

j . ( E 3)

F or  m e a n- fi el d si m ul ati o ns,  w e s et s j = 1 / 2, s ⊥ , 1
j =

s ⊥ , 2
j = 0.  T o g o b e y o n d  m e a n fi el d,  w e us e t h e pr es cri p-

ti o n of t h e dis cr et e tr u n c at e d  Wi g n er a p pr o xi m ati o n [2 4 ],

a c c or di n g t o  w hi c h s ⊥ , 1
j a n d s ⊥ , 2

j ar e i n d e p e n d e ntl y a n d
r a n d o ml y c h os e n t o b e ± 1 / 2  wit h e q u al pr o b a bilit y.

I n t h e c as e of t h e t w o- c h a n n el  m o d el,  w e a d diti o n all y
dr a w t h e c o m pl e x a m plit u d e α 1 fr o m t h e  Wi g n er distri b u-
ti o n of t h e i niti al st at e of t h e c. m.  m o d e,  w hi c h  w e al w a ys
ass u m e is t h e  m oti o n al gr o u n d st at e i n t his  w or k.  T h er e-
f or e, t h e r e al a n d i m a gi n ar y p arts of α 1 ar e i n d e p e n d e ntl y
dr a w n fr o m a  G a ussi a n distri b uti o n  wit h z er o  m e a n a n d a
v ari a n c e of 1 / 4.

3.  B e n c h m a r ki n g t h e  D T W A r es ults

I n t h e c as e of a r e al cr yst al i n a P e n ni n g tr a p, t h e tri-
a n g ul ar l atti c e is o nl y a p pr o xi m at e a n d h e n c e e v er y i o n is
t y pi c all y at a sli g htl y di ff er e nt r a di us fr o m t h e tr a p c e nt er.
T his  m a k es a n e x a ct s ol uti o n of t h e S c hr ö di n g er e q u ati o n
s u bj e ct t o  H a milt o ni a n ( A 1 6) e x p o n e nti all y h ar d.  T h er e-
f or e, i n or d er t o t est t h e r eli a bilit y of t h e  D T W A r es ults,
w e t est t his t e c h ni q u e o n a h y p ot h eti c al i d e al cr yst al  m a d e
of M c o n c e ntri c ri n gs of i o ns, f or  w hi c h a n e x a ct n u m er-
i c al s ol uti o n t o t h e S c hr ö di n g er e q u ati o n is f e asi bl e.  We
ass u m e t h at t h e n u m b er of i o ns N m i n ri n g m = 1, . . . , M
is gi v e n b y N m = 6 (m − 1 ) + δ m , 1,  w hi c h r o u g hl y  mi mi cs
t h e l atti c e str u ct ur e of cl os e d-s h ell P e n ni n g tr a p cr yst als.
H er e, t h e first ri n g m = 1 is t a k e n t o b e t h e si n gl e i o n at t h e
cr yst al c e nt er. F or si m pli cit y,  w e ass u m e t h at t h e r a di us of
t h e ri n gs r m gr o ws li n e arl y  wit h ri n g i n d e x m wit h r 1 = 0.

F or t his  m o d el,  w e c a n d e fi n e t ot al a n g ul ar  m o m e nt u m

o p er at ors f or e a c h ri n g, Ĵ ±
m , Ĵ Z

m , a s

Ĵ ±
m =

j ∈ ri n g m

ŝ ±
j e ∓ iφ j , Ĵ Z

m =
j ∈ ri n g m

ŝ Z
j . ( E 4)

T h es e o p er at ors ar e r e a dil y s e e n t o o b e y t h e us u al a n g ul ar
m o m e nt u m c o m m ut ati o n r el ati o ns. I n t er ms of t h es e o p er-
at ors, t h e o n e- c h a n n el  m o d el ( A 1 6) c a n b e e x pr ess e d as

Ĥ e ff = B 1

M

m = 1

r̃ 2
m Ĵ Z

m −
J

N

M

m ,m = 1

r̃ m r̃ m Ĵ +
m Ĵ −

m . ( E 5)

F or a cr yst al  wit h M ri n gs, t h e t ot al n u m b er of i o ns is
N (M ) = 1 + 3 M (M − 1 ).  T h e c o m p ut ati o n al c o m pl e xit y
is si g ni fi c a ntl y r e d u c e d i n t h e t ot al a n g ul ar  m o m e nt u m
pi ct ur e, b e c a us e, f or t h e i niti al st at es  w e c o nsi d er,  w e
o nl y n e e d t o tr a c k t h e f ull y s y m m etri c s u bs p a c e of e a c h
ri n g.  T h er ef or e, t h e n u m b er of b asis st at es i n e a c h ri n g is
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FI G. 6.  B e n c h m ar ki n g t h e  D T W A  m et h o d. S oli d li n es ar e
c o m p ut e d b y n u m eri c al pr o p a g ati o n of t h e S c hr ö di n g er e q u ati o n,
w hil e t h e d ott e d li n es ar e o bt ai n e d usi n g t h e  D T W A  m et h o d.
H er e,  w e ass u m e t h at t h e cr yst al is  m a d e of p erf e ctl y c o n c e ntri c
ri n gs of i o ns a n d t h at t h e s pi n st at e is i niti ali z e d i n a  B C S-
li k e st at e [t o p p a n el of Fi g. 2( a) ]. H er e, w e h a v e us e d t h e r ati o
K / J = 1.

r e d u c e d fr o m 2N m t o N m + 1, t h er e b y e n a bli n g t h e r a pi d
si m ul ati o n of e x a ct d y n a mi cs f or cr yst als  wit h u p t o M =
5 ri n gs [ N (5 ) = 6 1 i o ns]. Fi g ur e 6 s h o ws t h e e x c ell e nt
a gr e e m e nt of t h e  D T W A c al c ul ati o n  wit h t h e e x a ct s ol u-
ti o n f or cr yst als  wit h M = 4 a n d M = 5 ri n gs, c o n fir mi n g
t h e v ali dit y of t h e  D T W A t e c h ni q u e f or b e y o n d- m e a n- fi el d
c al c ul ati o ns i n t his  w or k.

A P P E N DI X  F:  C O M P U T A TI O N  O F  WI N DI N G
N U M B E R S

I n c o nti n u o us 2 D s p a c e, t h e  wi n di n g n u m b er of a u nit
v e ct or fi el d û (x , y ) is d e fi n e d as t h e s urf a c e i nt e gr al

W =
1

4 π
d x d y û ·

d û

d x
×

d û

d y
. ( F 1)

I n t h e cr yst al, t h e  wi n di n g n u m b er c al c ul ati o n  m ust b e
c arri e d o ut o n a l atti c e  wit h dis cr et e sit es.  H er e, t h e pr e-
s cri pti o n is t o i d e ntif y tri pl ets of n ei g h b ors b y i ntr o d u ci n g
a tri a n g ul ati o n of t h e cr yst al l atti c e as s h o w n i n Fi g. 7 [5 3 ].
We us e t h e  D el a u n a y tri a n g ul ati o n,  w h er ei n tri a n gl es ar e
f or m e d b et w e e n n ei g h b ori n g tri pl ets i n s u c h a  w a y t h at n o
v ert e x of t h e cr yst al li es i nsi d e t h e cir c u m cir cl e of e a c h tri-
a n gl e. F or e a c h tri a n gl e,  w e l a b el t h e v erti c es A , B , C s u c h
t h at t h e dir e ct e d e d g es gi v e ris e t o a f a c e n or m al p oi nti n g

u p w ar d fr o m t h e cr yst al pl a n e, i. e.,
− →
A B ×

− →
B C ê z .  H a vi n g

i d e nti fi e d s u c h or d er e d tri pl ets of v erti c es, a s oli d a n gl e

A B C i s i ntr o d u c e d f or e a c h tri a n gl e, d e fi n e d as

t a n
A B C

2
=

û A · ( û B × û C )

1 + û A · û B + û B · û C + û C · û A
. ( F 2)

T h e  wi n di n g n u m b er o n t h e dis cr et e l atti c e is o bt ai n e d b y
s u m mi n g t h e s oli d a n gl e A B C o v er all tri a n gl es A B C of

FI G. 7.  D e m o nstr ati o n of  D el a u n a y tri a n g ul ati o n f or a cr yst al
wit h 2 0 0 i o ns.  T h e tri a n g ul ati o n is us e d t o i d e ntif y tri pl ets of
n ei g h b ors o n t h e dis cr et e l atti c e f or c o m p uti n g t h e  wi n di n g n u m-
b er of t h e s pi n t e xt ur e ( Q ) or t h at of t h e e ff e cti v e  m a g n eti c fi el d
t e xt ur e (W ).

t h e tri a n g ul ati o n:

W =
1

4 π
A B C

A B C . (F 3 )

I n t h e pr es e nt  w or k,  w e c all t h e  wi n di n g n u m b er Q if t h e
v e ct or fi el d is t a k e n as t h e s pi n t e xt ur e,  w hil e  w e l a b el it as
W if t h e v e ct or fi el d is t h e e ff e cti v e  m a g n eti c fi el d t e xt ur e
i n t h e fr a m e r ot ati n g at 2μ ∞ .

A P P E N DI X  G: S T A T E I NI TI A LI Z A TI O N

T o g e n er at e c hir al  B C S-li k e a n d  B E C-li k e i niti al st at es,
w e t a k e a d v a nt a g e of t h e t er m of t h e f or m A c os C ŝ −

j t h at
is a v ail a bl e i n t h e s m all- a n gl e e x p a nsi o n of t h e  O D F i nt er-
a cti o n [ E q. ( A 6)].  T his t er m d es cri b es a c o u pli n g of t h e
s pi ns  wit h t h e pl a n ar r ot ati o n  wit h o ut i n v ol vi n g t h e dr u m-
h e a d c. m.  m o d e.  We ass u m e t h at t h e  O D F l as ers h a v e a
t u n a bl e b e a m  w aist w O D F .  B y t u ni n g μ r = B 0 + ω r a n d
i g n ori n g r a pi dl y os cill ati n g t er ms, t h e e ff e cti v e i nt er a cti o n
is gi v e n b y

Ĥ i nit =
j

j

2
( ŝ +

j e − iφ j + ŝ −
j e iφ j ), ( G 1)

w h er e j = 0 r̃ j e
− r 2j / w 2

O D F wit h 0 = δ A C ( k x R ) /2 a n d

r̃ j = r j / R .  H a milt o ni a n Ĥ i nit d e s cri b es n o ni nt er a cti n g
s pi ns e a c h u n d er g oi n g r ot ati o n u n d er a l o c al  m a g n eti c
fi el d.  Usi n g t h e l o c al a x es i ntr o d u c e d i n  E qs. ( 1 5),  w e c a n
c o m p a ctl y  writ e

Ĥ i nit =
j

j ŝ
Y j

j . ( G 2)

F or t h e i niti ali z ati o n,  w e ass u m e t h at t h e b e a m  w aist of
t h e  R a m a n b e a ms is  m u c h l ar g er t h a n t h e cr yst al r a di us,
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i. e., w R , s o t h at t h e dis p ersi o n arisi n g fr o m t h e s p ati al
v ari ati o n of t h e  R a m a n b e a ms c a n b e n e gl e ct e d.

We n o w d es cri b e t h e i niti ali z ati o n pr ot o c ols f or v ari o us
c as es t h at  w e dis c uss i n t h e  m ai n t e xt.

1.  B C S i niti ali z ati o n f o r p h as es I a n d II

We ass u m e t h at t h e b e a m  w aists of t h e  O D F l as ers ar e
m u c h l ar g er t h a n t h e cr yst al r a di us, i. e., w O D F R .  T h e n,
Ĥ i nit r e d u c es t o

Ĥ i nit = 0

j

r̃ j ŝ
Y j

j . ( G 3)

We i niti ali z e all s pi ns i n | ↑ Z (i. e., i n t h e r ot at e d s pi n
s p a c e) b y a n a p pr o pri at e gl o b al π / 2 p uls e. S etti n g t h e
m a xi m u m p uls e ar e a 0 T = π , t h e o ut er m ost s pi ns ar e
t h e n r ot at e d all t h e  w a y t o | ↓ Z w h er e as t h e c e ntr al s pi n
is u n a ff e ct e d b y virt u e of t h e d e p e n d e n c e of t h e  R a bi fr e-
q u e n c y o n r̃ j .  D at a s h o w n i n Fi gs. 2( a) , 2( b) , a n d 4 ar e
o bt ai n e d usi n g t his i niti al st at e.

2.  B E C i niti ali z ati o n f o r  wi n di n g n u m b e r st u di es

We ass u m e t h at w O D F <
√

2 R .  T h e r a di al  m o d ul ati o n of
t h e  R a bi fr e q u e n c y r es ults i n a  m a xi m u m  R a bi fr e q u e n c y

m a x at r a di us r m a x ,  w hi c h ar e r es p e cti v el y gi v e n b y

m a x = 0
w O D F

R
√

2 e
, r m a x =

w O D F
√

2
. ( G 4)

T h er ef or e, f or w O D F <
√

2 R , t h e  m a xi m u m p uls e ar e a f or
a fi x e d r ot ati o n ti m e T is e x p eri e n c e d b y a s pi n s o m e w h er e
i n t h e  mi d dl e of t h e cr yst al.  We i niti ali z e all s pi ns i n | ↓ Z .
F or t h e  wi n di n g n u m b er st u d y,  w e s et t h e  m a xi m u m p uls e
ar e a m a x T = π a n d us e a b e a m  w aist w O D F = 0. 3 R ,  w hi c h
e ns ur es t h at a l ar g e n u m b er of t h e o ut er s pi ns ar e n e gli gi bl y
r ot at e d.  T his e ns ur es t h at t h e  wi n di n g n u m b er W is r e as o n-
a bl y q u a nti z e d.  D at a s h o w n i n Fi g. 3 ar e o bt ai n e d usi n g
t his i niti al st at e.

3.  B C S i niti ali z ati o n f o r p h as e III

Pr e p ari n g t h e i niti al st at e f or p h as e III r e q uir es t h e pr es-
e n c e of a s h ar p d o m ai n  w all a n d a n or d er p ar a m et er of
s m all  m a g nit u d e.  T o o bt ai n t h e d o m ai n  w all, s pi ns ar e first
i niti ali z e d i n | ↓ Z (i. e., i n t h e u nr ot at e d s pi n s p a c e).  A n
o pti c al p u m pi n g b e a m s el e cti v el y e x cit es s pi ns i n a c e n-
tr al r e gi o n of r a di us r d ( c h os e n t o b e r d = R / 2) t o | ↑ Z .
A π / 2 p uls e a b o ut t h e − Y a xis t h e n r es p e cti v el y c o n v erts
t h e c e ntr al a n d o ut er r e gi o ns t o d o m ai ns of | ↑ Z a n d | ↓ Z

s pi ns (i. e., i n t h e r ot at e d s pi n s p a c e).  T o i niti ali z e a s m all
or d er p ar a m et er,  w e ass u m e t h at w O D F = R / 2 a n d s et t h e
m a xi m u m p uls e ar e a t o b e m a x T = 0. 1 π , i. e., t h e s pi n
r ot ati o n is t hr o u g h r at h er s m all a n gl es. F urt h er m or e, si n c e
t h e s pi ns i n t h e di ff er e nt d o m ai ns st art i n o p p osit e ori e n-
t ati o ns, a p arti al c a n c el ati o n o c c urs t h at f urt h er d e cr e as es

t h e  m a g nit u d e of t h e i niti al or d er p ar a m et er.  D at a s h o w n
i n Fi g. 2( c) ar e o bt ai n e d usi n g t his i niti al st at e.

[ 1]  R.  A.  B ar a n k o v a n d  L. S.  L e vit o v, S y n c hr o ni z ati o n i n t h e
B C S P airi n g  D y n a mi cs as a  Criti c al P h e n o m e n o n, P h ys.
R e v.  L ett. 9 6 , 2 3 0 4 0 3 ( 2 0 0 6).

[ 2]  E.  A.  Y u z b as h y a n,  M.  D z er o,  V.  G ur ari e, a n d  M. S. F ost er,
Q u a nt u m q u e n c h p h as e di a gr a ms of a n s- w a v e  B C S- B E C
c o n d e ns at e, P h ys.  R e v.  A 9 1 , 0 3 3 6 2 8 ( 2 0 1 5).

[ 3]  R o b ert J.  L e wis- S w a n,  Di e g o  B ar b er e n a, J uli a  R.  K.  Cli n e,
D yl a n J.  Y o u n g, J a m es  K.  T h o m ps o n, a n d  A n a  M ari a  R e y,
C a vit y- Q E D  Q u a nt u m Si m ul at or of  D y n a mi c al P h as es of
a  B ar d e e n- C o o p er- S c hri e ff er S u p er c o n d u ct or, P h ys.  R e v.
L ett. 1 2 6 , 1 7 3 6 0 1 ( 2 0 2 1).

[ 4]  M att h e w S. F ost er,  M a xi m  D z er o,  Vi ct or  G ur ari e, a n d
E mil  A.  Y u z b as h y a n,  Q u a nt u m q u e n c h i n a p + i p s u p er-
fl ui d:  Wi n di n g n u m b ers a n d t o p ol o gi c al st at es f ar fr o m
e q uili bri u m, P h ys. R e v. B 8 8 , 1 0 4 5 1 1 ( 2 0 1 3).

[ 5]  C.  A.  R e g al,  C  Ti c k n or, J.  L.  B o h n, a n d  D. S. Ji n,  T u ni n g
p - Wa v e I nt er a cti o ns i n a n  Ultr a c ol d F er mi  G as of  At o ms,
P h ys. R e v. L ett. 9 0 , 0 5 3 2 0 1 ( 2 0 0 3).

[ 6]  C.  H. S c h u n c k,  M.  W.  Z wi erl ei n,  C.  A. St a n, S.  M. F.  R a u-
p a c h,  W.  K ett erl e,  A. Si m o ni,  E.  Ti esi n g a,  C. J.  Willi a ms,
a n d P. S. J uli e n n e, F es h b a c h r es o n a n c es i n f er mi o ni c 6 Li,
P h ys. R e v. A 7 1 , 0 4 5 6 0 1 ( 2 0 0 5).

[ 7] J. P.  G a e bl er, J.  T. St e w art, J.  L.  B o h n, a n d  D. S. Ji n, p-
Wa v e F es h b a c h  M ol e c ul es, P h ys.  R e v.  L ett. 9 8 , 2 0 0 4 0 3
( 2 0 0 7).

[ 8]  K e n n et h  G ü nt er,  T hil o St öf erl e,  H e n ni n g  M orit z,  Mi c h a el
K ö hl, a n d  Til m a n  Essli n g er, p - Wa v e I nt er a cti o ns i n  L o w-
Di m e nsi o n al F er mi o ni c  G as es, P h ys. R e v. L ett. 9 5 , 2 3 0 4 0 1
( 2 0 0 5).

[ 9]  Y.-J.  H a n,  Y.- H.  C h a n,  W.  Yi,  A. J.  D al e y, S.  Di e hl, P.
Z oll er, a n d  L.- M.  D u a n, St a bili z ati o n of t h e p - Wa v e S u p er-
fl ui d St at e i n a n  O pti c al  L atti c e, P h ys. R e v. L ett. 1 0 3 ,
0 7 0 4 0 4 ( 2 0 0 9).

[ 1 0]  N.  R.  C o o p er a n d  G.  V. S hl y a p ni k o v, St a bl e  T o p ol o gi c al
S u p er fl ui d P h as e of  Ultr a c ol d P ol ar F er mi o ni c  M ol e c ul es,
P h ys. R e v. L ett. 1 0 3 , 1 5 5 3 0 2 ( 2 0 0 9).

[ 1 1]  A.  K. F e d or o v, S. I.  M at v e e n k o,  V. I.  Y u ds o n, a n d  G.  V.
S hl y a p ni k o v,  N o v el p - w a v e s u p er fl ui ds of f er mi o ni c p ol ar
m ol e c ul es, S ci.  R e p. 6 , 2 7 4 4 8 ( 2 0 1 6).

[ 1 2]  M att h e w S. F ost er,  Vi ct or  G ur ari e,  M a xi m  D z er o, a n d
E mil  A.  Y u z b as h y a n,  Q u e n c h-I n d u c e d Fl o q u et  T o p ol o g-
i c al p - Wa v e S u p er fl ui ds, P h ys.  R e v.  L ett. 1 1 3 , 0 7 6 4 0 3
( 2 0 1 4).

[ 1 3]  K e vi n  A.  Gil m or e,  M att h e w  A ff olt er,  R o b ert J.  L e wis-
S w a n,  Di e g o  B ar b er e n a,  El e n a J or d a n,  A n a  M ari a  R e y, a n d
J o h n J.  B olli n g er,  Q u a nt u m- e n h a n c e d s e nsi n g of dis pl a c e-
m e nts a n d el e ctri c fi el ds  wit h t w o- di m e nsi o n al tr a p p e d-i o n
cr yst als, S ci e n c e 3 7 3 , 6 7 3 ( 2 0 2 1).

[ 1 4]  M arti n  G ärtt n er, J usti n  G  B o h n et,  Ar g h a v a n S af a vi- N ai ni,
Mi c h a el  L  Wall, J o h n J  B olli n g er, a n d  A n a  M ari a  R e y,  M e a-
s uri n g o ut- of-ti m e- or d er c orr el ati o ns a n d  m ulti pl e q u a nt u m
s p e ctr a i n a tr a p p e d-i o n q u a nt u m  m a g n et, N at. P h ys. 1 3 ,
7 8 1 ( 2 0 1 7).

[ 1 5] P.  W.  A n d ers o n,  R a n d o m- p h as e a p pr o xi m ati o n i n t h e t h e-
or y of s u p er c o n d u cti vit y, P h ys.  R e v. 1 1 2 , 1 9 0 0 ( 1 9 5 8).

0 4 0 3 2 4- 2 1

https://doi.org/10.1103/PhysRevLett.96.230403
https://doi.org/10.1103/PhysRevA.91.033628
https://doi.org/10.1103/PhysRevLett.126.173601
https://doi.org/10.1103/PhysRevB.88.104511
https://doi.org/10.1103/PhysRevLett.90.053201
https://doi.org/10.1103/PhysRevA.71.045601
https://doi.org/10.1103/PhysRevLett.98.200403
https://doi.org/10.1103/PhysRevLett.95.230401
https://doi.org/10.1103/PhysRevLett.103.070404
https://doi.org/10.1103/PhysRevLett.103.155302
https://doi.org/10.1038/srep27448
https://doi.org/10.1103/PhysRevLett.113.076403
https://doi.org/10.1126/science.abi5226
https://doi.org/10.1038/nphys4119
https://doi.org/10.1103/PhysRev.112.1900


A T H R E Y A S H A N K A R et al. P R X  Q U A N T U M 3, 0 4 0 3 2 4 ( 2 0 2 2)

[ 1 6]  At hr e y a S h a n k ar,  C h e n  T a n g,  M att h e w  A ff olt er,  K e vi n
Gil m or e,  D a ni el  H.  E.  D u bi n, S c ott P ar k er,  M urr a y J.  H ol-
l a n d, a n d J o h n J.  B olli n g er,  Br o a d e ni n g of t h e dr u m h e a d-
m o d e s p e ctr u m d u e t o i n- pl a n e t h er m al fl u ct u ati o ns of
t w o- di m e nsi o n al tr a p p e d i o n cr yst als i n a P e n ni n g tr a p,
P h ys.  R e v.  A 1 0 2 , 0 5 3 1 0 6 ( 2 0 2 0).

[ 1 7]  We n ot e t h at t h e f or m of t h e i nt er a cti o n i n  E q. ( 1) is o nl y
v ali d f or  m o m e nt a  wit h  m a g nit u d e p s u c h t h at p d 1,
w h er e d is t h e r a n g e of t h e i nt er a cti o n p ot e nti al. I n pr a cti c e,
t h e fi nit e n u m b er of f er mi o ns  m e a ns t h at o nl y  m o m e nt a
wit h p d 1 ar e o c c u pi e d a n d r el e v a nt d uri n g t h e d y n a m-
i cs. I n t h e tr a p p e d-i o n i m pl e m e nt ati o n  w e pr o p os e i n t his
w or k, t h e i o n cr yst al r a di us s er v es as a h ar d c ut o ff o n t h e
r a n g e of  m o m e nt a i n v ol v e d.

[ 1 8] F or e a c h p air of f er mi o ns at (+ p , − p ),  w e c a n c h o os e t o
d e fi n e a s pi n a c c or di n g t o  E qs. ( 3) eit h er at + p or at − p t o
e ns ur e t h at all s pi n o p er at ors ar e i n d e p e n d e nt.  L et + p (− p )
c orr es p o n d t o  m o m e nt a  wit h p y > 0 ( p y < 0).  T o u nif or ml y
c o v er t h e 2 D  m o m e nt u m pl a n e,  w h e n  w e c o n v ert fr o m  E qs.
( 2)– ( 4),  w e c h o os e h alf t h e t ot al n u m b er of (+ p , − p ) p airs
t o  m a p t o s pi ns at + p a n d t h e r e m ai ni n g h alf t o m a p t o
s pi ns at − p .  T h us, t h e s u m m ati o n o v er t h e i n di c es p , q i n
E q. ( 4) is o v er h alf t h e n u m b er of v al u es c o m p ar e d t o  E q.
( 2). I n R ef. [4 ], i n d e p e n d e nt s pi n o p er at ors ar e e ns ur e d i n
a di ff er e nt  m a n n er b y c h o osi n g t o  m a p t o s pi ns i n a si n gl e
h alf- pl a n e, i. e., t o s pi ns at + p (p y > 0 pl a n e) o nl y.

[ 1 9] J.  D u k els k y, S. Pitt el, a n d  G. Si err a,  C oll o q ui u m:  E x a ctl y
s ol v a bl e  Ri c h ar ds o n- G a u di n  m o d els f or  m a n y- b o d y q u a n-
t u m s yst e ms, R e v.  M o d. P h ys. 7 6 , 6 4 3 ( 2 0 0 4).

[ 2 0]  C.- C. J os e p h  Wa n g,  A d a m  C.  K eit h, a n d J.  K. Fr e eri c ks,
P h o n o n- m e di at e d q u a nt u m s pi n si m ul at or e m pl o yi n g a pl a-
n ar i o ni c cr yst al i n a P e n ni n g tr a p, P h ys. R e v. A 8 7 , 0 1 3 4 2 2
( 2 0 1 3).

[ 2 1]  D. F. J a m es a n d J J er k e,  E ff e cti v e  H a milt o ni a n t h e or y a n d
its a p pli c ati o ns i n q u a nt u m i nf or m ati o n, C a n. J. P h ys. 8 5 ,
6 2 5 ( 2 0 0 7).

[ 2 2] J os e p h  W.  Britt o n,  Bri a n  C. S a w y er,  A d a m  C.  K eit h,
C.  C J os e p h  Wa n g, J a m es  K. Fr e eri c ks,  H er m a n n  U ys,
Mi c h a el J.  Bi er c u k, a n d J o h n J.  B olli n g er,  E n gi n e er e d
t w o- di m e nsi o n al Isi n g i nt er a cti o ns i n a tr a p p e d-i o n q u a n-
t u m si m ul at or  wit h h u n dr e ds of s pi ns, N at ur e 4 8 4 , 4 8 9
( 2 0 1 2).

[ 2 3]  We n c h a o  G e,  Bri a n  C. S a w y er, J os e p h  W.  Britt o n,  K urt
J a c o bs, J o h n J.  B olli n g er, a n d  Mi c h a el F oss- F ei g,  Tr a p p e d
I o n  Q u a nt u m I nf or m ati o n Pr o c essi n g  wit h S q u e e z e d
P h o n o ns, P h ys. R e v. L ett. 1 2 2 , 0 3 0 5 0 1 ( 2 0 1 9).

[ 2 4] J. S c h a c h e n m a y er,  A. Pi k o vs ki, a n d  A.  M.  R e y,  M a n y-
B o d y  Q u a nt u m S pi n  D y n a mi cs  wit h  M o nt e  C arl o  Tr aj e c-
t ori es o n a  Dis cr et e P h as e S p a c e, P h ys. R e v. X 5 , 0 1 1 0 2 2
( 2 0 1 5).

[ 2 5]  M o hit  R a n d eri a a n d  E d w ar d  T a yl or,  Cr oss o v er fr o m
B ar d e e n- C o o p er- S c hri e ff er t o  B os e- Ei nst ei n c o n d e ns ati o n
a n d t h e u nit ar y F er mi g as, A n n u.  R e v.  C o n d e ns.  M att er
P h ys. 5 , 2 0 9 ( 2 0 1 4).

[ 2 6]  L u k as S c h w ar z,  B e n e di kt F a us e w e h, a n d  Dir k  M a ns k e,
M o m e nt u m-r es ol v e d a n al ysis of c o n d e ns at e d y n a mi c
a n d  Hi g gs os cill ati o ns i n q u e n c h e d s u p er c o n d u ct ors
wit h ti m e-r es ol v e d  A R P E S, P h ys. R e v. B 1 0 1 , 2 2 4 5 1 0
( 2 0 2 0).

[ 2 7] J a n v o n  D elft, S u p er c o n d u cti vit y i n ultr as m all  m et alli c
gr ai ns, A n n. P h ys. 1 0 , 2 1 9 ( 2 0 0 1).

[ 2 8]  Y u n xi a n g  Li a o a n d  M att h e w S. F ost er, S p e ctr os c o pi c
pr o b es of is ol at e d n o n e q uili bri u m q u a nt u m  m att er:  Q u a n-
t u m q u e n c h es, Fl o q u et st at es, a n d distri b uti o n f u n cti o ns,
P h ys. R e v. A 9 2 , 0 5 3 6 2 0 ( 2 0 1 5).

[ 2 9] S a n k al p  G a ur,  Vi ct or  G ur ari e, a n d  E mil  A.  Y u z b as h y a n,
Si n g ul ariti es i n t h e  L os c h mi dt e c h o of q u e n c h e d t o p ol o g-
i c al s u p er c o n d u ct ors, ( 2 0 2 2),.

[ 3 0] S h a n e P.  K ell y, J a m es  K.  T h o m ps o n,  A n a  M ari a  R e y, a n d
J a mir  M ari n o,  R es o n a nt li g ht e n h a n c es p h as e c o h er e n c e i n
a c a vit y  Q E D si m ul at or of f er mi o ni c s u p er fl ui dit y, ( 2 0 2 2),
ar Xi v pr e pri nt Ar Xi v: 2 2 0 2. 0 5 8 5 1 .

[ 3 1]  R y us u k e  M ats u n a g a,  N a ot o  Ts uji,  Hir o y u ki F ujit a,  Ar at a
S u gi o k a,  K a z u m as a  M a kis e,  Y os hi n ori  U z a w a,  Hir ot a k a
T er ai,  Z h e n  Wa n g,  Hi d e o  A o ki, a n d  R y o S hi m a n o,  Li g ht-
i n d u c e d c oll e cti v e ps e u d os pi n pr e c essi o n r es o n ati n g  wit h
Hi g gs  m o d e i n a s u p er c o n d u ct or, S ci e n c e 3 4 5 , 1 1 4 5 ( 2 0 1 4).

[ 3 2]  R y us u k e  M ats u n a g a,  Y u ki I.  H a m a d a,  K a z u m as a  M a kis e,
Y os hi n ori  U z a w a,  Hir ot a k a  T er ai,  Z h e n  Wa n g, a n d  R y o
S hi m a n o,  Hi g gs  A m plit u d e  M o d e i n t h e  B C S S u p er c o n-
d u ct ors  N b 1 − x Ti x N I n d u c e d b y  T er a h ert z P uls e  E x cit ati o n,
P h ys. R e v. L ett. 1 1 1 , 0 5 7 0 0 2 ( 2 0 1 3).

[ 3 3]  R y us u k e  M ats u n a g a,  N a ot o  Ts uji,  K a z u m as a  M a kis e,  Hir o-
t a k a  T er ai,  Hi d e o  A o ki, a n d  R y o S hi m a n o, P ol ari z ati o n-
r es ol v e d t er a h ert z t hir d- h ar m o ni c g e n er ati o n i n a si n gl e-
cr yst al s u p er c o n d u ct or  N b N:  D o mi n a n c e of t h e  Hi g gs
m o d e b e y o n d t h e  B C S a p pr o xi m ati o n, P h ys.  R e v.  B 9 6 ,
0 2 0 5 0 5 ( 2 0 1 7).

[ 3 4]  M.  Mitr a n o,  A.  C a nt al u p pi,  D.  Ni c ol etti, S.  K ais er,  A.
P er u c c hi, S.  L u pi, P.  Di Pi etr o,  D. P o ntir oli,  M.  Ri c c ò,
S.  R.  Cl ar k,  D. J a ks c h, a n d  A.  C a v all eri, P ossi bl e li g ht-
i n d u c e d s u p er c o n d u cti vit y i n  K3 C 6 0 at hi g h t e m p er at ur e,
N at ur e 5 3 0 , 4 6 1 ( 2 0 1 6).

[ 3 5]  R.  M a n k o ws k y,  A. S u b e di,  M. F örst, S.  O.  M ari a g er,  M.
C h oll et,  H.  T.  L e m k e, J. S.  R o bi ns o n, J.  M.  Gl o w ni a,  M.
P.  Mi nitti,  A. Fr a n o,  M. F e c h n er,  N.  A. S p al di n,  T.  L o e w,
B.  K ei m er,  A.  G e or g es, a n d  A.  C a v all eri,  N o nli n e ar l at-
ti c e d y n a mi cs as a b asis f or e n h a n c e d s u p er c o n d u cti vit y i n
Y B a 2 C u 3 O 6. 5 , N at ur e 5 1 6 , 7 1 ( 2 0 1 4).

[ 3 6]  K a z u ki Is o y a m a,  N a ot a k a  Y os hi k a w a,  K ot a  K ats u mi,
J er e m y  W o n g,  N a o ki S hi k a m a,  Y u ki S a kis hit a, F u y u ki
N a b es hi m a,  Ats ut a k a  M a e d a, a n d  R y o S hi m a n o,  Li g ht-
i n d u c e d e n h a n c e m e nt of s u p er c o n d u cti vit y i n ir o n- b as e d
s u p er c o n d u ct or F e S e 0. 5 T e 0. 5 , C o m m u n. P h ys. 4 , 1 6 0
( 2 0 2 1).

[ 3 7]  M.  A. S e nt ef,  M.  R u g g e nt h al er, a n d  A.  R u bi o,  C a v-
it y q u a nt u m- el e ctr o d y n a mi c al p ol arit o ni c all y e n h a n c e d
el e ctr o n- p h o n o n c o u pli n g a n d its i n fl u e n c e o n s u p er c o n d u c-
ti vit y, S ci.  A d v. 4 , e a a u 6 9 6 9 ( 2 0 1 8).

[ 3 8] Fr a n k S c hl a wi n a n d  Di et er J a ks c h,  C a vit y- M e di at e d
U n c o n v e nti o n al P airi n g i n  Ultr a c ol d F er mi o ni c  At o ms,
P h ys. R e v. L ett. 1 2 3 , 1 3 3 6 0 1 ( 2 0 1 9).

[ 3 9] J o n at h a n  B.  C urtis,  Z a c h ar y  M.  R ai n es,  A n dr e w  A.  All o c c a,
M o h a m m a d  H af e zi, a n d  Vi ct or  M.  G alits ki,  C a vit y  Q u a n-
t u m  Eli as h b er g  E n h a n c e m e nt of S u p er c o n d u cti vit y, P h ys.
R e v.  L ett. 1 2 2 , 1 6 7 0 0 2 ( 2 0 1 9).

[ 4 0]  A n o o p  T h o m as,  El oïs e  D e v a u x,  K al ai v a n a n  N a g ar aj a n,
T hi b a ult  C h er v y,  M ar c us S ei d el,  D a vi d  H a g e n m üll er, St e-
f a n S c h üt z, J o h a n n es S c h a c h e n m a y er,  C yri a q u e  G e n et,
G ui d o P u pill o, a n d  T h o m as  W.  E b b es e n,  E x pl ori n g s u p er-
c o n d u cti vit y u n d er str o n g c o u pli n g  wit h t h e v a c u u m el e c-
tr o m a g n eti c fi el d, ( 2 0 1 9), Ar Xi v: 1 9 1 1. 0 1 4 5 9 .

0 4 0 3 2 4- 2 2

https://doi.org/10.1103/PhysRevA.102.053106
https://doi.org/10.1103/RevModPhys.76.643
https://doi.org/10.1103/PhysRevA.87.013422
https://doi.org/10.1139/p07-060
https://doi.org/10.1038/nature10981
https://doi.org/10.1103/PhysRevLett.122.030501
https://doi.org/10.1103/PhysRevX.5.011022
https://doi.org/10.1146/annurev-conmatphys-031113-133829
https://doi.org/10.1103/PhysRevB.101.224510
https://doi.org/10.1002/andp.20015130302
https://doi.org/10.1103/PhysRevA.92.053620
https://arxiv.org/abs/2202.05851
https://doi.org/10.1126/science.1254697
https://doi.org/10.1103/PhysRevLett.111.057002
https://doi.org/10.1103/PhysRevB.96.020505
https://doi.org/10.1038/nature16522
https://doi.org/10.1038/nature13875
https://doi.org/10.1038/s42005-021-00663-8
https://doi.org/10.1126/sciadv.aau6969
https://doi.org/10.1103/PhysRevLett.123.133601
https://doi.org/10.1103/PhysRevLett.122.167002
https://arxiv.org/abs/1911.01459


SI M U L A TI N G  D Y N A MI C A L P H A S E S. . . P R X  Q U A N T U M 3, 0 4 0 3 2 4 ( 2 0 2 2)

[ 4 1]  A h a n a  C h a kr a b ort y a n d Fr a n c es c o Pi a z z a,  L o n g- R a n g e
P h ot o n Fl u ct u ati o ns  E n h a n c e P h ot o n- M e di at e d  El e ctr o n
P airi n g a n d S u p er c o n d u cti vit y, P h ys.  R e v.  L ett. 1 2 7 ,
1 7 7 0 0 2 ( 2 0 2 1).

[ 4 2] S.  C.  B ur d,  R. Sri ni v as,  H.  M.  K n a a c k,  W.  G e,  A.  C.  Wil-
s o n,  D. J.  Wi n el a n d,  D.  L ei bfri e d, J. J.  B olli n g er,  D.  T.
C.  All c o c k, a n d  D.  H. Sli c ht er,  Q u a nt u m a m pli fi c ati o n of
b os o n- m e di at e d i nt er a cti o ns, N at. P h ys. 1 7 , 8 9 8 ( 2 0 2 1).

[ 4 3]  M.  D z er o,  E.  A.  Y u z b as h y a n, a n d  B.  L.  Alts h ul er,  C o o p er
p air t ur b ul e n c e i n at o mi c F er mi g as es, E P L ( E ur o p h ys.
L ett.) 8 5 , 2 0 0 0 4 ( 2 0 0 9).

[ 4 4]  M ar k  H. Fis c h er,  Tit us  N e u p ert,  C hristi a n Pl att,  A n dr e as
P. S c h n y d er,  Wer n er  H a n k e, J u n  G or y o,  R o n n y  T h o m al e,
a n d  M a nfr e d Si grist,  C hir al d - w a v e s u p er c o n d u cti vit y i n
Sr Pt As, P h ys. R e v. B 8 9 , 0 2 0 5 0 9 ( 2 0 1 4).

[ 4 5]  A nt h o n y  M. P oll or e n o,  A n a  M ari a  R e y, a n d J o h n J.
B olli n g er, I n di vi d u al q u bit a d dr essi n g of r ot ati n g i o n cr ys-
t als i n a P e n ni n g tr a p, ( 2 0 2 2),.

[ 4 6]  Li a n g Ji a n g,  T a k u y a  Kit a g a w a, J as o n  Ali c e a,  A.  R.
A k h m er o v,  D a vi d P e k k er,  Gil  R ef a el, J. I g n a ci o  Cir a c,
E u g e n e  D e ml er,  Mi k h ail  D.  L u ki n, a n d P et er  Z oll er,  M aj o-
r a n a F er mi o ns i n  E q uili bri u m a n d i n  Dri v e n  C ol d- At o m
Q u a nt u m  Wir es, P h ys.  R e v.  L ett. 1 0 6 , 2 2 0 4 0 2 ( 2 0 1 1).

[ 4 7]  C hristi n a  V.  Kr a us,  M ar c ell o  D al m o nt e,  Mi k h ail  A.  B ar a-
n o v,  A n dr e as  M.  L ä u c hli, a n d P.  Z oll er,  M aj or a n a  E d g e
St at es i n  At o mi c  Wir es  C o u pl e d b y P air  H o p pi n g, P h ys.
R e v.  L ett. 1 1 1 , 1 7 3 0 0 4 ( 2 0 1 3).

[ 4 8]  C hristi n a Ps ar o u d a ki a n d  C hrist os P a n a g o p o ul os, S k yr mi o n
Q u bits:  A  N e w  Cl ass of  Q u a nt u m  L o gi c  El e m e nts  B as e d
o n  N a n os c al e  M a g n eti z ati o n, P h ys.  R e v.  L ett. 1 2 7 , 0 6 7 2 0 1
( 2 0 2 1).

[ 4 9]  We dis c uss t his a p pr o xi m ati o n i n  m or e d et ail i n  A p p e n di x
B .

[ 5 0] J usti n  G.  B o h n et,  Bri a n  C. S a w y er, J os e p h  W.  Britt o n,
Mi c h a el  L.  Wall,  A n a  M ari a  R e y,  Mi c h a el F oss- F ei g, a n d
J o h n J.  B olli n g er,  Q u a nt u m s pi n d y n a mi cs a n d e nt a n gl e-
m e nt g e n er ati o n  wit h h u n dr e ds of tr a p p e d i o ns, S ci e n c e
3 5 2 , 1 2 9 7 ( 2 0 1 6).

[ 5 1]  H.  U ys,  M. J.  Bi er c u k,  A. P.  Va n D e v e n d er,  C.  Os p el k a us,
D.  M eis er,  R.  O z eri, a n d J. J.  B olli n g er,  D e c o h er e n c e d u e
t o  El asti c  R a yl ei g h S c att eri n g, P h ys.  R e v.  L ett. 1 0 5 , 2 0 0 4 0 1
( 2 0 1 0).

[ 5 2]  Allis o n  C art er, pri v at e c o m m u ni c ati o n (t o b e p u blis h e d).
[ 5 3] J a n  M üll er, M a g n eti c S k yr mi o ns a n d T o p ol o gi c al

D o m ai n  W alls , P h. D. t h esis,  U ni v ersit ät z u  K öl n
( 2 0 1 8).

0 4 0 3 2 4- 2 3

https://doi.org/10.1103/PhysRevLett.127.177002
https://doi.org/10.1038/s41567-021-01237-9
https://doi.org/10.1209/0295-5075/85/20004
https://doi.org/10.1103/PhysRevB.89.020509
https://doi.org/10.1103/PhysRevLett.106.220402
https://doi.org/10.1103/PhysRevLett.111.173004
https://doi.org/10.1103/PhysRevLett.127.067201
https://doi.org/10.1126/science.aad9958
https://doi.org/10.1103/PhysRevLett.105.200401

	I.. INTRODUCTION
	II.. TWO-DIMENSIONAL p+ip SUPERFLUIDS
	III.. IMPLEMENTATION WITH PENNING TRAPS
	A.. Initialization and readout

	IV.. PROBING THE DYNAMICAL PHASES
	V.. INFERRING TOPOLOGY
	VI.. REALIZING A TWO-CHANNEL MODEL
	VII.. CONCLUSION AND OUTLOOK
	. ACKNOWLEDGMENTS
	. APPENDIX A: DERIVATION OF EFFECTIVE HAMILTONIANS
	1.. Optical dipole force with tilted wave vectors
	2.. Copropagating Raman beams
	3.. Small-angle approximation
	4.. Obtaining the two-channel model
	5.. Effective spin-exchange interaction

	. APPENDIX B: EXPERIMENTAL PARAMETERS FOR IMPLEMENTATION
	1.. Trapping parameters
	2.. ODF interaction
	3.. Raman beams
	4.. Decoherence from off-resonant light scattering

	. APPENDIX C: ROTATING-WAVE APPROXIMATIONS
	. APPENDIX D: ONE-CHANNEL MODEL AND OFF-RESONANT TERMS
	1.. The sinC term
	2.. The AcosC term
	3.. The BcosC term
	4.. The ABsinC term

	. APPENDIX E: NUMERICAL METHODS
	1.. Mean-field equations of motion for one-channel and two-channel models
	2.. Accounting for initial quantum noise
	3.. Benchmarking the DTWA results

	. APPENDIX F: COMPUTATION OF WINDING NUMBERS
	. APPENDIX G: STATE INITIALIZATION
	1.. BCS initialization for phases I and II
	2.. BEC initialization for winding number studies
	3.. BCS initialization for phase III

	. REFERENCES


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /All
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile ()
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 5
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    33.84000
    33.84000
    33.84000
    33.84000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<

    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames false
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks true
      /AddColorBars false
      /AddCropMarks true
      /AddPageInfo true
      /AddRegMarks false
      /BleedOffset [
        9
        9
        9
        9
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


