
Active Heterogeneous Graph Neural Networks with
Per-step Meta-Q-Learning

Yuheng Zhang∗, Yinglong Xia†, Yan Zhu†, Yuejie Chi‡, Lei Ying§, Hanghang Tong∗
∗University of Illinois at Urbana-Champaign, †Meta, ‡Carnegie Mellon University, §University of Michigan

∗{yuhengz2, htong}@illinois.edu, †{yxia, yzhu}@fb.com, ‡yuejiechi@cmu.edu, §leiying@umich.edu

Abstract—Recent years have witnessed the superior perfor-
mance of heterogeneous graph neural networks (HGNNs) in deal-
ing with heterogeneous information networks (HINs). Nonethe-
less, the success of HGNNs often depends on the availability of
sufficient labeled training data, which can be very expensive to
obtain in real scenarios. Active learning provides an effective
solution to tackle the data scarcity challenge. For the vast
majority of the existing work regarding active learning on graphs,
they mainly focus on homogeneous graphs, and thus fall in short
or even become inapplicable on HINs. In this paper, we study
the active learning problem with HGNNs and propose a novel
meta-reinforced active learning framework MetRA. Previous
reinforced active learning algorithms train the policy network on
labeled source graphs and directly transfer the policy to the target
graph without any adaptation. To better exploit the information
from the target graph in the adaptation phase, we propose a
novel policy transfer algorithm based on meta-Q-learning termed
per-step MQL. Empirical evaluations on HINs demonstrate the
effectiveness of our proposed framework. The improvement over
the best baseline is up to 7% in Micro-F1.

Index Terms—Active learning, Meta-Reinforcement learning,
Heterogeneous graph neural networks

I. INTRODUCTION

Heterogeneous information networks (HINs) also known
as heterogeneous graphs (HGs) consist of multiple types of
nodes and edges. Hence, HINs have a great capacity for
encoding rich semantic information and are ubiquitous in
real world applications such as recommendation systems [11],
biomedicine [30] and security systems [8]. Recently, vari-
ous heterogeneous graph neural networks (HGNNs) [27] [7]
have been proposed to process HINs. They rely on a semi-
supervised learning paradigm which requires sufficient labeled
training data. Nevertheless, the annotation cost could be very
expensive, especially in high-stake decision-making scenarios,
e.g., medical diagnosis [5] and molecular biology [10]. Active
learning [20] [18] [1] is an effective solution to tackle the
data scarcity challenge. Effective active learning methods are
capable of identifying the samples which provide maximal
information for model training. Thus, a high-performance
HGNN could be obtained with limited labeling cost which
broadens the HGNN applications. However, the sparse lit-
erature on active learning on graphs [2] [9] [29] focus on
homogeneous graphs which do not bear the complex relations
and structure in HINs. Extending the existing algorithms to
HINs is highly non-trivial. We need to carefully consider the
characteristics of HINs and model the composite relations
between different kinds of nodes. This requires us to measure

the informativeness of nodes from different perspectives of
semantic information.

In this paper, we study the active learning problem with
HGNNs and propose a novel Meta-Reinforced Active learn-
ing framework MetRA. We observe that the scenario of
active learning could be viewed as the interaction between
a learning agent and the oracle, and the goal of the agent is
to maximize the performance gain of the machine learning
model. Hence, we formulate the active learning problem as a
Markov Decision Process (MDP) and employ deep Q-learning
techniques [15] [26] to learn the labeling policy. Compared
with heuristic strategy based methods [2], deep reinforcement
learning (RL) based active learning methods have two main
advantages: (1) It allows the labeling policy to take multiple
state metrics into account and learn a non-linear combination
of different active learning strategies. (2) Through parameteriz-
ing our Q-network as an HGNN, we leverage a heterogeneous
message passing mechanism to aggregate information from
neighbors with different kinds of relations. This design enables
us to fully exploit the graph structural information and address
the heterogeneity challenge.

In particular, we address a fundamental problem in the
reinforced active learning framework: How to train our Q-
network? Since we could only run the active learning process
once and deep RL is hungry for data, it is implausible to
directly train the Q-network on the target graph. Previous
works [9] [29] deal with this problem by training the pol-
icy network on source graphs with full label information
and directly transferring it to the target graph without any
adaptation. This strategy relies on the assumption that the
optimal labeling policies for the source and target graphs
are very similar. To better exploit the information from the
target graph, we propose to incorporate meta-reinforcement
learning techniques [4] into our active learning framework.
Specifically, our algorithm consists of two phases: the meta-
training phase and the adaptation phase. During the meta-
training phase, we interact with the fully labeled source graph
and collect transitions to train our Q-network. In the adaptation
phase, we recycle the transitions from the meta-training replay
buffer to adapt the previously learned policy. Considering that
the optimal labeling policy needs to use different strategies
according to the status of the HGNN, we creatively perform
the adaptation in a per-step manner, which is different from the
commonly used meta-reinforcement learning [4]. In each time
step, we measure the similarity between the transitions from



the meta-training replay buffer and the state of the target graph.
The transitions with higher similarity are more beneficial for
the policy adaptation and we leverage them to adapt the current
policy using off-policy updates. Compared with the direct
transfer strategy, we take the state of the target graph into
account and pick the important transitions from the meta-
training replay buffer which boosts the transfer performance.

The main contributions of this paper can be summarized as
follows.

• Problem Formulation. To our best knowledge, we
are the first to formulate active learning problem with
HGNNs as markov decision process (MDP) and employ
deep RL techniques to learn the labeling policy.

• Algorithmic Design. We propose a novel meta-reinforced
active learning framework MetRA. A per-step meta-
Q-learning algorithm is developed to boost the model
performance in the adaptation phase.

• Empirical Evaluations. Extensive experiments are con-
ducted on HIN tasks to demonstrate the effectiveness of
our proposed framework.

II. PROBLEM STATEMENT

In this section, we first introduce the definitions and prelimi-
naries related to HINs, and then we formally define the active
learning problem with heterogeneous graph neural networks
(HGNNs).

Definition 1. Heterogeneous Information Network [21].
Heterogeneous information network (HIN) is defined as a
network G = (V, E ,A,R, fA, fR), where V denotes the set
of nodes and E denotes the set of edges. A and R denote
the set of node types and the set of edge types respectively,
where |A| + |R| > 2. Each node is associated with a node
type mapping function fA : V → A. Similarly, each edge is
associated with a edge type mapping function fR : E → R.

Definition 2. Meta-path [22]. A Meta-path P is a path de-
fined as A1

R1−→ A2
R2−→ . . .

Rl−→ Al+1, where A1, · · · , Al+1 ∈
A and R1, · · · , Rl ∈ R. It describes the composite relation
R = R1 ◦R2 ◦ · · · ◦Rl between nodes with type A1 and type
Al+1 and contains high-order structure.

Here, our HGNN is built on HAN [27] which aggregates
information from meta-path based neighbors. A semantic-level
attention is employed to learn the importance of different meta-
paths. The details of HAN could be found in [27].

The process of active learning could be viewed as the
interaction between a learning agent and an oracle (e.g. a
human annotator). The agent acquires the label information
from the oracle and constructs the training set. The goal of the
agent is to maximize the performance of the machine learning
model while minimizing the annotation cost. In this paper,
we focus on the active learning problem with HGNNs and
formulate it as follows.

Problem 1. Active learning with HGNNs. In each itera-
tion,

Given: (1) a heterogeneous information network G, (2) a
HGNN model f , (3) an oracle providing label information,

(4) Unlabeled pool U , (5) query batch size b and total query
budget B.

Find: a set of b nodes from U which are most informative to
improve the training of f . The interaction process is continued
until the query budget B is used up.

III. METHODOLOGY

In this section, we present the details of the meta-training
phase and the adaptation phase respectively. The overall frame-
work is shown in Figure 1.

A. Meta-training Phase

In the active learning task, we need to interactively select a
batch of nodes in each iteration and maximize the performance
gain of HGNN. Therefore, this problem could be naturally
formulated as a fully cooperative multi-agent task. Each agent
needs to select an unlabeled node forming the query batch,
they need to cooperate with each other to achieve the maximal
team reward which is equivalent to the HGNN performance
on downstream tasks. We formally describe the task as a tuple
M = ⟨N ,S,U , P, r, γ⟩, where N := {1, . . . , n} denotes the
set of agents and S denotes the set of states. The state s ∈ S
depicts the status of the HGNN model and the characteristics
of HIN G. It is shared across different agents. At each time
step, every agent i ∈ N observes state s and chooses an
unlabeled node as its action ui, which forms the joint action
u ∈ U . It results in a joint reward r(s,u) and a transition to
the next state s′ ∼ P (·|s,u). γ ∈ [0, 1) is the discount factor.
Next, we introduce the details of state s, action u, and reward
r respectively.

1) State: Following [29], we use the state representation
from three perspectives to measure the informativeness of each
unlabeled node.

(1) Uncertainty. Machine learning models tend to make
mistakes on uncertain samples. Acquiring the labels of uncer-
tain nodes is very helpful for improving the performance of
HGNNs. Since we focus on the node classification task, we
use the entropy of the predicted probability distribution as the
uncertainty metric.

(2) Centrality. Nodes with high centrality tend to play
important roles in the graph and their labels provide more
information for model training. Since we are dealing with
HINs consisting of multiple types of nodes and edges, we
have used two methods to calculate the centrality. The first
method is to split the graph into multiple homogeneous graphs
according to the meta-paths and calculate the node centrality
separately. The other method is to ignore the heterogeneity
and view the entire graph as a homogeneous graph. From the
empirical evaluation, we observe that the latter method per-
forms better and PageRank centrality [16] [25] are employed
as the centrality metric.

(3) Node Embedding Distance. Suppose our training set
all consists of nodes with high centrality and high entropy,
the distribution of the training set will be quite different
from the test set. Selecting the nodes with diverse node



Fig. 1. Illustration of the proposed MetRA framework. During the meta-training phase, our Q-network is interacting with the labeled source graph to collect
transitions for training. When Q-network is transferred to the target graph, we measure the similarity between source transitions and the target graph state in
each iteration. Transitions with high similarity are selected to adapt Q-network using off-policy updates. After the adaptation, Q-network selects nodes from
the unlabeled pool and queries for their labels. The labeled nodes are added to the labeled set for training the HGNN model.

embeddings could increase the diversity of the training set
and thus circumvent the distribution shift problem.

The overall state s could be viewed as an attributed HIN,
the node attribute is a combination of uncertainty, centrality,
and node embedding distance. The details of state calculation
can be found in the appendix.

2) Action: Observing state s, each agent i selects an
unlabeled node ui and forms the joint action u =
{u1, u2, · · · , un}, i.e. the selected batch of nodes. The ora-
cle will provide the corresponding label information which
updates the labeled training set.

3) Reward: Since our goal is to improve the performance
of HGNN model f , it is straightforward to define the reward
as the performance gain on the validation set. We use the
classification accuracy to evaluate the model and the reward
is the improvement after training f on the updated training
set.

4) HGNN Q-network: To fully leverage the characteristics
of HIN, we implement our Q-network as an HGNN and predict
the individual Q-value for each candidate unlabeled node. We
employ a heterogeneous message passing mechanism to learn
the node embedding which considers the high-order meta-path
structure. For node i and a meta-path Pk, we aggregate the
information from the meta-path based neighbors NPk

i with a
GCN layer [13]:

zPk
i =

1

di + 1
WPk

zi +
∑

j∈N
Pk
i

1√
(di + 1)(dj + 1)

WPk
zj ,

(1)
where di and dj are degrees of node i and j in the view
of meta-path Pk, and WPk

is the learnable parameters for
meta-path Pk. Considering the meta-paths of source graphs
and target graphs may contain different semantic information,

WPk
are shared across different meta-paths. Suppose we have

K meta-paths {P1,P2, · · · ,PK} starting from node i, we can
then obtain K node embeddings {zP1

i , zP1
i , · · · , zPK

i }. The
final embedding zi is the element-wise mean value of the K
embeddings:

zi =
1

K

K∑
k=1

zPk
i . (2)

Once we have the embedding zi of node i, a linear layer is
used to predict the individual Q-value Qi(s, ui).

5) Q-network Training.: Due to the combinatorial explo-
sion of the joint action space, it is intractable to directly model
the joint Q-value function. Following the value decomposition
idea in [23] [29], we make the assumption that joint Q-value
Q(s,u) can be additively decomposed into individual Q-value
Qi(s, ui),

Q(s,u) ≈ 1

n

n∑
i=1

Qi(s, ui). (3)

Based on our assumption, the Q-value of the selected batch is
approximated with the average of individual Q-values.

We employ deep Q-learning techniques [15] to train our Q-
network. Q-learning aims to optimize the temporal difference
(TD) error [24], which is defined as the expectation over
transitions τ = (st,ut, rt+1, st+1) as follows,

Eτ∼B[(Yt −Q(st,ut))
2], (4)

where B denotes the replay buffer and Yt denotes the TD tar-
get. To improve the training stability, we use double DQN [26]
to calculate the TD target Yt. Double DQN decouples the
action selection and action evaluation. Actions are selected by



the online network and are evaluated by the target network.
With this design, the TD target Yt is calculated as follows,

Yt ≡ r(st,ut)+γQ(st+1, argmax
ut+1

Q(st+1,ut+1; θ); θ
′), (5)

where θ denotes the the parameters of the online network and
θ′ denotes the parameters of the target network.

B. Adaptation Phase

After the meta-training phase, we have obtained the active
learning policy trained on the labeled source graph. Consid-
ering that the source graph and the target graph may come
from different domains and have different data distributions,
directly transferring the policy to the target graph [9] is not
the optimal solution. Inspired by meta-reinforcement learning
(meta-RL) [6] [17], we seek to incorporate Meta-Q-Learning
(MQL) [4] techniques into the adaptation phase. MQL is an
off-policy meta-RL algorithm proposed for Q-learning. The
key idea is to update the Q-network with transitions from
meta-training replay buffer in the adaptation phase. However,
the original MQL algorithm cannot be directly applied to our
active learning scenario due to two reasons: (1) MQL relies
on the assumption that the agent can do some exploration on
the target task. To pick transitions that are similar to the target
domain, a binary classifier is trained to discriminate between
transitions from source tasks and transitions from target tasks.
The prediction from the classifier is employed as the similarity
metric. Nevertheless, for the active learning task, we only have
one chance to interact with the environment. After the queries
are sent to the oracle, the performance of the HGNN model
is finalized and cannot be changed. Hence, we cannot collect
transitions from the target graph to train the binary classifier.
(2) MQL is designed for robotic manipulation tasks and the
state could be described as a vector. In contrast, we need to
deal with graph-structured data which has complex relations
between nodes.

To address the problems mentioned above, we propose
a novel policy adaptation algorithm termed per-step MQL.
Since the optimal policy needs to take different strategies in
different time steps, we conduct the policy adaptation in a
per-step manner. In each time step, we measure the similarity
between the transitions from the meta-training replay buffer
and the current state of the target graph. Transitions with
high similarity are recycled to update our Q-network with a
weighted loss function. Since the only information from the
target graph is the current state, it is implausible to train a
binary classifier and use the prediction from the classifier as
the similarity metric. Instead, we calculate the similarity in
an unsupervised manner. For a transition (s,u, s′, r), only the
Q-values of the selected nodes ui are considered in the TD
error. Therefore, we focus on the selected nodes instead of
the entire graph when measuring the similarity. Considering
our Q-network is implemented as an HGNN, it takes both the
node state and the graph structural information into account.
Hence, we leverage the Euclidean distance between the node
embeddings from the Q-network to calculate the similarity. We

formulate the problem as a maximum weight bipartite graph
matching problem [28]. Specifically, the selected nodes from
the source graph vs and the candidate nodes with the highest
Q-values from the target graph vt are considered as the two
types of nodes in the bipartite graph. The weight of the edge
eij is defined as the negative Euclidean distance between the
embedding of vis and the embedding of vjt . A matching in the
bipartite graph is a subset of the edges satisfying that no two
edges share the same node. Our goal is to find a matching
in which each node is covered and the weights of the chosen
edges are maximal. The optimal matching is obtained with
Hungarian algorithm [14].

With the similarity measurement, we optimize the following
objective to update our Q-network in each time step t,

Eτ∼Bt
[β(τ ;SGt

,Bt)TD2(θ)], (6)

where SGt
denotes the state of the target graph Gt, Bt

denotes the meta-training replay buffer containing transitions
in time step t, β(τ ;SGt ,Bt) denotes the similarity between
the transition τ and state SGt , and TD2(·) denotes the squared
TD error described in Eq. (4). Our proposed per-step MQL
reweighs the transitions according to their similarities to the
state of the target graph. Compared with the direct transfer
strategy [9] [29], our method exploits the information from the
target graph better, which is in turn beneficial for improving
the active learning performance during the adaptation phase.

IV. EXPERIMENTS

TABLE I
THE STATISTICS OF THE DATASETS.

Datasets Nodes Edges Meta-paths

DBLP

author (A):4057
paper (P):14328
term (T):7723
venue(V):20

A-P:19645
T-P:85810
V-P:14328

APA
APTPA
APVPA

ACM
paper (P):4019

author (A): 7167
subject (S):60

A-P:13407
S-P:4019

PAP
PSP

AMiner
paper (P):6564

author (A):13329
reference (R):35890

A-P:18007
R-P:58831

PAP
PRP

A. Experimental Setup

1) Datasets: Our proposed MetRA is evaluated on the fol-
lowing three HIN node classification datasets, whose statistics
is summarized in Table I.

2) Baselines: We compare our method with both heuristic
strategy based methods and reinforcement learning based
method.

(1) Random: In each iteration, we select unlabeled nodes
from a uniform distribution.

(2) Centrality: In each iteration, we calculate the PageRank
centrality of unlabeled nodes and select nodes with the highest
centrality.

(3) Entropy: In each iteration, we calculate the entropy of
the prediction from model f and select nodes with the highest
entropy.



(a) ACM - Micro F1 (b) DBLP - Micro F1 (c) AMiner - Micro F1

(d) ACM - Macro F1 (e) DBLP - Macro F1 (f) AMiner - Macro F1

Fig. 2. Active node classification performance on HINs with different number of labeled nodes for training. Our method MetRA is marked as the purple line.

(a) Micro F1 (b) Macro F1

Fig. 3. Ablation study of per-step MQL on HINs. The query budget is set to
be 40.

(4) Coreset [19]: For each unlabeled node, we calculate
the minimum distance between the node embedding and
the labeled nodes’ embeddings. We select nodes with the
maximum distance.

(5) MAB: We adopt ActiveHNE [3] for active learning
with HGNNs. A multi-armed bandit (MAB) framework is
employed to learn the combination weights of these three
heuristic metrics. The performance gain from previous time
steps is used as the reward for MAB to dynamically adjust
the weights during the active learning process.

3) Evaluation Metrics: We use Macro-F1 and Micro-F1 as
the metrics to evaluate our proposed method and baselines. We
use 1,000 labeled nodes as the test set and randomly sample
500 labeled nodes from the remaining nodes for validation. We
run 20 independent experiments with different initializations
for the HGNN classification model. In each active learning

time step, the HGNN model is tested 5 times and the average
performance on the test set is reported.

4) Implementation Details: We use Adam optimizer [12] to
train both the classification model and Q-network. The initial
number of samples is set to be 10, and the query batch size
is set to be 15. For HGNN classification model, a meta-path
based GCN layer [13] of 64 embedding dimension is employed
for each type of meta-path. The learning rate is set to be 0.01.
For HGNN Q-network, the embedding dimension of meta-
path based GCN layer is set to be 8. During the meta-training
phase, Q-network is trained with learning rate 0.001 and batch
size 16. In the adaptation phase, the learning rate is set to be
0.0005. The similarity threshold λ is set to be 0.5. For ACM
dataset, the source graph is DBLP dataset. For DBLP and
AMiner datasets, the source graph is ACM dataset.

5) Overall Active Learning Performance on HINs: We
present the active node classification performance on HINs in
Figure 2. We can see that our proposed MetRA consistently
outperforms other baselines under different query budgets. In
particular, when the number of labeled nodes is 25, MetRA
outperforms the best baseline by at least 3%, 4%, 7% Micro-
F1 on ACM, DBLP, and AMiner dataset respectively. The
superior performance achieved by MetRA can be attributed
to two folds: (1) We employ deep reinforcement learning
(RL) techniques to learn the optimal active learning policy.
Deep RL enables us to learn a non-linear combination of
different heuristic metrics. By implementing the Q-network
as an HGNN, we could fully leverage the composite relations
in HINs to estimate the Q-value for each candidate unlabeled



node. (2) With our proposed per-step MQL, we could take
the information from the target graph into account during the
policy transfer process. Although the ‘MAB’ baseline also
employs RL techniques to learn the combination weights of
different state metrics, it does not consider the composite
relation information which plays a vital role in active learning
for HINs.

6) Ablation Study of per-step MQL: We compare the
performance between methods with and without per-step
MQL algorithm and results are shown in Figure 3. The
query budget is set to be 40. The y-axis represents the
improved classification performance after adding the selected
nodes to the training set. The results demonstrate that our
proposed per-step MQL consistently improves the policy
transfer performance on all three datasets. In particular, the
improvement brought by method ‘w/ PerMQL’ is more than
2.5%, 6.5%, 6.5% Macro-F1 of method ‘w/o PerMQL’ on
ACM, DBLP, and AMiner respectively.

V. CONCLUSION

In this paper, we study the active learning problem with
HGNNs and propose a novel meta-reinforced active learning
framework MetRA. To address the heterogeneity challenge,
we implement the Q-network as an HGNN to fully leverage
the rich composite relation information. Different from the
existing work on active GNNs, we propose a novel per-step
MQL algorithm to facilitate policy transfer. It enables us to
take the information from the target graph into account during
the policy adaptation phase. In the future, we plan to extend
our active learning framework to other graph machine learning
tasks such as link prediction and recommendation.
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