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Abstract—For real-world graph data, the node class distribu-
tion is inherently imbalanced and long-tailed, which naturally
leads to a few-shot learning scenario with limited nodes labeled
for newly emerging classes. Existing efforts are carefully designed
to solve such a few-shot learning problem via data augmentation,
learning transferable initialization, to name a few. However, most,
if not all, of them are based on a strong assumption that all the
test nodes must exclusively come from novel classes, which is
impractical in real-world applications. In this paper, we study
a broader and more realistic problem named generalized few-
shot node classification, where the test samples can be from both
novel classes and base classes. Compared with the standard few-
shot node classification, this new problem imposes several unique
challenges, including asymmetric classification and inconsistent
preference. To counter those challenges, we propose a shot-aware
graph neural network (STAGER) equipped with an uncertainty-
based weight assigner module for adaptive propagation. To
formulate this problem from the meta-learning perspective, we
propose a new training paradigm named imbalanced episodic
training to ensure the label distribution is consistent between the
training and test scenarios. Experiment results on four real-world
datasets demonstrate the efficacy of our model, with up to 14%
accuracy improvement over baselines.

Index Terms—graph mining, node classification, meta-learning

I. INTRODUCTION

The task of node classification aims to classify nodes into
categories, which has been extensively studied [1], [3], [8],
[23], [24], [36], [39]. It often requires sufficient labelled
nodes from all the classes. However, due to the ever-growing
new data and high annotation cost, the number of labeled
nodes from various classes tends to follow a long-tailed
distribution [10]. Consequentially, some classes might not
have sufficient labeled nodes, which in turn degrades the
performance of node classifiers dramatically. This problem
with limited labelled nodes per class (i.e., shots) is known
as few-shot node classification [10], [21], [26], [47].

Formally, few-shot node classification separates the classes
of interest into the base (e.g., the classic research areas)
and novel classes (e.g., the emerging research areas), where
the former are provided with many shots and the latter are
provided with only few shots (usually less than 10). At the
test phase, the classifier aims to accurately classify test nodes
only into the novel classes. Directly training advanced node
classifiers (e.g., graph neural networks (GNNs)) on few labeled
nodes from novel classes is prone to overfitting. Recently,
increasing research efforts have been made to address the few-
shot node classification problem. Representative works include
MetaGNN [47], graph prototypical networks (GPN) [10], G-
META [21], and so on. Most of the existing solutions are
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Fig. 1: An illustrative example to show the difference between
the few-shot and generalized few-shot node classification
tasks. For the generalized one, the test node is expected to
be classified into the joint set of the novel and base classes.

under the umbrella of meta-learning [38]. Concretely, they first
construct episodes [10], [32], [40], [41], [47] from the base
classes, every of which includes the training and evaluation of
a (base-) learner (e.g., a node classifier). Then a meta-learner
is updated by supervising the training and evaluation process
of the learner, and ‘learns to X’ (e.g., learns to train a node
classifier) through the iterative episodes. With such high-level
knowledge extracted by the episodic training, fitting a classifier
on few-shot novel classes under the supervision of the meta-
learner often obtains strong performance.

Despite the great progress, most, if not all, of them follow a
strong assumption that all the test nodes must be exclusively
sampled from the novel classes, which is hardly realistic in
real-world applications. A motivating example is a bibliog-
raphy literature classification system. More often than not,
a newly-published paper could fall into a classic domain
(i.e., a base class) instead of a new domain (i.e., a novel
class). To bridge the gap between the setting of the few-shot
node classification problem and real-world scenarios, in this
paper, we study a broader and more practical problem named
generalized few-shot node classification. Given base classes
with many shots and novel classes with few shots, in this new
problem, a node classifier is expected to perform classification
on the joint label set of both base and novel classes, instead of
the label set of the novel classes alone. An illustrative example
is provided in Figure 1. This subtle difference in the target
label set leads to a significantly more challenging problem
from the following two perspectives.
Challenges. First (asymmetric classification), at the meta-test
phase for meta-learning based methods (or the test phase for



Dataset Method b→ b b→ n n→ b n→ n

Amazon
Clothing

APPNP 100.0 0.0 69.6 30.4
MetaGNN 100.0 0.0 61.2 38.8

Cora-Full APPNP 99.2 0.8 66.8 33.2
MetaGNN 99.0 1.0 72.4 27.6

TABLE I: Test nodes (%) classified from base classes to base
classes (i.e., b → b), from base classes to novel classes (i.e.,
b → n), from novel classes to base classes (i.e., n → b), and
from novel classes to novel classes (i.e., n→ n), respectively.

standard learning methods), a classifier tends to show more
confidence towards the base classes compared with the novel
classes [44] due to the imbalanced shots. In Table I, we
illustrate that by presenting classification results on Amazon-
Clothing [28] and Cora-Full [4] datasets from a regular
node classifier (APPNP [24]) and a few-shot node classifier
(MetaGNN [47]). We observe that the majority of nodes from
the novel classes are misclassified into the base classes. Similar
results have been reported in the generalized zero-shot learning
problem [6], [14], [45] from the computer vision domain.

Second (inconsistent preference), appropriately aggregating
information from multiple receptive fields plays an essential
role in the effectiveness of graph neural networks [8], [11],
[24]. However, the optimal weight assignments among re-
ceptive fields could vary dramatically between the many-shot
cases (i.e., from a base class) and the few-shot cases (i.e.,
from a novel class). For instance, on a sparsely-connected
homophilic graph (where edges often connect same-class
nodes), under the many-shot settings, classifiers prefer to pay
more attention to the local information [8], [24] from small
receptive fields; on the contrary, under the few-shot settings,
more attention to the long-range propagation is necessary as
the labeled nodes will be very sparse in the given graph [9],
[24], [26], [43]. Clearly, there is tension between the above
two scenarios about the weight assignments of receptive fields.
Nonetheless, it is unknown how to kill two birds with one
stone by designing an adaptive model for both base and
novel classes. It is worth pointing out that the inconsistent
preference challenge only pertains to the generalized few-
shot node classification problem. In contrast, for the standard
few-shot node classification problem, a classifier will not face
the inconsistent preference challenge, and a consistent weight
assignment is often sufficient. This is because, at the meta-test
time, classifiers only need to make a prediction among novel
classes whose numbers of shots are more or less balanced.
Our Contributions. First (C1. New Models), we propose
a novel model named shot-aware graph neural network
(STAGER). The key idea is to decompose the prediction
probability into two parts, and instantiate them by two para-
metric models: a meta-learner and a learner, respectively. Our
analysis reveals that such a pair of models derived from the
decomposed probability is essential to tackle the asymmetric
classification challenge. In particular, we find that the predic-
tion uncertainty can accurately reflect the shots of the class to
which the test node belongs. Based on that, the meta-learner is

instantiated as a weight assigner whose input is the prediction
uncertainty of given nodes and output is the assigned weights
for multiple receptive fields to address the inconsistent prefer-
ence challenge. Second (C2. New Training Paradigm), to fit the
training of our models into the meta-learning framework, we
propose a new training paradigm called imbalanced episodic
training which alleviates the discrepancy between the meta-
training and meta-test scenarios by mimicking the imbalanced
shots settings. The key idea of imbalanced episodic training is
to split the base classes into pseudo-novel classes and pseudo-
base classes and downsample the labeled nodes from the
pseudo-novel classes. Third (C3. Extensive Evaluations), com-
prehensive experiments on four real-world datasets demon-
strate that the proposed model STAGER and the imbalanced
episodic training paradigm significantly improve the prediction
accuracy of novel classes under various settings and sometimes
even improve the prediction accuracy of base classes as well.

II. PROBLEM DEFINITION

We use bold uppercase letters for matrices (e.g., A), bold
lowercase letters for vectors (e.g., u), lowercase and uppercase
letters in regular font for scalars (e.g., d, K), and calligraphic
letters for sets (e.g., T ). A[i, j] denotes the entry of matrix A
at the i-th row and the j-th column, A[i, :] denotes the i-th row
of matrix A, and A[:, j] denotes the j-th column of matrix A.
Similarly, u[i] denotes the i-th entry of vector u. Superscript
T denotes the transpose of matrices and vectors (e.g., AT is
the transpose of A). An attributed graph can be represented
as G = {A,X} which is composed by an adjacency matrix
A ∈ Rn×n and an attribute matrix X ∈ Rn×d, where n is
the number of nodes and d is the node feature dimension.
In total, nodes can be categorized into a set of classes C.
The node set V and the class set C will be split and notated
with appropriate subscripts. For example, Vtest and Cnovel
refer to the test nodes and the novel classes, respectively.
N denotes the number of novel classes and K denotes the
number of training nodes per novel class. Note that the number
of base classes and the number of training nodes per base
class are much larger than N and K, and they are not fixed
across different datasets. As mentioned in Section I, we do
not exclude the base classes from the class membership of test
nodes and study the generalized few-shot node classification
problem which is defined as follows.

Problem 1: Generalized few-shot node classification
Given: (1) a graph G = {A,X}, (2) labelled nodes Vbase
from base classes Cbase, (3) labelled nodes Vnovel from novel
classes Cnovel (Cbase ∩ Cnovel = ∅) where each novel class
has very few (e.g., 1) labelled nodes, (4) unlabelled test nodes
Vtest from classes Cnovel ∪ Cbase, where Vbase ∩ Vtest = ∅
and Vnovel ∩ Vtest = ∅.
Find: The predicted labels for the unlabelled test nodes Vtest.

We remark that the topology and attribute information of all
the nodes are given and we study this problem under the semi-
supervised (and transductive) setting. Based on the naming
convention from the few-shot learning community, we name it
as the generalized N -way K-shot node classification problem.



Note that this naming convention only describes the setting of
novel classes. The number of base classes is at least 3N , and
each of the base classes is provided with at least 10K shots.

A. Preliminaries: Episodic Training for Meta-Learning

Our proposed method is inspired by the meta-learning-based
few-shot learning solutions. Here, we introduce the classic
episodic training [10], [12], [32], [40], [41], [47].

Meta-learning is also known as learning-to-learn which de-
scribes the interaction between a meta-learner (parameterized
by φ) and a (base-) learner (e.g., a classifier parameterized
by θ). According to the conventional N -way K-shot prob-
lem setting [10], [41], [47], at the meta-test phase, all the
nodes exclusively come from the novel classes Cnovel and
|Cnovel| = N . The classifier θ will fit on the provided N ×K
labeled nodes (i.e., K labeled nodes per novel class) with the
assistance of the meta-learner φ. The meta-test performance
is measured by the fitted classier on the test nodes.

To align the meta-training and meta-test scenarios, episodic
training [10], [32], [40], [41], [47] mimics the meta-test
scenario and generates episodes {Ei = {Si,Qi}} from base
classes. In every episode, N base classes are randomly se-
lected. Then, for the selected base classes, K and I labeled
nodes per base class are sampled to compose the support set
Si and the query set Qi respectively. Here the configuration
of the support set is to align with the N -way K-shot meta-test
scenarios, and I is fixed (e.g., 30) as many existing works [10],
[32] did. As the support set Si and query set Qi are both
labeled but do not overlap with each other, we use v and
v′ with indices to distinguish nodes from the support set
Si with those from the query set Qi. The i-th episode can
be represented as Eq. (1) and the training objective can be
formulated as Eq. (2).

Si = {v1, . . . , vN×K}, Qi = {v′1, . . . , v′N×I}. (1)

φ∗ = arg min
φ

Evi∈Q Lcla(z(G, θ∗, φ, vi), yi),

s.t. θ∗ = arg min
θ

Evj∈S Lcla(z(G, θ, φ, vj), yj),
(2)

where z(G, θ, φ, vi) is the classification results on node vi by
the classifier θ (with the assistance from the meta-learner φ),
yi is the label of vi, and Lcla() is the classification loss. The
classifier θ is trained from scratch with the meta-learner φ on
the support set Si (i.e., the lower-level objective) and its loss
on the query set Qi serves as the supervision to update the
meta-learner φ (i.e., the upper-level objective).

III. PROPOSED METHOD

In this section, we first introduce the overall motivation of
our model design. Then we present the concrete instantiation
of every model component. After that, a tailored imbalanced
episodic training for our model is proposed.

A. Design Motivation
From the statistical learning perspective, the goal of the gen-

eralized few-shot node classification is to infer the probability
P (yi|G, vi), where yi is the label of the node vi:

P (yi|G, vi) =
∑

C̃∈{novel,base}

P (yi|C̃,G, vi)P (C̃|G, vi), (3)

where C̃ is a variable to indicate whether the given node vi
belongs to novel classes or base classes. When C̃ = base,
inferring P (yi|C̃,G, vi) is equivalent to the standard node clas-
sification problem [1], [3], [8], [23], [24], [36], [39] with many
shots. On the contrary, if C̃ = novel, inferring P (yi|C̃,G, vi)
is equivalent to the few-shot node classification problem [10],
[41], [47]. In a nutshell, there exist rich approaches to estimate
P (yi|C̃,G, vi) in both cases.

However, resolving the problem in one model as Eq. (3)
is a great challenge. The empirical evidence in Table I illus-
trates that the effect of asymmetric classification deteriorates
the classification performance significantly. In other words,
when applied to the generalized few-shot node classification
problem, existing classic and few-shot node classifiers tend to
over-estimate P (C̃ = base|G, vi) yet under-estimate P (C̃ =
novel|G, vi), i.e., P (C̃ = base|G, vi) � P (C̃ = novel|G, vi)
even if vi is from the novel classes. An intuitive explanation
is that, for existing methods, most of them directly estimate
P (yi|G, vi) by one parametric model whose training is over-
whelmed by the labeled nodes from the base classes. Thus, the
implicit component P (C̃|G, vi) of the estimated probability
P (yi|G, vi) is heavily biased. Based on the above analysis, our
overall solution for the asymmetric classification is estimating
P (yi|C̃,G, vi) and P (C̃|G, vi) separately.

Unfortunately, exactly inferring of P (yi|C̃,G, vi) or
P (C̃|G, vi) is not feasible. This is because, on graph data,
the labels of a node vi (both C̃ and yi) are determined
by its attributed ego net and exact inferring them requires
enumerating all the possible attributed ego nets. Therefore, we
approximate the above two distributions by tractable models,
including a classifier f(θ) and a weight assigner g(φ). In the
following subsections, we will introduce the instantiations of
f(θ) and g(φ); after that, a novel generalized episodic training
paradigm is presented, which is tailored for the generalized
few-shot node classification problem and can work hand-in-
hand with our models.

B. Models
The overall framework of our proposed model STAGER is

presented in Figure 2. It is composed by a classifier f(θ) and
a weight assigner g(φ) which are introduced below.
A - Classifier f(θ). The classifier is instantiated as follows
which is based on the predict-then-propagate design [24],

H(0) = MLP(X, θ), (4a)

H(j+1) = ÃH(j), (4b)

Z = softmax

( p∑
j=0

(W[:, j]1T )�H(j)

)
. (4c)
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Fig. 2: The framework of the proposed STAGER. For clarity, we set the propagation step p = 2 in this figure.

We first obtain the prediction H(0) ∈ Rn×C based on the node
attributes X from a multi-layer perceptron (MLP) parameter-
ized by θ (i.e., Eq. (4a)), where n is the number of nodes and C
is the total number of node classes (including both Cbase and
Cnovel). Then, the prediction matrix H(0) is propagated p steps
to obtain a group of prediction matrices {H(0), . . . ,H(p)} by
power iterations with Ã (i.e., Eq. (4b)). Here Ã ∈ Rn×n
is the symmetrically normalized adjacency matrix with self-
loops. Notice that these prediction matrices also denote the
predictions based on different receptive fields. Finally, all these
prediction matrices are aggregated by a weight assignment
matrix W ∈ Rn×(p+1) whose entry W[i, j] represents the
importance of the j-th propagated prediction matrix (i.e., H(j))
for the i-th node (i.e., Z[i, :]). By broadcasting the weight
vector for the j-th propagation (i.e., W[:, j]) with an all-
one vector 1 ∈ RC×1, we assign the weight to the j-th
propagated prediction matrix through the Hadamard product
�. The softmax is row-wise.

Existing models APPNP [24] and GPRGNN [8] set every
column of weight matrix W as a constant vector, which might
suffer from the inconsistent preference problem as the optimal
weight assignments among receptive fields could vary dramat-
ically between the many-shot cases and the few-shot cases (see
the detailed analysis in Section I). One possible solution is to
set W as a free learnable parameter of the classifier, which is
prone to overfitting as the number of parameters is linear w.r.t.
the number of nodes. More importantly, as we have analyzed
in Section III-A, explicitly estimating P (C̃|G, vi) is necessary.
Hence, we propose to encode P (C̃|G, vi) into W as the output
of a well-designed weight assigner as introduced below.

B - Weight assigner g(φ). Based on the design moti-
vation laid out in Section III-A, on estimating P (C̃|G, vi)
and working closely with the classifier f(θ), our design
of the weight assigner g(φ) bears the following rationales.
First, essentially, for generalized few-shot node classifica-
tion problem, P (C̃|G, vi) reflects the number of shots; e.g.,
P (C̃ = base|G, vi) indicates the probability of the class of vi
being provided with many shots. Second, a sub-module should
explicitly extract the shot-aware representation from the input
{G, vi}. Finally, if the input of a module is shot-aware, its

output should also be shot-aware. Concrete instantiation of g
is as follows whose two sub-modules are parameterized by
φ = {φ1, φ2},

Z̃ = rank
(
softmax

(
g1(A,X, φ1)

))
, (5a)

W = MLP
(
Z̃, φ2

)
. (5b)

The first sub-module (Eq. (5a), motivated by the first and
second rationales) is a preliminary node classifier g1 (parame-
terized by φ1, followed with softmax) whose ranked output
Z̃ ∈ Rn×C is the shot-aware representation. The second sub-
module is an MLP (Eq. (5b), parameterized by φ2, following
the last rationale), whose output is the shot-aware weight
assignment matrix. The rank is row-wise.

Our key idea is to utilize the epistemic uncertainty.1 Since
the epistemic uncertainty can reflect the size of training data,
i.e., shots for our problem, our first sub-module of the weight
assigner (Eq. (5a)) conducts a preliminary prediction (i.e.,
softmax(g1(·)), and then measures the epistemic uncertainty
(i.e., MLP(rank(·)), where MLP is merged into another MLP
from Eq. (5b) for brevity) to output the shot-aware represen-
tation Z̃. We further elaborate on a few more points. First, for
better extracting the epistemic uncertainty, we adopt a practical
approach named dropout variational inference [18], [22] and
rewrite the input of rank(·) from softmax

(
g1(A,X, φ1)

)
to 1

T

∑T
t=1 softmax

(
g1(A,X, φt1)

)
where φt1 is the masked

parameter of φ1 through dropout layers [33]. Second, the
design of the rank function is based on the intuition that
the uncertainty is closely related to the ordered prediction
vector. For example, commonly-used uncertainty metrics of
a prediction vector u, max(u) (the largest probability) and
gap(u) (the largest probability minus the second largest
one) can be represented by [1, 0, . . . , 0] · rank(u) and
[1,−1, . . . , 0] · rank(u), respectively. Finally, the proposed
uncertainty measure: MLP(rank(·)) is flexible, thanks to
the universal approximator MLP [20]. We will provide an
interesting discussion about the selection of g1 in Section IV-C.

1Epistemic uncertainty is defined to measure how well the model fits the
data and is reducible as the size of training data increases [2], [22].



C. Imbalanced Episodic Training

As mentioned in Section III-A, we decompose the classifi-
cation goal into two probability distributions (P (yi|C̃,G, vi)
and P (C̃|G, vi)) and estimate them by the classifier f(θ) and
weight assigner g(φ) respectively. The key idea is designing
g(φ) to output a shot-aware weight assignment matrix for the
f(θ). This is because, fundamentally, for the generalized few-
shot node classification problem, P (C̃|G, vi) reflects shots,
and vice versa. Here, we further ask: how can we train g(φ)
to estimate P (C̃|G, vi) in an even broader scope, beyond the
scenario of base classes Cbase vs. novel classes Cnovel? In
other words, whether there exist other base classes vs. novel
classes scenarios from which the g(φ) can learn?

To answer this question, let us take a close look at a
prevalent training paradigm for meta-learning problems named
episodic training [10], [32], [40], [41], [47].

The core idea of episodic training is to leverage the abundant
labeled base samples to generate sufficient few-shot episodes
(all classes are few-shot). The few-shot episodes facilitate
the learning of a meta-learner which can in turn assist the
learning of learners on few-shot scenarios. However, directly
grafting such a strategy on the training of g(φ) is pointless.
That is because, the goal of the weight assigner (g(φ)) for
the generalized few-shot node classification problem is not
learning to learn a few-shot classifier (the core idea of meta-
learning based few-shot learning), but learning to tell if a
node is from novel classes or base classes. Based on this
key insight, we generalize the episodic training and propose a
novel training strategy named imbalanced episodic training.
A - Imbalanced episodes. For the generalized few-shot node
classification task, as we have mentioned before, the ideal
training scenarios of the weight assigner g(φ) are composed
of base classes vs. novel classes. Hence, we propose imbal-
anced episodic training to mimic such scenarios. Particularly,
our first step is to sample pseudo-base and pseudo-novel
classes (Cpseudo-novel and Cpseudo-base) from the base classes
such that |Cpseudo-novel| = N and |Cpseudo-base| = M .
Then, the labelled nodes (from Cbase) which belongs to
Cpseudo-novel and Cpseudo-base are notated as Vpseudo-novel
and Vpseudo-base. After that, episodes {Ei = {Si,Qi}} are
sampled from Vpseudo-novel and Vpseudo-base where the i-th
episode can be represented as follows.

Si = {v1, . . . , vN×K︸ ︷︷ ︸
from Vpseudo-novel

, vN×K+1, . . . , vN×K+M×L︸ ︷︷ ︸
from Vpseudo-base

}

Qi = { v′1, . . . , v′N×I︸ ︷︷ ︸
from Vpseudo-novel

, v′N×I+1, . . . , v
′
(N+M)×I︸ ︷︷ ︸

from Vpseudo-base

} (6)

where K nodes are sampled from Vpseudo-novel per class and
L nodes are sampled from Vpseudo-base per class to form ev-
ery support set S; from both Vpseudo-base and Vpseudo-novel,
I nodes are sampled per class to form every query set Q.
About the selection of N , M , K, L, I , we follow three
rules of thumb: (1) N � M because it is common that
|Cnovel| � |Cbase|, (2) K � L because Cpseudo-base serves

as the many-shot classes and Cpseudo-novel serves as the few-
shot classes, and (3) I is fixed (e.g., 30) as many existing
works [10], [32] did. Specific selections of the above values
can be found in Section IV-A.
B - Training procedure for STAGER. We rewrite the
final prediction of the proposed STAGER from Eq. (4c)
as z(G, θ, φ1, φ2, vi) to represent the prediction results w.r.t.
the i-th node. Following the same format, we rewrite
the prediction from the preliminary predictor g1 (i.e.,
softmax

(
g1(A,X, φ1)

)
from Eq. (5a)) as z̃(G, φ1, vi). In

addition, we use yi to represent the label of the i-th node. Then
the objective of imbalanced episodic training for STAGER is,

φ∗2 = arg min
φ2

Evi∈Q Lcla(z(G, θ∗, φ∗1, φ2, vi), yi),

s.t. θ∗, φ∗1 = arg min
θ,φ1

Evj∈S Lcla(z(G, θ, φ1, φ2, vj), yj)

+λLcla(z̃(G, φ1, vj), yj),
(7)

where λ is a trade-off parameter and Lcla denotes the classi-
fication loss.
Remarks. First, in Eq. (7), the episodes are imbalanced ac-
cording to Eq. (6). Second, the preliminary classifier g1(φ1)
should be trained from scratch to be shot-aware in every
episode; hence, φ1 is optimized in the lower-level objective
and only φ2 is updated across episodes. Finally, in imple-
mentation, for every episode, we pretrain the preliminary
classifier g1(φ1) based on Lcla(z̃(G, φ1, vj), yj) (which does
not contain θ or φ2) to converge and keep it fixed when solving
the bilevel optimization problem in Eq. (2) (i.e., remove the
term λLcla(z̃(G, φ1, vj), yj) from the lower-level objective).
Such a training strategy shows great efficacy empirically. In
principle, we can use any gradient descent-based optimization.
To compute the gradient of the upper-level problem, many
choices such as the first-order approximation [15], [29] and
iterative differentiation methods [16], [17] are available. At the
meta-test phase, we train the classifier f(θ) and preliminary
classifier g1(φ1) from scratch and fine-tune the second module
of weight assigner parameterized with φ2 on all the labeled
nodes with sample re-weighting.
C - Discussion. If the nodes notated as ‘from Vpseudo-base’
are removed in Eq. (6), the composition of both the support
set Si and the query set Qi is the same as Eq. (1). From
another perspective, the conventional episodic training mimics
the uniform distribution of the number of nodes from the
selected N (pseudo-novel) classes under the few-shot settings.
Our imbalanced episodic training takes one step further and
mimics a more complex mixed distribution from two uniform
distributions (i.e., many shots for Cpseudo-base and few shots
for Cpseudo-novel).

Importantly, this training paradigm is independent of our
model STAGER, and it is even independent of the node classifi-
cation task. In fact, it is a new general meta-training paradigm
which can be applied to most, if not all, of the generalized
few-shot learning problem from the meta-learning perspective.
In addition, the idea behind the proposed imbalanced episode
training can be naturally generalized to other more realistic



Dataset Nodes Edges Features Labels

Amazon Clothing 24919 91680 9034 77
Amazon Electronics 42318 43556 8669 167
Aminer 40672 288270 7202 137
Cora-Full 18800 62685 8710 56

TABLE II: Statistics of Datasets

distributions such as the long-tailed power-law distribution,
and we leave those interesting topics as future works.

For the model complexity, compared with other mod-
els following the predict-then-propagate design [24] (e.g.,
APPNP [24] and GPRGNN [8]), we only add an extra MLP
whose number of parameters (if only 1 hidden layer) is
O(d × dh × (p + 1)) where d, dh, and p are the node
feature dimension, hidden feature dimension and number of
propagation steps, respectively.

IV. EXPERIMENTS

We design experiments to answer the following questions:
• How effective are the model STAGER and the imbalanced

episodic training?
• How to select the preliminary classifier g1 in the weight

assigner module?

A. Experiment Setup

Datasets. We use two E-commerce datasets: Amazon Cloth-
ing2 [28], Amazon Electronics2 [28], and two citation datasets:
Aminer3 [35], and Cora-Full4 [4]. Detailed statistics of the
datasets is in Table II. All the datasets used in this paper are
publicly accessible. They are all anonymized, numerized, and
do not contain personally identifiable information or offensive
content. For all the datasets, we only select classes whose
number of nodes is larger or equal to 100, so that we can have
sufficient test nodes for every class. For the novel classes,
we follow the N -way K shot setup where N ∈ {5, 10}
and K ∈ {1, 3}. Also, we select many base classes (i.e.
N � |Cbase|) with 50 shots and select a part of base classes
as the validation classes. Our code and data are accessible 5

with detailed dataset split and hyperparameter settings.
Metrics. The performance of models is evaluated by the
accuracy (ACC) on test nodes. To be specific, we report the
accuracy on the base classes, novel classes, and all the classes,
respectively. We report the average result together with the
standard deviation in 10 runs.
Baseline methods. The baseline methods which we com-
pare our STAGER-I (with imbalanced episodic training) and
STAGER (without imbalanced episodic training) with can
be categorized into: (1) classic neural node classifiers in-
cluding APPNP [24], and GPRGNN [8] which follow the
same predict-then-propagate design as our STAGER; (2)
few-shot neural node classifiers including MetaGNN [47],

2https://nijianmo.github.io/amazon/index.html
3https://www.aminer.cn/data/?nav=openData
4https://github.com/abojchevski/graph2gauss/tree/master/data
5https://github.com/pricexu/STAGER

GPN [10], and G-META [21]; (3) an imbalanced node classi-
fier GraphSMOTE [46] (short as G-SMOTE). Note that if we
ablate the weight assigner g from the proposed STAGER, our
model will degenerate into the GPRGNN [8] whose weights
of receptive fields are the same for every node.
Implementation. For the APPNP and GPRGNN, we train
them with two strategies: (1) pre-training models over the
base classes and fine-tuning them over the novel classes or
‘novel & base’ classes, and (2) training models over the
imbalanced labeled nodes and re-weighting nodes from the
novel classes with high weights. From our experiment results
(not shown due to space limitation), the performance from the
second strategy is better and we report their best performance
in the following subsections. For MetaGNN, GPN, and G-
META, at the meta-training phase, we train them with the
existing episodic training. At the meta-test phase, we fine-tune
MetaGNN on the imbalanced labeled nodes. For GPN and G-
META, at the meta-test phase, since their models and codes are
designed for the balanced few-shot settings, we downsample
the labeled nodes from base classes so that all the classes
are few-shot. For the GraphSMOTE, we implement its down-
stream classifier as APPNP which shows strong performance.
As it conducts node augmentation based on the nodes from
novel classes only when the shot is 1, there is no augmentation
space and we report the same results as APPNP. When shots
are 3, GraphSMOTE augments novel classes first and then
trains APPNP over the augmented data.

B. Main Results

Performance comparison on four datasets is presented in
Table III. We have the following observations. First, existing
few-shot node classifiers do not perform well on the gen-
eralized few-shot node classification problem. For instance,
MetaGNN does not show advantages compared with classic
methods such as APPNP; GPN and G-META can obtain a
decent performance on the novel classes but cannot fully
utilize the labeled nodes from the base classes during the
meta-test phase, which in turn degrades its performance on
the base classes. Second, compared with classic neural node
classifiers (APPNP, GPRGNN), without imbalanced episodic
training, the proposed STAGER already outperforms them in
most cases and retains competitive in the remaining cases.
Third, there is a trade-off between the performance on the
base and novel classes and we observe that, in most cases, the
proposed imbalanced episodic training can indeed significantly
improve the performance on the novel classes while keep
competitive performance on the base classes. Fourth, in all the
cases, our models (STAGER and STAGER-I) obtain the best
overall performance on all the settings consistently. Finally,
GraphSMOTE only leverages the novel classes to conduct
node augmentation whose advantage is restricted.

C. Case Study on Uncertainty vs. Propagation

In this case study, we design experiments to answer two
research questions: (1) whether there exists a general epistemic
uncertainty gap between the many-shot classes and few-shot



Dataset Setting Class APPNP GPRGNN MetaGNN GPN G-META G-SMOTE STAGER STAGER-I

Amazon
Clothing

5w1s
Base 67.4±1.6 64.7±0.5 64.0±0.5 46.1±3.3 48.7±2.7 67.4±1.6 69.3±1.1 67.3±0.4
Novel 31.4±0.9 31.5±5.4 28.3±0.4 36.1±5.1 39.2±2.9 31.4±0.9 32.4±2.0 41.3±1.0

All 48.5±1.0 47.3±3.0 45.4±0.4 40.9±2.9 43.7±2.2 48.5±1.0 50.0±1.0 53.7±0.5

5w3s
Base 70.5±0.9 69.7±1.0 66.1±1.2 62.9±1.9 63.3±1.7 69.4±0.7 72.3±1.5 68.4±1.0
Novel 48.6±2.5 50.1±3.8 40.4±0.8 46.1±6.7 47.6±6.3 45.6±2.3 53.9±2.1 66.0±2.4

All 59.1±1.2 59.4±2.1 52.6±1.0 54.1±3.4 55.1±3.5 57.0±1.4 62.7±1.1 67.2±1.1

10w1s
Base 73.3±0.3 70.7±1.2 67.6±0.5 42.7±2.4 48.2±2.1 73.3±0.3 76.7±1.5 66.7±0.5
Novel 45.2±0.6 37.7±3.1 41.5±0.5 39.7±5.7 39.9±4.9 45.2±0.6 43.1±2.7 59.6±0.6

All 58.6±0.3 53.5±1.6 54.0±0.4 40.9±3.5 43.9±2.0 58.6±0.3 59.0±1.6 63.0±0.5

10w3s
Base 69.2±0.6 67.5±1.1 65.6±1.2 59.5±2.7 57.4±1.9 68.1±0.7 70.9±0.7 69.3±0.4
Novel 61.4±0.4 58.0±1.5 53.6±0.2 49.6±7.1 54.1±2.8 53.6±3.8 61.8±1.2 64.6±0.7

All 65.2±0.4 62.5±1.3 59.2±0.2 54.3±3.4 55.6±1.6 60.5±1.9 66.2±0.8 66.8±0.5

Amazon
Elec.

5w1s
Base 60.1±1.8 58.4±0.9 59.7±0.3 19.1±2.1 22.5±3.1 60.1±1.8 65.8±2.1 63.9±1.0
Novel 7.8±0.8 5.1±1.1 6.4±0.3 16.6±5.4 15.3±6.7 7.8±0.8 8.0±0.7 19.7±1.6

All 27.2±0.4 24.8±0.4 26.2±0.2 17.5±3.8 18.0±5.0 27.2±0.4 29.4±1.4 36.1±1.1

5w3s
Base 64.2±1.8 55.1±0.9 63.0±0.7 43.7±1.6 43.6±2.4 63.0±1.4 69.1±1.6 69.0±2.9
Novel 21.6±1.5 13.3±2.0 23.1±0.2 32.7±4.8 28.1±5.6 12.0±4.0 29.8±2.7 40.7±2.2

All 37.4±1.5 28.8±1.4 37.9±0.3 36.8±3.4 33.9±3.5 30.9±2.5 44.3±1.8 51.2±2.3

10w1s
Base 64.4±1.2 59.7±1.3 53.1±1.6 18.5±1.4 20.8±2.2 64.4±1.2 69.0±0.9 61.3±0.8
Novel 8.0±1.3 5.7±1.1 4.9±0.1 15.3±3.7 15.0±3.7 8.0±1.3 11.3±1.5 15.4±0.3

All 34.4±1.0 31.0±1.1 27.7±0.2 16.8±2.3 17.7±2.0 34.4±1.0 38.3±1.2 36.9±0.4

10w3s
Base 58.6±0.4 55.2±0.9 48.8±0.7 43.8±1.7 46.3±1.6 62.9±0.7 72.3±1.1 66.5±0.1
Novel 22.4±1.1 14.8±1.0 16.5±0.2 27.5±2.9 26.2±3.2 13.8±0.3 20.3±2.4 38.1±2.3

All 39.4±0.5 33.7±0.7 31.6±0.4 35.1±1.4 35.6±1.8 36.8±0.2 44.7±1.5 51.4±1.1

Aminer

5w1s
Base 40.8±1.0 38.2±1.7 40.4±0.4 19.4±1.5 25.4±1.7 40.8±1.0 40.9±1.0 36.1±1.1
Novel 24.8±2.3 12.4±2.3 7.6±0.2 20.0±6.4 22.2±4.6 24.8±2.3 29.7±1.2 37.2±1.6

All 32.5±1.3 24.8±1.1 23.5±0.3 19.7±3.1 23.7±2.6 32.5±1.3 35.7±0.6 36.7±1.3

5w3s
Base 42.5±1.6 39.8±1.5 42.6±0.4 23.0±1.9 38.2±1.4 39.2±1.5 42.0±1.1 39.6±0.2
Novel 33.1±0.9 29.3±2.5 33.4±0.3 21.4±4.2 34.9±4.4 36.3±1.3 36.2±0.8 44.4±0.3

All 37.6±0.9 34.4±0.8 37.8±0.2 22.2±2.1 36.5±2.4 37.7±0.4 39.0±0.9 42.1±0.3

10w1s
Base 41.2±1.3 41.0±0.8 42.6±0.4 19.6±1.5 23.4±1.8 41.2±1.3 40.3±1.6 40.4±0.4
Novel 11.2±1.2 4.1±1.3 11.6±0.3 16.1±4.0 15.5±4.4 11.2±1.2 16.8±0.6 21.8±1.1

All 25.7±0.6 22.0±0.7 26.6±0.2 17.8±2.2 19.3±2.3 25.7±0.6 28.2±1.1 30.7±0.5

10w3s
Base 41.7±1.2 43.1±1.5 42.4±0.2 26.3±1.5 34.7±1.5 39.1±0.5 46.2±0.8 40.4±0.6
Novel 21.6±0.3 17.7±1.8 24.5±0.3 18.7±3.8 23.4±4.8 23.0±1.4 21.6±0.6 27.8±1.0

All 31.3±0.6 30.0±1.1 33.1±0.2 22.4±2.2 28.9±2.1 30.8±0.9 33.5±0.6 33.9±0.7

Cora
Full

5w1s
Base 70.6±1.0 72.7±1.3 71.4±0.2 40.2±3.1 55.5±2.7 70.6±1.0 71.1±0.8 70.1±2.1
Novel 25.3±0.8 21.3±0.9 20.8±0.3 12.9±4.7 19.0±6.6 25.3±0.8 33.2±1.4 34.8±0.4

All 46.3±0.7 45.1±0.9 44.3±0.2 25.6±3.2 35.9±3.3 46.3±0.7 50.8±1.1 51.2±0.8

5w3s
Base 73.3±1.1 76.5±1.3 70.1±0.2 44.6±2.0 55.5±1.5 73.0±0.9 70.8±0.4 78.1±0.2
Novel 26.5±1.4 21.1±2.4 23.6±0.6 16.1±2.7 24.8±4.4 9.7±0.7 32.0±2.3 30.7±2.3

All 48.2±1.1 46.8±1.7 45.2±0.3 29.3±1.6 39.1±2.5 39.1±0.3 50.0±1.3 52.6±1.4

10w1s
Base 75.9±0.8 76.2±0.8 70.1±0.2 45.2±3.0 52.1±1.7 75.9±0.8 76.2±0.7 69.6±0.1
Novel 20.1±1.7 15.1±1.3 11.5±0.2 14.6±2.3 16.9±3.1 20.1±1.7 29.8±0.9 24.3±0.5

All 40.7±0.7 44.6±0.8 39.8±0.1 29.4±1.4 33.9±1.4 40.7±0.7 52.2±0.1 46.2±0.3

10w3s
Base 74.8±0.6 74.7±0.6 68.0±0.3 42.8±1.5 52.7±1.8 67.5±0.5 77.9±0.6 74.4±0.4
Novel 37.9±1.4 28.1±1.2 34.1±0.3 19.4±2.9 18.6±2.9 7.5±1.0 27.7±2.0 40.0±1.4

All 55.7±0.7 50.7±0.7 50.5±0.2 30.7±1.2 35.0±1.3 36.5±0.7 52.0±0.7 56.6±0.6

TABLE III: Performance comparison (mean±std accuracy (%)) on four datasets. ‘NwKs’ represents the ‘N-way K-shot’ setup
for novel classes. Base, Novel, All represent accuracy on the base, novel, and all the classes, respectively. The best and the
second-best results are bold and underlined respectively. Our goal is to improve the accuracy on the novel classes and at the
same time keep competitive performance on the base classes.

classes (beyond novel vs. base classes)? (2) How to select g1
(i.e., the preliminary classifier for weight assigner g)?

We use the following three metrics to measure the uncer-
tainty in prediction vector z: (1) Max: the largest entry of z; (2)
Gap: the gap between the largest entry and the second largest
entry of z; (3) Entropy: −

∑
i z[i] log(z[i]). To clearly illus-

trate the influence of propagation on the prediction uncertainty,
we select three direct models: (1) MLP(X), (2) MLP(ÃX), (3)

MLP(ÃÃX), where X is the node feature matrix and Ã is
symmetrically normalized adjacency matrix. The softmax is
applied to normalize the predictions. To measure the epistemic
uncertainty, we adopt the dropout variational inference [18],
[22] as we have introduced in Section III-B.

Our experiment design is as follows. First, 50 nodes are
randomly selected from every class as test nodes. Second,
half of the classes are randomly selected as the novel classes



Fig. 3: Uncertainty comparison between classifiers with dif-
ferent propagation steps. For ‘Max’ and ‘Gap’, the smaller the
more uncertain. For ‘Entropy’, the larger the more uncertain.
Our goal is to select p where |∆| is the largest.

and the remaining classes are the base classes. The training
nodes are composed of 1 node per novel class and 50 nodes
per base class. Third, the aforementioned three models are
trained on the training nodes, and their prediction uncertainty
on test nodes is evaluated by the three metrics (i.e., Max, Gap,
Entropy) with the dropout variational inference. We repeat
the above steps in 10 runs to report the average uncertainties
on novel and base classes respectively. Notice that in every
iteration, the base/novel split is different.

The experimental results are shown in Figure 3 where x-
axis represents models MLP(X), MLP(ÃX), and MLP(ÃÃX)
respectively (i.e., the propagation step is p = 0, p = 1
and p = 2 respectively). |∆| denotes the average uncertainty
gap between base and novel classes. We have the following
observations. First, generally, the uncertainty on the novel
classes is much higher than that on the base classes. The
above finding directly motivates our model design to set the
uncertainty-related module (i.e., φ2 in the weight assigner
g) as a meta-learner and learn high-level knowledge (i.e.,
knowledge can be extracted from the broad base classes
by constructing imbalanced episodes) to empower the shot-
aware node classifier STAGER. Second, with the increment of
propagation steps, the classifier (i.e. MLP) is less uncertain on
both the novel and base classes. Importantly, the uncertainty
gap |∆| is also reduced. Therefore, to let the weight assigner
g be sensitive about the difference of shots (reflected by the
uncertainty) between the base and novel classes, we set g1 as
MLP(X) to retain the uncertainty gap as large as possible.

D. Ablation Study

Weight assigner. The weight assigner g is the key component
of STAGER. If we remove the weight assigner and directly set
the weights assigned to receptive fields as trainable parame-
ters, our model will degenerate to GPRGNN [8]. Hence, we
study the performance comparison between GPRGNN [8] and
STAGER(without imbalanced episodic training) for the 10-way
3-shot setup and present the accuracy on the novel classes

Dataset STAGER (without g) STAGER (with g)

Novel All Novel All

Amazon-C 58.0±1.5 62.5±1.3 61.8±1.2 (+3.8) 66.2±0.8 (+3.7)
Amazon-E 14.8±1.0 33.7±0.7 20.3±2.4 (+5.5) 44.7±1.5 (+11.0)
Aminer 16.1±1.7 28.2±1.1 21.6±0.6 (+5.5) 33.5±0.6 (+5.3)
Cora-full 28.1±1.2 50.7±0.7 27.7±2.0 (-0.4) 52.0±0.7 (+1.3)

(a) Weight assigner g

Dataset STAGER-I (without rank) STAGER-I (with rank)

Novel All Novel All

Amazon-C 57.8±1.1 61.7±0.7 64.6±0.7 (+6.8) 66.8±0.5 (+5.1)
Amazon-E 20.6±1.5 43.2±1.0 38.1±2.3 (+17.5) 51.4±1.1 (+8.2)
Aminer 23.6±0.9 35.9±0.7 27.8±1.0 (+4.2) 33.9±0.7 (-2.0)
Cora-full 34.8±0.9 49.1±0.8 40.0±1.4 (+5.2) 56.6±0.6 (+7.5)

(b) Rank operator

TABLE IV: Ablation study on the weight assigner g (a) and
the rank operator (b) (mean±std accuracy (%)). The number
in parentheses indicates the performance comparison with the
ablated variants in the left columns.

Dataset STAGER STAGER-I

Novel All Novel All

Amazon-C 61.8±1.2 66.2±0.8 64.6±0.7 (+2.8) 66.8±0.5 (+0.6)
Amazon-E 20.3±2.4 44.7±1.5 38.1±2.3 (+17.8) 51.4±1.1 (+6.7)
Aminer 21.6±0.6 33.5±0.6 27.8±1.0 (+6.2) 33.9±0.7 (+0.4)
Cora-full 27.7±2.0 52.0±0.7 40.0±1.4 (+12.3) 56.6±0.6 (+4.6)

(a) Imbalanced episodic training for STAGER

Dataset MetaGNN MetaGNN-I

Novel All Novel All

Amazon-C 53.6±0.2 59.2±0.2 56.4±0.3 (+2.8) 61.9±0.4 (+2.7)
Amazon-E 16.5±0.2 31.6±0.4 22.7±0.4 (+6.2) 42.5±0.6 (+10.9)
Aminer 40.2±0.5 38.1±0.2 36.5±0.8 (-3.7) 37.0±0.7 (-1.1)
Cora-full 34.1±0.3 50.5±0.2 33.1±0.5 (-1.0) 40.0±0.8 (-10.5)

(b) Imbalanced episodic training for MetaGNN

TABLE V: Ablation study on the imbalanced episodic train-
ing for STAGER (a) and MetaGNN (b) (mean±std accuracy
(%)). The number in parentheses indicates the performance
comparison with the ablated variants in the left columns.

and all the classes in Table IVa. Notice that the data is re-
organized from Table III where Amazon-C and Amazon-E
represent Amazon Clothing and Amazon Electronics datasets,
respectively. Clearly, we observe that with the weight assigner,
in most cases, the accuracy on novel classes and all the classes
gets boosted significantly.
Rank operator. We claimed in the main content that the rank
operator is designed for extracting uncertainty from the predic-
tion vectors. Here, we study the performance comparison be-
tween STAGER-I (without rank operator) and STAGER-I (with
rank operator) for the 10-way 3-shot setup and present the
accuracy on the novel classes and all the classes in Table IVb
where Amazon-C and Amazon-E represent Amazon Clothing
and Amazon Electronics datasets, respectively. Clearly, we
observe that the rank operator, in most cases, can significantly
boost the accuracy on novel classes and all the classes.
Imbalanced episodic training. To study the effectiveness of
imbalanced episodic training, first, we study the performance



comparison between STAGER (without imbalanced episodic
training) and STAGER-I (with imbalanced episodic training)
for the 10-way 3-shot setup. The accuracy on the novel classes
and all the classes is presented in Table Va and this part of the
data is re-organized from Table III; then we implement imbal-
anced episodic training on MetaGNN (notated as MetaGNN-I)
for the 10-way 3-shot setup to see the performance comparison
on the novel classes and all the classes in Table Vb. Amazon-
C and Amazon-E represent Amazon Clothing and Amazon
Electronics datasets, respectively.

We observe that for STAGER-I, compared with STAGER, in
most cases accuracy on the novel classes and that on all the
classes gets improved, which demonstrates the effectiveness of
imbalanced episodic training. For MetaGNN-I we observe that
the performance improvement is not stable and may even hurt
the performance dramatically. The key reason is that existing
few-shot node classifiers are designed for balanced scenarios,
and not be able to address the imbalanced distribution of
shots between the base classes and the novel classes. Hence,
importing imbalanced shot distribution into the meta-training
phase may even affect the learning of existing few-shot node
classifiers. We also tried to implement imbalanced episodic
training on GPN [10] and G-META [21] but they suffer from
the out-of-memory problem due to the great number of labeled
base nodes so we do not report them here.

E. Hyperparameter sensitivity study.

We conduct hyperparameter sensitivity study on the steps
of propagation p from Eq. (4c), which controls the size of
the set of prediction matrices {H(0), . . . ,H(p)}. We search p
from [7, 12] and present the accuracy of the base, novel, and
all classes on the Cora-full dataset. From Figure 4, we observe
that in general, performance of STAGER is stable w.r.t. p, and
when p = 9 our model obtains the best performance.

Fig. 4: Sensitivity study of the propagation steps p.

V. RELATED WORK

Few-shot learning on graphs. Few-shot learning (FSL) is
a classic problem [37]. Its concrete instantiations on graphs
grab increasing attention. MetaGNN [47] learns to initialize a
graph neural network. AMMGNN [41] learns to generate task-
specific attribute matrices. G-META [21] and GPN [10] col-
lapses classes into topology-aware prototypes. Lan et al. [25]
introduce an embedding transformation function for the learn-
ing of novel node embeddings. Yao et al. [43] transfer knowl-
edge from auxiliary graphs to the target graphs. Recently,

Liu [26] explore that location embeddings can be transferable
priori across tasks. Besides, for the few-shot graph classifi-
cation problem, Chauhan et al. [7] cluster graphs into super-
classes based on the spectrum of the normalized Laplacian.
Bose et al. [5] explore the link prediction task given limited
known edges.

GraphSMOTE [46] investigates a similar problem called
imbalanced node classification. Here, we clarify the con-
nections and differences between GraphSMOTE and our
work. GraphSMOTE [46] focuses on augmenting the minority
classes (i.e., novel classes in our setting), and particularly it
interpolates the minority nodes to increase the size of minority
classes. We model the problem in a meta-learning fashion to
fully exploit the knowledge from base classes. Additionally,
both problems are about the node classification on imbalanced
label distributions, but the number of shots of novel (i.e.,
minority) classes in our setting is much smaller (usually less
than 10, or even 1) than the imbalanced node classification
settings, which limits the effectiveness of GraphSMOTE since
it mainly exploits the information from the labeled minority
nodes themselves. From another perspective, if the novel
classes are given few shots, augmenting it to have the balanced
shots as base classes will dramatically increase the size of the
network, and negatively impact the model efficiency. Besides,
ImGAGN [31] studies the node-level representation task on
imbalanced node distribution.
Generalized few-shot learning. Recently, with the develop-
ment of memory and generative models, more works are devel-
oped for the generalized few-shot learning problem [13]. For
instance, Wang et al. [42] propose a hallucinator component
to augment the few-shot classes; Gidaris and Komodakis [19]
address this problem by a two-stage training paradigm; Liu et
al. [27] make one step further with memory component and
study an open world recognition task. In addition, ONCE [30]
addresses a problem named incremental few-shot learning
where the revisiting of base classes is not allowed. Tan et
al. [34] study a long-tailed rare category objective recognition
problem. The tasks of above works are all defined on non-
graph data. Nonetheless, our proposed imbalanced episodic
training could benefit these existing or even future solutions
formulated from the meta-learning perspective.

VI. CONCLUSION

In this paper, we study the generalized few-shot node clas-
sification problem and propose a novel model named STAGER.
By equipping a shot-aware module, weight assigner, the pro-
posed STAGER effectively mitigates the bias brought by the
imbalanced distribution of the number of nodes from various
classes and adapts to distinct weights assignments for both the
many-shot scenario and the few-shot scenario simultaneously.
To ensure the meta-training is consistent with the meta-test,
we propose imbalanced episodic training which generalizes
the conventional episodic training in meta-learning. Compre-
hensive experiments on four real-world datasets demonstrate
the effectiveness of the proposed STAGER and imbalanced
episodic training.



ACKNOWLEDGMENT

This work is supported by NSF (1947135, and 2134079),
the NSF Program on Fairness in AI in collaboration with
Amazon (1939725), DARPA (HR001121C0165), NIFA (2020-
67021-32799), ARO (W911NF2110088, W911NF2110030),
ONR (N00014-21-1-4002), and ARL (W911NF2020124). The
content of the information in this document does not neces-
sarily reflect the position or the policy of the Government
or Amazon, and no official endorsement should be inferred.
The U.S. Government is authorized to reproduce and distribute
reprints for Government purposes notwithstanding any copy-
right notation here on.

REFERENCES

[1] Charu C Aggarwal and Nan Li. On node classification in dynamic
content-based networks. In SDM, 2011.

[2] Ahmed Alaa and Mihaela Van Der Schaar. Discriminative jackknife:
Quantifying uncertainty in deep learning via higher-order influence
functions. In ICML, 2020.

[3] Smriti Bhagat, Graham Cormode, and S Muthukrishnan. Node clas-
sification in social networks. In Social network data analytics, pages
115–148. Springer, 2011.

[4] Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embed-
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