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Measuring Correlations from the Collective Spin Fluctuations of a Large Ensemble
of Lattice-Trapped Dipolar Spin-3 Atoms
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We perform collective spin measurements to study the buildup of two-body correlations between ~10*
spin s = 3 chromium atoms pinned in a 3D optical lattice. The spins interact via long range and anisotropic
dipolar interactions. From the fluctuations of total magnetization, measured at the standard quantum limit,
we estimate the dynamical growth of the connected pairwise correlations associated with magnetization.
The quantum nature of the correlations is assessed by comparisons with analytical short- and long-time
expansions and numerical simulations. Our Letter shows that measuring fluctuations of spin populations
for s > 1/2 spins provides new ways to characterize correlations in quantum many-body systems.
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Introduction.—Experimentally characterizing quantum
correlations between different parts of a system is of
fundamental importance for the development of quantum
technologies. Quantum correlations are not only at the heart
of the most peculiar effects predicted by quantum mechan-
ics, such as entanglement, EPR steering [1-3], or Bell
nonlocality [4]; they also give advantage for different
quantum information or metrological tasks, even for non-
entangled states [5—7]. Furthermore, quantum correlations
should appear in generic quantum systems [8], and quan-
tum many-body systems are generically intractable by
classical computers. Therefore, measurements on well
controlled quantum simulators are crucial for improving
our understanding of complex quantum systems.

Proving the quantum nature of correlations is an exper-
imental challenge, which requires the measurement of
noncommuting operators. As full state tomography scales
exponentially with the number of constituents [9] and, thus,
becomes impossible in large ensembles, it is of crucial
importance to develop new protocols to infer correlations
from partial measurements such as bipartite or collective
measurements. The latter have been successful in demon-
strating entanglement [3], steering [10—12], or nonlocality
[13], in experimental platforms dealing with effective two-
level systems. Systems made of s > 1/2 particles pinned in
optical lattices are also particularly interesting for quantum
technologies, as their Hilbert space, enlarged with respect
to qubit (s = 1/2) systems, offers new possibilities for
quantum information processing [14]. However, their
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entanglement witnesses have a more complicated structure
compared to s = 1/2 [15-17]. Extensions to s = 1 systems
in spinor Bose-Einstein condensates have demonstrated
number squeezing in pair creation processes via spin-
mixing collisions [3,18-21], SU(1,1) interferometry [22],
and entangled fragmented phases [23]. Nevertheless, these
systems operated in the regime where the single-mode
approximation is valid [24], which enormously simplifies
the quantum dynamics.

In this Letter, we measure, for the first time, two-body
correlations in a macroscopic array of s =3 chromium
atoms pinned in a 3D optical lattice and coupled via long-
range and anisotropic magnetic dipolar interactions.
Previous experiments measuring out-of-equilibrium spin
dynamics in these arrays demonstrated beyond mean-field
behavior [25,26] and their approach to quantum thermal-
ization [25]. Here, we make use of the large atomic spin
to obtain a direct measurement of two-body correlations.
Specifically, after triggering out-of-equilibrium spin dynam-
ics, we acquire statistics on the 2s + 1 = 7 spin populations
and quantify the growth of interatomic spin correlations
by analyzing the statistical fluctuations of the collective
spin component along the external magnetic field, i.e., the
magnetization. The quantum nature of the correlations that
we measure is validated by agreement with exact short-
time expansions, with a high-temperature series expansion
applied to the asymptotic quantum thermalized state at long
times, and with simulations of the full quantum dynamics
via advanced phase-space numerical methods. Thus, our
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experimental measurement of a two-body correlator pro-
vides a successful test bed for this numerical method in the
spirit of quantum simulations.

Proposed correlator.—We consider a system of N spin
s > 1/2 particles. We define 3! as the z component of the
spin of the ith particle. The correlator C, that we aim to
measure is

C.=) ({818)) = (31)(31)) = Var($.) ==, (1)

with Var(S,) = (§2) = (8,)? the variance of the collective

spin component S, = S 3/, and =, the sum of individ-
ual variances, . = >V ({(31)%) — (51)?). Z. accounts for

intraparticle correlations, which are only nontrivial for
s> 1/2, as ((3)?) = 1/4 if s = 1/2. The interparticle
correlations are accounted for by the two-body correlator
C.. In this Letter, we independently determine Var(S,)
and X, from collective measurements and obtain C, from
Eq. (1). Measurement of Var(S,) requires the experiment to
be repeated many times to acquire adequate statistics (see
data analysis below). Measurement of X, is straightforward
in the case of a homogeneous system, comprising singly
occupied lattice sites (referred to as singlons in the
following), as we now explain.

Indeed, for singlons, ((31)%) = 3, pim?, with p!) the
probability that the site i, uniquely populated by the ith
spin, is in the m spin state (—3 < m, < 3, me pﬁ,’lz =1)so

that 3, ((31)2) =N'S,,. p,.m? where p, = N-'3, ply.

Homogeneity ensures that p,(,'l) = pn, are independent of

site 7, so that (81)> = (3, p,m,)*; therefore,

% = ;pm‘m% - (stpmxms)z' (2)

In Ref. [27], we show that inhomogeneities lead to
negligible deviations from Eq. (2) in our experiment.

Therefore, the measurement of p,, = N,, /N, with N,,,
the total number of atoms in spin state m;, yields X, and
Egs. (1), (2) provide a connected two-body correlator by
performing measurements in one basis only. Interestingly,
in the case of s > 1/2, C. can dynamically evolve in
homogeneous systems even when S‘Z commutes with the
Hamiltonian.

Experimental setup.—The starting point of our experi-
ments is a spin-polarized 3’Cr Bose-Einstein condensate
(BEC) produced in a crossed dipole trap, with, typically,
15 000 atoms polarized in the minimal Zeeman energy state
m, = —3. We load the Cr BEC in a 3D optical lattice deep
into the Mott insulator regime. The lattice implemented
with five lasers at A; = 532 nm is described in [25].
The total lattice depth is equal to 60 recoil energy at 4;.

(a)
WA

rf pulse

— Var(S,)
40 pictures

..SZ

FIG. 1. Principle of the experiment. (a) The cartoons zoom
over a small region of the Mott insulating distribution with
doubly occupied sites (core) and singly occupied ones (shell).
Spin-3 chromium atoms are excited at t = 0 by a rf pulse, with
five cycles at the Larmor period set by the external magnetic
field B. The spin directions then make an angle 6 (set to z/2 in
this Letter) with respect to B, which triggers spin dynamics.
Correlations develop between spins, while doubly occupied
sites get empty. (b) Stern-Gerlach separation provides meas-
urement of the fractional spin populations p,, (), through
fluorescence imaging, at a given time . Repeating the experi-
ment allows us to compute the variance of the magnetization
and, hence, the correlator C, of Eq. (1).

We estimate the tunneling time to be ~20 ms. We obtain a
core of doublons comprising ~50% of the atoms, sur-
rounded by a shell of singlons. Inhomogeneities of the
lattice potential are below 2.5% and, therefore, have a
negligible effect on spin dynamics in the Mott regime [31].

As shown in Fig. 1(a), we trigger spin dynamics by
rotating all spins with the use of a radio frequency (rf) z/2
pulse. After the pulse, all spins are oriented orthogonal to the
external magnetic field, in a coherent spin state. The Larmor
frequency f; = grupBo/h (with g; ~2 the Landé factor,
up the Bohr magneton, and By = 0.75 Gauss the amplitude
of the magnetic field) is f; ~ 2.1 MHz. The rf frequency
fit 1s set at resonance, and fluctuations of the detuning
(fL — fi) =1 kHz are small compared to the rf Rabi
frequency fp, thanks to the use of a 30 Watt rf amplifier.
In practice, the rf pulse has a duration of exactly five Larmor
periods, with fr = (1/5)(f./4) = 105 kHz; the 8 = z/2
pulse is set to have an identical initial phase at each
realization. Fluctuations of the rotation angle  are estimated
to have a standard deviation of ¢, ~2.5 x 107> rad (see
below). After the initial state preparation with the rf pulse,
spins interact via magnetic dipolar interactions in the optical
lattice for a duration . Then, we adiabatically ramp down the
optical lattice, and proceed to measurements.

Theoretical models.—Dipolar interactions between sin-
glons during the dark time evolution are described by the
effective dipolar Hamiltonian H ,;, which is a XXZ spin
model Hamiltonian

N
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with V;; = V(1 - 300529ij/r?j)’ Vg = (ﬂO(gLﬂB)2/4ﬂ)’
and yu, the magnetic permeability of vacuum. The sum runs
over all pairs of particles (i,j), r;; is their corresponding
distance, 6;; the angle between their interatomic axis and
the external magnetic field, §; = {3%,8],3} are s =3
angular momentum operators for atom i. The shortest
intersite distance r,,;, = 268 nm in our lattice [25] corre-
sponds to a dipolar coupling V4/r. ~h x 3 Hz.

Given the strong contact interactions that favor spin
alignment [32,33] and the fully polarized initial state, the
same Hamiltonian can be used to describe the dynamics of
doubly occupied sites (doublons) just by replacing §; by a
s = 6 angular momentum operator at the corresponding site
[31], as the spin of each pair of particles is well-defined.
Furthermore, in Ref. [27], we show that Eq. (2) still holds for
doubly occupied sites. Nevertheless, as soon as the spin
excitation is performed, doublons start to leave the trap due
to dipolar relaxation [34], see Fig. 2: for 0 < ¢ < 10 ms the
spin system comprises both singlons and doublons, but only
singlons remain for # > 10 ms and losses become negligible.
This is why we restrict our numerical simulations to the case
with singlons only, which allows for quantitative comparison
with the experiment except at short times.

As shown in previous work [25], we need to include

the one-body term #,, = By > (5)? accounting for light
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FIG. 2. Evolution of the atom number N(7) (Top), and of the
fluctuations measured in the experiment (Bottom): we show the
standard deviations of the normalized magnetization M, and
of the technical noises featured in Eq. (4): 6, (shaded area;
preparation of the sample), og (fitting uncertainties), and
Oghot noise (fluorescence imaging). The quantum projection noise

(3/2N(1)) = o5qn is shown for comparison. Lines are guides
to the eye. Error bars evaluated from statistics correspond to two
standard deviations.

shifts created by the lattice lasers. In the Mott regime,
tunneling-assisted superexchange processes are happening
at longer time scales and remain irrelevant for the current
measurements.

During the evolution under A, + A 0 (S.) and Var(S,)

are constant, as these two operators commute with S 25 on
the contrary, interactions between spins lead to evolution of
spin populations, hence, of X, and C,. In our case, as spins
are orthogonal to the magnetic field, (S.) = 0, and Eq. (2)
reads L. =N}, Pon,M?; MOTEOVer, Var(S.) = (3/2)N
as the initial state is a coherent spin state. The short-
time evolution is obtained by perturbation theory [25],
leading to C, ~ —(45N/8)1*(3V%; —4B,), where V2, =

Yiti Vil (2N), Vg = h x 4.3 Hz. At longer times, we
can numerically simulate the dynamics via a semiclassical
phase space method known as the generalized discrete
truncated Wigner approximation (GDTWA) [35], which
was previously shown to capture the spin population
dynamics of this system quantitatively [25].

We also provide a theoretical estimate of the expected
correlation at long times assuming the eigenstate thermal-
ization hypothesis [9,36]. In this case, due to the build up of
quantum correlations, local observables at long times can
be described by a thermal density matrix with additional
Lagrange multipliers that account for conserved quantities.
A high-temperature T series expansion valid for our system
[25] leads to C,(t = o0) = (—(5/2) + 12Bo)N, with
p=(1/kgT) = (5Bq +9V/48V%; +24B3), and V =
(1/N) 1N>j Vij~hx—0.6 Hz.

Experimental procedures.—The quantities of interest are
the total number of atoms, N(f), and the fractional spin
populations p,, (¢). While the fluctuations in N(t) from
shot to shot (with a standard deviation of about 10%) yield
large extra fluctuations on the measured absolute spin
populations N, = Np,, , this extra source of noise is
canceled when dealing with fractional populations. For
measuring the total atom number, we use absorption
imaging of the BEC. We checked that the loading in
the optical lattice does not lead to losses, and therefore,
N(t=0) is equal to the atom number in the BEC. We
estimate the accuracy of this measurement to be 10%.

To measure p,, (¢), we spatially separate the seven spin
components during a time of flight of 14 ms, using a Stern-
Gerlach (SG) technique. We use fluorescence imaging to
count atoms, which brings equal efficiency in the detection
of all spin components. We also make use of electron
multiplying gain, G, which increases the signal-to-noise
ratio by effectively eliminating readout noise (see Ref. [27]
for details). Atoms are excited by a saturating laser set
at 425 nm (with a transition rate I' = 27 x 5 x 10° Hz)
during typically 500 us. The magnetic field B is reduced
to a small value (gugBy < hI') to ensure that the fluores-
cence rates of the seven spin components are almost equal.
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We use a “delta-kick™ stage [37] at the very beginning of
the time of flight, before SG: it consists of a short 0.5 ms
pulse of an intense IR laser along the separation axis of the
SG that applies a force on the atoms and helps reduce
velocity dispersion. We fine-tune the frequency of the
imaging laser and the amplitude of all three components
of the magnetic field during the fluorescence stage. The
obtained regular shape of clouds [see Fig. 1(b)] favors
efficient fitting.

By fitting of the atomic clouds with a Gaussian function,
we obtain the values of the number of counts C,, detected
for every spin component mg which sets the value of
Pm, = Cn./ >, Cy,- During the dynamics, N(z) is
deduced by multiplying N(0) by the ratio of the total
number of counts at ¢ and at t = 0.

Data analysis.—As explained above, Var(S.)(z) is
expected to be equal to (3/2)N(¢) for a dipolar system
without losses, but we do not assume that this equality
holds, and we measure Var(S.)(¢) by statistical analysis
of the data and thorough investigation of all different
sources of parasitic noise. In practice, we measure the
variance of the normalized magnetization of the sample,
M. =3, Pmms —3<M, <3, from three to five sets of 40

pictures. In the absence of noise, Var(8,) = N x Var(M.),
but at = 0, we obtain N(0) x Var(M,)~2x (3/2), which
shows that noise processes come into play in our meas-
urement of M.: a proper determination of Var(S,) requires
an evaluation of their contribution independently.

The noise contributions to M, originate from fluctua-
tions in the preparation angle 6, in the detection process
(due to the Poissonian statistics of light) and in the
evaluation of counts on the camera (related to error in
the fitting procedure). We denote their respective contri-
bution to the standard deviation on M as Gyrep, Gshot noises
and op. These different noise sources are statistically
independent, so that

_ Varf3, (1)

VarlM ()] =~

+ Ughot noise(t) + O-%it(t) + Ugrepv

(4)

from which we derive Var(S,)(¢) at any time 7.

We determine 6, poise from the fundamental fluctua-
tions of the fluorescence signal of each spin components
(with a corresponding standard deviation /2GC,, , see
Ref. [27]). Similarly, o is well evaluated from data
analysis. We use measurements at ¢ = 0 to evaluate the
last contribution, Oprep- Indeed, the initial sample corre-
sponds to an uncorrelated spin coherent state, for which
Var(S,) = (3/2)N(0) is guaranteed. The conservation of
magnetization during the whole spin dynamics ensures that
Oprep is constant, as discussed in [27]; we stress that the

contribution of the preparation noise becomes negligible at
long times, see Fig. 2.

The noise contributions as dynamics proceeds are shown
in Fig. 2, and compared to the one of atomic projection
noise, oson = 1/ (3/2N(t)). We obtain o, = 0.008 =~

0.765gn- AS Oprep scales like s X g; and is independent

of Ny, while ogqy scales like /(s/N(0)), we stress the
difficulty to get such a low value for a large N(0), a large
spin s = 3 and a large Landé factor g; = 2. The increase of
Oghot noise @S a function of time (see Fig. 2) surpasses the

1/4/N(t) scaling due to the increasing contribution of the
highest |m| states; the increase of oy stems from atom
losses.

Results.—We show our measurements of Var(S.,)(r)/N(r)
in Fig. 3(a). The scatter of the data points around (3/2) is
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FIG. 3. (a) Symbols are experimental values for the two
contributions to the correlator C, [see Eq. (1)] normalized to
atom number. Full line is results of simulations for X, while the
shaded area shows the expected values for Var(S’Z) in a pure
dipolar spin system within 2 standard deviations, as a result of our
finite data sampling. (b) Experimental values of the correlator C,
normalized to the atom number (symbols), with comparison to
simulations (full line), and short-time expansion (dotted line).
The dashed line corresponds to the calculated value in the
quantum thermalized state, while the light grey line shows the
zero value. Error bars evaluated from statistics correspond to two
standard deviations.
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comparable to the average error bars for the different points.
Therefore, our measurements are statistically compatible
with (3/2) throughout the curve. We point out that the
experimental error bars are similar to the expected fluctua-
tions on the measurement associated with finite data sam-
pling, which we have estimated at ¢+ = 0 with random choice
numerical simulations for 200 shots, see Fig. 3(a).

As we measure a substantial growth for X_(7)/N(z), we
can assert that the correlator C,(7) significantly differs from
zero for t > 20 ms, as directly shown in Fig. 3(b). At the
asymptotic time ¢ = 100 ms, our measurement shows
incompatibility of C, with zero with a confidence interval
larger than 99%. Figure 3(a) shows a good quantitative
agreement between the measured X,(¢)/N(¢) and predic-
tions from our GDTWA simulations assuming only sin-
glons, while Fig. 3(b) shows qualitative agreement for the
measured C,(¢) with our short-time expansion. The value
of the quadratic term B, in simulations, B, =h x —5.1 Hz,
is inferred from population analysis during the whole
dynamics [27]; it leads to (C_/N)(t = o0) ~ —1.3, in good
agreement with the data. Thus, our measurement results
confirm the ability of GDTWA to estimate the growth of
correlations for large ensembles of large spins atoms.

Discussion and conclusions.—Thus, our measurements
quantify the amount of two-body correlations in the
expected highly correlated state reached at long time.
Assuming translational invariance and isotropic correla-
tions decaying exponentially with a correlation length &,
the measured C, and X, at long time can be related to the
onset of correlations with £~ 0.3 (in units of the lattice
spacing) [27]. This estimate represents a lower bound to the
actual correlation length (assuming concentration of corre-
lations at short distance); its rather small value is, none-
theless, compatible with the scenario of thermalization at
high temperature.

Now, we discuss the influence of losses. As dipolar spin
exchange dynamics proceeds, doublons can become corre-
lated with surrounding singlons, resulting in a modification
of singlon fluctuations. Therefore, quantum fluctuations of
the sample, and consequently its quantum correlations, may
differ from the singlon-only case. Rigorously taking losses
into account is difficult and would require new theoretical
models to be developed, which is beyond the scope of this
Letter. We discuss simple arguments in [27] to estimate the
contribution of losses on Var(8,)(r) and predict small
corrections at the 10 percent level. An improved exper-
imental resolution would be necessary to show deviation
from a fully unitary system. However, our experimental
results show that the growth of correlations is not signifi-
cantly hampered by dipolar losses—an example of the
strength of the quantum simulation approach when theo-
retical models are not yet available.

In conclusion, we have measured the growth of corre-
lations in a large ensemble of interacting spins by analyzing
the fluctuations of the collective magnetization. This

achievement illustrates the new possibilities offered by
s > 1/2 species, for which relevant information can be
accessed by measuring population fluctuations in one basis.
This paves the way for a better understanding of the dynamics
of quantum correlations in nonequilibrium spin systems.
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