Comparative Reasoning for Knowledge Graph Fact
Checking

Lihui Liu*, Houxiang Ji*, Jiejun Xu and Hanghang Tong*
*Department of Computer Science, University of Illinois at Urbana Champaign
THRL Laboratories, LLC.

Email: *lihuil2@illinois.edu, *hj14 @illinois.edu, zju@hrl.com, *htong @illinois.edu

Abstract—Knowledge graph has been widely used in fact
checking, owing to its capability to provide crucial background
knowledge to help verify claims. Traditional fact checking works
mainly focus on analyzing a single claim but have largely
ignored analysis on the semantic consistency of pair-wise claims,
despite its key importance in the real-world applications, e.g.,
multimodal fake news detection. This paper proposes a graph
neural network based model INSPECTOR for pair-wise fact
checking. Given a pair of claims, INSPECTOR aims to detect the
potential semantic inconsistency of the input claims. The main
idea of INSPECTOR is to use a graph attention neural network to
learn a graph embedding for each claim in the pair, then use a
tensor neural network to classify this pair of claims as consistent
vs. inconsistent. The experiment results show that our algorithm
outperforms state-of-the-art methods, with a higher accuracy and
a lower variance.

Index Terms—fact checking, knowledge graph, comparative
reasoning

I. INTRODUCTION

The knowledge graph is ubiquitous, and it provides prior
knowledge and valuable information for many applications,
e.g., knowledge graph alignment [1], question answering [2]
and fact checking [3]. The goal of knowledge graph fact
checking is to provide a more accurate, unbiased analysis of
claims and rate them as consistent or inconsistent w.r.t. the
background knowledge from the knowledge graph.

Although researchers have made great achievements in the
fact checking area, e.g., [4] [5] [6], it is still highly
challenging to check the semantic inconsistency among mul-
tiple pieces of information. The vast majority of the existing
works primarily focus on checking the truthfulness of a sin-
gle claim/triple, e.g., determining whether (Alan Turing,
wasBornIn, Canada) is consistent or inconsistent. Very few
of them focus on pair-wise fact checking, which aims to check
the semantic (in)consistency of a pair of claims collectively.

However, in many real-world situations, e.g., multimodal
fake news detection [7], single claim fact checking alone
is insufficient. When we verify the two claims/triples at
the same time, the result may be inconsistent even though
each claim/triple is consistent if we evaluate it individu-
ally. For example, considering two claims/triples: (Barack
Obama, graduatedFrom, Harvard University) and
(Barack Obama, majorIn, Political Science). If
we look at each of them individually, both of them might be

978-1-7281-0858-2/19/$31.00 ©2022 IEEE

TABLE I
NOTATIONS AND DEFINITIONS
Symbols Definition
G=(V,R,E) the knowledge graph

V4 the i™ entity/node in knowledge graph
i the 4™ relation/edge in knowledge graph
e; the ™ given by the user

G the knowledge segment of e;

true. But if we check them together at the same time, we can
see that they cannot be both true, and thus the semantic in-
consistency between them is spotted. This is because Barack
Obama majored in law instead of Political Science
when he studied at Harvard University.

In this paper, we aim to use the information in the knowl-
edge graph to determine whether the claims/triples in the
pair are consistent with each other. We propose a graph
neural network model INSPECTOR to tackle the pair-wise fact
checking problem. INSPECTOR finds an evidence pattern (a
subgraph) for each claim to express the semantic meaning
of it and utilizes a graph attention neural network to learn a
graph embedding for each evidence pattern. A tensor neural
network is then used to check the consistency of the pair of
claims based on the learned graph embedding.

We summarize our contributions as follows

o Pair-wise Fact Checking Model. We propose a graph
neural network based pair-wise fact checking model
named INSPECTOR.

o Empirical Evaluations. We perform empirical evalua-
tions to demonstrate the efficacy of INSPECTOR .

The rest of the paper is organized as follows. Section II
introduces notations used in this paper and gives the problem
definition. Section III introduces the overall framework of
INSPECTOR and its technical details. The experiment results
are presented in Section IV, and the related work is reviewed
in Section V. Finally, the paper is concluded in Section VI.

II. PROBLEM DEFINITION

Table I gives the main notations used throughout this
paper. A knowledge graph can be denoted as G = (V, R, E)
where V. = {v1,v9,..,v,} is the set of nodes/entities,
R = {ry,r9,...,rm} is the set of relations and F is the
set of triples. Each triple in the knowledge graph can be
denoted as (h,r,t) where h € V is the head (i.e., subject)

Harvard
University

isCitizenof graduatedFrom

Barack Obama 1961-08-04

wasBornOnDate
isMarriedTo
hasGender

Michelle Obama

Fig. 1.

An example of knowledge graph.

Alan Turing
workAt
isCitizenO

United Kingdom Isl i
wasBornin
isLocatedin
United Kingdom

ey Gy

Alan Turing

wasBornin

University of
Manchester

Fig. 2. Knowledge segment supporting the fact (Alan Turing, wasBornIn,
United Kingdom). The red thick path shows the evidence.

of the triple, ¢ € V is the tail (i.e., object) of the triple and
r € R is the edge (i.e., relation, predicate) of the triple which
connects the head h to the tail ¢. Figure 1 gives an example
of the knowledge graph. In this graph, (Barack Obama,
isMarriedTo, Michelle Obama) is a triple.

In this paper, we focus on claims which can be transformed
into triples of knowledge graphs. Generally speaking, given a
triple/claim from the user, we can find a knowledge Segment
from the knowledge graph to express the meaning of this triple.
Figure 2 gives an example of knowledge segment. Formally,
a knowledge segment is defined as follows [3].

Definition 1: Knowledge Segment is a connected subgraph
of the knowledge graph that describes the semantic context of
a given triple.

Supposing we have two triples given by the user which are
e1 =< 81,p1,01 > and ey =< S3,P2,02 > (S1,01,89,05 €
V and p;,p, € R), and their corresponding knowledge
segments are G; and G, respectively. The goal of INSPECTOR
is to detect whether this pair of triples is consistent or not
according to their knowledge segments.

Finally, the pair-wise fact checking problem can be formally
defined as follows.

Problem Definition 1: pair-wise fact checking:

Given: (1) A knowledge graph G, (2) two triples e; and es;

Output: A binary decision regarding the consistency of e;
and es.

III. PROPOSED METHOD

In this section, we introduce the details of INSPECTOR.
The overall framework of INSPECTOR contains four major
steps, which are illustrated in Figure 3. First (Knowledge
Segment Extraction), a knowledge segment is extracted from
the knowledge graph for each claim/triple to express the
semantic meaning of this claim/triple. Second (Graph Level
Embedding), a cross graph attention neural network is used to
embed each knowledge segment into a low dimension vector.

Third (Graph-Graph Interaction), a neural tensor network
is used to calculate the interaction (similarity) score of this
graph embedding pair. Finally (Consistency Prediction), a
fully connected neural network is used to predict the result.
We highlight each step in the following four subsections.

A. Step 1: Knowledge Segment Extraction

Given a triple, the goal of knowledge segment extraction
is to find a subgraph in the knowledge graph to express
the semantic meaning of this triple [3]. Many algorithms
have been proposed to extract the corresponding knowledge
segment, e.g. multi-hop method [8], minimum cost maximum
flow method [9], K-simple shortest paths based method [10]
or connection subgraph extraction method [11], [12], etc.

In this paper, we apply an existing k-simple shortest path
based subgraph extraction method [3] to find the knowledge
segment. For the completeness of this paper, we briefly de-
scribe the main ideas of this method here. Given a triple, the
knowledge graph will be first converted into a weighted graph
by a TF-IDF like weighting strategy and then an approximate
attributed subgraph matching method [13] is used to find the
k-simple shortest paths [12] from the subject to the object of
the given query triple as its knowledge segment.

B. Step 2: Graph Level Embedding

After finding the knowledge segment for each claim/triple,
a cross attention neural network embeds each knowledge
segment into a low dimension vector. Supposing we have
a triple e; =< si,p1,01 >, and its knowledge segment is
denoted as G'1. We use hf; to denote the node representation
of node j in e; at t-th round of propagation, and xﬁj to denote
the node representation of node j in G; at t-th round of
propagation, h?j to denote the input feature vector of node
7 in ey, x?j to denote the input feature vector of node j in G;,
and use h.,, g, to denote the graph embedding of e, and G},
respectively. The cross attention neural network is defined as
follows.

. — eXP(hL‘) thj)
" > exp(hf; - a5;)
Wit = MLP(RS,,) " ay; + ab)) (1)
J

1
he, = §(h{1 + hiy)

where MLP is a multi-layer perceptron and - is the inner
product. When calculating the graph embedding, we only
propagate the information of GG; to e;, and do not update
the node information in GG1. This is because, we treat G; as
the background, and summarize its information into the graph
embedding according to the information of e;.

C. Step 3: Graph-Graph Interaction

Given the graph embedding of two knowledge segments
produced by the cross attention neural network, multiple meth-
ods can be used to model the interaction, e.g., inner product,
multi-layer perceptron, RNN, etc. In this paper, following the

embedding embedding

El

Neural Tensor Network i

Predict
Result

o0 =

o

Y
-O-O
Gy
-0 .Y > \/\(—33_/
° v \Lzﬁﬁw\/«
G,

{41
n

Fig. 3.

idea of [14], we use Neural Tensor Networks (NTN) to learn
the interaction between two graph embeddings. The Neural
Tensor Networks is defined as follows.

g(heshe,) = (BT WM,
—i—V[he“hej] + b3)

c RD><D><N

2

where W?EI:N] is a weight tensor. [] is the

concatenation operation, V€ RN*2D is a weight vector,
bs € RY is a bias vector, and f() is an activation function. N
is a hyperparameter. The output g(he,, he,) is a score vector
with dimension N x 1.

D. Step 4: Consistency Prediction

After obtaining the interaction scores, we concatenate the
two graph embeddings and the interaction scores together and
feed them into a fully connected neural network to predict
whether they are consistent or not.

E. Training

During the training process, we generate a set of positive
pairs and negative pairs, and minimize the loss function which
is defined as follows.

L= Z |§ij_5(eiaej)|

(¢,7)€D

3)

where D is the set of training graph pairs, and 5;; = 1 if
(e;,€;) is a positive pair, otherwise §;; = 0. s(e;, e;) is the
result predicated by INSPECTOR.

FE. Time Complexity

After getting the knowledge segment for each query triple,
the time complexity of INSPECTOR contains two parts: Graph
Level Embedding and Graph-Graph Interaction. The time
complexity of cross attention network in Graph Level Em-
bedding is O(|Vg,| + |Va,| + DT) where |Vg,| and |Vg,|
are the number of nodes in G; and Gq respectively, D is
the embedding dimension and 7" is the number of propagation
round. The time complexity of neural tensor network in Graph-
Graph Interaction is O(D?N) where D is the embedding
dimension and [V is a hyperparameter given by the user.

INSPECTOR framework.

IV. EXPERIMENTS

In this section, we conduct empirical studies to evaluate
the performance of the proposed INSPECTOR. The knowledge
graph we used is Yago [15] ' which contains 12,430,705
triples, 4,295,825 entities, and 39 predicates. Five baseline
methods are used, including two link prediction methods
(TransE [6], Jaccard [16]), three fact checking methods
(Knowledge Linking [17], KGMiner [18], Kompare [3]).

Ten query sets are used in the experiments, and each of
them contains 300 query pairs. For each query set, we use
70%, 15%, 15% of them as training, test and validation
data, respectively. For each positive query set, it contains
positive query pairs that describe the true claims, while for
each negative query set, it contains negative query pairs that
describe the false claims. The dataset is from [3].

In the experiments, the embedding size for TransE is 64,
and the training epoch is 1,200. For INSPECTOR, we use 2
propagation layers, and the embedding size is 64. We use
the node embedding learned by TransE as the initial node
embedding for INSPECTOR. All the experiments are conducted
on a server with GPU Titan V 12GB.

A. Results

We use the accuracy as the evaluation metric in the exper-
iments:

“4)

where C' is the number of queries correctly classified by the
corresponding fact checking method and U is the total number
of queries.

For the baseline methods (TransE, Jaccard, Knowledge
Linking and KGMiner), when checking the consistency of a
query pair (s1,p1,01) and (sz, p2, 02), because these baseline
methods were not originally designed for pair-wise fact check-
ing, we use them to check the truthfulness of (o4, 1sTypeOf,
05) and (03, isTypeOf, o4): if one of them is classified as
true, this query pair is treated as true.

accuracy = —
U

It is publicly available at https://www.mpi-inf.mpg.de/de/departments/
databases-and-information-systems/research/yago-naga/yago/downloads. We
use the core version.

https://www.mpi-inf.mpg.de/de/departments/databases-and-information-systems/research/yago-naga/yago/downloads
https://www.mpi-inf.mpg.de/de/departments/databases-and-information-systems/research/yago-naga/yago/downloads

TABLE II
ACCURACY OF PAIR-WISE COMPARATIVE REASONING.

Dataset # of queries TransE Jaccard KL KGMiner Kompare INSPECTOR
Family members positive 300 0.682 0.831 0.618 0.983 0.944 0.737
Family members negative 300 0.335 0.169 1.000 1.000 0.941 0.973
Graduated college positive 300 0.686 0.335 0.502 0.769 0.794 0.974
Graduated college negative 300 0.626 0.993 0.947 0.901 0.994 0.943
Live place positive 300 0.567 0.415 0.489 0.834 0.762 0.951
Live place negative 300 0.802 0.585 0.907 0.900 0.888 0.976
Birth place positive 300 0.590 0.435 0.537 0.698 0.800 0.861
Birth place negative 300 0.845 1.000 0.973 0.927 0.927 0.939
Work place positive 300 0.751 0.319 0.445 0.698 0.720 0.902
Work place negative 300 0.624 0.994 0.942 0.927 0.995 0.949
mean + variance - 0.651+ 0.018 | 0.608+ 0.092 | 0.736+ 0.049 | 0.864+ 0.011 | 0.877+ 0.009 | 0.921 + 0.005
Table II gives the details of the results. As we can see, REFERENCES

most of the time, INSPECTOR can achieve the best results
compared with the other baseline methods, and INSPECTOR
has the highest average accuracy and the lowest variance.

V. RELATED WORK

In recent years, knowledge graphs have been widely used
for fact checking. For example, in [19], the authors proposed
a weighted knowledge stream/segment based method to check
the truthfulness of a given claim. They used a TF-IDF strategy
to transform the knowledge graph into a weighted graph, then
made the predication according to the knowledge stream. In
[19], they proposed a discriminative paths based method to
predict the truthfulness of a given claim. When training the
model, different training data are required for different pred-
icates. Other methods, like TransE [6], Knowledge Linking
[17] can also be used to check the truthfulness of a given claim.
However,these methods are designed for single claim fact
checking, and none of them focuses on pair-wise fact checking.
In [3], the authors proposed an random walk graph kernel
based method to check the truthfulness of two claims. They
first used an influence function to measure the importance of
each element in the knowledge segments, and then made the
prediction according to these important elements.

VI. CONCLUSION

In this paper, we propose a pairwise fact checking algorithm
called INSPECTOR. The goal of INSPECTOR is to detect
whether there is semantic inconsistency between a pair of
claims. The experimental results show that our algorithm has
better performance compared with other methods on average,
and these results illustrate the feasibility of neural networks
on the emerging pair-wise fact checking area.

VII. ACKNOWLEDGEMENT

This work is supported by NSF (1947135, and 2134079
), the NSF Program on Fairness in Al in collaboration with
Amazon (1939725), DARPA (HR001121C0165), NIFA (2020-
67021-32799), and ARO (W911NF2110088). The content of
the information in this document does not necessarily reflect
the position or the policy of the Government or Amazon, and
no official endorsement should be inferred. The U.S. Gov-
ernment is authorized to reproduce and distribute reprints for
Government purposes notwithstanding any copyright notation
here on.

[1]

[2]

[5]
[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]
[17]
(18]

[19]

Y. Yan, L. Liu, Y. Ban, B. Jing, and H. Tong, “Dynamic knowledge
graph alignment,” Proceedings of the AAAI Conference on Artificial
Intelligence, vol. 35, no. 5, pp. 4564-4572, May 2021.

L. Liu, B. Du, J. Xu, Y. Xia, and H. Tong, “Joint knowledge graph
completion and question answering,” in Proceedings of the 28th ACM
SIGKDD Conference on Knowledge Discovery and Data Mining, ser.
KDD ’22. New York, NY, USA: Association for Computing Machinery,
2022, p. 1098-1108.

L. Liu, B. Du, H. Ji, and H. Tong, “Kompare: A knowledge graph
comparative reasoning system,” 2021.

H. Naeemul, A. Fatma, and C. Li, “Toward automated fact-checking:
Detecting check-worthy factual claims by claimbuster,” ser. KDD *17,
2017.

W. Xiong, T. Hoang, and W. Wang, “Deeppath: A reinforcement learning
method for knowledge graph reasoning,” in EMNLP, 2017.

B. Antoine, U. Nicolas, G. Alberto, W. Jason, and Y. Oksana, “Trans-
lating embeddings for modeling multi-relational data,” in NIPS ’13, ser.
NIPS 13, pp. 2787-2795.

K. Nakamura, S. Levy, and W. Y. Wang, “r/fakeddit: A new multimodal
benchmark dataset for fine-grained fake news detection,” CoRR, vol.
abs/1911.03854, 2019. [Online]. Available: http://arxiv.org/abs/1911.
03854

C. Giovanni, S. Prashant, R. Luis, B. Johan, M. Filippo, and F. Alessan-
dro, “Computational fact checking from knowledge networks,” PloS one,
vol. 10, 01 2015.

P. Shiralkar, A. Flammini, F. Menczer, and G. L. Ciampaglia, “Finding
streams in knowledge graphs to support fact checking,” in 2017 IEEE
International Conference on Data Mining (ICDM), 2017, pp. 859-864.
S. Freitas, N. Cao, Y. Xia, D. H. P. Chau, and H. Tong, “Local partition
in rich graphs,” ser. BigData *19, Dec 2018, pp. 1001-1008.

C. Faloutsos, K. McCurley, and A. Tomkins, “Fast discovery of connec-
tion subgraphs,” in KDD ’04. New York, NY, USA: ACM, 2004, pp.
118-127.

Y. Koren, S. North, and C. Volinsky, “Measuring and extracting prox-
imity in networks,” ser. KDD ’06. New York, NY, USA: ACM, 2006,
pp. 245-255.

L. Liu, B. Du, and H. Tong, “Gfinder: Approximate attributed subgraph
matching,” ser. BigData *19, Dec 2019.

Y. Bai, H. Ding, S. Bian, T. Chen, Y. Sun, and W. Wang, “Simgnn:
A neural network approach to fast graph similarity computation,” in
Proceedings of the Twelfth ACM International Conference on Web
Search and Data Mining, ser. WSDM 19, 2019, p. 384-392.

F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: A core of semantic
knowledge,” ser. WWW °07. Association for Computing Machinery,
2007.

D. Liben-Nowell and J. Kleinberg, “The link prediction problem for
social networks,” ser. CIKM ’03.

G. L. Ciampaglia, P. Shiralkar, and Rocha, “Computational fact checking
from knowledge networks,” 2015.

B. Shi and T. Weninger, “Discriminative predicate path mining for fact
checking in knowledge graphs.”

——, “Discriminative predicate path mining for fact checking in knowl-
edge graphs,” Know.-Based Syst., vol. 104, no. C, pp. 123-133, Jul.
2016.

http://arxiv.org/abs/1911.03854
http://arxiv.org/abs/1911.03854

	Introduction
	Problem Definition
	Proposed Method
	Step 1: Knowledge Segment Extraction
	Step 2: Graph Level Embedding
	Step 3: Graph-Graph Interaction
	Step 4: Consistency Prediction
	Training
	Time Complexity

	Experiments
	Results

	Related Work
	Conclusion
	Acknowledgement
	References

