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Abstract—

Despite the prevalence of hypergraphs in a variety of high-
impact applications, there are relatively few works on hyper-
graph representation learning, most of which primarily focus on
hyperlink prediction, and are often restricted to the transductive
learning setting. Among others, a major hurdle for effective
hypergraph representation learning lies in the label scarcity
of nodes and/or hyperedges. To address this issue, this paper
presents an end-to-end, bi-level pre-training strategy with Graph
Neural Networks for hypergraphs. The proposed framework
named HyperGRL bears three distinctive advantages. First, it is
mainly designed in the self-supervised fashion which has broad
applicability, and meanwhile it is also capable of ingesting the
labeling information when available. Second, at the heart of the
proposed HyperGRL are two carefully designed pretexts, one on
the node level and the other on the hyperedge level, which enable
us to encode both the local and the global context in a mutually
complementary way. Third, the proposed framework can work in
both transductive and inductive settings. When applying the two
proposed pretexts in tandem, it can accelerate the adaptation of
the knowledge from the pre-trained model to downstream appli-
cations in the transductive setting, thanks to the bi-level nature of
the proposed method. Extensive experiments demonstrate that:
(1) HyperGRL achieves up to 5.69% improvements in hyperedge
classification, and (2) improves pre-training efficiency by up to
42.80% on average'.

I. INTRODUCTION

Hypergraph, as a generalization of the traditional graph data,
is ubiquitous in various domains, and has drawn increasing
attention recently [1]-[3]. Different from traditional graphs,
which consist of nodes and edges to represent pairwise rela-
tions between nodes, each hyperedge contains a collection of
nodes, which represents a high-order relation. For example,
in the clinical studies of the pharmacological mechanism
[1], [4], the effects of medical treatment is often the result
of the combined interactions of a set of drugs. Here the
combination of drugs for one disease forms one hyperedge. In
the bioinformatics research, protein/multi-protein complexes,
which consist of different collections of protein molecules,
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display different functions [5]. Here a collection of protein
molecules consists of one hyperedge. In the social network
domain, a group of users who participate in the same event
could form a hyperedge of that event [6], [7]. In the academic
domain, authors of the same paper could be a hyperedge of
the paper they jointly publish. Compared with the traditional
high-order analysis on simple graphs, and the meta-path/meta-
structure analysis on heterogeneous graphs, hypergraph pro-
vides a more suitable graph model for mining both the di-
rected or undirected high-order relations, on which traditional
methods usually fall short.

Representation learning on hypergraph offers a promising
way to streamline various hypergraph applications. However,
the traditional graph representation learning methods are not
directly applicable in capturing the high-order relations of
the hypergraphs. To date, relatively few works on hypergraph
representation learning exist, most of which focus on hyperlink
prediction [1], [2], [7], [8]. The major difficulties of represen-
tation learning on hypergraph are two-fold. First, the labels of
diverse downstream tasks are usually very scarce, which makes
it difficult for training the downstream neural models. Second,
most of the recent hypergraph representation learning methods
only work in the transductive learning setting [1], [3], [7], [9]-
[11]. Specifically, these methods require all data to be seen
during the training for feature generation or representation
learning in the model, which renders the inability of these
methods to handle unseen data. For example, in the hyperlink
prediction problem, many existing methods require that all
candidate hyperlinks to be seen during training.

In this paper, inspired by the recent advances of pre-training
strategies developed in Natural Language Processing (NLP)
community [12] and Graph Neural Networks (GNN5s) research
[13]-[15], we propose HyperGRL, a self-supervised pre-
training based hypergraph representation learning framework,
with the target of both inductive and transductive hyperedge
classification. Compared with existing methods, the proposed
HyperGRL enjoys the following three distinctive advantages.
First, the proposed pre-training framework is capable of lever-



aging labeled data (with supervised pre-training) as well as
unlabeled data (with self-supervised pre-training), to learn
transferable knowledge for diverse downstream tasks without
the help of extra domain-specific hypergraph datasets [13],
[16]. Second, our method explores bi-level (i.e. node-level
and hyperedge-level) self-supervised pretext tasks, which aim
at capturing the intrinsic high-order relationships of nodes
and hyperedges respectively. Third, the proposed HyperGRL
can work in both transductive and inductive settings. The
pre-training strategy proposed for the transductive setting
is adaption-aware, in the sense that the pre-trained model
could be more adaptive to the downstream tasks compared
to traditional pre-training methods, and meanwhile be more
computationally efficient.

The main contributions of the paper are as follows.

« Novel Pre-training Framework. We propose a bi-level
pre-training framework for hypergraph representation
learning named HyperGRL, equipped with two mutually
complementary self-supervised pretext tasks. The pro-
posed framework can be applied to both transductive
and inductive settings. For the tranductive setting, the
proposed HyperGRL further embraces an adaptation-
aware pre-training strategy to accelerate the knowledge
transfer.

« Extensive Empirical Evaluations. We perform extensive
experiments to demonstrate the efficacy of HyperGRL.
In particular, the proposed HyperGRL (1) outperforms
all baselines across all datasets for inductive hyperedge
classification, with an up to 5.69% improvement over the
best competitor, and (2) improves pre-training efficiency
by up to 42.8% on average. In addition, the proposed
HyperGRL has been successfully applied to a real-world
e-commerce application, namely inconsistent variation
family (IVF) classification, outperforming the current
models therein.

The rest of the paper is organized as follows. Section II
formally describes the problem studied by the paper. Section
IIT presents the proposed model. Section IV shows the ex-
periments on public datasets and the real-world case study is
shown in Section V. Related work is introduced in Section VI.
The paper is concluded in Section VII.

II. PROBLEM DEFINITION

The main notations used in this paper are summarized in
Table I. We first define the hypergraphs as follows.

TABLE I: Symbols and Definition

Definition

a hypergraph of node set V, edge set £, and feature F)
the hypergraph incidence matrix

Symbols
G=(V,e,FM)
M

A the adjacency matrix of nodes inferred from M

0,Q; parameters of GNN module and adjustment modules

fo() GNN module with parameter ©

90, () neural adjustment module with parameter €2;
fo:eq=0'() a pre-trained GNN module with initialization ©’

Definition 1: Hypergraph: A hypergraph is represented by
G = (V,&,F™), in which V = {v;,vs,...,v,,} is the set of
n nodes and & = {e1,ea,...,en} is a set of m hyperedges.
e; = {Uj(-z)}, 1 < j < n represents the i-th hyperedge in which

the nodes v](-z) € V. We say that node v; is inside hyperedge
e;. F(M is the feature matrix? for nodes.
A hypergraph incidence matrix [11] M € R™"*™ is defined
such that M(4,7) = 1 if node ¢ appears in hyperedge j, and
M(i, j) = 0 otherwise. From M, we can build an adjacency
matrix A = MM, in which A (%, j) indicates the number of
nodes that appear in both hyperedge ¢ and hyperedge ;.
Before formally defining the inductive hyperedge classifi-
cation problem, we provide a brief review of Graph Neural
Networks.
Preliminaries on Graph Neural Networks. GNNs are pow-
erful deep learning models on graphs. Representative models
include Graph Convolutional Networks (GCN) [17], Graph
Isomorphism Networks (GIN) [18], Graph Attention Networks
(GAT) [19], etc. The intuition behind many existing GNN
models is to learn the node representation by convolutionally
aggregating both the node/edge features and the features of the
node’s local neighbors through neural networks. Message pass-
ing is often adopted as a popular choice to design various GNN
models [20]. There are two main steps in the message passing
process, including message passing and message updating. In
the message passing step, the node features are passed to its
neighbors. In the message updating step, the received features
are passed through an aggregation function (e.g., a neural
network) for node representations. Typical message passing
can be summarized as:

WD) = B({h{, h{) e }) YV e N(v) (1)

hg}t—i—l) — Ut(hg,t), hmg;t_‘—l)) (2)
where P; and U, are the message passing function and node
representation updating function of the ¢t—th iteration respec-
tively. h,, h,, are node representations of neighboring nodes
(v,w), and are initialized as node features. e,,, is the feature
of the edge between node v and node w. Different GNN
models differ in the functions P;() and/or Uy(). For example,
GCN [17] takes the summation of the neighboring nodes in the
message passing step and attaches a neural network module
on the passed message and the node feature itself for feature
aggregation. By using GNN as a neural function fg(+) for node
representations, the inductive hyperedge classification problem
is defined as follows.

Definition 2: Inductive Hyperedge classification: Given a
set of hyperedges £ = {e1, e, ..., €, } Which are not seen in
the training stage, the goal of GNN model fg(-) is to learn
embeddings for the downstream classifier’ go(-) to classify
them into ¢ categories. ga(fo(e;)) = piyi € {1,2,...,m},
where p; is the prediction vector for e; with a non-zero entry
indicating e;’s predicted category.

By adopting pre-training strategy, model fg(-) is first trained
on pretext task(s). Note that there could be more than one
pretext task. The fine-tuning module can be represented as

2Optionally, there might be a feature matrix for hyperedges F(),

3ga() is also known as a neural adjustment module, which is an MLP
specified for pretext tasks with parameter €2 for mapping node representations
to the predicted labels/values.



fo.e,=or(+) given the pre-trained GNN module fo/(-). Gen-
erally speaking, pre-training fo-(-) could be either supervised
if the labels for the pretext task are available, or unsupervised,
such as self-supervised methods.

III. PROPOSED PRE-TRAINING FRAMEWORK

We first present the challenges and key ideas in Section
III-A. The pre-training stage, including the proposed bi-
level self-supervised pretext tasks as well as an adaptation-
aware pre-training strategy, is presented in Section III-B,
Section III-C and Section III-D. The overall HyperGRL frame-
work architecture is elaborated in Section III-E.

A. Challenges and Key Ideas

The first challenge for pre-training hypergraphs is how
to design the self-supervised pretext tasks, since the high-
order node relations of hypergraphs are significantly different
from traditional graphs structurally. Our idea is to incorporate
both node-level and hyperedge-level pretext tasks, which aim
at capturing both local and global contextual patterns of
hypergraphs. Locally, the node inside one specific hyperedge
should be distinguished from nodes outside this hyperedge
given the context of node. For one specific hyperedge and a
given inside node, we define the context of the node as all other
nodes inside the hyperedge as shown in Figure 1. Globally,
the similarities between hyperedges ought to be preserved.
However, calculating pairwise hyperedge similarities itself is
challenging and costly, with at least O(m?) time complexity
for calculating every pair of hyperedges if the number of
hyperedges is m. As an approximation for learning pair-
wise hyperedge similarities, our idea is to first cluster the
hyperedges, based on the features of nodes inside hyperedges
or the hyperedge adjacency matrix when available, and then
to preserve the membership characteristic of the hyperedge
clusters.
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Fig. 1: An illustrative example of the hyperedge-level pretext
task (left), and the node-level pretext task (right). Pri, Pro
are probabilities for assigning e4 to cluster 1 and cluster 2.
The red area on the right subfigure shows the context of node
v, and the gray nodes are the sampled negative examples of
node v and its context. Best viewed in color.

The second challenge is how to mitigate the divergence
between the self-supervised pretext tasks and the downstream
tasks. Even with two mutually complementary pretext tasks,
such divergence might still exist, in the sense that a well-
trained pre-trained model might be overly fit on the pretext
tasks, and could not optimally generalize to the downstream
tasks. In the transductive setting, our idea is to design an

adaptation-aware pre-training strategy, which targets at learn-
ing a well-adaptive pre-trained model for downstream tasks. In
this strategy, only one self-supervised pretext task (node-level)
is fully trained until convergence, and the other self-supervised
pretext task (hyperedge-level) is applied on the unlabeled data
for fast adaptation.

B. Node-level Self-supervised Pretext Task

Task Description. In this pretext task, we aim at predicting
the relationship between a given node and its hyperedge
context (i.e., other nodes inside the hyperedge). Intuitively, we
expect the node and the context share similar representation
if they belong to the same hyperedge.

Specifically, in order to obtain node-level self-supervised
training labels, we first uniformly sample a seed node (e.g.
vfs)) inside each hyperedge, and obtain its corresponding
context (e.g., C;). The combined node-context pair (UES), Cy)
is a positive example. Next, for each pair (vl(s), C;), we adopt a
negative sampling method for negative examples (vg") ~ Pry;,
the negative sampling probability) of the selected context.
We utilize a GNN module inside the clique-expansion of
hyperedges for the hidden representation of nodes. The rep-
resentation of nodes corresponding to contexts are aggregated
by a pooling layer for the context representations. The node-
context relationship is learned via a binary cross-entropy
objective. For notation simplicity, let h be the representation
learned by GNN module, and h := géznn )(h) be the node
representation after applying the neural adjustment function
ggll) () of the node-level pretext task.

L0 =33 log[1—o((h{”) h{)] +loglo((h{")h{7)]

i
3)
where 17155), ﬁgc),flg;l) are the hidden representation of seed
node ¢, context of node ¢, and the negative sample j of node
i after using the adjustment function, respectively. o(-) is a
sigmoid function. (ﬁgs))TflgC) is expected to be larger than
(BE?))TIAIEC) since the positive seed node-context pair share
similar feature distributions.
Negative Sampling Method. For a given pair of node and its
corresponding context in one hyperedge, one naive negative
sampling method is to uniformly sample nodes outside this
hyperedge. This is applicable even if all hyperedges of a hyper-
graph do not share nodes, which is often the case in real-world
applications (see the Case Study in Section V). However,
this method does not distinguish between structurally close-
by and distant nodes/hyperedges, especially when the relations
of nodes from different hyperedges can be obtained via the
adjacency matrix A from the incidence matrix M. Structurally
close nodes tend to have very similar features or even the same
labels, and should be avoided as negative samples. We use the
following negative sampling strategy such that the structurally
close nodes would have exponentially lower probabilities to
be sampled for negative nodes selection. Let A = AF, where
the entries of A give the number of paths of length k. We
normalized A as A = D~'A, where D is a diagonal degree
matrix of A, to prevent extremely low probabilities. For a
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Fig. 2: The pre-training and fine-tuning framework with node-level and hyperedge-level self-supervised pre-training/adaptation
in HyperGRL for hyperedge classification. Best viewed in color.

given node i, the probability of sampling node j # i is given
as follows. R
exp( 'y~A,,Z) @
> exp(—7 - Ayj)
in which v > 0 is a scaling scalar for further tuning the
sampling probabilities. We consider the nodes which are
not reachable by paths of length k£ having high and equal
probability of being sampled. In practice, we find that a small k
is often sufficient for good performance, which also helps with
the efficiency for calculating and storing A*. This negative
sampling method is referred to as the exponential sampling
method. The positive/negative hyperedges represent the hy-
peredges from which positive/negative nodes are extracted in
the rest of the paper.

P’I"ij =

C. Hyperedge-level Self-supervised Pretext Task

In this pretext task, different from the local node-level
pretext task, we strive to capture the more global patterns
of hypergraphs. As discussed in Section III-A, we aim at
predicting hyperedges’ cluster membership information. The
clustering is conducted on the graph of hyperedges as follows.
First, the graph of hyperedges is constructed with adjacency
matrix A = MM, such that A(z, ) is the number of nodes
that exist in both hyperedges ¢ and j. Next, the METIS
algorithm [21] is applied to partition the graph of hyperedges
into g clusters. g is empirically selected, and is set to be larger
than or equal to the number of categories of hyperedges in the
empirical experiments (see Section IV). The GNN module,
which shares the parameters with node-level pretext task, is
applied inside the clique expansion of the hyperedges, and the
representations for hyperedges are obtained by a graph pooling
layer. Then, by adopting the categorical cross-entropy loss, the
hyperedge-level self-supervised task is written as:

£ = — Z[log(softmax(gg:)(hl(.e)))) o ygh)rl (5)
©) is the

where h.”’ is the hidden representation of the hyperedge ¢,
(h)

9o, (+) is a neural adjustment function to map the hyperedge
representations to g-dimensional vector. ygh) is the multi-class
label vector of hyperedge ¢ indicating the cluster membership,
and 1 is an all-one vector, for taking the summation of the

log(softmax(-)) scores of the correct categories.

D. Adaptation-aware Pre-training Strategy

Traditional pre-training methods use a two-stage procedure,
in which the first stage trains the pretext task until convergence
with self-labels, and the second stage trains the downstream
task with the task labels. Specifically in our scenario with
two self-supervised pretext tasks, the two-stage training can
be realized in a serial procedure as follows.

©' = argming £ (gq, (fo (Etrain, F™));y™)  (6a)
0 = argming L (go, (fo.00=6' (Etrain, F™)); y ™)

(6b)

6= argming L) (go, (fo:op=0wre) (Etrain, F));y®)
(6¢)
where £®) and y® are the loss function and labels for the
downstream task respectively. g, is the neural adjustment
module for downstream task. The parameters of GNN module
is first obtained by training the node-level pretext task and

then by training the hyperedge-level pretext task.

As discussed in Section III-A, the above strategy in the
transductive setting might bring non-negligible divergence
between pre-training and downstream task training, which
would lead to a sub-optimal model. Moreover, since the
hyperedge-level pretext task approximately preserves the pair-
wise hyperedge distances, pre-training this task till conver-
gence might result in an even larger divergence. To address this
issue, we propose an adaptation-aware pre-training strategy.
The key idea is only performing node-level pre-training on
the hyperedges with downstream task labels, and utilizing the
hyperedge-level pretext task as adaptation on the hyperedges
whose labels are to be predicted in the transductive setting.

Specifically, we maintain Eq. (6a). But instead of training
the hyperedge-level pretext task until convergence (Eq. (6b)),
we use it as an adaptation task, which can be represented as
s steps of gradient descent on test hyperedges .5+, and Eq.
(6b) is replaced by s steps of:

@ — @ —e- 8‘C(h) (th (f@:@():@/ (gt(ish F(’ﬂ))), y(h)) (7)

where ¢ is the learning rate. Con?pez)lred with the traditional
pre-training method, the advantages of the adaptation-aware
training strategy are two-fold. First, the pre-trained model for
transferring general data knowledge is more adaptive to the




downstream tasks. Second, it is a more efficient pre-training
strategy, because only one pretext task needs to be fully
trained, and the adaptation, which only requires a few steps,
can be conducted whenever the test data* for the downstream
task is available (e.g., in an online system).

E. Proposed HyperGRL Framework

Overall Framework. The end-to-end framework architecture
is illustrated in Figure 2. Negative sampling is first conducted
on the input hyperedge set for node and context pairs. In the
core of the framework is the bi-level pre-training stage.

In the node-level pretext task, a GNN module is adopted
for the positive and negative hyperedges from which seed
node/context representations are generated. It is parameterized
as ©, in Figure 2. The framework could flexibly support
various types of GNN models, such as GCN [17], GraphSAGE
[22], GIN [18], etc. GIN is adopted in Section IV-B due to
its superior empirical performance. After adopting the GNN
module, inspired by HGNN [23], we gather messages of nodes
for obtaining the context/hyperedge representation. Here, the
messages are flowed from nodes to hyperedges, with the aim
of: (1) generating hyperedge representations for classification;
(2) supporting a more general setting where hyperedges do
not share nodes (see Section V). A pooling layer is used on
the aggregated features, such as Set2set [24]°.

Next, the hyperedge-level pretext task is adopted in two

learning settings. First, in the transductive learning setting,
the hyperedge-level pretext task is used as an adaptation
stage (Eq. (7)). Second, in the inductive learning setting, the
hyperedge-level pretext task is trained as an additional pre-
training stage. The hyperedge representations are constructed
as the outputs of the pooling layers in the GNN module from
the node-level pretext task. The fine-tuning for the downstream
task follows the pre-training, with the initialization of the pre-
trained GNN module.
Complexity Analysis. With the uniform negative sampling
method, the major computation of the model is applying GNN
module on all hyperedges for training. Taking GIN as an
example, the computational complexity is O(d?n’Lm - iter)
where d is the feature dimension, n’ is the number of nodes
for each hyperedge, L is the number of layers of GNN
module, m is the number of hyperedges, and iter is the
number of iterations. Here for notation simplicity, we assume
all hyperedges share equal number of nodes n’, which is
often much smaller than the number of hyperedges m in
a hypergraph. For HyperGRL with the exponential negative
sampling method, the major computation is calculating A* in
Egq. (4), which takes O(kmn'), where m is the number of non-
zero entries in A. The time complexity of METIS algorithm
for hyperedge-level pretext task is O(m + n’ + ¢ - log(q)),
where ¢ is the number of clusters [21].

4Note that the test data could be observed in the transductive setting, and
by self-supervised design, the labels of test data are naturally avoided during
training.

5In order to achieve permutation equivariance, set module could be adopted,
such as Deep Sets [25].

IV. EXPERIMENTS

In this section, we present the evaluation of the effectiveness
and efficiency of the proposed framework on public datasets.
The statistics of the datasets are summarized in Table II.

TABLE II: The summary of datasets

Name # of nodes # of hyper- | Min # of | Max # of
edges nodes in hy- | nodes in hy-
peredge peredge
Cora 2,708 2,427 2 169
Pubmed | 19,717 3,887 3 20
Corum 6,132 4,736 2 131
Disgenet | 8,352 8,386 3 487

A. Experimental Setup

Here, we present the experimental results on four public
datasets (Cora, Pubmed, Corum, Disgenet) to evaluate the
proposed model.

Dataset Processing. In particular, we pre-process two versions
of Cora and Pubmed datasets as Cora/Pubmed-clean/noisy
as follows. For the first version, we take the ego-network
(subgraph of the center node with 1-hop neighbors) of each
node as hyperedges, and assign the hyperedge label as the label
of the majority in the ego-network. We name this version as the
noisy version since the hyperedge might contain nodes with
different categories. For the second version, we also take the
ego-network of each node as hyperedges, but only keep those
whose nodes share the same category. We name this version as
the clean version. For Corum and Disgenet, they are originally
hypergraph datasets, and do not need processing.

Model Training Details. First, for HyperGRL with uniform
negative sampling, we adopt a local sampling method for
the negative hyperedges in order to sample negative nodes.
Specifically, the uniform sampling is conducted inside each
batch of hyperedges of the stochastic gradient descent al-
gorithm (e.g. Adam optimizer). To this end, the node-level
self-supervised pretext task captures the local node-context
relationship within a batch at each parameter updating. Since
the batch is uniformly sampled, this local sampling method
eventually equals to the global uniform sampling on all hyper-
edges for pre-training. Compared with exponential sampling,
which calculates A* (Eq. (4)) for globally sampling negative
nodes, this uniform negative sampling is more efficient (see
Figure 5).

Second, in order to obtain the hyperedge embeddings from
the node embeddings as the outputs of GNN module, mean
pooling is adpoted on public datasets and Set2set [24] pooling
with 1 recurrent layer is adopted on case study because of
optimal practical performance. Other sophisticated pooling
methods for hypergraphs could be one future direction.

Third, all the adaptation functions which take the
node/hyperedge embeddings as inputs for adapting with the
self-supervised pretext/downstream tasks are set as MLPs with
0.5 dropout rate. All non-linear activation functions are set as
ReLU function.

Hyper-parameter Setting. For the model optimization, we
adopt Adaptive Moment Estimation (Adam). The hyper-
parameters are set such that the downstream task perform well



TABLE III: Accuracy of hyperedge classification (mean + std in %). Bold and underline values indicate the best and the 2-nd
best performance respectively. We also conduct a significance test. For all the tables, e/« indicates the result is significantly
better/worse than the 2-nd best/the best model with p-value < 0.01, and o indicates no significant difference.

Models Cora-noisy Cora-clean Pubmed- Pubmed- Corum Disgenet
noisy clean
DHNE 69.85+1.01 72.48£0.52 78.65£1.59 83.23+0.74 53.11£1.39 30.35+0.83
Hyper-SAGNN 66.94+2.12 67.81£1.25 83.2042.00 83.8240.62 79.64+0.29 31.74+0.06
SAGE 72.51£1.78 76.01£1.48 83.37+£2.32 78.84+1.88 56.22+£2.43 18.31£1.37
Joint Training 70.84+0.67 81.65+1.16 85.39+1.48 86.45+0.98 76.85+0.77 34.02+1.28
DwW 73.39+1.64 81.66+1.41 82.73+1.70 88.544-0.62 67.35£2.18 29.07£1.45
Deep-Hyperedge 74.35+0.64 72.66£0.93 64.33£0.71 81.58+1.01 82.74+1.64 35.46+1.08
HyperGRL (Uni., no Ada.) | 77.98+1.81 e | 86.411+1.62 ¢ | 85.18+£0.68 o | 88.21£1.51 o | 84.07+0.70 @ | 33.23£1.45 %
HyperGRL (Exp., no Ada.) | 77.68+2.67 ¢ | 81.74£1.14 o | 86.2941.50 e | 87.81£0.49 x | 84.4940.47 e | 34.10+0.83
HyperGRL (Uni.) 74.53+1.31 o | 83.8643.55 ¢ | 85.52+0.95 o | 87.234+0.96 x | 84.31+0.99 e | 35.054+0.49 o
HyperGRL (Exp.) 78.78+1.28 o | 83.77£1.62 ¢ | 86.94+0.73 ¢ | 90.84+0.29 ¢ | 85.33+1.09 ¢ | 33.9042.26 *
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Fig. 3: Accuracy (%std) vs. # of clusters in Hyperedge-level
pretext task on Corum dataset

on validation set. Specifically, for the optimizer, we select the
batch size as 64, and learning rate as 0.001 with learning rate
scheduler that reduces learning rate on plateau. The number of
epochs for node-level pretext task and hyperedge-level pretext
task (for traditional pre-training) are set to 50. For the effec-
tiveness evaluations on public datasets, the number of clusters
for hyperedge-level pretext task is set as 10,10, 3, 3,21, 20
for Cora-noisy, Cora-clean, Pubmed-noisy, Pubmed-clean,
Corum, Disgenet datasets, respectively. The number of GNN
layers is set as 1. The number of adaptation steps are set to 5
for all datasets. The dimension of node/hyperedge embeddings
are set as 64.

Hardware and Software Details. All experiments are per-
formed on a machine with a Intel(R) Core(TM) 17-9800X CPU
(64.0 GB RAM) and GeForce GTX 1080 GPU. The model is
implemented with Python 3.6 and Pytorch 1.5.0 [26].

B. Effectiveness Results on Public Datasets

The results for hyperedge classification are presented in
Table III. The metric is the multi-class classification accuracy,
and the results are mean and standard deviation values over
ten runs. All supervised methods share the same training,
validation, and testing ratio of 6:2:2. The best results are shown
in bold fonts, and the second best results are shown with
underlines. We adopt the two-GNN module for the inductive
setting (no Ada. in Table III), and one-GNN module for the
transductive setting (Ada. in Table III). The GNN module here
is GIN. Both exponential and uniform sampling methods are
evaluated (shorted as Exp. and Uni. in Table III). For baselines,
Hyper-SAGNN, SAGE, DHNE and Joint Training use the

0.5 0.5

10 15 20 5 10

5 15 20
Number of adaptation steps Number of adaptation steps

Fig. 4: Accuracy (+std) vs. # of adaptation steps on Cora-
clean (left) and Pubmed-clean (right) dataset

inductive setting. Joint Training is a proposed baseline which
trains the two pretext tasks together with the downstream task
in a joint loss. DW and Deep-Hyperedge use the transductive
setting.

From the table, we make the following observations. First,
for the inductive setting, HyperGRL significantly outperforms
all baselines on all datasets (by up to 5.69%), and for the
transductive setting, HyperGRL significantly outperforms all
baselines on five out of six datasets by up to 4.75%. The
framework with adaptation-aware pre-training outperforms the
traditional pre-training method in five out of six datasets. The
exponential sampling method is competitive with the uniform
negative sampling method when no adaptation stage is used,
but it shows improvements when adaptation-aware pre-training
is applied. Second, GraphSage and DeepWalk are applied on
the simple graph transformed from the hypergraph to learn the
hyperedge embedding, via incidence matrix M. We can see
that these methods do not perform as well as the proposed
model for two reasons: (1) by converting to simple graph, the
high-order information of hyperedges might be lost; (2) the
proposed GNN-based model with pre-training learns generic
embeddings which are more suitable for downstream tasks.
Third, the ’Joint Training’ model is our proposed baseline,
which trains the downstream task along with the two self-
supervised pretexts in a multi-task fashion. The performance
of the joint training model is competitive compared with
other baselines, but not as good as the HyperGRL framework.
This further indicates the effectiveness of the proposed pre-
training methods. Fourth, among the baselines, Deep Hy-
peredge, Hyper-SAGNN and DeepWalk have relatively better



performance over the rest of the baseline methods, because
DHNE is originally designed for hyperlink prediction. Note
that Deep Hyperedge requires hyperedge association as input.
HyperGRL does not use such information in downstream
tasks, but still outperforms Deep Hyperedge in five datasets,
and is also competitive on Disgenet. For Disgenet, the rela-
tively low accuracy is due to the highly imbalanced data with
21 hyperedge categories.

C. Ablation Study

First, we compare the hyperedge classification performance
by using different GNN modules in our framework. For
all the different versions of GNN modules, we apply the
adaptation-aware pre-training strategy, and the exact same
hyper-parameters for the rest of the framework. The results
are shown in Table IV. The results are the mean and standard
deviation values of ten runs. We can see that the GIN module
overall shows the best performance over the rest of the GNN
modules in our framework for the hyperedge classification
task. Also, for the same GNN module, we can see that gen-
erally the exponential negative sampling method outperforms
the uniform negative sampling method.

Second, we conduct the ablation study on the transduc-
tive hyperedge classification performance for bi-level self-
supervised pretext tasks (Table V). We apply HyperGRL
without any pre-training stage (the first row), with only node-
level self-supervised pretext task (the second row), and with
only hyperedge-level self-supervised pretext task (the third
row). We can observe that the HyperGRL framework with bi-
level self-supervised pretext tasks shows the best performance,
which demonstrates the effectiveness of both levels of self-
supervised pretext tasks.

D. Parameter Sensitivity Results

Here, we study the hyper-parameter sensitivity of our pro-
posed framework. First, we show the results of the sensitivity
of the number of clusters in the hyperedge-level pretext task in
Figure 3. Note that we use the same model architecture with
one-GNN module for all experiments in this subsection. The
experiments are conducted in both inductive and transductive
settings, with both uniform and exponential negative sampling
methods. We observe that: (1) the framework shows relatively
stable performance on a large range of the number of clusters;
and (2) the proposed framework that uses the adaptation-aware
pre-training strategy overall shows more stable performance
compared with the framework that does not use the adaptation-
aware pre-training. Exponential sampling with adaptation-
aware training generally has the best stability. This indicates
that the bi-level adaptation-aware pre-training framework has
a better adaptation ability for the downstream task. Second,
the results of hyperedge classification accuracy vs. the num-
ber of adaptation steps are shown in Figure 4. The results
demonstrate slight performance drop but relatively stable over
the tested adaptation steps in the range of [1,20] for both
exponential and uniform negative sampling methods.

E. Efficiency Results

We compare the efficiency of the adaptation-aware pre-
training strategy with the traditional pre-training method as
we describe in Subsection III-D. The running time compar-
ison of the pre-training stage is presented in Figure 5. For
both methods, the number of node-level pre-training is set
equal utill convergence. The number of adaptation steps for
adaptation-aware pre-training method is set to 5, which is
the same as the setting in effectiveness evaluations. As we
can see, adaptation-aware pre-training significantly reduces the
pre-training time by 38.2% with Exp. sampling and 42.8%
with Uni. sampling. Besides, as we adopt local sampling
in the uniform negative sampling method, the running time
for uniform negative sampling achieves ~7 times reduction
compared with exponential negative sampling.

Combining the results of effectiveness (Table. III) and
efficiency (Figure. 5), we can see that the adaptation-aware
pre-training strategy not only boosts the performance of
downstream task, but also improves the pre-training efficiency
compared to traditional pre-training method. The important
point here is that it is highly non-trivial to improve the pre-
training efficiency without sacrificing accuracy. Furthermore,
as discussed in Section III-D, pre-training on one pretext
task could be conducted offline and the adaptation-aware
pre-training could be conducted whenever the new data for
the downstream task is available in an online environment.
However, traditional pre-training methods need to be re-trained
whenever new data is available.
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Fig. 5: Running time comparison of the pre-training stage for
traditional and adaptation-aware pre-training stragety.

V. A CASE STUDY

In this section, we introduce a real-world application of
the proposed model on the inconsistent variation family de-
tection problem in a large online store, and show that how
the proposed pre-training strategy can help improve a base
classification model (without pre-training) as well as other
baselines which do not use pre-training, even when direct
hyperedge associations are not available (i.e. hyperedges do
not share nodes).

A. Preliminaries and Experimental Setup

Preliminaries. Large E-commerce services such as Amazon,
Etsy, and eBay often utilize merchandise relationships such
as variations and substitutes to improve their catalog quality.
These relationships between merchandise items are the cor-
nerstone in the field of relationship science.



TABLE IV: Accuracy of hyperedge classification for different GNN module (mean =+ std in %)

Models Cora-noisy Cora-clean Pubmed-noisy Pubmed-clean Corum Disgenet
GCN (Uni.) 75.584+0.98 82.09+1.26 83.5940.63 85.96+2.27 65.234+0.48 32.3640.44
GCN (Exp.) | 76.88+2.08 84.65+3.32 84.14+1.62 86.06+1.94 83.34+0.25 32.84+0.18
SAGE (Uni.) | 75.28+0.69 80.68+0.94 83.89+1.27 86.15£2.71 64.984+0.45 33.33+0.79
SAGE (Exp.) | 75.52£1.01 81.044+2.09 85.18+0.86 86.94+0.32 66.031+0.28 31.69+0.21
GAT (Uni.) 73.12+2.56 81.31+£0.24 84.15+1.49 86.74+2.67 82.70+2.47 31.894+2.38
GAT (Exp.) 71.21£0.72 80.15+1.68 84.7940.72 88.4940.72 85.75+1.29 29.89+1.48
GIN (Uni.) 74.53+1.81 % 83.86+3.55 85.5240.95 o 87.23£0.96 * 84.314+0.99 * 35.051+0.49 o
GIN (Exp.) 78.78+1.28 83.77+£1.62 86.941+0.73 o 90.8410.29 o 85.334£1.09 * 33.90+£2.26 o
TABLE V: Ablation study on bi-level self-supervised pretext tasks (mean + std in %)
Models Cora-noisy Cora-clean Pubmed-noisy Pubmed-clean Corum Disgenet
No Pre-train 69.124+0.48 81.48+1.24 84.40+1.53 84.60+2.49 78.25+0.13 32.76+1.54
Only Node 74.234+0.84 82.274+1.25 85.0440.37 86.84+1.94 82.52+2.14 33.75£1.70
Only Hyperedge 73.244+1.53 82.78+1.30 86.29+1.36 85.67+0.38 84.17+£1.56 33.40+0.65
HyperGRL (Exp.) | 78.78+1.28 o 83.77+1.62 o 86.94+0.73 o 90.84+0.29 o 85.33+1.09 o 33.90+2.26 o

Variation family refers to a family of product items which
are functionally the same but differ in specific attributes. Such
variation families are present in the same detail page. For
example, in Figure 6 the correctly grouped ‘Nike Air Max
270 React’ shoe family is shown in one detail page. All items
inside this family are this particular model but have different
sizes and colors. The grouping attributes of a variation family
are shared by all items inside the variation family (e.g., brand
‘Nike’), and the variation theme attributes are attributes which
differ from item to item inside the variation family (e.g., size
and color). When variation families contain inconsistent items
(e.g., an Adidas shoe is grouped into the variation family in
Figure 6), they are called inconsistent variation family (IVF).
One of the most important tasks in the catalog system is the
IVF detection.

In order to solve this problem, each variation family can be
regarded as a hyperedge, in which every item should belong
to the same merchandise if it is a consistent family. Then, this
specific problem is transformed into hyperedge classification
problem. As for the pretext tasks, we adopt a task called
variation theme learning, which is defined as:

Definition 3: Variation Theme Learning: Given a set
of variation families (hypergraph G = (V,&,F™) with
& = {ey,...,em}), the Variation Theme Learning aims at
learning the variation theme attributes and grouping attributes
of the families (i.e. learn which columns of F(") correspond
to grouping/variation theme attributes).

Note that variation families are independent, which makes
the direct hyperedge associations unavailable. Most baselines
from Section IV become inapplicable, such as SAGE, DW,
Deep-Hyperedge, and DHNE. Our idea is to transform this
problem as a hyperedge multi-label classification problem
since variation families (hyperedges) might have multiple
grouping/variation theme attributes. Due to the fact that the
labels of grouping/variation theme attributes are available in
our catalog system for variation family datasets, this pretext
task in the pre-training stage could be supervised. During train-
ing, the hyperedge representation produced by HyperGRL is
first used for the multi-label supervised pretext task (variation

Inc;nﬁst_én?item = =
Fig. 6: An example of correctly grouped variation family with
variation theme attributes, and an inconsistent item.

theme learning), and then the model is fine-tuned by the IVF
detection task®. IVF detection task has binary labels indicating
consistent and inconsistent families (binary classification).
Experimental Setup. We sample subsets of three product lines
from the catalog system, named Category 1, Category 2, and
Category 3. Details of these datasets are show in Table VII.

The proposed method we select for this experiments is
HyperGRL with supervised pre-training task, and HyperGRL
with supervised pre-training task plus self-supervised node-
level adaptation. Here the supervised pre-training task denotes
variation theme learning. For comparison, we use three strong
baselines, including the joint training method, which jointly
trains the pretext task (variation theme learning task) with
the targeted IVF classification (denoted as ‘Joint training’ in
Table VI), HyperGRL model without pre-training stage, and
the Hyper-SAGNN model with and without the help of our
proposed pre-training strategy. Note that the original Hyper-
SAGNN is not a pre-training model. We modify the model to
adapt it in our pre-training framework as a strong baseline.
Besides the above adaptation, we apply the pre-trained Glove
embeddings [27] for text features of items.

As suggested by [13], these two tasks are highly likely to be positively
correlated. Briefly, inconsistent variation families contain inconsistent items
with different distributions of grouping attributes compared with other items,
and vice versa.



TABLE VI: Results of IVF classification for case study (mean + std in %)

Dataset Category 1 Category 2 Category 3

Metric AUC-T AUC-C AUC-I AUC-C AUC-T AUC-C
Hyper-SAGNN 56.12£1.19 88.87+0.93 58.72£1.94 89.81+1.64 70.26£1.12 88.47+0.78
Hyper-SAGNN, pre-train 60.26+1.42 90.124+0.38 59.8240.55 89.57£0.21 72.174+0.34 90.17+1.42
HyperGRL, no pre-train 60.51£0.89 90.32+0.88 58.09+0.57 89.64+0.79 71.50£1.49 89.80+1.72
Joint Training 62.80 £1.33 90.99+0.78 56.73+1.41 89.55+0.82 71.50+1.52 89.80£1.39
HyperGRL, pre-train 64.06+1.27 ¢  90.74£1.40 o | 59.42£1.78 o  89.8440.70 o | 74.324+0.81 o  90.62£1.53
HyperGRL, pre-train + self-ada. | 61.86+1.32 0 90.31£1.80 o | 61.73+1.24 ¢ 90.42+1.74 o | 75.424+2.01 ¢ 90.32+1.85 o

TABLE VII: Statistics of Datasets for Case Study

Name # of families | # of items | # of unique items
Category 1 1,186 64,752 9,540
Category 2 2,169 48,860 8,474
Category 3 4,247 138,662 21,131

The metric for this experiment is the PR-AUC for predicting
inconsistent variation family (IVF) and consistent variation
family (CVF), denoted as AUC-I and AUC-C respectively in
Table VI. The results are reported based on the average of five
runs.

B. Results on Datasets of Product Lines

As shown in Table VI, first we can see that by using the
supervised pretext task (the last three rows), the model perfor-
mances are consistently better than those without pre-trained
pretext task in all product lines. Second, for both methods
using pretext task, the pre-training strategy outperforms the
joint training strategy by AUC-I metric and they are very
close by AUC-C metric. The Hyper-SAGNN with the adapted
pre-training stage also has relatively competitive performance
compared with the proposed HyperGRL model. This indicates
that in this real-world application of hyperedge classification,
pre-training can indeed improve the base model as well as
baseline method, and pre-training is generally a better training
strategy than joint training. Third, by utilizing the adaptation
stage with the node-level self-supervised pretext task (the
last row), the model is able to further improve the AUC-
I performance on Categoty-2 and Category-3 product lines,
which demonstrates the effectiveness of the adaptation-aware
pre-training of HyperGRL in this application scenario.

VI. RELATED WORK

GNN-related Research. GNN-related works have been par-
tially covered in Section II. It becomes popular since Bronstein
et al. introduce geometric deep learning [28] to bring the
convolutional network to the graph learning field, and Kipf
et al. significantly simplify the graph convolutional process
and develop GCN [17]. To name a few representative works,
Velivckovic et al. [19] improve GCN by introducing atten-
tions of neighborhoods, which is calculated dynamically at
the message passing step. [18] study the expressiveness of
GNN model compared with the closely related Weisfeiler-
Lehman graph isomorphism testing algorithm. HyperGCN by
Yadati et al. [11] extends the convolutional operation on
hypergraphs. A recent work by Zhang et al. [29] adopted
high-order subgraphs in GNN for bundle recommendation.

The graph neural model on hypergraphs still needs further
study for handling its unique high-order relations. Traditional
high-order graph mining problem focuses on the similarities
between high-order sub-structures and graphs, with applica-
tions of subgraph matching [30], [31] and query answering in
Knowledge Graphs [32]. [33] provides a complete summary
for recent advances in multi-network graph mining and high-
order techniques. However, the self-supervised strategy on
hypergraphs have not yet been sufficiently studied.

Pre-training Strategy. After the pre-training strategy is first
used in NLP communities [12], researches begin to appear in
the graph learning field. [13] develop a new strategy and self-
supervised methods for pre-training Graph Neural Networks.
The key to the success of this method is to pre-train an
expressive GNN model at the level of individual nodes as well
as entire graphs so that the GNN model can learn meaningful
local and global representations. More recently, [15] propose
a generative pre-training strategy for GNN models in which a
self-supervised attributed graph generation task is introduced.
[34] propose a graph contrastive coding method for the pre-
training stage in the GNN model. [14] summarize and compare
commonly used self-supervised training strategies on graphs
and point out a few future directions.

Hypergraph Learning. Among the earliest work, Li et al.
[9] transform the hyperlink prediction problem as a rank-
ing problem for hyperedges, and adopt a SimRank-like [35]
method. [3] use a coordinated matrix minimization method
for nonnegative matrix factorization in the adjacency space of
the hypergraphs for hyperedge prediction. More recently, rep-
resentation learning and GNN-based methods are developed
for this direction. Tu et al. propose DHNE [8] which applies
auto-encoder and deep neural networks for the representation
learning of hyperedges. Hyper-SAGNN by Zhang et al. [2]
combines the attention-based dynamic representations and
the MLP-based static representations for hyperedge predic-
tion. HGNN by Feng et al. [23] generalizes the convolu-
tion operation to the hypergraph by hypergraph Laplacian.
Deep Hyperedges [10] by Payne jointly uses contextual and
permutation-invariant node memberships of hyperedges for
hyperedge classification. DHGNN by Jiang et al. [36] adopts
vertex convolution and hyperedge convolution in the dynamic
hypergraph representation learning. Yu et al. [37] propose
a multi-channel hypergraph convolutional network for social
recommendation. Other recent approaches on hypergraph tasks
such as hyperlink prediction, stock trend prediction and hyper-
graph recommendation include [6], [7], [11], [38]-[40].



VII. CONCLUSION

In this paper, we study the problem of hypergraph repre-
sentation learning, and propose an end-to-end hypergraph pre-
training framework HyperGRL. It incorporates bi-level self-
supervised pretext tasks, and enables both transductive and
inductive learning. HyperGRL does not require extra domain-
specific datasets, and is adaptation-aware, which makes the
pre-trained model more adaptive to downstream tasks com-
pared to traditional pre-training methods. Extensive exper-
iments demonstrate that: (1) HyperGRL shows significant
improvements of downstream task performance and stability
over baselines; (2) HyperGRL is efficient compared with tradi-
tional pre-training methods; (3) the proposed framework shows
great applicability in real-world applications of online stores.
Future directions include further exploration of the divergence
between pretext and downstream tasks, and designing hard
negative sampling strategies for hypergraphs.
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