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Abstract—Knowledge graph is ubiquitous and plays an im-
portant role in many real-world applications, including rec-
ommender systems, question answering, fact-checking, and so
on. However, most of the knowledge graphs are incomplete
which can hamper their practical usage. Fortunately, knowledge
graph completion (KGC) can mitigate this problem by inferring
missing edges in the knowledge graph according to the existing
information. In this paper, we propose a novel KGC method
named ABM (ATTENTION-BASED MESSAGE PASSING) which
focuses on predicting the relation between any two entities in a
knowledge graph. The proposed ABM consists of three integral
parts, including (1) context embedding, (2) structure embedding,
and (3) path embedding. In the context embedding, the proposed
ABM generalizes the existing message passing neural network
to update the node embedding and the edge embedding to
assimilate the knowledge of nodes’ neighbors, which captures
the relative role information of the edge that we want to predict.
In the structure embedding, the proposed method overcomes the
shortcomings of the existing GNN method (i.e., most methods
ignore the structural similarity between nodes.) by assigning
different attention weights to different nodes while doing the
aggregation. Path embedding generates paths between any two
entities and treats these paths as sequences. Then, the sequence
can be used as the input of the Transformer to update the
embedding of the knowledge graph to gather the global role of the
missing edges. By utilizing these three mutually complementary
strategies, the proposed ABM is able to capture both the
local and global information which in turn leads to a superb
performance. Experiment results show that ABM outperforms
baseline methods on a wide range of datasets.

Index Terms—Attention, Knowledge Graph Completion

I. INTRODUCTION

Knowledge graphs are ubiquitous data structures to explain
the relationship between entities in the real world. A knowl-
edge graph stores each fact as a triple (h,t,r) which means
that the head h is related to the tail ¢ through the relationship
r. Many real-world knowledge graphs like WordNet, YAGO,
Freebase, DBpedia have been widely used in various applica-
tions, such as recommender systems [31], dialog systems [32],
question answering [33], and so on. However, most existing
knowledge graphs are incomplete and noisy, which hamper
their practical usage.

Knowledge graph completion aims to complete the input
knowledge graph by predicting the missing link between two
entities with the help of existing information in the knowledge
graph, which has become an important research direction. An
illustrative example of knowledge graph is shown in Figure 1.
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Fig. 1. An illustrative example of knowledge graph completion. Suppose we
know that Iron Man and Captain America are friends, but this knowledge
graph misses the relationship between Iron Man and Thor. Suppose we also
know that Thanos and Iron Man are friends and Robert Downey is the actor
of Iron Man. However, in this knowledge graph, we do not know that Iron
Man is released in 2008, which is what we need to predict in the knowledge
graph completion.

Generally speaking, existing KGC methods can be divided
into three categories. The first type of method is based on
translation models. The representative methods include TransE
[1], TransD [2], TransH [3] and TransR [4]. They assume
that in the valid triple, the head can be translated to the tail
through the relationships. They define different score functions
and minimize the loss function to learn the representation of
entities and relationships. The second type of method is based
on semantic matching models which include RESCAL [5],
DistMult [6], HolE [7], ComplEx [8]. They use the score
function based on semantic similarity to get the association
between the embedding of entities and relationships. The last
type of method is neural network-based methods, such as
ConvE [9], SEAL [10]. These methods are based on network
representation, which can extract the content information of
the nodes and edges.

Despite the great accomplishments achieved recently, the
traditional translation model, such as TransE, TransD, and
TransH, do not consider the neighborhood information of
given entities, while the neural network-based methods, such
as ConvE, and SEAL, do not consider structure similarity
between nodes, which could lose some important features.
These shortcomings inevitably limit their performance since
both the neighborhood information and the structure informa-



tion should be important to the knowledge graph completion.
Besides, most message passing based GNN methods assume
that when doing aggregation for the node feature, the message
passing from neighbors should get the same attention, which
could not be suitable for the knowledge graph setting where
both the relationship between nodes and the structure of the
entire graph is important in the aggregation step.

To overcome the above limitations, we propose an attention-
based method called ABM whose main idea is to combine
structure embedding, context embedding, and path embedding
to deal with the knowledge graph completion problem. More
specifically, the proposed ABM is built upon three key com-
ponents which are context embedding, structure embedding,
and path embedding. In the context embedding, we embed
the neighbor information by using the neighboring nodes’
embedding and neighboring edges’ embedding. We take the
node embedding and relation embedding as the input of the
multihead attention aggregation and then use the message
passing mechanism to get the relational embedding between
these two nodes. In the structure embedding, we combine the
structure information with the context embedding. The nodes
which bear higher similarity in the whole graph structure will
get more attention when combining the context embedding. In
the path embedding part, we generate several paths from the
head to the tail and then use the Transformer [11] to obtain the
relationship representation. In contrast to the previous models,
the attention-based message passing neural network strength-
ens the message interactions between nodes and edges. We
conduct extensive experiments and illustrate the effectiveness
of our method.

The contributions of this paper are summarized as follows.

¢ We propose a novel KGC method named ABM for

knowledge graph completion, which is storage efficient
and explainable with existing embedding-based methods.

« ABM embraces three kinds of embedding: context em-

bedding, structure embedding, and path embedding, all
of which are critical to the relation prediction.

« ABM obtains superb performance than baseline methods

on a variety of datasets.

The rest of the paper is organized as follows. Section II
introduces our preliminary and the definition of the problem.
Section III introduces the detail of our method. Section IV
compares our method with existing knowledge graph com-
pletion methods. Section V shows some related work of our
paper. Section VI gives our conclusion of this paper.

II. PRELIMINARY AND PROBLEM DEFINITION

In this chapter, we formally define the knowledge graph
completion and alternative message passing method. Table I
summarizes the main symbols and notations used throughout
the paper. Let G = {V,&, R} be a knowledge graph, where
V is the set of nodes/entities in the graph G, & is the sets of
edges in this graph G, and R is the set of the relationships.
We define a knowledge graph triple as (h, t,r), where h is the
head entity, ¢ is the tail entity and r is the relationship between
them. Notice that for a pair of (h,t), it can have different

relation types. For example, “Harry Potter” and “Hermione
Granger” are both friends and classmates.

Symbol Description
h,t The head entity and tail entity
T The relationship type
n, The hidden state of node v in the i iteration
ne The output of the context aggregator for node v in i iteration
ne The output of the location aggregator for node v in i™ iteration
sz(' hot) The edge embedding between the head and tail in the 5™ iteration
r;. The relation embedding for type j in the i iteration
N(v) The neighbor points of node v
Qi, K, V. The query, key, and value matrix of the attention for the task %
W;. MLP for the task ¢
Qij The attention weight between node ¢ and node j

TABLE I
NOTATIONS AND DEFINITIONS

Traditional node-based message passing. Let us first briefly
review the traditional message passing methods. For the tradi-
tional message passing, they typically use the node feature to
do the message passing. In the i iteration during training, we
get the node v’s embedding which is n!, then the embedding
is updated by

m,, = A({n,Ju € N(v)})
't = F(ng,m,)

where m! is the message aggregated by the node v in the i
iteration, A(-) is the aggregation function for the neighbors’
message, and F(-) is the updated function after getting the
aggregation result. After we get the node embedding of the
entities, we can use these entities to predict the relation
between them.

Using the previous framework, we can see that the tradi-
tional framework focuses on the embedding of nodes while
ignoring the relationship and structure similarity between
the nodes. However, these relationships and graph structure
between the nodes are critical for the relationship prediction
task. Thus, it is indispensable to take them into account.
Alternative message passing. In order to update the node
embedding more accurately, we designed the alternative mes-
sage passing method which use not only the node embedding
but also the edge embedding to update the node embedding
which should give each neighbor a different attention when
aggregating. More specifically, the update function can be
designed as follows:

My = A({(n4, () )0|u € N (0)})

= F(ng,m;,)

v

where séu ) should be the relationship embedding in the ith
iteration. By using this alternative message passing function,
different neighbors will get different attention by using the

relationship between the node and their neighbors.



Problem Definition. Given a knowledge graph, we focus
on predicting the relationship between two nodes which is
defined as follows:

Problem Definition 1: Knowledge Graph Completion

Given: the incomplete knowledge graph: G = {V,E, R},
the head entity h, the tail entity t.

Output: the relationship r between the head entity h and
the tail entity t.

III. PROPOSED MODEL

In this section, we first introduce the framework of our
method in Subsection III-A. Then, we introduce the detail of
ABM, including context embedding, structure embedding, and
path embedding, in Subsection III-B-III-E.

A. Overview of the Framework

The proposed neural network framework of ABM is shown
in Figure 2. It consists of three integral parts: context embed-
ding, structure embedding, and path embedding. We will use
these three types of embedding between two entities h and
t to predict the relationship between them. First, we create
the context embedding based on the message passing neural
network with multihead attention, which assigns different
weights to different neighbor relationships. Different from
traditional message passing which only considers the neighbor
nodes’ embedding while ignoring the relationship between
them, our attention message passing method can efficiently
encode neighbor information. Second, for the structure em-
bedding, we leverage the graph convolutional networks to
encode the structure embedding of the entire graph. Then,
we give different neighbor nodes different weights according
to their structure similarity to the whole entire graph, which
can encode the structure similarity between the node and its
neighbors. Last but not the least, for the path embedding,
we sample several paths from h to ¢ and treat these paths
as the input of a Transformer [11] to update the relationship
embedding between h and ¢, which allows us to capture the
global information between the head entity and tail entity.

Since the ABM generates the model by both node em-
bedding and relationship embedding, it is able to gather the
different types of information in the aggregation step, which
in turn makes it easy for us to explain predictions. In the
following subsections, we will use the illustrative example in
Figure 3 to introduce each component in detail.

B. Context Embedding

Context embedding aims to update the node’s embedding
by using its neighbors’ embedding. When encoding a node’s
context embedding, it is important to accurately capture its
semantic information. For example, the relationships around
node Lebron James are Play for and Friend, and the
neighbors of node Lebron James are Laker and Dwyane
Wade. We can infer that this node is a basketball player. If the
relationships around node Chris Paul are Play in and
Friend, and the node around node NBA and Dwyane Wade,

then we can infer that this node should also be a basketball
player. So, the relationship between Lebron James and
Chris Paul is most likely Teammate or Friend. In other
words, context information is very important when predicting
the relationship.

However, traditional message passing algorithms simply
aggregate neighbor information with add, mean, or max and
assign the same weight to all neighbors which are likely to be
sub-optimal.

To better aggregate the neighbor information, we use the
attention mechanism to assign different weights to different
neighbors according to their relationships.

We define that the node v’s hidden embedding in the i
iteration of aggregation as n! € R and the edge (u,v)’s
hidden embedding in the 7™ iteration as siu’v € RY where d
is the embedding dimension of the hidden embedding. Given a
head entity / and a tail entity ¢, we use two different strategies
to calculate the attention weights. The first one is a GAT-based
method and the second one is based on multihead attention.
GAT-based Aggregation. In the GAT-based aggregation, we
use the idea of GAT [30] and replace the neighbors’ node
feature with the neighbors’ edge feature for the contextual
correlation during aggregation. The contextual correlation be-
tween two connected nodes u, v can be defined as

exp(LeakyReLU(a”s{,, )
ke N(u) LeakyReLU(aTs{,, 1))
where a € R? is the parameter of the feed forward layer. After

we get the contextual correlation f,, between two connected
nodes, the node h’s embedding can be updated as follows

Juw

(D

A= fuiWen! 2)
JEN(h)

Note that this strategy is similar as the graph attention

networks (GAT). It assigns each neighbor a different attention
weight based on the relation types.
Multihead-attention Aggregation. As we have shown in Sec-
tion II, we update the node embedding by using the neighbor
nodes’ embedding and neighbor edges’ embedding. In this
method, we use the multihead-attention when aggregating the
neighbor information. For example, we wish to update the
embedding of node h. We should use the node h’s embedding
as key, the node h’s neighbor relation embedding as query,
and the node h’s neighbor nodes’ embedding as value. The
update method is

Qc =nj, - Wa, (3)
_nil

ch = . WVC> Vj S N(h) (4)
[,
eém,h)

K. = Wk, wv; € N(h) &)
—eévhh)
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Fig. 2. An overview of the proposed framework of ABM. Right: (a) an illustration of Message Passing which aggregates the message of head and tail’s
neighbors and the edge connected with them, and (b) an illustration of using Transformer to take several paths as sequences to obtain the context embedding.
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Fig. 3. An illustrative sample for the model explainability

where Wq_, Wi _, Wy, are the projection matrices. Then, the
attention of ()., K., V. can be calculated as

Attention(Q., K., Vz.) = Softmax(Q.K} /Vd)V.  (6)

Furthermore, we focus on the multihead attention, where [
attention layers are stacked together. The multihead attention
is defined as

i = Cat(head, - - - , head )Wo
head" = Attention(Q", K, V')

)
®)

, where Cat should be the function that concatenate all the
function together.

To make the training step more stable, we add the residual
connection between any two message passing layers, which
can reduce the vanishing of gradient. This is achieved by

nj, = Layernorm (nj, 4+ Layernorm (7, "))

€))

, where Layernorm is to normalize the data after the hidden
layer.

C. Structure embedding

When learning the node embedding or relation embedding
on knowledge graphs, traditional GNN methods adopt message
passing mechanisms to aggregate neighborhood information.
Despite GNN’s powerful representation learning ability, it
fails to encode some important structural information, e.g.
node degree, common neighborhoods of several nodes, and
so on. However, this information is important for knowledge
graph completion. For example, if we want to calculate the
embedding for Chris Paul, Lebron James should get
much more attention than other nodes, because both Chris
Paul and Lebron James play in NBA. And they have
many common friends (common neighborhoods) such as
Dwyane Wade, Russell Westbrook, and so on. This
means Chris Paul and Lebron James have high sim-
ilarity. However, Giannis Antetokounmpo should get
less attention, because the number of common neighbors
between them are small. After precisely getting the node em-
bedding, it will help us to more accurately get the relationship
between two nodes.

Inspired by this observation, we propose structure embed-
ding to help the context embedding encode more structure
information. Note that context embedding is used to encode
the neighborhood information of a given node, while structure
embedding is used to indicate whether there is an edge
between two nodes according to some structure information,
e.g., shortest path, degree, and common neighbors.

Our proposed method takes into additional consideration
on the structure by the structure embedding. According to
[28], both the heuristic method and graph neural network
based method could represent the graph structure. In particular,
we first get the structure embedding of the knowledge graph
based on the adjacency matrix and then we use the structure
embedding to give each neighbor different attention. When ag-
gregating the neighbors’ information, we put more attention on
the neighbors which have similar structure as the node and less



attention on the neighbors which have low structure similarity
with the node. Next, we present to use two methods to deal
with this problem. The first one is the heuristic method and
the second one is GNN-based method. The heuristic method
use less computational time and the GNN-based method could
more accurately gather the similarity between nodes.

Heuristic Method.: Heuristic methods are capable of pro-
viding some structural information for link prediction, such
as shortest path, degree, and common neighbors. Although
most GNN methods can get superior performance on many
datasets, some heuristic methods also show strong empirical
performance on the link prediction task. Especially, according
to [31], overlap-based methods are usually efficient in the link
prediction task. Typical neighborhood overlap methods are
Common Neighbors, Resource Allocation, and Adamic Adar.
We use different scores by these three methods to get the
aggregation weight a;.

The common neighbors method measures the scores be-
tween w,v by counting the number of common neighbors
between node u and v and the aggregation weight is

Q. = Nw) NN (v)| = Z 1
keN (u)NN (v)

(10)

The common neighbors method considers that all of the
neighbors have the same weight. However, we should give dif-
ferent neighbors different weights since every neighbor should
have different importance in the graph. Resource Allocation
and Adamic-Adar fixed this problem. Resource allocation
measures the scores between w, v by counting the inverse of
the degree.

3 1

7 (11
kEN (NN (v) P

Qo =

where dj; is the degree of node k.
And Adamic-Adar decreases the penalty for higher degree
by using the logarithm of the degree of the common neighbors

between u, v
Y
EEN ()N (v) log dy,

12)

Qo =

After we getting the aggregation weight, we could use this
aggregation weight to update the node embedding.

GNN-based Method. : Besides heuristic methods, we can
also extract the structure embedding by using the graph neural
network. In this paper, we propose a new structure to extract
the structure embedding of the whole graph. The structure of
GNN-based method is shown in Figure 4. First, we propose
the structure feature generator to learn the structural features
of each node using the adjacency matrix A € RV*N of the
graph. In the structure feature generator, we use four layers of
graph convolutional network and concatenate them together.
We assume that the output of " GCN layer is H; and H is
an identity matrix. The output H; is

H; = GCN(H;-1) (13)

hout € R™

Aggregate Layer

r® e Ran

h®) e Ran

r® e Ron
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Fig. 4. The structure of the GNN-based method for structure embedding.

Then we aggregate all the H; together to get the output

4
L= H,
i=1

where L is the structure embedding of the knowledge graph.

After we get the structure embedding, we use the structure
embedding to compute the different attention of the neighbors.
If we just use the attention on the relationship, they will over-
look the relationship while ignoring the structure information.
To overcome this issue, the attention is based on the structure
embedding when doing the aggregation. Let L; be the structure
embedding of the node . The structural attention parameter
between the header h and its neighbor i is

B exp (L1 L;)
= T
> ke, exp(Ly Li)
Given «;j, we can get different attention with different
structural information. Then we can aggregate the node’s

neighbor by using a. The output of the location aggregator
from the header A could be defined as follows:

Sl yprigi Y TE
n, = W'n, + E ap;W'nj
JEN

(14)

Qh 15)

(16)

where W is a R?*¢ parameter matrix for feature mapping.

After we get n}'L,C the updated context embedding and n}L .
the updated structure embedding, we propose a method that
combine the context embedding and the structure embedding.
We define two learnable parameters k., ks to determine the
significance of the context embedding and the structure em-
bedding, where k. € R, ks € R. We will normalize these two
parameters to eliminate the possible gradient vanishing:

>

_ exp (ke) P exp (k;) (17
exp (k) +exp (k;)’ ! exp (k) + exp (k)




Then, the output of combining the context embedding and
the structure embedding is

nitt = knb + ki (18)

And we will use the same method to update the embedding
of the tail entity ¢. After we update the embedding of the
head h and the tail ¢, we combine these two embeddings to
get the relation embedding. The relation embedding between
these two entities should be like

S(hit) =0 [Wr[n2+1,ni+1} + br] (19)

where 5}, ¢) is the relation embedding extract from two node
embedding: context embedding and structural embedding. And
from Eq. 19, we can get that the relation embedding s, ) is
not related to the relationship between them since during the
training part we should ignore the relationship between head
and tail.

This helps us determine the direct relationship embedding
between the head and tail by using the information of their
neighbors. Thus, this will collect the local information of the
head entity and tail entity.

D. Path Embedding

Path embedding is another important way to deal with the
relation prediction problem that should get which path would
be important when dealing with this completion. For exam-
ple, in Figure 3 the relationship between Lebron James
and Russell Westbrook is Teammate and the relation-
ship between Lebron James and Lakers is play for.
Then the relationship between Russell Westbrook and
Lakers is play for. We can use the first-order logic to
explain this problem:

r(hyz1) Ar(z1,x2) A+ Ar(zp,t) = r(h,t) (20)

where A r is the conjunction of relations in a path and r(h, t)
is the predicted relation. Therefore, path embedding can also
learn the logical rules of the knowledge graphs. We can predict
the relationship between the head entity h and the tail entity
t by using the path between them.

As shown in the previous paragraph, the path can be
treated as a sequence and the Transformer is an efficient
way to deal with the sequence. Now, we begin formally
defining the sequence and show how we use the Trans-
former to update the relation embedding. Given a head
entity h and a tail entity ¢ in knowledge graph G, we
can generate several paths between them, and each path
can be treated as a sequence. We take a length-L path as
an example. It looks like: h,vi,vs,--- ,vr—1,t. Then, we
transfer this path into a sequence. We add the edge em-
bedding between nodes to form a sequence which could be
h, (h, ’Ul), V1, (Ul, UQ), Vo, ,UL—1, (’UL_l, t), t. Let us take
the embedding sequence of the " iteration as S° =
{s1,85, -+ 851} Where sp; 1 = my 805 = €,
And we also combine the context embedding into the path em-
bedding. We add a sequence in the form of nj, — 5, ;) — nj
which is a path of length 1. We update the context embedding

in this part and it encodes the topological information of the
knowledge graph.

To make use of the order of the sequence, we abstract some
information from the position of each entity and edge in the
sequence. We add the positional embedding into the node
and edge embedding, which could be treated as the input
embedding of the training method. Therefore, the positional
embedding has the same dimension as the node and edge em-
bedding. Formally, in the sequence S* = {s}, s5,--- ,s5, .1},
we denote the position of s; as j. Then the position embedding
of the j™ element s; in the sequence is

e; = Position-Embed()

: : L4]
o) = )|
10000°¢ 10000°7 / | k=0

where k is the dimension.

After adding the positional embedding, we take the summa-
tion of entity/edge embedding and the positional embedding
as the input of the Transformer, where §§ = s;—%— p;. In the ;th
iteration, we use the Transformer to update sj which can be

formally defined as
KT
@y Vo (23)
Vd

2L

(22)

sz-H = Transformer(8}) = Softmax (

where

Qp =5 Wa,, Kp=5 W, V=5 Wy, @4

Since we have already put the updated relation embedding
S(h,t) into the Transformer as a sequence. Then by training the
Transformer, we can get the relation embedding 54 ;) updated
by the Transformer.

After getting the updated relation embedding (3 4, this
embedding not only contains the local information of the head
and tail since it aggregates the information of their neighbors
but also includes the global information of the head and tail in
the whole graph since it has done the Transformer on several
sequences and could view itself in the whole graph aspect.

E. Objective Function

We treat the knowledge graph completion problem as a mul-
ticlass classification problem. We determine the relationship
between the head entity and the tail entity as the highest
probability of all the relation. Therefore, we minimize the
cross-entropy loss over the training triples. The objective
function could be like

minl = > J(Softmax(ce(h,t)),r)
(h,t,r)eD

(25)

where D is the training set and J is the cross-entropy loss.



IV. EXPERIMENTS
A. Datasets

In this paper, we use three knowledge graph datasets to
conduct the experiments: FB1SK, FB15K-237, NELL995.
The statistics of the three datasets are summarized in Table II.
The basic description of the datasets is as follows:

o FB15K [12]: FB15K is from Freebase which includes
facts in the real world, such as sports, films, and actors.
Enitities in this dataset connect with each other in many
to many relations.

o« FB15K-237 [13]: FB15K-237 is the subset of the dataset
FB15K by removing the inverse link in the FB15K.

o NELL995 [14]: NELL99S is the dataset which is gener-
ated from the 995" iteration of the NELL system which
is suitable for the multi-hop reasoning.

#nodes  #relations FE[d] Varld]
FB15K 14,951 1,345 64.6 32,4418
FB15K-237 | 14,541 237 374 12,336.0
NELL995 63,917 198 4.3 750.6
TABLE I

STATISTICS OF ALL DATASETS. E[d] AND Var[d] ARE THE MEAN AND
VARIANCE OF THE NODE DEGREE.

B. Baselines Methods

To evaluate the performance of our method ABM, we
compare it with several existing methods: TransE [1], RotatE
[15], ComplEx [8], DistMult [6], PathCon [16]. The first two
methods are based on the translation model. The next two
methods are based on the semantic matching model. The last
method is based on the graph neural network.

C. Evaluation Metrics

To evaluate the performance of our method, we use the
standard MRR, hit@1, and hit@3 as evaluation metrics for
the knowledge graph completion. MRR takes the reciprocal
of the average score of the position of the true relationship
between the head and the tail in the ranked list. Hit@n is the
proportion of the true relationship in the top@n ranked lists.

D. Main Results

We first compare the performance of our method with the
baseline methods. Then, we compare the alternative aggrega-
tion method for each embedding and determine which one is
the most effective.

1) Effectiveness Comparison: The results of the evaluation
metrics on the three datasets are reported in Table III. We can
see that ABM outperforms all baselines in all three datasets.
In this comparison, we only use the multihead-attention ag-
gregation for the context embedding and the GNN-based
method for the structure embedding. We separately study the
effect of context embedding, structure embedding, and path
embedding. Only context embedding, structure embedding and
path embedding cannot beat the previous method while we use
these three methods together.

Based on these results, we conclude that our proposed
method ABM performs best with the least memory cost.

Datasets Methods MRR hit@1 hit@3
TransE 0941 0.921 0.982

RotatE 0950 0.935 0.986

FB15K ComplEx 0.879 0.824  0.952
DistMult  0.661 0.439  0.868

PathCon 0.954 0942  0.995

Context 0939 0918  0.994

Location 0.935 0915 0.993

Path 0.924 0909  0.991

ABM 0.960 0.953  0.995

TransE 0932 0924 0984

RotatE 0.946 0929  0.980

FBI5K-237 ComplEx 0.898 0.857  0.952
DistMult  0.849 0.784  0.935

PathCon 0.947 0.935  0.995

Context 0937 0915  0.993

Location 0.931 0914  0.994

Path 0.928 0911 0.992

ABM 0.961 0.942  0.995

TransE 0.821 0.761 0.889

RotatE 0.729  0.691 0.756

NELL995 ComplEx 0.703 0.625  0.765
DistMult  0.634 0.524  0.720

PathCon 0.862 0.795  0.941

Context 0.815 0.741 0.875

Location 0.835 0.766  0.899

Path 0.801 0.731 0.864

ABM 0.887 0.819 0.942

TABLE TIT

COMPARISON WITH THE BASELINES ON EVALUATION METRICS. THE
UNDERLINE INDICATES THE SECOND BEST PERFORMANCE AND BOLD
INDICATES THE BEST PERFORMANCE.

E. Model Variant

In this section, we try to use different variants to test the
efficiency of the ABM when we modify some of the variants
in the ABM. We alter several variants in three embedding
methods and find which variant of our approach should achieve
the best performance.

1) Context Aggregator: We study how different implemen-
tations of context aggregators affect the model preference. In
Section III-B, we propose two other aggregation methods:
GAT-based aggregation and multihead-based aggregator. In
this section, we compare these two methods with aggregation
without relation embedding (the mean aggregation). The result
of different aggregation methods are shown in Fig. 5. The re-
sult shows that the mean aggregation performs worst on these
three datasets. The GAT-based aggregation method performs
worse than multihead-based aggregator. However, it is also
interesting to notice that the GAT-based aggregation does not
have many gaps between the multihead-based aggregator. The
result shows that the relationship between two nodes must be
an important factor when doing the aggregation.

2) Structure Aggregator: In this section, we try to discover
whether the different types of structure representation should
have different effects on prediction. As in Section III-C, we
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Fig. 5. The result of context embedding with different aggregator.

use four methods: Common neighbor, Resource Allocation,
Adamic-Adar, and GNN-based structure embedding on three
datasets. The result is shown in Fig 6. We can see that
the Common neighbor is the worst method when doing the
structure embedding and the GNN-based structure embed-
ding performs best. The resource allocation and Adamic-
Adar perform similarly. The result shows that we cannot treat
every neighbor the same. The structure information between
neighbors must be important when doing the aggregation.
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Fig. 6. The result of structure embedding with different aggregator.

Also, for the GNN-based method, we investigate the sensi-
tivity of structure embedding by tuning the different number
of GNN layers on the different dataset. In GCN, we will
use several fully-connected layers to update the structure
embedding. If we use k layers in this step, GCN should help
us to aggregate the k-hop neighbors’ information. Then we
want to figure out how many layers we should use in GCN to
get ABM to perform best. The result is shown in Fig 7. We can
see that when the number of layers is small (e.g., smaller than
4), increasing the number of layers can significantly improve
prediction accuracy. When the number of layers gets to 4, the
result converges.
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Fig. 7. The result of GNN-based structure embedding with different number
of layers.

3) Path Embedding: During the path embedding, we variate
the path length we collect to observe the prediction per-
formance. The result is shown in Fig 8. We can see that
the increase in the path length can significantly improve the
outcome. However, the marginal benefit will appear with the
increase of path length when the length of the path gets larger.
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Fig. 8. The result of path embedding with different length of path.

V. RELATED WORK
A. Knowledge Graph Completion

Knowledge graph completion can provide information for
some industry work, such as recommender systems and seman-
tic analysis. Most existing methods dealing with knowledge
graph completion should depend on the embedding. These
methods assign each node with a unique node embedding and
each edge with a unique edge embedding in the continuous
embedding space. Using the existing datasets to train and get
updated embedding. One of the mainstream methods is the
translation model, they use the node embedding to represent
the node and the relationship between them as the translation
between nodes. After translating the head entities, they make



the translated head entities close to the tail entities. TransE
[1] used Euclidean distance as the distance metric to score
the distance between translated head entities and tail entities.
TransH [3] embeds knowledge graph into the hyperplane of
a specific relationship to measure the distance. TransR [4]
represents entities and relationships in separate entity and rela-
tionship spaces. There also exist some other translation-based
methods [2], [15], [17]-[19] which achieve the state-of-art
result to handle the knowledge graph completion problem. The
other mainstream method should be the semantic-matching-
based method. The semantic matching model uses semantic
similarity to score the relationship between head entities and
tail entities. RESCAL [5] treats each entity as a vector to cap-
ture its implied semantics and uses the relationship matrix to
model the interactions between latent factors. QuatE [20] uses
two rotating planes to model the relations to a hyper-complex
space. HolE [7] employs cyclic correlation to represent the
composition of the graph. However, neither of these methods
captures the structure information of the graph which should
be important to the graph.

B. Link Prediction

Link prediction is a common topic in graph learning. Both
the heuristic method and the GNN method should be feasible
for this problem. The heuristic method basically measures the
score between the head entity and the tail entity by using
the structural information e.g., overlapped neighbors, shortest
path, and degrees of the node. Overlapped neighbors [21]
construct the graph structural information by using one-hop
neighbors to compute the score of the graph. Adamic-Adar
[22], resource allocation [23], PageRank [24] are proposed by
using higher-order heuristic methods. However, all of these
methods should design the score function of the structure
manually. The embedding-based methods do not have the same
problem since they compute the similarity scores by using the
connection between nodes. Deepwalk [25] and node2vec [26]
learn node embedding by using random walk and applying the
Skip-Gram techniques on it. Also, link prediction should be
based on the adjacency matrix which includes the connectivity
information of the graph. VGAE [27] uses the auto-encoder
to reconstruct the graph and learn the node embedding by
using the existing structure of GNNs. SEAL [10] use the
classification of enclosing subgraphs to predict the relationship
between nodes.

VI. CONCLUSION

In this paper, we propose the multihead message passing
neural network for the knowledge graph completion. The
proposed ABM simultaneously gathers relationship informa-
tion by context embedding, structure similarity information by
structure embedding, and the topological information by path
embedding. Our proposed method consistently outperforms
baseline methods in several datasets.
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