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Abstract—In a connected world, fair graph learning is be-
coming increasingly important because of the growing concerns
about bias. Yet, the vast majority of existing works assume that
the input graph comes from a single view while ignoring the
multi-view essence of graphs. Generally speaking, the bias in
graph mining is often rooted in the input graph and is further
introduced or even amplified by the graph mining model. It
thus poses critical research questions regarding the intrinsic
relationships of fairness on different views and the possibility
of mitigating bias on multiple views simultaneously. To answer
these questions, in this paper, we explore individual fairness in
multi-view graph mining. We first demonstrate the necessity of
fair multi-view graph learning. Building upon the optimization
perspective of fair single-view graph mining, we then formulate
our problem as a linear weighted optimization problem. In
order to figure out the weight of each view, we resort to the
minimax Pareto fairness, which is closely related to the Rawlsian
difference principle, and propose an effective solver named iFiG
that minimizes the utility loss while promoting individual fairness
for each view with two different instantiations. The extensive
experiments that we conduct in the application of multi-view
spectral clustering and INFORM post-processing demonstrate
the efficacy of our proposed method in individual bias mitigation.

Index Terms—Clustering, individual fairness, multi-objective
optimization

I. INTRODUCTION

A multi-view graph comprises multiple single-view graphs
with the same set of nodes but different types of edges. In
many real-world applications, graphs are often collected from
multiple sources, forming multi-view graphs. For example,
users could have accounts on numerous social platforms like
Facebook and Twitter; the infrastructure network of cities
exhibits different topologies considering different types of
infrastructures (e.g., power grid, road network). Up to now,
researchers have proposed a variety of multi-view graph min-
ing models, including clustering [1], embedding [2], and graph
neural networks [3].

Despite many efforts in developing mining models with op-
timal utility (e.g., classification accuracy), the fairness aspect
of multi-view graph mining is often understated. Take peer-to-
peer (P2P) lending as an example, due to a lack of financial
history of applicants on P2P lending platforms, existing works
utilize social networks to improve the predictive accuracy [4].
Based on that, if the P2P lending service providers apply a
prediction model to multiple social platforms with the same set
of nodes for loan risk prediction, it is possible that two similar
loans are both of low risk in one view but receive different

classification results in another view. Instead of finding the
optimal mining results for multi-view graphs, several key
questions related to algorithmic fairness need to be answered:
Would ensuring fairness on one view unintentionally amplify
the biases on another? If so, how can we mitigate the bias in
multiple views simultaneously?

The study of algorithmic fairness on graphs has attracted
much attention, in which a majority of existing works [5]-
[7] are on single-view graphs while ignoring the multi-view
nature of graphs in many applications. To date, sparse efforts
of fair non-single-view graph mining [8], [9] only ensure group
fairness on heterogeneous graphs. Nevertheless, none of the
existing works on fair graph mining is designed for multi-view
graphs, nor is there work on individual fairness.

Different from group fairness, individual fairness follows a
general principle of making similar individuals have similar
outcomes, which has not yet been well studied for multi-
view graph mining. Analogous to the general principle of
individual fairness, Kang et al. [6] study individual fairness
when mining single-view graphs by ensuring similar mining
results for similar nodes (individuals). Specifically, individual
fairness is ensured through Laplacian regularization on the
pairwise node similarity matrix of a single-view graph (i.e.,
one view in a multi-view graph). However, simply ensuring
individual fairness on one view might overlook the view
heterogeneity among multiple views, which in turn could find
unfair mining results for another view. Figure 1 provides an
illustrative example where ensuring individual fairness on one
view fails to ensure individual fairness on another view.

In this paper, we study individual fairness in multi-view
graph mining (iFiG problem), which aims to ensure individual
fairness on multiple views simultaneously. Our work not only
defines fairness for multi-view graph mining but also provides
a natural solution to ensure fairness in multi-view graph
mining without sensitive attribute(s). We first formulate iFiG
problem as a regularized optimization problem. To search for
the regularization parameters that help balance the trade-off
between utility and fairness, we develop its connection to find-
ing the Pareto front of a multi-objective optimization (MOO)
problem. To find the Pareto front with the best trade-off, we
propose a generic algorithmic framework that leverages the
Rawlsian difference principle to efficiently find the minimax
fair graph mining results.

The main contributions of the paper are as follows.

« Problem Definition. To our best knowledge, we are the
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Figure 1: An illustrative example of peer-to-peer (P2P) lending
on a two-view social network. Nodes represent borrowers
and lenders, edges represent users’ social networks on two
different social platforms. Similar nodes in different views
have the same transparency, meaning node 4 and node 6
have similar features. In View 1, two similar individuals
are clustered into different groups because node 4 is highly
connected and thus more likely to obtain higher social credit.
In View 2, two similar individuals are clustered into the same

group.

first to ensure individual fairness in multi-view graph
mining (iFiG problem).

o Algorithmic Instantiation. We propose an effective
solver to find the Pareto front of the iFiG problem
and instantiate it by multi-view spectral clustering and
INFORM post-processing.

« Evaluations. We evaluate our proposed method on a
synthetic dataset and a variety of real-world datasets.
Experimental results demonstrate the effectiveness of our
methods in debiasing multi-view spectral clustering.

II. PRELIMINARY

In this section, we first present the key symbols of this
paper in Table 1. After that, we briefly review multi-view graph
mining and individual fairness on a single-view graph. Finally,
we introduce the formal definition of individual fairness in
multi-view graph mining.

Notations. We use bold upper-case letters for matrices
(e.g., A), bold lower-case letters for vectors (e.g., x) and
calligraphic letters for sets (e.g., D). In addition, we use
superscript 7 to represent matrix transpose (i.e., the transpose
of A is AT).

A. Multi-view Graph Mining

We denote a multi-view graph with M views as a set of
single-view graphs g™ = {G, ... Gy}, where the i-th
single-view graph in g™ is G, = {N, A;},Vi € {1,...,M}.
For G;, \V is the universal node set shared among all views in
g™l A, is the view-specific adjacency matrix for i-th view.
Many multi-view graph mining algorithms can be viewed
as optimization problems that capture different relationships
among views. From an optimization perspective, a multi-view

Table I: Table of symbols.

Symbol Description
A a matrix
AT transpose matrix of A
La Laplacian matrix of A
u a vector
M number of views in a graph
% view sets
N node set
S node similarity matrix
Y graph mining results
r loss function
k number of clusters
n number of nodes
0 a set of parameters

graph mining model aims to optimize a task-specific loss
function 7(G™! Y, ) where G™" is the input multi-view
graph, Y is the mining results, and € is the set of model
parameters. Take the multi-view spectral clustering [10] as an
example, whose goal is to learn an optimal universal cluster
membership matrix that finds & high-quality clusters on each
view and is close to the optimal cluster membership matrix
concerning the corresponding view. It regards the mining
results of each view as a subspace and aims to find the most
representative subspace (i.e., the optimal multi-view graph
mining results) to be close to any ¢-th individual subspace
Y;, Vi € {1,...,M}. Naturally, it is formulated as the
following optimization problem

M M
: Ty . _ Ty vT
min ;tr(Y L;Y) )\;tr(Y Y. YY) 0
st. Y'Y =1

where \ is the regularization hyperparameter and Y; € R"**
contains the eigenvectors associated with & smallest eigenval-
ues of the graph Laplacian L; of the ¢-th view. In Eq. (1),
the first term Zﬁl tr(YTL;Y) ensures that Y € Rm*k
finds the high-quality clusters on each view, and the sec-
ond term Zf\il tr(YTY,; YY) ensures the mining results
Y to be close to the optimal cluster membership matrix
Y;, Vi€ {1,...,M} in each view. Analogous to single-view
spectral clustering, the solution to Eq. (1) are essentially the
eigenvectors corresponding to the first k smallest eigenvalues
of the modified graph Laplacian L,,q = Zf\il L, — )\YiYiT .

B. Individual Fairness on a Single-view Graph

The general principle of individual fairness states that any
two similar individuals should be treated similarly [11]. Math-
ematically, given a mining results Y, it is often formulated as
a Lipschitz inequality di(YT[¢,:],Y[j,:]) < eda(i,j) where
dy(i,7) measures the distance between two data points i
and 7, d1(Y[é,:], Y[j,:]) measures the distance between their
corresponding mining results Y[¢,:] and Y[j,:], and € is the
Lipschitz constant. Building upon it, Kang et al. [6] define
dy as the squared Frobenius norm such that d; (Y, :], Y[j,:
) = |Y[;] — Y[j;]|% and do as the reciprocal of the
corresponding entry in an oracle node similarity matrix S (i.e.,
do(i,7) = ﬁ) When the Lipschitz inequality holds for all



pairs of nodes, the overall individual bias can be defined as
Bias(Y,S) = tr(Y'LsY) where Lg is the graph Laplacian of
node similarity matrix S. As such, ensuring individual fairness
on a single-view graph mining model is equivalent to the
following optimization problem.

min (G, Y, 0) + atr (Y'LsY) stY'Y=1 (g

C. Problem Definition

Given a multi-view graph G™! and a multi-view
graph mining model that minimizes a task-specific loss
r(G™! Y 9), our goal is to learn an optimal mining result
by minimizing the task-specific loss while ensuring individual
fairness on all views. Specifically, to achieve this goal, an
individual fairness loss is incurred for each view. Formally,
we define the problem of individual fairness in multi-view
graph mining as follows.

Problem 1. iFiG: Individual Fairness on Multi-view Graph
Mining

Input: (1) An undirected multi-view graph with M views
Gmulti — Ufil{gi}; (2) a non-negative symmetric node-node
similarity matrix S; for each View i ; (3) a multi-view graph
mining model that minimizes a task-specific loss function
r(G™! Y 9) with 6 as the set of model parameters.

Output: A multi-view graph mining result Y* that (1)
minimizes the task-specific loss function r(G™'% Y, §) and
(2) promotes individual fairness.

Problem 1 can be naturally formulated as the following

optimization problem
M

. multi . T )
min £(G™", Y, 0) + > aitr(YTLg;Y) (3)

i=1

where r(G™4 Y, 0) is the task-specific loss function for
multi-view graph mining, Lg, is the view-specific Laplacian
matrix of similarity matrix S; and «; is the view-specific
weighted parameter for fairness constraints.

It is intuitive to formulate Problem 1 as a regularized
optimization problem in Eq. (3). Nonetheless, there are three
critical questions that we need to address, including

(Q1) Why do we have to combine the cost of each view
together instead of applying a single-view graph mining
algorithm to each view separately?

(Q2) Compared with the single-view fair graph mining method
(e.g., Eq. (2)), what is the extra complexity in terms of
the optimization algorithm?

(Q3) How can we automatically determine the weights (e.g.,
«;) of different views?

III. METHODOLOGY

In this section, we provide our answers to the three key
questions we pose in Section II-C with multi-view spectral
clustering as an instantiation.! In particular, we first (Q1)

INote that our analysis could be naturally generalized to other multi-view
graph mining settings.

show that ensuring fairness on one view may unintentionally
amplify the bias on another. Then, we (Q2) formulate the
problem of ensuring individual fairness on a multi-view graph
as a linear weighted optimization problem. Based on that, we
(Q3) propose an effective solver named iFiG and instanti-
ate it by multi-view spectral clustering and INFORM post-
processing [6]. Afterward, we demonstrate that the rationality
of using minimax lies in the Rawlsian principle.

A. Necessity of Individual Fairness on Multi-view Graphs

For a multi-view graph, enforcing fairness in one view can
increase the bias in another view. Denote 75 as the bias of
View 2 when enforcing fairness on it and 7,2 the bias of View
2 when only enforcing fairness on other view(s).

We first present Lemma 1, which theoretically analyzes the
possibility of bias amplification on one view when enforcing
individual fairness on another view.

Lemma 1. For a multi-view graph with M views, we de-
note the pairwise node similarity matrix S; and its graph
Laplacian as Ls,. Then only minimizing the bias of View
i (ie, tr(UTLg,U)) can increase the bias of View j (i.e.,
tr(UTszU) ), i.e., the enforcement of fairness in one view
will hurt the fairness of other views.

Proof: Generally, the loss function of a multi-view graph
clustering algorithm for an M-view graph is

M M
tr(YT(ZLi -2 Yy, )Y> )
i=1 i=1

Without loss of generality, we consider a 2-view graph. Note
that the proof can be extended to the case of multi-view graphs.
Then, for a 2-view graph, the loss function of multi-view
spectral clustering is

r=tr(Y (L + Ly — A\Y Y] —AY2Y3)Y) (5)

And the corresponding bias of View 2 is
k
r, = (Y Lg,Y) =Y ylLs,y; (6)
j=1

where y; denotes the j-th column of matrix Y, i.e. the j-th
eigenvector of matrix Y. If we only enforce fairness on View
1 instead of View 2, the loss function should be

7 =tr(Y'(Ly + Ly + a1Ls, — AY;Y] =AY, Y1)Y)

(7
Then the bias of View 2 can be written as
k
7, = (Y Ls,Y) =) 37 Ls,3; (8)
j=1

By matrix perturbation theory [12], with the perturbation to a
matrix AL = L — L, without loss of generality, we consider
Lg, as AL. Then the new eigenvalues and eigenvectors can
be written as

Aj = Aj + ijALyj

- TALy
Vi=vit D G—A
I=1,1#j

Yi 9
v Av.
A — Ay Yi =Y+ Ay;



Then, we get
k k
P, = ¥, Ls, 5, = > (v; +Ay;) Ls, (v; + Ay;)
Jj=1 j=1
k
= ZijLSZyj +y, Ls,Ay;
j=1

+ AyJTLSQYj + ijTLsz ij

—rb2+z 7 Ls, ( Z YL 8 Y) leyj Y1)

1=1,l%#j Aj -

Ty,
Z AR Sly] y1) Ls,y; + Ay] Ls,Ay;]
1=1,1#j Aj -
k T
yi Ls,y;
=7“b2+22 Z (ﬁYlTLsij)
J=11=1,#5 7 !
k

+ Z Ay Ls,Ay;
=1

Ty, Ty,
—Tb2+22 Z Yi Sj\yj_YZA S2Yj
G=11=1,1%] J !

Nrb2+222yl

=1 1<y

+0(Ay?)

LS1yJYl Ls,y;
_ Al

Z Yi leyJYI LSzYJ]
= Aj— N

(10)
Since the eigenvalues are sorted in the ascending order, A; —

A; should be positive when [ < j and negative when [ > j.
Thus the second term in the last line can be positive, making
7y larger than rp,, which means that for a 2-view graph, only
enforcing fairness in View 1 can increase the bias in View 2.
And this conclusion can be generalized to a multi-view graph,
which means that only minimizing the bias of View ¢ (i.e.,
tr(UTLg,U)) can increase the bias of View j. |

Lemma 1 states that, as long as the eigenvalues of the node
similarity matrix satisfy certain condition, it is possible to
amplify bias on one view if we enforce individual fairness on
another view. In addition to the theoretical analysis, we further
conduct empirical evaluations on two datasets (Table II). From
the table, we can see that it is indeed possible that when
enforcing fairness in one view, the bias of another view is
amplified (i.e., Tp2 > 752).

B. iFiG from Multi-Objective Optimization Perspective

Intuitively, we can formulate iFiG problem as a regularized
optimization problem as Eq. (3). Straightforward as it is, ad-
dressing the well-known dilemma between utility and fairness
with Eq. (3) is challenging since it calls for a good choice of
regularization parameters {c; },, which often requires either
expert knowledge or exhaustive tuning on them.

Table II: Empirical evidence that enforcing individual fairness
on View 1 could increase the bias on View 2. 7y, and 74, are
the individual biases of View 2 with and without enforcing
individual fairness on View 1, respectively. See the dataset
description in Table IV.

Dataset Tho Th2 To2/Tb2
IMDB 0.4394 1.0437 2.3751
ACM 1.1376 5.1020 4.4849

To address this challenge, we develop its connection with a
multi-objective optimization (MOQO) problem

n%}n {ro(gmulti’ Y, 0)’
Tl(gla Y7 0) s TM(ngYa 9)}

where each loss function is associated with a regularization
parameter corresponding to an objective function to be op-
timized in the MOO problem.? Then, different choices of
regularization parameters correspond to different solutions to
the MOO problem. To this end, we first present the definition
of the Pareto front, which indicates the solution of a MOO
problem.

(1)

Definition 1. [13] (Pareo front) Given a set ) and a set of
view-specific loss functions r(Y), the set of Pareto front is

Pyy={Ye): Y €)Y <Y} (12)

where Y' <Y means Vi =0,..M + 1,7,(Y') < r(Y) Then
the corresponding Pareto front risks are denoted as

PRy ={reRM":Ix e Pyy,r=r(Y)} (13)

By Definition 1, Geoffrion [14] proves that a Pareto front
of the MOO problem in Eq. (11) corresponds to the solution
of a linear weighted problem.

Theorem 1. [I14] Given a multi-objective optimization prob-

lem

m{[n {ro(Y),r1(Y),...,rm(Y)} (14)
and a convex set ) such that Y € ), a set of convex loss
Sfunctions {r,(Y)}yev with respect to Y and a set of Pareto
front risks 7717}73, defined in Eq. (13), if Y* is a Pareto optimal
solution to MOO problem in Eq. (14), it is a solution to the

following linear weighted problem with some choice of c.
M

Vi€ PRyda:i =Y ami(Y)

=0

15)

a. The Pareto front is convex: Vr,r' € 77\7}77_[, A€
[0,1],3r" € Pl 7 2 A+ (1= M\)7’

b. Every Pareto solution is a solution to Vi € P\C‘:HHM :
F=r(p)
Proof: Omitted. [ |

2We assume the utility loss r(G™! Y, 0) is associated with a regulariza-
tion parameter as well. In Eq. (3), its regularization parameter is 1.



With Theorem 1, the Pareto front of the multi-objective
optimization problem corresponds to the optimal regularization
parameters of the following linear weighted problem.

M
mrin r= Zairi(Y) st. Ye)y (16)
i=0
Then, to find the best regularization parameters of Eq. (3), we
could find the Pareto front of Eq. (11) and the corresponding
regularization parameters of a linear weighted problem.
However, the Pareto front is often not unique, meaning
that there could be multiple different Pareto fronts of a given
multi-objective optimization problem. To find the Pareto front
of iFiG that achieves the best trade-off between utility and
fairness, we further require that the solution should satisfy
the Rawlsian difference principle [15], which asks that it is
impossible to make one individual better-off without making
at least one another worst-off. Mathematically, it can be
formulated as a minimax problem, where the solution should
minimize the maximum risk across all views and all loss
functions, which is formally defined in Definition 2.

Definition 2. (Minimax Pareto fair graph mining result) Y*
is minimax Pareto fair if it minimizes the worst view-specific
loss among all Pareto front results.
Y* € argmin maxr;(Y) = argmin||r(Y)| oo
YePy,y i€ YePy,y

We note that the Pareto fair result Y* belongs to a set thus
is not unique, neither is the corresponding risk r* = r(Y™*). To
obtain an optimal Y*, we assume that the convex hypothesis
is satisfied. Thus, for every loss r*, there is a weight vector
a* such that Y* is a unique solution for Eq. (16). In this case,
we can obtain Y* by computing the weighted vector a*.

C. iFiG: Algorithm

To compute * that corresponds to the minimax Pareto fair
graph mining results of Eq. (11), we follow the general proce-
dures of [13] and present our generic algorithmic framework
named iFiG in Algorithm 1. The general procedures of our
proposed iFiG framework are as follows. We first initialize
the loss function r with weights: o (step 1), then get the
largest loss of all views 7 (step 2). After that, we derive a
mask vector to determine which views entail losses that are
larger than the maximum current loss (step 3), we generate a
new set of weights (step 4), then update loss = (step 5) and
parameter K (step 6). If the largest loss in 7 is smaller than
maximum current loss 7 (step 7), meaning the new weights
reduce the maximum loss, we can update the outputs (step 8).
We repeat the above steps (step 3 - step 8) until convergence.

D. Instantiation #1: Multi-View Spectral Clustering

To instantiate iFiG (Algorithm 1) with multi-view spectral
clustering, we first present the following optimization problem
by integrating Eq. (1) and Eq. (2)

M
min z_; wr(Y'L,Y) - Mr(YTY, YY) + aitr (Y'Lg; Y)

A7)

Algorithm 1: iFiG: Individual Fairness on Multi-View
Graph Mining

input : initial weights o, adjacency matrices
{A}M ), similarity matrices {S;}?, loss
function: 7;(+), Kmin
output: weighted vectors o*, loss r*,
graph mining result Y*
1 initialize
2 Initialize graph mining result Y
Y, r(a) + argmin ) a;r;(Y) .
Yey

3 Get the maximum loss 7 < [|7(a)||o0; K 1.
4 while not converged do
5 Compute the mask vector

M1

Lo {1 (ri(a) 2 7)},2g
6 Update weighted vector

1— K
o (po+ Frr Le) ety
7 Update graph mining result and loss
Y, r(a) < argmin ) a;r;(Y)

Yey

8 Update step K < K +1
9 | if [[r(a)lle <7 then

10 Update the maximum loss 7 < ||7(@)|| 00,

11 Update step K < min (K, K ) ,

12 Update the results Y*, a*,7* + Y, o, r(x)

13 end

14 end

15 return weighted vectors o, loss r*, graph mining
result Y*

where A is the weighted parameter balanced coefficient for

merging different views. It is intuitive that Eq. (17) is a linear
weighted problem
M+1

r= Z a;ri, (; >0i=0,1,...., M + 1)
i=0

(18)

where the loss function and the corresponding coefficient are
presented in Table III. Then the optimal choice of weight
vector a = {ag, aq,...,ap41} that balances the utility (rg
and rp741) and fairness (r;, Vi = 1,..., M) can be obtained
by finding the Pareto front of the following multi-objective
optimization problem using iFiG.

m‘}n {ro(G™ Y, 9),
r1(G1,Y,0) ...y (G, Y, 0), 7“M+1(QM,Y79()1}9)

Note that a key step in initiating multi-view spectral clus-
tering with iFiG (Algorithm 1) is step 7, which finds the graph
mining results with the updated weight vector. To obtain the
mining result, Eq. (17) can be re-written as

M
min tr(Y ; (L; + a;Ls; — \Y,Y] )Y)
st. Y'Y=1

(20)



where Y € R™** is the representative subspace (i.e., a soft
clustering membership matrix) with k& being the number of
clusters. From Eq. (20), we observe that Y is essentially
the eigenvectors associated with k smallest eigenvalues of
Zij\il (Li + a;Ls; — )\YZ-YiT). Thus, debiasing multi-view
spectral clustering is spectral clustering on an augmented
graph whose graph Laplacian is Y2 | (Li+a;Ls; =AY, YT).

Table III: Notations for individual fairness in multi-view
spectral clustering.

View v Loss Function r Coefficient o
v=0 M a[UTL Uy o
v=1,2,...,M pstr[U7 Lg; Uy] Qw
v=M+1 —pa 3, r(UU,UTU) A

E. Instantiation #2: INFORM Post-processing

We present another example by instantiating iFiG (Algo-
rithm 1) with INFORM post-processing [6]. And the instanti-
ation is particularly useful in case the algorithm administrator
is not accessible to the mining model or the mining model is
too computationally expensive to be re-trained several times
(step 7 in Algorithm 1). We first formulate the instantiation as
a regularized optimization problem.

M
min ; Y = Yi[|% + astr (YL, Y)

2y

where Y; denotes the vanilla mining results of ¢-th view. Then

Eq. (21) can be represented as a linear weighted problem
M

r= Zairi, (; >0i=0,1,..., M)
i=0
where 7o = S0 IY — Y% and r; = tr (Y'Ls,Y) ,i =
1,..., M. Then we can instantiate iFiG and solve it from the
perspective of multi-objective optimization (MOO).
min {ro(G™"Y,Y,0),r1(G1,Y,0) ... 1as(Grr, Y, 0)}
(23)
Then, to update the mining results Y and the corresponding
risks with the updated weight vector (step 7), following [6],
we could efficiently find its closed-form solution by solving
the linear system Zﬁl(I + a;Lg,)Y = Zf\il Y, with any
linear system solver (e.g., conjugate gradient method).

(22)

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed iFiG algorithm
to answer the following questions.

RQ1. How effective is iFiG in multi-view graph clustering?
RQ2. How effective is iFiG in enforcing individual fairness?

A. Experimental Setup

Datasets. We test the proposed method on five datasets,
including one synthetic dataset and four real-world graphs. All
real-world graphs are publicly available. The statistics of these
datasets are summarized in Table IV. The detailed descriptions
of these datasets are as follows.

Table IV: Statistics of datasets.

Dataset # Views # Nodes # Edges # Clusters
254072
Synthetic 2 1000 >407
243074
6,106
DBLP 3 7,800 855 4
108,896
IMDB 2 3,550 66,428
13,778
Twitter 2 2,000 1,797 N/A
1,152
ACM 2 3,025 1,106,893
16,153

o Synthetic consists of two views following the same data
generation strategy and parameter settings in [1]. We refer
to [1] for more details.

o Twitter 3 is one of the biggest online social platforms. The
Twitter dataset [16] contains two views, where nodes are
users, and the edges represent the reply network and the
mentioned network, respectively. Here we sample 2,000
nodes from the dataset.

o IMDB * is an online database containing informa-
tion about movies, actors, and directors. The IMDB
dataset [17] consists of two views, whose nodes represent
movies, edges represent movie-actor-movie and movie-
director-movie relationships, respectively.

o DBLP > is a computer science bibliography website for
open bibliographic information. The DBLP dataset [18]
is a multi-view graph whose nodes are papers. The
dataset contains three views corresponding to paper-paper
citation relationship, paper-author-paper relationship and
paper-author-term-author-paper relationship, respectively.

e ACM © is a dataset extracted by Wang et al. [17]. It
contains 3025 papers published in KDD, SIGMOD, SIG-
COMM, MobiCOMM, and VLDB. There are 2 views in
the dataset whose edges are paper-author-paper relation-
ship and paper-subject-paper relationship, respectively.

Baseline Methods. We compare iFiG (Algorithm 1) with
several baseline methods. Each baseline method is briefly
summarized as follows.

o Spectral clustering (SC) [19] finds the soft cluster mem-
bership matrix of each node in a single-view graph by
analyzing the spectrum of its graph Laplacian. From an
optimization perspective, it is often solved by finding the
eigenvectors associated with the k smallest eigenvalues
where k is the number of clusters to find. In our exper-
iments, following the strategy in [3], we first preprocess
a flattened adjacency matrix A by getting the union of

3https://twitter.com/
“https://www.imdb.com/
Shttps://dblp.org/
Shttp://dl.acm.org/



the adjacency matrices of different views (Al[i, j] = 0 if
there is no edge between node ¢ and node j in any view,
and 1 otherwise) and then perform spectral clustering on
the flattened graph.

e SC-ML [10] applies spectral clustering to multi-layer
graphs using a dimensionality reduction framework. It
first considers each layer as a subspace and combines
the representations of all subspaces into a new target
subspace. Then, it is formulated as an optimization prob-
lem (Eq. (1)) and can be solved by performing spectral
clustering on a modified graph Laplacian.

e InFoRM [6] ensures individual fairness on mining plain
graph through Laplacian regularization on the pairwise
node similarity matrix of the graph (Eq. (2)). We first
adopt the same preprocessing strategy as SC to get the
flattened graph and then compute the node-node similar-
ity matrix using Jaccard similarity. The flattened graph
and the similarity matrix serve as the input of InFoORM
algorithm.

e Gen-FairSC [20] studies individually fair spectral clus-
tering on a single-view graph. It leverages a representa-
tion graph and requires the neighbors of a node in the
representation graph to be approximately proportionally
represented in the clusters. In our experiments, we use
the same pairwise node similarity matrix in InFORM as
the representation graph.

Evaluation Metrics. To answer RQ1, we measure the clus-
tering quality with three different metrics including accuracy
(Acc.), F1 score (F1) and normalized mutual information
(NMI). More specifically, for the first four datasets, we
compare the quality of predicted cluster assignment with the
ground truth using accuracy (Acc.), F1 score (F1) and NMI
score (NMI). Since we don’t have the ground truth for the
Twitter dataset, we evaluate the models by comparing the
NMI score between SC-ML antd( (g){tp)eTergg)lods. To answer
RQ2, we use Reduction =1 — ﬁ to measure the
relative reduction of individual bias where Y is the soft cluster
membership matrix obtained by SC-ML and Y™ is the soft
cluster membership matrix obtained by the baseline methods
or our proposed method. In the definition of relative reduction
Reduction, the numerator is the individual bias of the vanilla
SC-ML, while the denominator is the individual bias of the
baseline methods or our proposed method. Thus, it measures
to what extent the individual bias is reduced concerning SC-
ML without fairness considerations.

Parameter Settings. For the synthetic data, the weighted
parameter « is 0.6 in SC-ML and 10000 in InFoRM. For the
DBLP dataset, the weighted parameter « is 0.5 in SC-ML
and 10000 in InFoRM. For the IMDB dataset, the weighted
parameter « is 0.7 in SC-ML and 0.5 in InFoRM. For the
Twitter dataset, the weighted parameter « is 0.5 in SC-ML and
0.5 in InFoRM, we set the number of clusters to be 5 for a
relatively better clustering performance. For the ACM dataset,
the weighted parameter « is 0.6 in SC-ML and 10000 in
InFoRM. For iFiG the initial weights are 0.25 in the synthetic

dataset, IMDB dataset, Twitter dataset, and the ACM dataset
and 0.2 in the DBLP dataset.

Machine Configuration and Reproducibility. All codes are
written in Python 3.8, NumPy 1.20 and NetworkX 2.5. All
experiments are performed on a Linux server with 96 Intel
Xeon Gold 6240R CPUs. We will release the source code of
the proposed methods as well as the synthetic data upon the
publication of the paper.

Table V: Effectiveness results on multi-view graph clustering.
Higher is better.

Dataset Method Acc. F1 NMI Reduction
SC 50.3000 | 0.3371 | 0.0014 0.0040
SC-ML 50.1000 | 0.3344 | 0.0020 0
Synthetic InFoRM 67.4000 | 0.6643 | 0.1381 0.1068
Gen-FairSC | 49.9500 | 0.3331 | 0.0096 0.5731
iFiG (Ours) | 52.2000 | 0.3329 | 0.0223 0.6335
SC 30.6364 | 0.1181 | 0.0015 0.9979
SC-ML 30.6194 | 0.1172 | 0.0009 0
DBLP InFoRM 30.6025 | 0.1171 | 0.0012 0.9982
Gen-FairSC | 30.6533 | 0.1175 | 0.0009 0.6137
iFiG (Ours) | 30.6364 | 0.1175 | 0.0012 0.9984
SC 38.1408 | 0.2009 | 0.0034 0.9999
SC-ML 37.6056 | 0.1997 | 0.0040 0
IMDB InFoRM 38.0563 | 0.1937 | 0.0024 1.0000
Gen-FairSC | 37.7746 | 0.1839 | 0.0012 | —472.2874
iFiG (Ours) | 37.9155 | 0.2158 | 0.0055 1.0000
SC 35.0744 | 0.1738 | 0.0011 1.0000
SC-ML 35.0744 | 0.1739 | 0.0025 0
ACM InFoRM 35.0413 | 0.1730 | 0.0013 1.0000
Gen-FairSC | 35.0082 | 0.1729 | 0.0013 | —110.6294
iFiG (Ours) | 34.4132 | 0.2085 | 0.0073 0.9999
SC - - 0.2717 0.7662
SC-ML - - 1 0
Twitter InFoRM - - 0.2168 0.7958
Gen-FairSC - - 0.1605 1.0000
iFiG (Ours) - - 0.2896 0.8835

B. Main Result

Table V presents the quantitative results of iFiG and the
baseline methods on all datasets. Since Twitter does not have
ground truth for cluster assignment, we do not report the
accuracy (Acc.) and F1 score (F1) for all compared methods.
From the table, we observe that iFiG consistently mitigates the
bias (i.e., Reduction) without sacrificing too much accuracy
(i.e., Acc., F1 and NMI). We note that, due to different
magnitudes of reductions for different methods, the reduction
for IMDB and ACM are rounded up to 1. For ACM, we can
reduce the bias while preserving the performance in terms of
F1-score and NMI score. For the Twitter dataset, though Gen-
FairSC mitigates more bias than iFiG, its NMI is severely
reduced compared with all other methods.

In addition, the trade-off between accuracy/F1 score and
reduction results are shown in Figure 2. From the figure, we
observe that iFiG can reduce bias and at the same time without
losing too much accuracy in most cases.



Table VI: Effectiveness results on INFORM post-processing.
Higher is better.

Dataset Method Acc. F1 NMI Reduction
SC 50.9000 | 0.3628 | 0.0052 0.0042
SC-ML 50.1000 | 0.3356 | 0.0019 0
Synthetic InFoRM 50.0000 | 0.3351 | 0.0052 0.9999
Gen-FairSC | 49.3000 | 0.3302 | 0.0052 0.4935
iFiG (Ours) | 50.2000 | 0.3356 | 0.0024 0.9999
SC 28.7087 | 0.1119 | 0.0018 0.0091
SC-ML 30.2538 | 0.1129 | 0.0014 0
DBLP InFoRM 30.2538 | 0.1129 | 0.0014 0.9999
Gen-FairSC | 30.3871 | 0.1116 | 0.0046 | —164.5330
iFiG (Ours) | 30.6125 | 0.1135 | 0.0018 0.8420
SC 37.8028 | 0.2024 | 0.0014 1.0000
SC-ML 37.6901 | 0.1987 | 0.0020 0
IMDB InFoRM 37.4647 | 0.1915 | 0.0027 0.9999
Gen-FairSC | 37.7183 | 0.1827 | 0.0012 —7.1781
iFiG (Ours) | 38.1408 | 0.2127 | 0.0037 0.9999
SC 35.1074 | 0.1741 | 0.0032 1.0000
SC-ML 30.1074 | 0.1741 | 0.0041 0
ACM InFoRM 35.0413 | 0.1730 | 0.0013 0.9999
Gen-FairSC | 35.0413 | 0.1730 | 0.0013 —52.6667
iFiG (Ours) | 33.2893 | 0.1970 | 0.0664 0.9999
SC - - 0.1777 0.9819
SC-ML - - 1 0
Twitter InFoRM - - 0.1671 0.9999
Gen-FairSC - - 0.0022 | —121.6472
iFiG (Ours) - - 0.1793 0.9991

Evaluation results for post-processing are also shown in
Table VI. From these tables, we can see that our proposed
methods can effectively enforce fairness and at the same time
preserve the performance of spectral clustering.

C. Pareto Optimal Analysis

1) Weight analysis: Other than the performance on debias-
ing, we analyze how the weight parameters are related to loss
functions. Following [21], given a Pareto optimal solution r
with a weight vector «, any two loss functions 71,75 € r and
their weights oy, ag satisfy Z—:i = —% where the left hand
side can be represented as the trade-off between the risk of
View 1 (1) and the risk of View 2 (r3). Considering the weight
of utility loss oy and the weights of individual fairness of each
view «y, (1 =1, ..., M), the right hand side can be interpreted
as how enforcing individual fairness tr(UTLg,U) on each
view can lead to an increase in the utility loss. The slope
72‘—0 (i=1,2,..., M) for each dataset is shown in Table VII.
We find that in the synthetic dataset, the slopes of the two
views are the same, possibly for the reason that the data points
in two views are generated similarly. We also observe that
in the IMDB dataset, slopes of two views are approximately
—1 while in the DBLP dataset, slopes are approximately —1
for View 1 and 3 but smaller than 1 for View 2. Since the
slopes in the DBLP dataset are smaller than those in the IMDB
dataset, the trade-off of enforcing fairness in the DBLP dataset
is smaller.
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Figure 2: Trade-off between Accuracy/F1 and Reduction. Best
viewed in color. Red star represents iFiG. The dashed line
in each figure represents the reduction score of SC-ML. The
closer to upper right, the better trade-off between utility (i.e.,
Accuracy/F1) and fairness (i.e., Reduction).

2) Convergence analysis: We also analyze how losses
in different views {r; ﬁgl change during iterations. From
Figure 3, we observe that the view-specific losses converge to
their final values.

Table VII: Slope of each view.

Dataset View 1 View 2 View 3

Synthetic | —1.2925 | —1.2925 -
DBLP —0.4918 | —0.4918 | —0.3278
IMDB —1.7000 | —4.1000 -
Twitter —1.0000 | —5.0000 -
ACM —0.1546 | —0.1150 -

V. RELATED WORK

In this section, we review related work from the perspec-
tives of (1) multi-view graph mining and (2) fair graph mining.
A - Multi-view graph mining aims to explore real-world
networks where nodes are usually connected by different re-
lations for improving the performance of mining. As multiple
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Figure 3: An illustration of how losses change for each
iteration. The merging term is Zf\il tr(UU,UTU)

graph mining models have been proposed, there are also
many multi-view graph mining methods, the most common of
which is clustering. For clustering, Kumar et al. [1] propose
a multi-view spectral clustering approach that leverages co-
regularization to minimize the disagreement among clusters
from different views. Dong et al. [10] propose to combine
all views of a graph together with distance analysis on a
Grassmann manifold, then use the traditional spectral cluster-
ing method. Brbic and Kopriva [22] maximize the agreement
across different views by learning a joint subspace repre-
sentation across all views. Liang et al. [23] learn a unified
graph by preserving the view consistent parts while at the
same time removing the inconsistent parts. Pan and Kang [24]
propose a contrastive learning based clustering method for
multi-view attributed graphs considering noisy and incomplete
data. Wang et al. [25] propose to obtain weights of different
views automatically to unify all views. They also construct the
graph of each view and the unified graph jointly and produce
the final clusters without additional clustering steps. Fan et
al. [26] consider clustering on attributed multi-view graphs
and develop a graph autoencoder-based clustering framework
to model the multi-view graph information. Regarding repre-
sentation learning, Qu et al. [27] propose an attention-based
multi-view representation learning approach that weights each
view differently and focuses on the most informative views
for more robust representations across different views. Shi et
al. [2] learn multi-view graph embeddings by modeling the
view consistency (i.e., collaboration) and the view-specific
semantics (i.e., preservation) simultaneously. Cen et al. [28]
consider the embeddings for attributed multiplex heteroge-
neous networks and propose a unified framework that sup-
ports both transductive and inductive learning. Hassani and
Khasahmadi [29] leverage self-supervised learning to learn the
node-level and graph-level representations with mutual infor-
mation maximization in a contrastive manner. Jing et al. [30]
propose HDMI that learns node embeddings on multi-view
graphs considering intrinsic self-supervised signal. Khan and
Blumenstock [3] first merge different views using subspace
analysis, then apply a graph convolutional network for semi-
supervised node classification tasks.

B - Fair graph mining seeks to mitigate bias in graph
mining models, which is an emerging research topic. For group
fairness on graphs, a vast majority of existing works consider
single-view graphs only. Tsioutsiouliklis et al. [31] ensure
group fairness in PageRank [32]. Rahman et al. [33] extends
node2vec [34] with a fair random walk to ensure statistical
parity. Kleindessner et al. [5] divide nodes into clusters so
that every group is approximately proportionally represented in
each cluster. Our work differs from [5] in that we aim to ensure
individual fairness in clustering a multi-view graph, whereas
[5] considers group fairness on spectral clustering for a single-
view graph. Dai and Wang et al. [35] propose an adversarial
learning based framework to alleviate the bias in graph neural
networks (GNN) with limited sensitive information. For the
few works that consider graphs with multiple edge/node types,
Bose and Hamilton [8] propose an adversarial learning based
framework to learn fair graph embeddings for a collection
of sensitive attributes. Nevertheless, Bose and Hamilton [8]
consider a different type of fairness notion (i.e., group fairness)
from our work (i.e., individual fairness). Zeng et al. [9] ensure
group fairness in heterogeneous network embedding with a
variety of bias mitigation strategies, including sampling-based,
projection-based, and GNN-based techniques. Different from
Zeng et al. [9], we consider individual fairness on multi-
view graphs instead of group fairness on heterogeneous net-
works. Regarding individual fairness, Kang et al. [6] provide
the first principled study for individual fairness on single-
view graph mining. Dong et al. [36] propose a ranking-
based individual fairness definition to avoid direct distance
comparison. However, none of the existing works [6], [36]
considers individual fairness on multi-view graphs. There are
also other types of fairness considered in graph mining. For
example, through contrastive learning, Agarwal et al. [7] learn
counterfactually fair graph embedding. Ma et al. [37] use
Siamese networks [38] to ensure counterfactual fairness in
graph embeddings. Kang et al. [39] mitigate degree-related
bias in graph convolutional networks by analyzing the gradient
computation. Rahmattalabi et al. [40] propose a fair and robust
graph covering that ensures a certain proportion of nodes in
each demographic group are included in the mining results.

VI. CONCLUSION

In this paper, we study individual fairness in multi-view
graph mining (iFiG problem). We first provide both theoretical
and empirical analysis on the necessity of enforcing individual
fairness on multi-view graphs. Then we formulate the problem
as a linear weighted optimization problem and resort to the
minimax Pareto fairness, whose rationality is rooted in the
Rawlsian difference principle. Based on that, we propose an
effective solver named iFiG that minimizes the utility loss
while promoting individual fairness for each view. Moreover,
we conduct extensive experiments on diverse synthetic and
real-world datasets, demonstrating that the proposed method
is effective in mitigating the individual bias in a multi-view
graph while largely maintaining the performance of various
graph mining tasks.
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