
1

Differentiable Physics Simulation of
Dynamics-Augmented Neural Objects

Simon Le Cleac’h1,3, Hong-Xing Yu2, Michelle Guo2, Taylor Howell3, Ruohan Gao2,
Jiajun Wu2, Zachary Manchester3 and Mac Schwager1

Abstract—We present a differentiable pipeline for simulating

the motion of objects that represent their geometry as a continu-

ous density field parameterized as a deep network. This includes

Neural Radiance Fields (NeRFs), and other related models. From

the density field, we estimate the dynamical properties of the

object, including its mass, center of mass, and inertia matrix.

We then introduce a differentiable contact model based on the

density field for computing normal and friction forces resulting

from collisions. This allows a robot to autonomously build object

models that are visually and dynamically accurate from still

images and videos of objects in motion. The resulting Dynamics-

Augmented Neural Objects (DANOs) are simulated with an

existing differentiable simulation engine, Dojo, interacting with

other standard simulation objects, such as spheres, planes, and

robots specified as URDFs. A robot can use this simulation to

optimize grasps and manipulation trajectories of neural objects,

or to improve the neural object models through gradient-based

real-to-simulation transfer. We demonstrate the pipeline to learn

the coefficient of friction of a bar of soap from a real video of the

soap sliding on a table. We also learn the coefficient of friction

and mass of a Stanford bunny through interactions with a Panda

robot arm from synthetic data, and we optimize trajectories in

simulation for the Panda arm to push the bunny to a goal location.

Video: youtu.be/Md0PM-wv_Xg

Index Terms—Simulation and Animation, Contact Modeling,

Neural Object Representations, Differentiable Contact Simula-

tion, Real-to-Sim Transfer

I. INTRODUCTION

We present the Dynamics-Augmented Neural Object
(DANO), a novel object representation that augments a neural
object with dynamical properties, so that its motion under
applied forces and torques can be simulated with a differen-
tiable physics engine. We also propose a method for computing
contact forces due to collisions between the DANO and other
objects in the simulation. We specifically focus on neural
objects that are trained from RGB images only, and encode
their geometry through a neural density field—a continuous
density field represented as a deep neural network, such as the
Object-centric Neural Scattering Function (OSF [1]), which
is an object-centric NeRF [2], [3], or related models [4], [5].
DANOs capture both geometric and dynamical properties of
rigid objects from the underlying neural density field. This
allows a robot to build a dynamical simulation of an object

Toyota Research Institute (TRI) provided funds to support this work. This
work is also in part supported by Qualcomm, Amazon, NSF CCRI #2120095,
NSF RI #2211258, ONR MURI N00014-22-1-2740, and the Stanford Institute
for Human-Centered AI (HAI). (Corresponding author: Simon Le Cleac’h.
simonlc@stanford.edu)

1Multi-robot Systems Laboratory, Stanford University, California, USA.
2Stanford Vision Laboratory, Stanford University, California, USA.
3Robotic Exploration Laboratory, Carnegie Mellon University, Pennsylva-

nia, USA.

Images

Neural Object

Simulated trajectories

Video

Real Simulation

µ=0.5

µ=0.1

µ=0.9

Dynamics-augmented neural object (DANO)

Friction, mass,
inertia…

Appearance
& Geometry

Dynamics

Fig. 1: Our pipeline for simulating the motion of neural objects. A neural
object model such as a NeRF is trained from still images (top left), and
object trajectories are extracted from videos of the object in motion (bottom
left). Object mass and friction properties are computed and candidate surface
points and normals are sampled to produce a Dynamics-Augmented Neural
Object (DANO) (middle). The DANO is simulated in a differentiable physics
simulator interacting with planes, robots, and other rigid objects (right). The
resulting simulation can be used for real-to-simulation transfer, or to synthesize
robot behaviors, e.g., for manipulation.

from observed RGB images, and fine-tune that model through
real-to-sim transfer using videos of the object in motion.

The main challenge with neural density fields is that they
do not give a distinct object surface, and are better interpreted
as a differential probability of occupancy. Since contact forces
(friction and normal forces) arise from interactions between
surfaces, how does one simulate contact for objects with neural
density fields, which have no distinct surface? One naive
approach is to choose a single level set of the neural density
to stand in as the object surface, then compute a traditional
mesh model from this level set using, e.g., marching cubes
[6] and simulate motion with the resulting mesh. We show
that this leads to poor-quality meshes with significant spurious
artifacts that prevent accurate simulation. Instead, we propose
an inherently probabilistic differentiable model of contact for
objects with neural density fields, and derive Monte Carlo
techniques for computing contact forces under this model.
We show that this model can give high-fidelity simulation
trajectories nearly indistinguishable from trajectories simulated
with ground-truth knowledge of the 3D object geometry.

Our method is illustrated in Fig. 1. We first train a neural
object model to represent the object geometry implicitly as a
neural density field. We then compute a Monte Carlo estimate
of the mass, center of mass, and inertia matrix from the neural
density field, up to an unknown mass scale factor1. We propose
a Monte Carlo approach to simulate the contact forces (normals
and friction forces) based on sampled candidate surface points
and normals, as shown in Fig. 2, and integrate this contact

1The mass and inertia matrix can only be found up to a scale factor from
images and video alone. The mass scale factor can be resolved by observing
object trajectories with known forces, or contact interactions with other objects
of known mass, such as a known robot arm.

ar
X

iv
:2

21
0.

09
42

0v
3 

 [c
s.R

O
]  

13
 M

ar
 2

02
3

https://youtu.be/Md0PM-wv_Xg


2

Fig. 2: DANO obtained from a neural object model of the Stanford bunny. We
sample points (white dots) from the neural density field and compute the field
gradients (blue arrows) to obtain an approximate outward normal, which is
used to compute contact forces in our simulator. We estimate the mass, center
of mass (black dot), and inertia matrix by integrating over the neural density
field. A contact force (yellow arrow) due to the collision between the DANO
and the plane is applied at the centroid of the overlap volume (red dot), which
is exaggerated for visualization.

model within an existing differentiable physics simulator, Dojo
[7]. Using DANO models in Dojo, we demonstrate real-to-sim
transfer by obtaining, from real video sequences of a sliding
bar of soap, an estimate of the coefficient of friction of the
soap. We also estimate, from synthetic trajectory data, the
coefficient of friction and the missing mass scale factor for a
neural object model of a Stanford bunny. Finally, we leverage
the differentiability of the simulation pipeline to optimize a
trajectory in simulation for a robot arm to push the Stanford
bunny to a goal location. Our key contributions are:

• Estimating inertial and friction properties and sampling
candidate surface points and normals from a neural den-
sity field to form a Dynamics-Augmented Neural Object
(DANO).

• A differentiable formulation of rigid-body contact forces
for DANOs.

• Integration of DANO models with the Dojo differentiable
physics engine.

• Demonstration of the differentiable pipeline to learn phys-
ical properties from real videos and synthetic data, and to
optimize a pushing trajectory for a robot arm.

II. RELATED WORK

Extracting accurate object models from real perception data
to allow a robot to plan and interact with those objects is a
grand challenge in robotics with substantial existing work from
multiple related fields.

Dynamic NeRF. Recent years have witnessed an explosion
in neural scene representations [8], [9], [10]. In particular,
Neural Radiance Fields (NeRF) [2] have shown impressive
novel view synthesis results from real-world images without
any 3D input, indicating the promise to reconstruct both
appearance and geometry from only RGB images. To allow
modeling dynamics in addition to appearance, there have been
various extensions to NeRF for deformable objects [11], [12],
[13], [14], [15] and general motions [16], [17], [18], [19], [20].
However, these methods only fit given dynamic events from
videos without generalization ability to new scenes or novel
motions. The closest to our work are a few recent works that
aim to learn dynamic NeRFs for planning and control [21],
[22], [23]. Nevertheless, all of these focus on learning to
approximate dynamics by black-box latent representations

without accounting for the underlying physics, and thus they
cannot generalize to unseen motions or scenarios. In contrast,
our approach explicitly infers dynamic physical parameters,
and simulates motion in a dynamics engine that respects the
known laws of Newtonian mechanics. Because we rely on
a physics engine instead of a learned dynamics model, we
can predict motions in scenarios that are arbitrarily different
from the training data, including previously unseen collisions
between multiple neural objects, or between a neural object
and URDF robot models, or arbitrary arrangements of shape
primitives such as half-spaces, spheres, and capsules.

Real-to-Simulation. Some previous works have relied on
videos of the object in motion to identify parameters of a
dynamical model [24], [23], [25], [26], [27]. ACID [23] and
DiffCloud [25] focus on identifying models for deformable
objects, while we focus on rigid objects in this paper. Con-
tactNets [26] regresses a rigid contact model from observed
3D object trajectories obtained from videos of objects with
AprilTags [28]. ContactNets starts with a geometrical object
model, which can be fine-tuned through this trajectory data.
In contrast, we obtain our DANO model from untagged RGB
images without prior geometrical information, and fine-tune
mass and friction coefficients through untagged videos. Finally,
GradSim [27] combines a differentiable rendering tool and a
differentiable physics simulator. Our work differs from Grad-
Sim in two respects: GradSim represents objects as meshes,
while we leverage the neural density field learned directly from
images; GradSim demonstrates impressive system identifica-
tion capabilities in simulated environments, while we further
perform experiments with real-world data.

Differentiable Simulation. Differentiable simulators
promise the ability to back-propagate gradients through a
simulation rollout, to allow for optimization of simulation
parameters to fit observed data (System Identification), or to
optimize robot motions or robot policies. Several differentiable
rigid-body simulators have been recently proposed [7], [29],
[30], [31], [32]. They handle contact for simple shape
primitives (spheres, capsules, etc.) and more complex models
decomposed into a union of convex shapes. However, none of
them support the simulation of neural objects represented by
density fields. In this work, we propose a novel differentiable
contact model for rigid bodies represented by a neural density
field. We seamlessly embed this contact model into an existing
differentiable simulator, Dojo [7]. Note that the proposed
DANO and contact model can also be integrated with other
implicit integration-based differentiable simulators [30], [32].

III. OBJECT-CENTRIC NEURAL SCATTERING FUNCTION
(OSF) MODEL

We use a specific object-centric model2 called the Object-
Centric Neural Scattering Function (OSF) [1]. Unlike NeRFs,
which assume a static scene with fixed illumination, OSFs are
relightable and compositional. Thus, OSFs allow representing

2Object-centric means that the model represents a single object in a body-
fixed frame, and can be reposed through a rigid body transform with respect to
a global frame. In contrast, the large majority of neural scene representations
(like NeRF) have no notion of individual objects or poses.



3

dynamic scenes where objects can move and change appear-
ances (e.g., an object’s shadow changes with its pose), while
NeRFs do not support this purpose. OSFs are also relightable,
meaning they can render from a variety of different lighting
conditions.

More specifically, an OSF models a volumetric function
(x,!light,!out) ! (�, ⇢), where ⇢ = (⇢r, ⇢g, ⇢b) 2 R3 is the
cumulative radiance transfer to model the object appearance
and �(x) is the volumetric density that models the object
geometry. The ⇢ function takes as input a 3D point x 2 R3 in
the object coordinate frame, an incoming distant light direction
!light, and an outgoing radiance direction !out at that location,
while the density �(x) only requires the 3D point. The OSF
can be re-posed in a background scene, or with respect to
other neural objects through a pose transform applied to x,
�(Rx+ ⌧), where (R, ⌧) are a rotation matrix and translation
vector, respectively, defining the pose of the object. In this
work, we use the learned density field �(x) of the object as a
proxy for modeling its geometry. We do not use the appearance
information ⇢, though inferring dynamical properties such as
mass density and friction coefficient from appearance is a
promising direction for future work.

IV. DYNAMICS AUGMENTED NEURAL OBJECTS (DANOS)

In this section, we describe how to obtain a DANO from a
neural density field by estimating the mass, center of mass,
and inertia matrix directly from the field. We formulate a
probabilistic contact model, and detail computations for con-
tact forces between the DANO and a shape primitive (e.g.
a half-space, sphere, or mesh), and between two DANOs.
Ultimately, we integrate this contact model into the Dojo
simulator [7], which uses the implicit function theorem to
differentiate through the integrator3.

Estimating Mass, Center of Mass, and Inertia Matrix.

In an offline phase, we estimate the object’s mass, inertia
matrix, and center of mass by treating the neural density field
�(x) as a scaled mass density field. We compute Monte Carlo
estimates of the integrals that define the mass, inertia matrix,
and center of mass in terms of the mass density. Specifically,
we uniformly sample a set of points X from the density field
�(x), and compute the mass, inertia matrix, and center of mass
as:

�̄(x) =↵�(x), (1)

m =

Z

x2R3

�̄(x)dx ⇡
X

x2X

�̄(x), (2)

µ =
1

m

Z

x2R3

x�̄(x)dx ⇡ 1

m

X

x2X

x�̄(x), (3)

J =

Z

x2R3

�̄(x)(xT
xI � xx

T )dx ⇡
X

x2X

�̄(x)(xT
xI � xx

T ), (4)

3For tractability reasons, the gradient through collision detection is approxi-
mate, e.g. it does not take into account the differentiation of the contact normal
between two neural objects.

where we denote �̄ the volumetric mass density field, ↵ the
scaling factor, m the mass, J the moment of inertia, and µ the
center of mass. The parameter ↵ is the unknown mass scale
factor that can only be estimated from observed interactions
between the object and known forces or other objects of known
mass. We discuss the identification of this parameter, along
with friction parameters, in Sec. V.

We note that the scaled density field �̄ does not align well
with the full mass distribution of the real object on a point-
by-point basis. However, as illustrated in the experiments in
Sec. V, we find empirically that integrating over the density
field does give close enough approximations to the mass, center
of mass, and moment of inertia matrix to provide dynamically
plausible simulations. These estimates can serve as initial
guesses for a system identification method to further refine
them to match the real mass, center of mass, and inertia
matrix of the object. The scaled density field �̄ is the best
guess we can make from still images. However, incorporating
information from a video of the object in motion would allow
for refinement of these initial estimates and leads to more a
accurate estimation of these quantities.

Probabilistic Contact Model. Given the mass, centroid,
and inertia matrix of the neural object computed above, we
can simulate its behavior in free space. However, contact
interactions with the environment or with a robot require us to
compute normal and friction forces. In physics simulation, the
contact force direction and magnitude are computed to limit
interpenetration between the object and its environment [33],
[34]. This requires quantifying the location and the amount
of interpenetration between an object and its environment.
Classical formulations of contact interaction rely on signed
distance functions (SDFs) [32] to measure this quantity. With
neural objects, we only have access to the volumetric density
field � : R3 ! R+, which has no distinct notion of a surface.

The core idea behind our contact model is to measure the
amount of interpenetration between two objects. Given two
objects A and B, we measure the overlap as the integral,

 =

Z

x2R3

�
A(x)�B(x)dx, (5)

of the product of their density fields �A and �B over the whole
workspace R3. A probabilistic interpretation of this expression
gives an intuitive justification for this choice. Let us assume
that �A(x) = P (HA

x = 1) is the probability of hitting object
A when sampling a point x in R3. 4. Here, HA

x is a random
variable taking value 1 to indicate collision and 0 otherwise.
Then assuming H

A
x and H

B
x are independent random variables

(i.e., the shape of one object is independent of the shape
of the other), �A(x) · �B(x) = P (HA

x = 1 \ H
B
x = 1)

is the probability of hitting both objects A and B when
sampling point x. Finally,  (Eq. 5) represents the expected
interpenetration volume between objects A and B. We let the
amount of repulsive force applied between objects A and B

be proportional to  .
Additionally, we compute the expected centroid of the

interpenetration volume. This is the geometric center of the

4In practice, � is an unnormalized density field; nevertheless, our contact
model only requires computing volume  up to a scaling factor.



4

Fig. 3: Left: contact between a DANO (A) and the ground (half-space B).
Each point sampled on the density field below ground level contributes to
the repulsive force on the DANO. Points with a larger density value generate
more force. The repulsive forces are applied at point �, which represents the
geometric center of the interpenetration volume between object A and B. The
direction of the repulsive force is the outward normal of the half-space. Right:
contact between two DANOs. Points, where both objects have large density
values, generate large repulsive forces. Each repulsive force is directed along
its local density field gradient and contributes to the overall contact normal
proportionally to its magnitude.

interpenetration volume and the point at which we apply the
repulsive contact forces,

� =
1

 

Z

x2R3

x�
A(x)�B(x)dx, if  6= 0. (6)

When  = 0, there is no interpenetration, and the computation
of � is unnecessary.

Neural Object Sampling Procedure. Exact computation
of the integrals in Eq. (5, 6) are intractable. We approximate
them using a Monte-Carlo sampling scheme. As with the mass,
center of mass, and inertia matrix computations, we sample
a set of points X uniformly from the neural density field
�(x) workspace. For contact interactions, we keep the points
between a minimal and maximal density value and discard the
rest, since low-density points tend to be outside the object,
and high-density points tend to be farther in the interior of the
object. This biases the sampling of points towards the boundary
of the object. This way, we densely cover the boundary of
the object while limiting the number of sample points for
computational efficiency. In all the experiments presented in
this paper, we use 5000 sample points. We denote X

A the set
of NA points sampled from object A.

Contact Between Neural Object & Shape Primitive. To
illustrate our contact model, we choose a simple scenario (Fig.
3, left) where a neural object A collides with the ground
represented by a half-space B. The shape primitive can be
expressed as B = {x 2 R3|f(x)  0} where, for example,
f(x) = a

T
x + b for a half-space, or f(x) = ||x � c|| � r for

a sphere with center c and radius r. We represent the density
function for the shape primitive as �

B(x) = 1x2B, where
1 denotes the indicator function. Finally, we approximate the
interpenetration volume and its centroid Eq. (5, 6) as sums
over sampled points:

 ⇡ 1

N

X

x2XA

�
A(x)�B(x) =

1

N

X

x2XA\B

�
A(x), (7)

� ⇡ 1

 N

X

x2XA\B

x�
A(x). (8)

Each sampling point x 2 X
A is expressed in a frame attached

to object A. Thus the value of �A(x) is independent of the
position and orientation of objects A and can be computed
offline. Translations and rotations of object A influence the

TABLE I: Contact model parameters. For each parameter, we provide a
nominal range of values that produce realistic physical behavior. Additionally,
we describe how changing this value affects the simulation.

parameter min max effect

impact spring 104 105 % stiffer impact
impact damper 105 106 % more stable simulation
sliding friction 0 1 % less sliding

sliding drag 0 0.1 % more stable simulation
rolling friction 0 0.1 % less rolling

rolling drag 0 0.1 % more stable simulation
torsional friction 0 0.1 % less spinning

torsional drag 0 0.1 % more stable simulation

values of  and �, modifying the number of sampling points
belonging to B. For example, if object A is positioned halfway
through the ground,  will be large, whereas if object A is
above the ground,  should be close to zero. Since �A(x) is
pre-computed, we can simulate contact without resampling the
density field online. The contact normal n is the outward facing
normal to the shape primitive computed at the point �, e.g.
n = (��c)/||��c||2 for a sphere centered in c. We implement
this to simulate contact with half-spaces and spheres, but this
approach generalizes to a variety of shape primitives, including
capsules, boxes, and compositions of shape primitives.

Contact Between Two Neural Objects. We follow the same
approach to model contact between two neural objects A and
B (Fig. 3 right). We process object A’s density field to extract
a set of NA sampled points XA expressed in a frame attached
to object A. We do the same for object B. Then our Monte-
Carlo sampling scheme gives

 ⇡ 1

NA +NB

X

x2XA[XB

�
A(x)�B(x), (9)

� ⇡ 1

 (NA +NB)

X

x2XA[XB

x�
A(x)�B(x). (10)

We precompute �A(xA) for all xA in X
A and �B(xB) for all

x
B in X

B . However, the value of �A(xB) for x
B in X

B

varies with the relative configuration of objects A and B.
Thus, we compute these quantities online each time the relative
position of the two objects changes. Identifying the normal to
the contact requires both offline and online computing. Offline,
we sample outward facing normals aligned with the neural
density field gradient n(x) = �rx�(x)/||rx�(x)||2 using
a finite-difference scheme (blue arrows Fig 2). Online, we
compute the normal n to the contact as a weighted average
of the offline sampled contact normals,

n̄ ⇡
X

x2XA

n
A(x)�A(x)�B(x)�

X

x2XB

n
B(x)�A(x)�B(x)

where n = n̄/||n̄||2. The minus sign accommodates for the
opposite direction of nA(x) and n

B(x) as illustrated in Fig 3.
Computing Contact Forces. We compute contact forces

and torques proportional to the interpenetration volume  ,
applied at the centroid of the interpenetration volume �, and
applied in the direction normal to the contact surface, as shown
in Fig. 4). We define the linear velocity v 2 R3 of point �
attached to frame A with respect to frame B, and the angular



5

Fig. 4: Contact modeling between a DANO A and a primitive shape B (half-
space). All forces and torques are applied at the centroid of the interpenetration
volume �. The normal force Fn opposing contact interpenetration is applied
along the contact normal n. A tangential force Ft modeling sliding friction is
applied. This force opposes the velocity of the point � in the plane tangential
to the contact. Similarly, rolling friction is applied via a torque ⌧t in the
tangential plane. Finally, ⌧n generates torsional friction.

velocity ! 2 R3 of frame A with respect to frame B. We
apply a force normal to the contact to oppose interpenetration,

Fn = � 
⇣
Ispringn+ Idampervn

⌘
, (11)

where n is the unit vector normal to the contact, and vn is the
component of the velocity v normal to the contact.
Ispring and Idamper are parameters modeling the stiffness

of the contact. We apply a force tangential to the contact to
oppose relative sliding between objects A and B

Ft = �||Fn||
✓
Sfriction

vt

||vt||
+ Sdragvt

◆
, (12)

where vt is the tangential component of v, Sfriction and Sdrag
are parameters modeling dry and viscous frictions. We apply
a torque normal to the contact to encode torsional friction,

⌧n = �||Fn||
✓
Tfriction

!n

||!n||
+ Tdrag!n

◆
, (13)

where !n is the normal component of !, Tfriction and Tdrag
are parameters modeling dry and viscous torsional frictions.
Finally, we apply rolling friction that opposes the relative
rotation of object A with respect to object B when they are in
contact,

⌧t = �||Fn||
✓
Rfriction

!t

||!t||
+Rdrag!t

◆
, (14)

where !t is the tangential component of !, Tfriction and
Rdrag are parameters modeling dry and viscous rotational
frictions. In Table I, we provide default values and an expla-
nation of the effect of each parameter on contact simulation.
We acknowledge that the simple contact model proposed in
this paper is subject to creep, (e.g. an object slowly slides
on an inclined plane instead of sticking). This is a limitation
commonly seen in many existing physics engines [35]. To
address this issue, an optimization-based modeling of friction
forces and torques, as proposed in [7], could be implemented.
To include contact normal and tangential forces and torques
in the simulator, we compute F the contact force applied by
body B on body A expressed in the world frame, ⌧ the torque
evaluated at the center of mass µ of body A expressed in body
A’s frame,

F = Fn + Ft, (15)
⌧ = ⌧n + ⌧t +

�!
µ�⇥ F. (16)

t = 0.0s t = 0.2s t = 1.0s
Fig. 5: We simulate an environment with a sphere hitting two neural objects
(Stanford bunnies). During simulation, the two neural objects make and break
contact propagating the impulse provided by the hitting sphere.

initial
guess

learned

ground
truth

t = 0.0s t = 0.14s t = 0.28s

0 5 10
0

0.5

1

iterations

pr
ed

ic
tio

n
er

ro
r

(a) Left: we visualize how closely the dynamics-augmented neural
object with learned friction matches the ground-truth trajectory. Top:
simulated trajectory poorly matching the ground truth using an initial
guess for the sliding friction coefficient. Middle: simulated trajectory
closely matching the ground-truth trajectory with learned sliding friction
coefficients. Bottom: ground-truth trajectory extracted from a video of the
soap sliding on the ground. Right: the trajectory prediction error (Problem
17) rapidly decreases after a few Newton steps.

initial
guess

learned

ground
truth

t = 0.0s t = 0.2s t = 2.0s

0 10 20
0

0.5

1

iterations

pr
ed

ic
tio

n
er

ro
r

(b) Left: we learn the mass, inertia scaling, and sliding friction coefficient
of the bunny through interactive perception. We use a spherical end effector
to push a neural object (bunny). This interaction facilitates the identification
of dynamics parameters such as mass. Right: we closely match ground-truth
parameters and trajectories using a dataset of 10 pushes.

Fig. 6: Results on system identification.

We use a first-order variational integrator identical to
Dojo’s [7]. In addition, forces related to neural object con-
tacts are computed explicitly at the current configuration and
integrated over one time step. To illustrate the DANO and
contact force model described above in a complex simulation
scenario, we show a simulation run with contact interactions
between two Stanford bunny DANOs, a sphere, and a half-
space (ground) in Fig 5. Please refer to the supplemental
video youtu.be/Md0PM-wv_Xg for animations of multiple
different simulation scenarios. An implementation in the Julia
language of the method and applications is publicly available
github.com/dojo-sim/Dojo.jl/tree/DANO.

V. APPLICATIONS

In this section, we use a DANO model of a bar of soap
acquired from real images of the soap. We find the coefficient
of friction of the soap from a real video of the soap sliding
on a table. We then use a DANO model of the Stanford
bunny (acquired from synthetic images of the bunny) to find
the friction coefficient and mass scaling coefficient of the
bunny (in simulation). Finally, we optimize a robot trajectory
in simulation for pushing the bunny to a goal location using
the differentiability of the simulation pipeline.

https://youtu.be/Md0PM-wv_Xg
https://github.com/dojo-sim/Dojo.jl/tree/DANO


6

A. System Identification

We demonstrate how we can leverage differentiable sim-
ulation to efficiently estimate the dynamical properties of
the DANO from object trajectories. For a given object, we
parameterize our dynamics model with a vector ✓ 2 Rd. This
vector can include contact-model parameters, such as sliding
or rolling-friction coefficients, and dynamics parameters, such
as the mass and inertia of the object. We learn ✓ by minimizing
the distance between a ground-truth trajectory and a simulated
trajectory starting from the same initial conditions.

minimize
✓

PT
t=2 kx̂t � xtk2W

subject to xt+1 = f(xt; ✓), t = 1, . . . , T � 1,
x1 = x̂1,

✓min  ✓  ✓max,

(17)

where we indicate ground-truth quantities with the ˆ symbol,
x1 is the system’s initial condition, k ·kW is a weighted norm,
f is the dynamics parameterized by ✓, and T is the number
of time steps. ✓min and ✓max are bounds on the parameters
enforcing basic constraints; for example, mass and friction
coefficients necessitate positive quantities. Leveraging the sim-
ulator’s differentiability i.e., f ’s derivatives, we apply the
Gauss-Newton method [36] to learn the system’s parameters.

Soap Bar. We apply system identification on real-world
data (Fig 6a). We train an OSF model from a set of still
images of a semi-translucent soap bar. Then we extract a
pose trajectory from a video of the soap bar sliding on
the ground. We formulate the pose tracking as a frame-
wise optimization problem using only geometric information:
minpkT (p)�Mk2 + kB(T (p))�B(M)k2, where p denotes
the object pose at the current frame, M denotes a binary
object mask extracted from the frame (we use the U2Net [37]),
T (p) denotes the accumulated transmittance map rendered
using object pose p, and B(·) denotes the barycenter of the
mask/transmittance map. The accumulated transmittance map
is computed along with the volume rendering process [2], and
the barycenter can be easily computed by the weighted mean
of the mask/transmittance map multiplied by pixel coordinates.
We solve this optimization problem using the Adam optimizer
for all video frames to obtain the pose trajectory.

We learn the sliding friction coefficient between the soap and
the table from this trajectory. The optimization process takes
2.0 seconds on a laptop equipped with an Intel i7-8750H CPU
and 16GB of RAM. The resulting trajectory simulated with
learned friction closely matches the ground-truth trajectory. To
find the ground truth coefficient of friction, we experimentally
collected trajectory data where the bar of soap is sliding on a
tilted plane with a known angle. We obtained a ground-truth
value of Sfriction = 0.75 which is close to the value obtained
from system identification: Sfriction = 0.61.

Stanford Bunny. In simulation, we leverage interactive
perception [38] to identify the mass scaling factor ↵ from (2),
and sliding friction coefficient between a dynamics-augmented
neural object and a surface (Fig. 6b). We implement a simple
policy where the end effector pushes the DANO bunny with
a known force, thereby allowing the identification of both
the mass scale factor and friction coefficient. We successfully

t = 0.0s t = 0.7s t = 1.1s
Fig. 7: We solve a push-and-slide task using trajectory optimization. The
objective is to push a dynamics-augmented neural object (bunny) using a
fully-actuated spherical end effector (Panda arm). The goal positions of the
end effector and the bunny are shown with white and black circular targets,
respectively. Leveraging the simulator’s differentiability, we optimize with a
gradient-based solver a highly dynamic trajectory where the bunny slides to
reach its target position.

identify these parameters with less than 1.5% relative error
from 10 pushing trajectories.

B. Trajectory Optimization
Simulating the DANO in a differentiable simulator such as

Dojo [7] allows us to optimize robot trajectories that involve
contact (e.g., grasping, manipulation, or pushing) using ex-
isting gradient-based optimization frameworks. For trajectory
optimization, we minimize a cost functional over a time-
discretized trajectory of the robot while respecting state and
control-input constraints,

minimize
x1:T ,u1:T�1

PT�1
t=1 lt(xt, ut) + lT (xT )

subject to xt+1 = ft(xt, ut), t = 1, . . . , T � 1,
x1 = x̂1,

ct(xt, ut)  0, t = 1, . . . , T � 1,
cT (xT )  0,

(18)

where the subscript t indicates the time step, T is the number
of time steps, x is the system state, u is the control input,
x̂1 is the system’s initial conditions, lt and lT are stage and
final cost functions respectively, ct and cT are stage and final
constraints respectively, and ft is the dynamics.

We optimize dynamic behaviors with contact on a push-
and-slide task (Fig. 7). Specifically, a simulated Panda robot
arm tries to push a DANO model of the Stanford bunny to a
goal location, and return the Panda’s end effector to another
goal location. We use a constrained iterative linear quadratic
regulator (iLQR) solver [39], [40], which exploits gradients of
the simulation.

VI. COMPARISON WITH MESH-BASED SIMULATION

It is natural to ask whether our DANO approach offers
benefits over an approach leveraging existing methods and
tools. A reasonable approach could be to convert the neural
object representation into a mesh and pass this representation
to an existing differentiable simulator. In this section, we inves-
tigate this approach to point out several unforeseen difficulties
emerging with mesh-based simulation methods.

Level-set Selection. To extract a mesh from a neural density
field, we apply the Marching Cubes algorithm [6], [41] on
the underlying OSF density field. This extraction requires
picking a single density level set from the OSF, which begs the
question, which density value should we choose? To answer
this question, we extract a series of 3 meshes from an OSF
density field of a bar of soap (constructed from real images).
Similarly to DANO, we augment these level-set objects with
dynamical properties (e.g. mass, inertia, friction). Then we



7

simulate these level-set objects in an existing physics engine:
MuJoCo [35]. Simulation results and visualizations of the
level-set objects are presented in Figure 8. Finding a suitable
density value is a labor-intensive task, as visual inspection of
the generated mesh is often not sufficient due to small masses
floating around the object.

Mesh Artifacts. Once a density value is chosen, the result-
ing level-set object often features mesh artifacts preventing
accurate contact simulation. For lower-density values (Fig.
8(a)), contact interaction with the ground is inaccurate due
to masses floating around the object. Small artifacts persist
even for larger-density values (Fig. 8(b)) and dictate the
contact interactions. In contrast, DANO’s contact model is
less sensitive to such artifacts. Indeed, small volumes with
high densities floating around the object will contribute little
to the contact interaction (Eq. 5). For higher-density values
(Fig. 8(c)), the object is mostly void, and contact interaction
with robotic hardware such as a 2-finger gripper cannot be
accurately simulated. To the best of our knowledge, there is
no standard algorithm for fixing either of these two types of
artifacts. Fixing these issues might require manual intervention
or labor-intensive tuning of an ad-hoc method. Figure 8(d)
shows an image of the true object and Fig. 8(e) shows the pose
of our DANO lying flatly on the ground at rest, but rendered
with a mesh for easy visualization. Please note the poor quality
of the mesh in Fig. 8(d) has nothing to do with the physics
simulation, and is just for visualization.

Contact Simulation. Finally, existing physics engines tar-
geting robotics applications have limited support for mesh-
represented objects. Among the major simulators: MuJoCo
[35], Bullet [32]; none can directly simulate non-convex mesh-
represented objects5. A pre-processing step decomposing the
object into a set of convex shapes is required. Voxelized
Hierarchical Approximate Convex Decomposition (V-HACD)
[42] is a commonly used algorithm with its own set of tuning
parameters; prominently the number of convex shapes used to
represent the object.6 Comparatively, DANO’s approach has
been demonstrated with non-convex objects like the Stanford
bunny (Figure 6 & 7) without requiring additional convex
decomposition, manual tuning, or multiple algorithmic stages
with human oversight and input.

Overall, the traditional mesh-based simulation approach
requires, in practice, multiple mesh processing steps and labor-
intensive parameter tuning involving several arbitrary choices
(density value selection, convex decomposition). Our DANO
approach bypasses mesh-related issues by directly operating
on the density field.

VII. DISCUSSIONS

We presented the Dynamically-Augmented Neural Object
(DANO), which appends a neural object model with essential
dynamical information, making its motion simulatable in a
physics simulation environment. We also propose a contact

5For instance, MuJoCo approximates non-convex meshes with a convex
hull.

6For completeness, we mention that we applied a convex-decomposition to
each level-set mesh [43]. However, due to the chaotic surface of the meshes,
the resulting decomposition featured sharp and tiny convex shapes that were
not handled by the MuJoCo simulator.

� = 0.03 � = 0.70 � = 1.00

(d) (e)

(a) (b) (c)

Fig. 8: (a, b, c) Meshes extracted from 3 different level set values of the
neural density, simulated lying on the floor at rest in MuJoCo. (a) With a low
level-set value of � = 0.03, spurious mesh artifacts float around the actual
soap bar, preventing it from actually contacting the floor. (b) The level-set
value � = 0.70 best captures the original shape of the soap bar, but there
are still spurious artifacts that cause the soap to lie on the ground with an
unnatural tilt. (c) The level-set � = 1.00 allows the soap to lie flat on the
floor; however, the object is mostly void, leading to inaccurate mass, center of
mass, and inertia matrix computations. Simulations with contact will be highly
unreliable when most of the object is modeled as free space. (d) Picture of
the soap bar, (e) Simulation of the DANO at rest on the floor, it lies flat safely
ignoring spurious artefacts.

force model to compute normal and friction forces for the
DANO. We see these tools as an effort to bridge the gap
between perception and simulation in robotics. Ultimately, we
hope this work is a step towards endowing a robot with the
ability to autonomously build its own physics simulations of
its environment using only its own sensor inputs—an essential
ingredient of robot spatial intelligence.

Limitations. Our method does have some noteworthy limi-
tations. (i) One limitation of our method is that out current
implementation applies forces at a single point. One could
instead consider all the sampled points independently to better
handle torsional friction and strongly non-convex objects. (ii)
Additionally, articulated body and soft body contact simulation
is an interesting and important topic for future research. These
kinds of objects are not covered in our current work, as
rigid body objects present many challenges on their own. (iii)
Another limitation of our method is that extracting rigid body
pose trajectories from RGB video is challenging. Our pose
extraction method in Sec. V-A uses a 2D mask-based loss,
which has numerous local minima for object orientation and
thus is sensitive to initialization. A better approach would be
to solve for the pose trajectory by minimizing the photometric
error between the actual video and a video generated by the
neural object renderer and the differentiable simulator together.
(iv) This points to the second limitation, which is that the
method in this paper stops one step short of integrating the
dynamics simulator with the renderer to give a differentiable
end-to-end “torques-to-pixels” simulator. This is possible with
the tools we describe, and we plan to pursue this as our
immediate next step. Finally, (v) in real videos, the apparent
color of a point on the object changes as it moves relative to the
ambient light field, changing reflections, specularity, shadows,
and color. We ignore these effects in this paper, although it
is possible to reproduce such effects with the OSF model. It
would be interesting to attempt to capture these lighting effects



8

in an end-to-end differentiable “torques-to-pixels” simulator.

REFERENCES

[1] H.-X. Yu, M. Guo, A. Fathi, Y.-Y. Chang, E. R. Chan, R. Gao,
T. Funkhouser, and J. Wu, “Learning object-centric neural scattering
functions for free-viewpoint relighting and scene composition,” arXiv
preprint arXiv:2303.06138, 2023.

[2] B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi,
and R. Ng, “NeRF: Representing scenes as neural radiance fields for view
synthesis,” in European Conference on Computer Vision, pp. 405–421,
2020.

[3] B. Yang, Y. Zhang, Y. Xu, Y. Li, H. Zhou, H. Bao, G. Zhang, and Z. Cui,
“Learning object-compositional neural radiance field for editable scene
rendering,” in Proceedings of the IEEE/CVF International Conference
on Computer Vision, pp. 13779–13788, 2021.

[4] R. Gao, Y.-Y. Chang, S. Mall, L. Fei-Fei, and J. Wu, “ObjectFolder: A
dataset of objects with implicit visual, auditory, and tactile representa-
tions,” in Conference on Robot Learning, 2021.

[5] R. Gao, Z. Si, Y.-Y. Chang, S. Clarke, J. Bohg, L. Fei-Fei, W. Yuan, and
J. Wu, “Objectfolder 2.0: A multisensory object dataset for sim2real
transfer,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2022.

[6] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolution 3d
surface construction algorithm,” ACM SIGGRAPH Computer Graphics,
vol. 21, no. 4, pp. 163–169, 1987.

[7] T. A. Howell, S. Le Cleac’h, Z. Kolter, M. Schwager, and Z. Manch-
ester, “Dojo: A differentiable simulator for robotics,” arXiv preprint
arXiv:2203.00806, 2022.

[8] V. Sitzmann, M. Zollhöfer, and G. Wetzstein, “Scene representation
networks: Continuous 3D-structure-aware neural scene representations,”
in Advances in Neural Information Processing Systems, 2019.

[9] J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove,
“DeepSDF: Learning continuous signed distance functions for shape rep-
resentation,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 165–174, 2019.

[10] L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger,
“Occupancy networks: Learning 3D reconstruction in function space,”
in Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 4460–4470, 2019.

[11] K. Park, U. Sinha, J. T. Barron, S. Bouaziz, D. B. Goldman, S. M. Seitz,
and R. Martin-Brualla, “Nerfies: Deformable neural radiance fields,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 5865–5874, 2021.

[12] A. Pumarola, E. Corona, G. Pons-Moll, and F. Moreno-Noguer, “D-
NeRF: Neural radiance fields for dynamic scenes,” in Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 10318–10327, 2021.

[13] E. Tretschk, A. Tewari, V. Golyanik, M. Zollhöfer, C. Lassner, and
C. Theobalt, “Non-rigid neural radiance fields: Reconstruction and
novel view synthesis of a dynamic scene from monocular video,” in
Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 12959–12970, 2021.

[14] K. Park, U. Sinha, P. Hedman, J. T. Barron, S. Bouaziz, D. B. Goldman,
R. Martin-Brualla, and S. M. Seitz, “HyperNeRF: A higher-dimensional
representation for topologically varying neural radiance fields,” ACM
Transactions on Graphics (TOG), vol. 40, no. 6, pp. 1–12, 2021.

[15] L. Liu, M. Habermann, V. Rudnev, K. Sarkar, J. Gu, and C. Theobalt,
“Neural actor: Neural free-view synthesis of human actors with pose
control,” ACM Transactions on Graphics (TOG), vol. 40, no. 6, pp. 1–
16, 2021.

[16] Z. Li, S. Niklaus, N. Snavely, and O. Wang, “Neural scene flow fields
for space-time view synthesis of dynamic scenes,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 6498–6508, 2021.

[17] W. Xian, J.-B. Huang, J. Kopf, and C. Kim, “Space-time neural irradi-
ance fields for free-viewpoint video,” in Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 9421–
9431, 2021.

[18] Y. Du, Y. Zhang, H.-X. Yu, J. B. Tenenbaum, and J. Wu, “Neural
radiance flow for 4D view synthesis and video processing,” in IEEE/CVF
International Conference on Computer Vision (ICCV), pp. 14304–14314,
2021.

[19] S. Peng, Y. Zhang, Y. Xu, Q. Wang, Q. Shuai, H. Bao, and X. Zhou,
“Neural body: Implicit neural representations with structured latent codes
for novel view synthesis of dynamic humans,” in Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pp. 9054–9063, 2021.

[20] C. Gao, A. Saraf, J. Kopf, and J.-B. Huang, “Dynamic view synthesis
from dynamic monocular video,” in Proceedings of the IEEE/CVF
International Conference on Computer Vision, pp. 5712–5721, 2021.

[21] D. Driess, Z. Huang, Y. Li, R. Tedrake, and M. Toussaint, “Learning
multi-object dynamics with compositional neural radiance fields,” arXiv
preprint arXiv:2202.11855, 2022.

[22] Y. Li, S. Li, V. Sitzmann, P. Agrawal, and A. Torralba, “3D neural
scene representations for visuomotor control,” in Conference on Robot
Learning, pp. 112–123, 2022.

[23] B. Shen, Z. Jiang, C. Choy, L. J. Guibas, S. Savarese, A. Anandkumar,
and Y. Zhu, “ACID: Action-Conditional Implicit Visual Dynamics for
Deformable Object Manipulation,” arXiv preprint arXiv:2203.06856,
2022.

[24] Q. Le Lidec, I. Kalevatykh, I. Laptev, C. Schmid, and J. Carpentier,
“Differentiable simulation for physical system identification,” IEEE
Robotics and Automation Letters, vol. 6, no. 2, pp. 3413–3420, 2021.

[25] P. Sundaresan, R. Antonova, and J. Bohgl, “Diffcloud: Real-to-sim from
point clouds with differentiable simulation and rendering of deformable
objects,” in 2022 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), pp. 10828–10835, IEEE, 2022.

[26] S. Pfrommer, M. Halm, and M. Posa, “ContactNets: Learning of dis-
continuous contact dynamics with smooth, implicit representations,” in
Conference on Robot Learning, 2020.

[27] J. K. Murthy, M. Macklin, F. Golemo, V. Voleti, L. Petrini, M. Weiss,
B. Considine, J. Parent-Lévesque, K. Xie, K. Erleben, et al., “gradSim:
Differentiable simulation for system identification and visuomotor con-
trol,” in International Conference on Learning Representations, 2020.

[28] E. Olson, “Apriltag: A robust and flexible visual fiducial system,” in 2011
IEEE international conference on robotics and automation, pp. 3400–
3407, IEEE, 2011.

[29] F. de Avila Belbute-Peres, K. Smith, K. Allen, J. Tenenbaum, and
J. Z. Kolter, “End-to-end differentiable physics for learning and control,”
Advances in neural information processing systems, vol. 31, 2018.

[30] K. Werling, D. Omens, J. Lee, I. Exarchos, and C. K. Liu, “Fast and
feature-complete differentiable physics for articulated rigid bodies with
contact,” in Robotics: Science and Systems Conference (RSS), 2021.

[31] C. D. Freeman, E. Frey, A. Raichuk, S. Girgin, I. Mordatch, and
O. Bachem, “Brax–A differentiable physics engine for large scale rigid
body simulation,” arXiv preprint arXiv:2106.13281, 2021.

[32] E. Heiden, D. Millard, E. Coumans, Y. Sheng, and G. S. Sukhatme,
“NeuralSim: Augmenting differentiable simulators with neural net-
works,” in Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 2021.

[33] J. Lee, M. X. Grey, S. Ha, T. Kunz, S. Jain, Y. Ye, S. S. Srinivasa,
M. Stilman, and C. K. Liu, “DART: Dynamic Animation and Robotics
Toolkit,” Journal of Open Source Software, vol. 3, no. 22, p. 500, 2018.

[34] R. Elandt, E. Drumwright, M. Sherman, and A. Ruina, “A pressure field
model for fast, robust approximation of net contact force and moment
between nominally rigid objects,” in IEEE/RSJ International Conference
on Intelligent Robots and Systems (IROS), pp. 8238–8245, 2019.

[35] E. Todorov, T. Erez, and Y. Tassa, “Mujoco: A physics engine for model-
based control,” in 2012 IEEE/RSJ international conference on intelligent
robots and systems, pp. 5026–5033, IEEE, 2012.

[36] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, sec-
ond ed., 2006.

[37] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. R. Zaiane, and M. Jager-
sand, “U2-Net: Going deeper with nested u-structure for salient object
detection,” Pattern Recognition, vol. 106, p. 107404, 2020.

[38] J. Bohg, K. Hausman, B. Sankaran, O. Brock, D. Kragic, S. Schaal, and
G. S. Sukhatme, “Interactive perception: Leveraging action in perception
and perception in action,” IEEE Transactions on Robotics, vol. 33, no. 6,
pp. 1273–1291, 2017.

[39] W. Li and E. Todorov, “Iterative linear quadratic regulator design for
nonlinear biological movement systems,” in International Conference on
Informatics in Control, Automation and Robotics, pp. 222–229, 2004.

[40] T. A. Howell, B. E. Jackson, and Z. Manchester, “ALTRO: A fast solver
for constrained trajectory optimization,” in IEEE/RSJ International Con-
ference on Intelligent Robots and Systems (IROS), pp. 7674–7679, 2019.

[41] T. S. Newman and H. Yi, “A survey of the marching cubes algorithm,”
Computers & Graphics, vol. 30, no. 5, pp. 854–879, 2006.

[42] K. Mamou, E. Lengyel, and A. Peters, “Volumetric hierarchical approx-
imate convex decomposition,” in Game Engine Gems 3, pp. 141–158,
AK Peters, 2016.

[43] X. Wei, M. Liu, Z. Ling, and H. Su, “Approximate convex decomposition
for 3d meshes with collision-aware concavity and tree search,” ACM
Transactions on Graphics (TOG), vol. 41, no. 4, pp. 1–18, 2022.


	I Introduction
	II Related Work
	III Object-Centric Neural Scattering Function (OSF) Model
	IV Dynamics Augmented Neural Objects (DANOs)
	V Applications
	V-A System Identification
	V-B Trajectory Optimization

	VI Comparison with Mesh-based Simulation
	VII Discussions
	References

