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ABSTRACT
Graph neural networks, a powerful deep learning tool to
model graph-structured data, have demonstrated remark-
able performance on numerous graph learning tasks. To ad-
dress the data noise and data scarcity issues in deep graph
learning, the research on graph data augmentation has in-
tensified lately. However, conventional data augmentation
methods can hardly handle graph-structured data which is
defined in non-Euclidean space with multi-modality. In this
survey, we formally formulate the problem of graph data
augmentation and further review the representative tech-
niques and their applications in different deep graph learn-
ing problems. Specifically, we first propose a taxonomy for
graph data augmentation techniques and then provide a
structured review by categorizing the related work based on
the augmented information modalities. Moreover, we sum-
marize the applications of graph data augmentation in two
representative problems in data-centric deep graph learn-
ing: (1) reliable graph learning which focuses on enhancing
the utility of input graph as well as the model capacity via
graph data augmentation; and (2) low-resource graph learn-
ing which targets on enlarging the labeled training data scale
through graph data augmentation. For each problem, we
also provide a hierarchical problem taxonomy and review
the existing literature related to graph data augmentation.
Finally, we point out promising research directions and the
challenges in future research.

1. INTRODUCTION
Graphs have been widely used for modeling a plethora of
structured or relational systems, such as social networks,
knowledge graphs, and academic graphs, where nodes repre-
sent the entities and edges denote the relations between en-
tities. As a powerful deep learning tool to distill the knowl-
edge behind graph-structured data, graph neural networks
(GNNs) which generally follow a recursive message-passing
scheme, have drawn a surge of research interest lately. Ow-
ing to its state-of-the-art performance, deep graph learning
(DGL) nowadays has achieved remarkable success in a wide
spectrum of graph analytical tasks [20; 104; 22].

Despite the superb power of GNNs, their effectiveness in
DGL largely depends on high-quality input training graph(s)
and ground-truth labels. The performance of GNNs tends to
be delicate on real-world graphs, mainly because of their in-
capability of handling the following challenges: (1) On the

one hand, prevailing DGL models are predominantly de-
signed for the supervised or semi-supervised setting where
sufficient ground-truth labels are available [23; 21]. Con-
sidering the fact that data labeling on graphs is always
time-consuming, labor-intensive, and rarely complete, the
overreliance on labeled data poses great challenges to DGL
models in real-world scenarios. Meanwhile, there are in-
creasingly more tasks and domain-specific applications that
are low-resource, having a paucity of labeled training exam-
ples. When ground-truth labels are extremely scarce, DGL
models may easily overfit and be hard to generalize, losing
their efficacy in solving various downstream DGL tasks [92;
21]. (2) On the other hand, real-world graphs are usually ex-
tracted from complex interaction systems which inevitably
contain redundant, erroneous, or missing features and con-
nections. In addition, the noxious manipulations from ad-
versaries as well as the inherent limitations of GNNs such as
the oversmoothing issue [67] also bring additional challenges
to the success of reliable DGL. Directly training GNN-based
models on such inferior graphs that are not clean and con-
sistent with the properties of GNNs might lead to serious
performance degradation [18].

To improve the sufficiency and quality of training data, data
augmentation is proposed as an effective tool to augment
the given input data by either slightly modifying existing
data instances or generating synthetic instances from exist-
ing ones. The importance of data augmentation has been
well recognized in the computer vision [91] and natural lan-
guage processing domains [149] in the past few years. More
recently, data augmentation techniques have also been ex-
plored in the graph domain to push forward the performance
boundary of DGL and demonstrated promising results [149;
85]. Apart from conventional image or text data, graph-
structured data is known to be far more complicated with
heterogeneous information modalities and complex graph
properties, yielding a broader design space as well as the ad-
ditional challenges for graph data augmentation (GraphDA).
Though this line of research has been actively conducted
lately, the problem of GraphDA has not been well formu-
lated and researchers commonly adopt GraphDA techniques
(e.g., edge perturbation, feature masking) arbitrarily with-
out clear preference. Hence, it poses great challenge for re-
searchers to grasp the design principles behind and further
leverage them to solve specific DGL problems. Therefore, a
timely and systematic review of GraphDA is of great benefit
to be aware of existing research in this field and what the
challenges are for conducting future research.

Contributions. In this work, we present a forward-looking
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and up-to-date survey for GraphDA and its applications in
solving data-centric DGL problems. In summary, our major
contributions are as follows:

• To the best of our knowledge, this is the first survey
for GraphDA. We provide a formal formulation for this
emerging research area and review the related recent ad-
vances, which can facilitate the understanding of impor-
tant issues to promote future research.
• We present a comprehensive taxonomy of GraphDA which

categorizes the existing techniques in terms of the target
augmentation modality (i.e., feature-oriented, structure-
oriented, and label-oriented) and provides a clear design
space for developing and customizing new GraphDA meth-
ods for different DGL problems.
• We discuss the applications of GraphDA in solving two

major research problems in data-centric DGL, i.e., opti-
mal graph learning and low-resource graph learning, and
review the prevalent learning paradigms for solving spe-
cific sub-problems. We also outline the open issues and
promising future directions in this area.

Connection to Existing Surveys. Although there are
a few survey papers [73; 116; 123] have related content
to GraphDA, those surveys predominately focus on a sin-
gle DGL problem such as graph self-supervised learning or
graph adversarial defense. Other data-centric DGL prob-
lems related to GraphDA are largely overlooked and the
corresponding GraphDA techniques are rarely discussed. In
contrast, our survey includes a detailed and systematic re-
view of GraphDA techniques and their corresponding ap-
plications for solving two most representative data-centric
DGL problems. Meanwhile, we also discuss a list of under-
explored directions in GraphDA, which can shed great light
on future DGL research.

Structure Overview. This survey is structured as follows.
Section 2 first gives background on graph neural networks
(GNNs) and deep graph learning. Then in Section 3 we
provide a comprehensive taxonomy of GraphDA techniques
based on the focused augmentation modality of the input
graph(s). In the following two sections, we describe the
applications of GraphDA techniques for solving two data-
centric DGL problems, i.e., Low-resource Graph Learning
(Section 4) and Reliable Graph Learning (Section 5). Specif-
ically, Section 4 includes the techniques based on GraphDA
for solving graph self-supervised learning and graph semi-
supervised learning. Section 5 covers the content of improv-
ing the robustness, expressiveness, and scalability of DGL
models from the data augmentation perspective. Within
each subsection, we introduce the methods grouped by their
related GraphDA techniques. Finally, Section 6 discusses
challenges and future directions in GraphDA.

2. PRELIMINARIES

2.1 Notations and Definitions
We briefly introduce the main symbols and notations used
throughout this paper. We use bold uppercase letters for
matrices (e.g., X), bold lowercase letters for vectors (e.g.,
v), lowercase and uppercase letters for scalars (e.g., d, n),
and calligraphic letters for sets (e.g., N ). We use X[i, j] to
represent the entry of matrix X at the i-th row and the j-th
column, X[i, :] to represent the i-th row of matrix X, and
X[:, j] to represent the j-th column of matrix X. Similarly,

v[i] denotes the i-th entry of vector v.

For the general purpose, we focus on undirected attributed
graphs in this survey. A graph can be represented as G =
{V, E} where V denotes the node set {vi}ni=1 and E denotes
the edge set {ei}mi=1. In matrix form, it can also be repre-
sented as G = (A,X), where A ∈ Rn×n denotes the adja-
cency matrix and X ∈ Rn×d denotes the node feature ma-
trix. Here n is the number of nodes, m is the number of
edges, and d is the feature dimension. For supervised tasks,
a part of the node labels y ∈ Rn, the edge labels Y ∈ Rn×n,
and the graph label y are provided. For tasks with multiple
graphs (e.g., graph-level tasks), we appropriately use sub-
scripts to describe graphs and corresponding components.
For example, Ai denotes the adjacency matrix of the i-th
graph Gi.

2.2 Graph Neural Networks
Graph neural networks (GNNs) [120][143] are the extension
of the neural network models [3] onto graph data. They
show great flexibility and strong expressiveness to extract
representations of various graph components and are be-
coming the core modules of broad graph learning tasks. In
this subsection, we will briefly introduce the general mes-
sage passing formulas [33] of the mainstream GNNs as they
are widely adopted by the works remaining of this paper.

The message passing framework of GNNs can be mathemat-
ically presented as follows:

mt+1
i =

∑
j∈N(i)

Message(hti,h
t
j), (1a)

ht+1
i = Update(hti,m

t+1
i ), (1b)

where hti denotes the representation of the node i at t-th
layer and mt+1

i denotes the message aggregates on the node
i at the (t + 1)-th layer. The initial node representation
is the node feature (i.e., h0

i = X[i]) and the node neigh-
borhood can be represented by the adjacency matrix (i.e.,
A[i, j] = 1 is equivalent to j ∈ N(i)). For graph-level tasks,
graph representation hG can be obtained through a Readout

function as follows:

hG = Readout(H), (2)

where H can be the node representations from the final layer
or any intermediate layer.

2.3 Deep Graph Learning Tasks
In this subsection, we introduce several mainstream DGL
tasks on which GraphDA techniques are widely used. We
categorize tasks according to their objective graph compo-
nents (i.e., node, edge, and graph).

Node-level DGL Tasks. Node-level DGL tasks aim to
find a mapping pφ from the given graphs to node properties
by minimizing a utility loss Lutil as follows:

φ∗ = arg min
φ
Lutil

(
pφ(G),y

)
,

whose typical example is semi-supervised node classification.
Given the labels of partial nodes for training, the goal is to
predict the labels of (a part of) unlabelled nodes. A classic
implementation of a node classifier is a node encoder (e.g.,
GNNs) working with a multi-class classifier (e.g., an MLP).

Edge-level DGL Tasks. Edge-level DGL tasks focus on
finding a mapping pφ from the given graphs to edge proper-
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ties which can be presented as below:

φ∗ = arg min
φ
Lutil

(
pφ(G),Y

)
.

Taking link prediction as an example, its goal is to discrim-
inate if there is an edge between specified node pair. A
common implementation is a binary GNN classifier whose
input is the edge embeddings (e.g., the aggregation of node
embeddings of the head and tail nodes).

Graph-level DGL Tasks. A graph-level task considers
every graph as a data sample and infers the property of
graph(s) by a mapping pφ. Its mathematical formulation is
as follows:

φ∗ = arg min
φ
Lutil

(
{pφ(Gi)}, {yi}

)
.

For instance, in the graph classification task, some labeled
graphs are provided and the goal is to predict the labels
of graphs of interest. A general solution is to aggregate
the node embeddings into a graph embedding via a readout
function and feed the graph embeddings into a classifier.

3. TECHNIQUES OF GRAPH DATA AUG-
MENTATION

The goal of graph data augmentation (GraphDA) is to find

a transformation function fθ(·) : G → G̃ to generate aug-

mented graph(s) {G̃i = (Ãi, X̃i)} that can enrich or enhance
the preserved information from the given graph(s). In terms
of whether the parameter θ can be updated or not during the
learning process, most, if not all, of the GraphDA methods
can be classified to: non-learnable and learnable methods.
If the augmentation method is non-learnable, we can simply
omit the parameter θ for brevity.

In general, as the ultimate goal of GraphDA is to improve
the GNN model performance on downstream learning tasks,
we need to consider them together during the learning pro-
cess. We denote the augmentation loss as Laug whose goal
is to regularize the augmented graph(s) to be close to the
given graph(s), and denote the utility loss that measures the
GNN performance on specific downstream tasks as Lutility.
In terms of training strategies, most, if not all, of the learn-
able GraphDA methods can be divided into three categories:
(1) decoupled training, (2) joint training, and (3) bi-level
optimization. The workflow of each scheme is shown in Fig-
ure 1 and the details can be found as follows:

Decoupled Training (DT). In this training scheme, the
augmenter fθ and the predictor pφ are independently trained
in a two-stage paradigm. Specifically, the augmenter is first
learned with augmentation loss Laug. After that, the predic-
tion model pθ is trained on the augmented graph under the
supervision of specific downstream tasks (i.e., Lutil). The
learning process can be formulated as:

θ∗ = arg min
θ

Laug

(
{Gi}, {fθ(Gi)}

)
,

φ∗ = arg min
φ
Lutil

(
pφ, {fθ∗(Gi)}

)
.

(3)

Joint Training (JT). In the joint training scheme, the aug-
menter fθ and the predictor pφ are jointly trained with the
augmentation loss Laug and utility loss Lutil. This learning
process can be also considered as multi-task learning, which

Augmenter
𝑓𝜽

Predictor
𝑝𝝓

Input Graph
𝒢

Augmented Graph
𝒢$

Augmentation Loss
𝐿!"#

Augmented Graph
𝒢$

Prediction Loss
𝐿"$%&

(1)

(2)

(a) Decoupled Training (DT)
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𝑓𝜽

Input Graph

Augmentation Loss 
𝐿!"#

𝒢

Augmented Graph
𝒢#

Prediction Loss
𝐿"$%&

Predictor
𝑝𝝓

(b) Joint Training (JT)

Augmenter
𝑓𝜽

Input Graph
𝒢

Augmented Graph
𝒢#

Prediction Loss
𝐿!"#$

Predictor
𝑝𝝓

(1)

Augmentation Loss
𝐿%!&

(2)

(c) Bi-level Optimization (BO)

Figure 1: Learnable GraphDA training paradigms.

can be expressed as follows:

θ∗, φ∗ = arg min
θ,φ

Laug

(
{Gi}, {fθ(Gi)}

)
+Lutil

(
pφ, {fθ(Gi)}

)
.

(4)

Bi-level Optimization (BO). Another training scheme of
GraphDA for DGL is bi-level optimization. Different from
joint training, the augmenter fθ and the predictor pφ are
alternatively updated with the augmentation loss Laug and
utility loss Lutil. As shown in Figure 1 (c), the update of
the augmenter is based on the optimal updated predictor,
which implies a bi-level optimization problem with θ as the
upper-level variable and φ as the lower-level variable:

θ∗ = arg min
θ

Laug

(
{Gi}, {fθ(Gi)}, pφ∗(θ)

)
,

s.t. φ∗(θ) = arg min
φ
Lutil

(
pφ, {fθ(Gi)}

)
.

(5)

In the following subsections, we provide a systematic tax-
onomy to cover mainstream GraphDA techniques. Since
graphs commonly consist of multiple information modalities,
GraphDA techniques can be naturally divided into three
categories based on the augmentation modality, including:
feature-oriented, structure-oriented, and label-oriented tech-
niques. Specifically, we summarize the commonly used tech-
niques in terms of each augmentation modality and clearly
illustrate their augmentation strategies. Figure 2 (left) sum-
marizes our proposed taxonomy for GraphDA techniques.

3.1 Structure-oriented Augmentations
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Reliable 
Graph Learning

Low-Resource
Graph Learning

Applications

Graph Structure Learning

Graph 
Data 

Augmentation

Feature-oriented 
Augmentation

Techniques

Edge Perturbation

Graph Contrastive Learning

Graph Self-/Co-Training

Graph Consistency Training

Graph Self-
supervised Learning

Graph Semi-
supervised Learning

Graph Feature Denoising

Graph Adversarial Defense

Boosting GNN 
Expressiveness

Alleviating 
Over-smoothing/squashing

Scalable GNN Training

Graph Generative Modeling

Graph Data Interpolation

Graph Imbalanced Training

Structure-oriented 
Augmentation

Label-oriented 
Augmentation

Graph Rewiring

Graph Diffusion

Graph Sampling

Node Dropping

Node Insertion

Graph Generation

Feature Corruption

Feature Shuffling

Feature Masking

Feature Addition

Feature Rewriting

Feature Propagation

Feature Mixing

Pseudo Labeling

Label Mixing

Figure 2: Proposed taxonomy of Graph Data Augmentation (GraphDA) techniques and applications.

Different from i.i.d. data, graphs are inherently relational
where the connections (i.e., edges) between data instances
(i.e., nodes) are unique and essential for understanding and
analyzing graphs. Given an input graph G = (A,X), a
structure-oriented GraphDA operation focuses on augment-
ing the adjacency matrix A of the input graph. We summa-
rize the representative ones as follows.

Edge Perturbation. Perturbing the given graph struc-
ture, e.g., randomly adding or dropping edges, is a widely
adopted GraphDA method in different DGL tasks [101; 132;
131; 153]. Mathematically edge perturbation keeps the origi-
nal node order and rewrites a part of the entries in the given
adjacency matrices, which can be defined as follows:

Ã = A⊕C, (6)

where C is the corruption matrix and ⊕ denotes the XOR
(exclusive OR) operation. Commonly, the corruption ma-
trix C is obtained by sampling, i.i.d., from a prior distribu-
tion, and Cij determines whether to corrupt the adjacency
matrix at position (i, j). For example, assuming a given
corruption rate ρ, we may define the corruption matrix as
Cij ∼ Bernoulli(ρ), whose elements in C are set to 1 indi-
vidually with a probability ρ and 0 with a probability 1− ρ.

Graph Rewiring. Though sharing the same basic opera-
tion with edge perturbation, graph rewiring has an opposite
augmentation objective, which is to improve the utility of
the input graph by rewiring the edges. Instead of perturb-
ing the input graph structure by randomly adding/dropping
edges, graph rewiring is commonly guided by the learning
objective of the downstream task, and the corruption matrix
C is learned or predicted through a specific module.

Graph Diffusion. As another effective structure-wise aug-
mentation strategy for improving the graph utility, graph
diffusion generates an augmented graph by exploiting the
global structure knowledge of the input graph. In certain
cases, it is also considered as a graph rewiring method [100].
Specifically, graph diffusion injects the global topological
information into the given graph structure by connecting
nodes with their indirectly connected neighbors with calcu-

lated weights. A generalized graph diffusion operation can
be formulated as:

Ã =

∞∑
k=0

γkT
k, (7)

where T ∈ RN×N is the generalized transition matrix de-
rived from the adjacency matrix A and γk is the weighting
coefficient that determines the ratio of global-local informa-
tion. Imposing

∑∞
k=0 γk = 1, γk ∈ [0, 1] and λi ∈ [0, 1] where

λi are eigenvalues of T, guarantees convergence. Two pop-
ular examples of graph diffusion are personalized PageRank
(PPR) [81] (i.e., γk = α(1 − α)k) and the heat kernel [62]

(i.e., γk = e−t t
k

k!
). where α denotes teleport probability in a

random walk and t is diffusion time. Closed-form solutions
to heat kernel and PPR diffusion are formulated in Eq. (8)
and (9), respectively:

Ãheat = e−(I−T)t, (8)

ÃPPR = α(I− (1− α)T)−1. (9)

Graph Sampling. Graph sampling or subgraph sampling
is a commonly used data augmentation technique for graphs.
It can be used for different purposes, such as scaling up
GNNs [36], and creating augmented views [85], to name
a few. The augmented graph is obtained via a sampler
Sample(G) which can be vertex-based sampling [50], edge-
based sampling [151], traversal-based sampling [85], and other
advanced methods such as Metropolis-Hastings sampling [82].
For all the above graph samplers, they commonly return a
connected subgraph induced from the sampled nodes. Math-
ematically, graph sampling can be represented as:

G̃ = {Ã, X̃} = {A[idx, idx],X[idx, :]}, (10)

where idx is a list of index to select the given elements (i.e.,
rows and columns) from A and X. In general, the goal of
graph sampling is to find augmented graph instances from
the input graphs that best preserve desired properties by
keeping a portion of nodes and their underlying linkages.
For example, in the graph sparsification [151; 76] problem,
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researchers aim to sample the subgraph which preserves as
much task-relevant information as possible.

Node Dropping. In the literature, node dropping is also
known as node masking. Specifically, a set of nodes V̂ =
{vi ∈ V} will be dropped from the input graph, together

with their associated edges Ê = {ei ∈ E}. This augmenta-
tion can be formulated as:

Ã = {V \ V̂, E \ Ê}. (11)

Note that for attributed graphs, the corresponding node fea-
tures will also be dropped at the same time.

Node Insertion. Node insertion is commonly used to
improve the message-passing or connectivity on the input
graph by inserting virtual node(s) [33]. Specifically, node

insertion adds an extra set of nodes V̂ = {vi} and a set of

edges Ê = {ei} between V̂ and V to the original node set V
and the edge set E , respectively:

Ã = {V ∪ V̂, E ∪ Ê}. (12)

Since node insertion also requires adding additional edges in
the new graph, this GraphDA operation is highly related to
graph rewiring. Note that for attributed graphs, the corre-
sponding node features also need to be initialized, e.g., using
the mean average of all the connected node features.

Graph Generation. Graph generation is commonly used
as a GraphDA strategy for improving the scales of train-
ing graphs graph-level DGL tasks, e.g., graph classification.
Most graph generation methods are expected to automati-
cally learn from observed graphs. Generally, the graph gen-
eration process can be presented as follows:

G̃ ∼ Dθ(G|{Gi}), (13)

where {Gi} is the set of observed graphs and here the aug-
mentation function Dθ is a graph generation distribution pa-
rameterized by θ. Notice that some techniques such as graph
coarsening [8] and graph condensation [55] whose goals are
to generate a new graph from the initial large graph can also
be categorized into this augmentation operation. We also
consider edge mixing between two (or mode) graphs [35] as
one instantiation of graph generation.

3.2 Feature-oriented Augmentations
In this subsection, we review the feature-oriented GraphDA
techniques. Generally, given an input graph G = (A,X),
a feature-oriented GraphDA operation focuses on perform-
ing transformation on the node feature matrix X. Notably,
we also consider those methods performing augmentations
on the latent feature representations H as feature-oriented
augmentation methods.

Feature Corruption. This GraphDA method aims at
adding noises to either the original node features [27] or
learned feature representations [127]. For simplicity, here
we use xi to represent the original node features or learned
feature representations:

x̃i = xi + ri, (14)

where ri denotes the added feature noise. Note that the
feature noise could be either randomly added [101] or learned
in an adversarial training fashion [27; 127].

Feature Shuffling. By randomly changing the contextual
information through switching rows and columns in the fea-
ture matrix, The input feature matrix X is corrupted to
yield augmentations. This method can be formulated as:

X̃ = PrXPc, (15)

where Pr and Pc are row-wise permutation matrix and
column-wise permutation matrix, respectively. have exactly
one entry of 1 in each row and each column and 0 elsewhere.

Feature Masking. The core operation of feature masking
is to set a part of the entries in the node feature matrix X
to 0, which can be formulated as:

X̃ = X�M (16)

where M is the masking matrix that Mi,j = 0 if the j-th
element of vector i is masked/dropped, otherwise Mi,j =
1. The masking matrix M is commonly generated by the
Bernoulli distribution [132; 131; 98].

Feature Addition. Since the input graph usually lacks in-
formative features in real-world scenarios, Feature Addition
can be used to (1) initiate node features on plain graphs to
smoothly incorporate into DGL models (e.g., GNNs) and (2)
supplement additional graph knowledge that are hard to be
captured by GNN models. A straightforward way is to en-
code proximate/topological information (e.g., node index or
node properties) into a feature vector and concatenate with
the original node features. In general, Feature Addition can
be expressed as:

x̃i = [x̂i||xi], (17)

where || denotes the concatenation operation and xi could
be an empty vector if the input graph is plain.

Feature Rewriting. Considering the fact that the given
node features are commonly noisy and incomplete, recover-
ing the clean and complete node features can directly im-
prove the performance of the DGL models. Generally, fea-
ture rewriting can be expressed as:

x̃ = αxi + βbi, (18)

where α and β are two controlling parameters and bi is a
feature vector computed in a heuristic or learnable way. For
example, Wang et al. propose feature replacement [110] that
rewrites node features with its neighbors’ features. While
Xu et al. [125] apply gradient descent-based optimizers to
rewrite the node features as parameters.

Feature Mixing. Based on the features of nodes in the
input graph, feature mixing can be used to obtain the node
features of a synthetic node:

x̃ = λxi + (1− λ)xj , (19)

where λ is the mixing coefficient that controls the propor-
tion of information from xi and xj . Notably, feature mix-
ing can also be performed on the intermediate represen-
tations learned from two training samples (i.e., Manifold
Mixup [102]).

Feature Propagation. Based on Graph Diffusion, Feature
Propagation propagates the node features along the graph
structure. It is an interpolation method that has also been
widely used to augment the node features of the input graph.
Mathematically:

X̃ = ÃX, (20)
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where Ã is the new adjacency matrix obtained through dif-
ferent graph diffusion methods.

3.3 Label-oriented Augmentations
Due to the expensive data labeling cost on graphs, label-
oriented GraphDA is an important line of work to directly
enrich the limited labeled training data. Commonly, there
are two groups of strategies.

Pseudo-Labeling. Pseudo-labeling is a semi-supervised
learning mechanism that aims to obtain one (or several)
augmented labeled set(s), based on their most confident pre-
dictions on unlabeled data. Its learning process starts with
a base teacher model trained on the labeled set DL, and
then the teacher model is applied to the unlabeled data DU
to obtain pseudo labels (hard or soft) of unlabeled data. Fi-
nally, a subset of unlabeled data DP will be used to augment
the training data, and the combined data DL ∪ DP can be
used to train a student model. In this sense, the label sig-
nals can be “propagated” to the unlabeled data samples via
the learned teacher model. Note that this learning process
could go through multiple rounds until converges by itera-
tively updating the teacher model with the current student
model.

Label Mixing. In order to enlarge the scale of training
samples, we can directly interpolate the training samples
based on the labeled examples. Generally, Mixup [140] con-
structs virtual training samples via feature mixing and label
mixing:

x̃ = λxi + (1− λ)xj ,

ỹ = λyi + (1− λ)yj ,
(21)

where (xi,yi) and (xj ,xj) are two labeled samples randomly
sampled from the training set, and λ ∈ [0, 1]. In this way,
Mixup methods extend the training distribution by incor-
porating the prior knowledge that linear interpolations of
feature vectors should lead to linear interpolations of the
associated target labels.

4. GRAPH DATA AUGMENTATION FOR
LOW-RESOURCE GRAPH LEARNING

The shortage of ground-truth labels has been a longstand-
ing and notorious problem for learning effective DGL. To ad-
vance the research on Low-resource Graph Learning, GraphDA
has been actively investigated and shows promising results.
In this section, we discuss the applications of GraphDA
for solving both Graph Self-Supervised Learning and Graph
Semi-Supervised Learning. We summarize the representa-
tive works in Table 1 and Table 2, respectively.

4.1 Graph Self-Supervised Learning
Graph Generative Modeling. Recently data augmenta-
tion has been widely used for graph self-supervised learning
(SSL). Based on the idea of Graph AutoEncoders (GAE) [58;
20], graph generative modeling methods perform data aug-
mentation on the input graphs through either edge per-
turbation , feature masking , or node dropping (mask-
ing) then learn the node representations by reconstructing
feature or/and structure information from the augmented
graphs (as shown in Fig. 3 (a)). For example, Denois-
ing Link Reconstruction [45] randomly drops existing edges
to obtain the perturbed graph and tries to recover the dis-
carded connections with a pairwise similarity-based decoder

Augmenter
𝑓𝜽

𝑝𝜽!𝑝𝜽"
Reconstruction 

Loss

Decoder Encoder

Input Graph
𝒢

Augmented Graph
𝒢$

Reconstructed Graph
𝒢"

(a) Graph Generative Modeling

Augmenter
𝑓𝜽

𝑝𝜽!

𝑝𝜽"

Contrastive Loss

Encoder1

Encoder2

Input Graph
𝒢

Augmented Graph
𝒢$"

Augmented Graph
𝒢$#

(b) Graph Contrastive Learning

Figure 3: Comparison between the workflows of Graph Gen-
erative Modeling and Graph Contrastive Learning.

trained by the cross-entropy loss. Given a graph with its
nodes and edges randomly masked, GPT-GNN [44] gener-
ates one masked node and its related edges jointly and op-
timizes the likelihood of the node and edges generated in
the current iteration. GraphBert [141] samples linkless sub-
graphs and pre-trains a graph transformer model via node
feature reconstruction and graph structure recovery. You
et al. [133] define the graph completion pretext task which
aims to recover the masked feature of target nodes based on
their neighbors’ features and connections. MGM [78] tries
to reconstruct the masked node/edge features for learning
the GNNs for molecule generation. GMAE [10] and Graph-
MAE [43] first randomly mask the features of some nodes
and then their decoders reconstruct the original features of
the masked nodes, while MGAE [97] tries to reconstruct the
masked edges based on the augmented graphs.

Graph Contrastive Learning. Motivated by the recent
breakthroughs in contrastive visual feature learning, data
augmentation has also been widely used for Graph Con-
trastive Learning (GCL). As illustrated in Fig. 3 (b), GCL
methods try to generate augmented examples from the input
and view two augmented examples from the same original
sample as a positive pair, while those from different orig-
inal samples are negative pairs. By applying contrastive
learning loss, the positive pairs will be pulled together and
the negative pairs will be pushed away in the latent space.
Therefore, GraphDA plays an essential role in GCL. As a
pioneering work, DGI [101] applies feature shuffling and
edge perturbation to obtain the negative pairs of graphs,
then a contrastive objective is proposed to maximize the
mutual information between node embeddings and a global
summary embedding. Another popular GraphDA method
for GCL is graph sampling . As an example, GCC [85]
proposes to sample subgraphs as contrastive instances to
pre-train the graph encoder, which can be used for differ-
ent downstream tasks with either freezing or full fine-tuning
strategy. SUBGCON [50] also utilizes a subgraph sampler

6



Table 1: Summary of representative GraphDA works for graph self-supervised learning. DT, JT, BO stand for decoupled
training, joint training, and bi-level optimization, respectively

Topic Name Ref. Year Venue Task Level
Augmented Data Modality

Learnable Augmentation Technique
Structure Feature Label

Graph Generative
Modeling

GraphMAE [43] 2022 KDD node & graph X feature masking

GMAE [10] 2022 arXiv noded & graph X node dropping

MGAE [97] 2022 arXiv node & edge X edge perturbation (dropping)

MGM [78] 2021
Nature

Communications
graph X feature corruption

GPT-GNN [44] 2020 KDD node X X
edge perturbation (dropping)

feature masking

MTL [133] 2020 ICML node X X X(JT) pseudo-labeling/feature corruption

GraphBert [141] 2020 arXiv node X X graph sampling

Pre-train [45] 2019 arXiv node & edge & graph X X edge perturbation/pseudo-labeling

Graph Contrastive
Learning

S3-CL [24] 2023 AAAI node X X X(JT) feature propagation/pseudo labeling

SUGRL [79] 2022 AAAI node X X feature shuffling/graph sampling

LG2AR [39] 2022 arXiv node & graph X X X(BO)
node dropping/edge perturbation
graph sampling/feature corruption

BGRL [98] 2022 ICLR node X X
edge perturbation (dropping)

feature masking

ARIEL [28] 2022 TheWebConf node X X X(JT) feature corruption/edge perturbation

AD-GCL [95] 2021 NeurIPS graph X X(JT) edge perturbation (dropping)

JOAO [131] 2021 ICML graph X X X(BO)
node dropping/edge perturbation
graph sampling/feature corruption

GCA [153] 2021 TheWebConf node X X
edge perturbation (dropping)

feature masking

MERIT [52] 2021 IJCAI graph X X
graph diffusion/edge perturbation
graph sampling/feature masking

CSSL [137] 2021 AAAI graph X
node dropping/node insertion

edge perturbation

GraphCL [132] 2020 NeurIPS graph X X
node dropping/edge perturbation
graph sampling/feature corruption

GCC [85] 2020 KDD graph X graph sampling

SUBGCON [50] 2020 ICDM node X graph sampling

MVGRL [38] 2020 ICML node & graph X graph diffusion/graph sampling

GRACE [152] 2020 arXiv node X X
edge perturbation (dropping)

feature masking

DGI [101] 2019 ICLR node X feature corruption

based on Personalized PageRank to sample the augmented
subgraph and perform contrastive learning between the rep-
resentations of the central node and the sampled subgraph.

It is noteworthy that many GCL methods usually leverage
combinations of augmentation strategies. For instance, MV-
GRL [38] first augments the input graph via graph diffu-
sion . Afterward, two graph views are generated by sub-
graph sampling and the model learns to contrast node rep-
resentations to global representations across the two views.
GRACE [152] adopts two augmentation strategies, i.e., edge
perturbation (dropping) and feature masking , to gener-
ate augmented views of graph data. It jointly considers both
intra-view and inter-view negative pairs for the contrastive
learning objectives. gCooL [69] uses the same augmenta-
tions and considers the community information in GCL.
GraphCL [132] considers four GraphDA operations: node
dropping , edge perturbation , feature masking , and sub-
graph sampling , while MERIT [52] leverages graph dif-
fusion , edge perturbation (dropping), subgraph sam-
pling , and feature masking to generate augmented graphs.
CSSL [137] augments graphs with the edge perturbation
(dropping) and node dropping . Recent work SUGRL [79]
leverages feature shuffling and graph sampling , S3-CL
uses feature propagation and pseudo labeling to effi-
ciently perform GCL.

Different from the aforementioned pre-defined GraphDA strate-

gies, another line of research proposes to perform data aug-
mentation on graphs in a learnable manner. Specifically,
Zhu et al. [153] propose a joint, adaptive data augmentation
scheme based on edge perturbation (dropping) and fea-
ture masking to provide diverse contexts for nodes in differ-
ent views, so as to boost optimization of the contrastive ob-
jective. GASSL [127] is an adversarial self-supervised learn-
ing framework for learning unsupervised representations of
graph data without any handcrafted views. It learns to
perform feature corruption on either the input or latent
space. AD-GCL [95] enables GNNs to avoid capturing re-
dundant information during the training by optimizing edge
perturbation (dropping) strategy used in GCL in an ad-
versarial fashion. To automatically select optimal augmen-
tation combinations for the given graph dataset, JOAO [131]
and LG2AR [39] are proposed to automatically select aug-
mentations from a given pool of augmentation types: {node
dropping , subgraph sampling , edge perturbation , fea-
ture masking}. It is important to note that an expanding
body of literature, such as [90], has emerged in the field of
GCL. However, due to space constraints, we are unable to
provide an exhaustive coverage of all these works.

4.2 Graph Semi-Supervised Learning
Graph Consistency Training. Similar to the idea of
contrastive learning, Consistency Training [122] leverages
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Table 2: Summary of representative GraphDA works for graph semi-supervised learning. DT, JT, BO stand for decoupled
training, joint training, and bi-level optimization, respectively

Topic Name Ref. Year Venue Task Level
Augmented Data Modality

Learnable Augmentation Technique
Structure Feature Label

Graph
Consistency Training

D2-PT [72] 2023 KDD node X X X X(JT) feature propagation/pseudo labeling

NASA [5] 2022 AAAI node X X edge perturbation (dropping)

MH-Aug [82] 2021 NeurIPS node X X graph sampling

SCR [139] 2021 arXiv node X graph rewiring

NodeAug [110] 2020 KDD node X X X
feature rewriting/graph rewiring

pseudo labeling

GRAND [30] 2020 NeurIPS node X X
node dropping/feature propagation

pseudo labeling

Graph
Self-/Co-Training

Meta-PN [21] 2022 AAAI node X X(BO) pseudo-labeling

NRGNN [18] 2021 KDD node X X X(DT) graph rewiring/pseudo-labeling

PTA [25] 2021 TheWebConf node X pseudo-labeling

CGCN [47] 2020 AAAI node X X(JT) pseudo-labeling

M3S [92] 2020 AAAI node X X(JT) pseudo-labeling

Co-GCN [68] 2020 AAAI node X X(DT) feature masking/pseudo labeling

ST-GCNs [67] 2018 AAAI node X X(DT) pseudo-labeling

Graph
Data Interpolation

G-Transplant [83] 2022 AAAI graph X X X X(DT) label mixing/graph rewiring

G-Mixup [109] 2021 TheWebConf graph X X X(DT) graph generation/label mixing

GraphMix [103] 2021 AAAI node X X feature mixing/label mixing/pseudo labeling

ifMixup [35] 2021 arXiv graph X X X feature mixing/label mixing/graph generation

Graph
Imbalanced Training

GATSMOTE [74] 2022 Mathematics node X X X X(JT) feature rewriting/node insertion/graph rewiring

GNN-CL [69] 2022 SDM node X X X X(JT) feature mixing/node insertion/graph rewiring

GraphMixup [117] 2022 ECML-PKDD node X X X X(BO) feature mixing/label mixing/graph rewiring

GraphSMOTE [150] 2021 WSDM node X X X X(JT) feature mixing/node insertion/graph rewiring

DPGNN [108] 2021 arXiv node X pseudo-labelling

D-GCN [106] 2021 ICCSAE node X graph rewiring

unlabeled data to improve model performance by enforc-
ing the consistency across predictions learned from different
stochastic augmentations of the same input. As one effec-
tive semi-supervised learning paradigm, consistency training
has also been explored in learning graph neural networks
under low-resource settings. For example, NodeAug [110]
uses local structure-wise augmentation operations (i.e., fea-
ture corruption , and edge perturbation), and minimizes
the KL-divergence between the node representations learned
from the original graph and augmented graph. GRAND [30]
creates multiple different augmented graphs with node drop-
ping and feature masking , followed by feature prop-
agation . Then the consistency loss is applied to mini-
mize the distances of the representations learned from the
augmented graphs. Following GRAND, Zhang et al. [139]
propose to use two edge perturbation methods – DropE-
dge [86] or DropNode [30] as the augmentation strategies
and leverage a mean-teacher consistency regularization to
guide the training of the GNN model by calculating a con-
sistency loss between the student and teacher models. To en-
able consistency training on large-scale graphs, Hawkins et
al. [40] propose to use graph sampling to generate different
neighborhood subgraph expansions and ensemble the pre-
dictions to provide pseudo labels. To avoid the detrimental
effects of arbitrary augmentations, Park et al. [82] propose a
graph sampling method MH-Aug that uses the Metropolis-
Hastings algorithm to obtain the augmented samples of the
input graph, and adopt consistency training to better utilize
the unlabeled data. Following the idea of graph rewiring ,
NASA [5] generates graph augmentations with high consis-
tency and diversity by replacing immediate neighbors with
remote neighbors and enforcing the predictions of augmented
neighbors to be consistent.

Graph Self-/Co-Training. To address the data scarcity
issue, one effective solution is to leverage the unlabeled data
to augment the limited labeled data. Following the idea of
pseudo labeling , self-training [128] imputes the labels on
unlabeled data based on a teacher model trained with lim-
ited labeled data, and it has become a prevailing paradigm
to solve the problem of semi-supervised node classification
when training data is limited. Among those methods, Li
et al. [67] first combine GCNs with self-training to expand
supervision signals. CGCN [47] generates pseudo labels
by combining variational graph auto-encoder with Gaussian
mixture models. Furthermore, M3S [92] propose the multi-
stage self-training and utilize a clustering method to elimi-
nate the pseudo labels that may be incorrect. Similar ideas
can also be found in [18]. In addition, recent research [25;
21] adopt label propagation as the teacher model to gen-
erate pseudo labels that encode valuable global structure
knowledge.

Similar to Self-training, Co-training [4] has also been inves-
tigated for augmenting the training set with unlabeled data.
It learns two classifiers with initial labeled data on the two
views respectively and lets them label unlabeled data for
each other to augment the training data. Li et al. [68] de-
velop a novel multi-view semi-supervised learning method
Co-GCN based on feature masking , which unifies GCN
and co-training into one framework.

Graph Data Interpolation. Another way of obtaining
extra training examples is to use interpolation-based data
augmentation strategy, such as Mixup [140] to generate syn-
thetic training examples (i.e., node insertion) based on
feature mixing and label mixing . While unlike images
or natural sentences, graphs have arbitrary structure, it re-
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mains a non-trivial task to identify the meaningful connec-
tions between the original nodes and synthetic nodes. Also,
due to the cascading effect of graph data, even simply adding
an edge into a graph can dramatically change the graph se-
mantic meanings. To circumvent those challenges, Mani-
fold Mixup [102] has been applied to graph data interpola-
tion. Specifically, GraphMix [103] trains a fully connected
network (FCN) jointly with the GNN via parameter shar-
ing, and the FCN is learned based on Manifold Mixup and
pseudo-labeling , which can effectively train GNNs for semi-
supervised node classification. Similarly, Wang et al. [109]
also follow the idea of Manifold Mixup and interpolate the
input features of both nodes and graphs in the embedding
space. Those methods leverage a simple way to avoid dealing
with the arbitrary structure in the input space for mixing a
node or graph pair, through mixing the graph representation
learned from GNNs.

For the input-level graph data interpolation, ifMixup [35]
targets the Manifold Intrusion issue (mixing graph pairs may
naturally create graphs with identical structure but with
conflict labels) and first interpolates both the node features
and the edges of the input pair based on feature mixing
and graph generation . Graph Transplant [83] is another
input-level graph interpolation method that leverages graph
rewiring to mix two dissimilar-structured graphs by re-
placing the destination subgraph with the source subgraph
while preserving the local structure. G-Mixup [37] first es-
timates the graphon of each class and then mixup between
the graphons and perform graph generation to generate in-
terpolated graphs, which improves the generalizability and
robustness of GNNs for semi-supervised graph classification.

Graph Imbalanced Training. The class distribution of
graph data is inherently imbalanced which follows the power-
law distribution. As an example, on the benchmark Pubmed
dataset, nodes are labeled into three classes while the mi-
nority class only contains 5.25% of the total nodes. Such
highly imbalanced data will lead to the suboptimal per-
formance of downstream tasks especially classification tasks
and one of the effective solutions is to augment the minor-
ity to alleviate the imbalance. To counter this problem,
node insertion has been proven as an effective solution
to augment the minority class. Meanwhile, feature mix-
ing and graph rewiring are also needed for enable graph
imbalanced training. For instance, GraphSMOTE [150] aug-
ments the minority class by mixing up the minority nodes
and leverages an edge generator to predict neighbor informa-
tion for those synthetic nodes. GraphMixup [117] first per-
forms interpolation on a node from one target minority class
with its nearest neighbors, then adopts an edge prediction
module to predict the connections between generated nodes
and existing nodes. Following this idea, GATSMOTE [74]
and GNN-CL [69] adopts an attention mechanism to gener-
ate the edges between the synthetic nodes and the original
nodes. On the label level, DPGNN [108] conducts pseudo
labeling via label propagation to enrich the training samples
from the minority class. However, many challenges in this
topic are still under-explored. For example, if the amount
of labeled minority nodes is extremely small, such as few-
shot or even one-shot per class, how to transfer knowledge
from the majority classes to augment the minority classes is
worth studying.

5. GRAPH DATA AUGMENTATION FOR
RELIABLE GRAPH LEARNING

One main goal of GraphDA is to achieve Reliable Graph
Learning in the real-world scenarios by augmenting the in-
put graph(s). Specifically, in this work we focus on improv-
ing the robustness, expressiveness, and scalability of DGL
models via GraphDA for different challenging learning sce-
narios. We summarize the representative works in Table 3.

Graph Structure Learning. Due to various reasons such
as fake connections [42], over-personalized users [13] and
construction heuristics, the given graph structure is not op-
timal for downstream graph learning tasks. Graph structure
learning is proposed as a solution for the above challenge.
From a general sense, the core technique used for structure
learning is graph rewiring .

A series of methods rewire the given graphs following var-
ious node similarity metrics. In most cases, such metrics
are learned from the given graph topology. For example,
GAUG [149] and IDGL [16] train edge predictors based on
learned node embeddings. Besides, from the optimization
perspective, it is feasible to directly incorporate the graph
data (e.g., adjacency matrix) itself as a part of the opti-
mization variables. Based on that, the graph rewiring
process is essentially guided by the optimization objective.
TO-GNN [126] is a representative work whose loss functions
include smoothness-related regularizations and the update
of graphs is gradient descent-based. In addition, instead of
optimizing the graph itself, an interesting idea is to optimize
the graph-related distributions (e.g., graph generation distri-
butions and edge dropping distributions). After that, graph
rewiring can be conducted by sampling from those distri-
butions. A representative work is LDS [31] which assumes
that every edge is sampled from an independent Bernoulli
distribution. Other representative works in this line include
Bayesian-GCNN [145], GEN [105], NeuralSparse [151], and
PTDNet [76].

Graph Feature Denoising. Compared to structure de-
noising, the research on graph feature denoising has received
less attention. In general, most of the work is developed
based on feature rewriting . For instance, AirGNN [71]
regularizes the l21 norm between the input node features and
convoluted node features such that the model is more toler-
ant against abnormal features. To handle missing node fea-
tures, a special case of suboptimal initial node features, fea-
ture propagation [88] diffuses the features from observed
nodes to neighbors whose features are missing based on the
heat diffusion equation; in other words, it imputes the miss-
ing node features with aggregated features from the neigh-
borhood of the target nodes. GCNMF [96] explicitly formu-
late the missing node features by Gaussian mixture models
whose parameters are inferred from the downstream tasks.
An effort named SAT [15] reconstructs the missing features
through the feature distribution, which is inferred from the
topology distribution. To handle missing features on het-
erogeneous information networks, HGNN-AC [51] imputes
missing features from neighbor nodes’ topology-based node
embedding, while HGCA [41] designs a feature augmenter
which is trained by maximizing the agreement between the
augmented node embedding and the actual node embedding.

Graph Adversarial Defense. Aside from the noise intro-
duced in the data collection phase, GNNs are fragile against
adversarial attacks on graph structure and features [93].
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Table 3: Summary of representative GraphDA works for reliable graph learning. DT, JT, BO stand for decoupled training,
joint training, and bi-level optimization, respectively.

Topic Name Ref. Year Venue Task Level
Augmented Data Modality

Learnable Augmentation Technique
Structure Feature Label

Graph Structure
Learning

D2-PT [72] 2023 KDD node X X X X(JT) feature propagation/pseudo labeling

HES-GSL [115] 2023 TNNLS node X X X(JT) graph rewiring

KDGA [114] 2022 NeurIPS node X X(JT) graph rewiring

DGM [57] 2022 TPAMI node X X X(JT) feature rewriting/graph rewiring

GEN [105] 2021 TheWebConf node X X(JT) graph rewiring

PTDNet [76] 2021 WSDM node & edge X X(JT) graph sampling

GAUG [149] 2021 AAAI node X X(DT) graph rewiring

HGSL [147] 2021 AAAI node X X(JT) graph rewiring

IDGL [16] 2020 NeurIPS node & graph X X(JT) graph rewiring

NeuralSparse [151] 2020 ICML node X X(JT) graph sampling

TO-GNN [126] 2019 IJCAI node X X(JT) graph rewiring

LDS [31] 2019 ICML node X X(BO) graph rewiring

PG-LEARN [119] 2018 CIKM node X X(JT) graph rewiring

Graph Feature
Denoising

D2-PT [72] 2023 KDD node X X X X(JT) feature propagation/pseudo labeling

HGCA [41] 2022 TNNLS node X X(JT) feature addition

AirGNN [71] 2021 NeurIPS node X X(JT) feature rewriting

GCNMF [96] 2021 FGCS node & edge X X(JT) feature addition

HGNN-AC [51] 2021 TheWebConf node X X(JT) feature addition

SAT [15] 2020 TPAMI node & edge X X(JT) feature addition

Graph Adversarial
Defense

Gasoline [125] 2022 TheWebConf node X X X(BO) feature rewriting/graph rewiring

Pro-GNN [53] 2020 KDD node X X(JT) graph rewiring

GIB-N [118] 2020 NeurIPS node X X(JT) graph rewiring

G-SVD [26] 2020 WSDM node X X(DT) graph rewiring

RoGNN [111] 2020 WCSP node X X(JT) graph rewiring

GNNGuard [144] 2020 NeurIPS node X X(JT) graph rewiring

Flag [63] 2020 arXiv node & edge & graph X X(JT) feature rewriting

G-Jaccard [113] 2019 IJCAI node X graph rewiring

GraphAT [27] 2019 TKDE node X X(JT) feature rewriting

Boosting GNN
Expressiveness

LAGNN [70] 2022 ICML node & edge & graph X X(JT) feature addition

rGINs [89] 2021 SDM graph X feature addition

GSN [7] 2021 TPAMI graph X feature addition

NGNN [142] 2021 NeurIPS graph X graph sampling

ID-GNN [130] 2021 AAAI node & edge & graph X X graph sampling/feature addition

Distance Encoding [66] 2020 NeurIPS node & edge & graph X feature addition

Master Node [33] 2017 ICML graph X node insertion

Alleviating
Over-Smoothing/

Squashing

SDRF [100] 2022 ICLR node X graph rewiring

ADC [146] 2021 NeurIPS node X X(BO) graph diffusion

SHADOW-GNN [135] 2021 NeurIPS node & edge X graph sampling

DropEdge [86] 2020 ICLR node X edge perturbation (dropping)

AdaEdge [9] 2020 AAAI node X X(JT) graph rewiring

GDC [61] 2019 NeurIPS node X graph diffusion

Scalable GNN
Training

GCOND [55] 2022 ICLR node X X X X(BO) graph generation

DosCond [54] 2022 KDD node & graph X X X X(BO) graph generation

GOREN [8] 2021 ICLR node X X X X(DT) graph generation

SpectralGC [56] 2020 AISTATS graph X X(DT) graph generation

SIGN [87] 2020 arXiv node X graph diffusion

PPRGO [6] 2020 KDD node X graph diffusion

GBP [14] 2020 NeurIPS node X graph diffusion

GraphSAINT [136] 2020 ICLR node X graph sampling

LADIES [154] 2019 NeurIPS node X graph sampling

Cluster-GCN [17] 2019 KDD node X X(DT) graph rewiring

Fast-GCN [11] 2018 ICLR node X graph sampling

GraphSAGE [36] 2017 NIPS node X graph sampling

Naturally, conducting GraphDA to recover and enhance (a
part of) the poisoned graphs is effective to alleviate the per-
formance degradation. In this section, we discuss recent ad-
vances in defending graph adversarial attacks via GraphDA.

Using prior knowledge about benign graphs (e.g., feature

smoothness) to guide graph rewiring is effective to de-
fend graph adversarial attacks. For instance, works such
as G-SVD [26] and DefenseVGAE [138] restore poisoned
graphs into their reconstructed low-rank graphs which shows
great empirical effectiveness again adversarial attacks. In
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Figure 4: 1-WL test fails to distinguish the decalin graph
(left) and the bicyclopentyl graph (right).

addition,G-Jaccard [113] and GNNGuard [144] prune links
whose head and tail nodes’ feature similarity (or embedding
similarity) is lower than a predefined threshold to eliminate
potentially malicious edges. Alternatively, the graph prior
knowledge can be realized by setting explicit regularization
terms. Pro-GNN [53] includes the topology sparsity and fea-
ture smoothness regularization terms into the optimization
objective which can guide the graph rewiring . Besides, the
supervision signals from downstream tasks can implicitly re-
flect the uncontaminated topology and feature distribution.
For instance, Gasoline [125] calibrates the given graph based
on the evaluation performance (e.g., classification loss) of
the validation nodes. GIB-N [118] adopts the information
bottleneck objective [99] which maximizes the mutual infor-
mation between node labels and node embeddings and uses
this objective function to guide the graph rewiring .

It is worth noting that an established defense strategy named
adversarial training [34] is grafted onto the graph data. Ex-
amples include a family of graph (virtual) adversarial train-
ing [63; 27; 19; 107]. Their core idea is to adversarially con-
duct edge perturbation and feature corruption to gener-
ate various challenging graph data samples which maximize
the classification loss. Then those samples are included in
the training of downstream GNN models which can improve
the robustness of GNNs against adversarial attacks.

Boosting GNN Expressive Power. Studies about the
expressiveness of GNNs show that various mainstream GNNs
cannot be more powerful than the 1-Weisfeiler-Lehman (WL)
isomorphism test to distinguish graphs and subgraphs [80;
124]. E.g., Figure 4 shows a pair of common examples that
cannot be distinguished by the 1-WL test due to the com-
mon rooted trees. In addition, due to the power-law distri-
bution of node degree, many nodes with few neighbors are
hard to be represented properly. To break such an inher-
ent limitation of GNNs, augmenting the given graphs is a
feasible solution. One line of research adopts the feature
addition technique to augment the original node/edge fea-
tures. For example, Distance Encoding [66] augments the
given node features with distance measures between node
pairs (or aggregated distance measures) to yield stronger
expressiveness than 1-WL test-based GNNs. A recent study
from Sato et al. [89] reveals that adding random features
into the existing node features can boost the expressiveness
of off-the-shelf GNNs (e.g., discriminate triangle structure).
GSN [7] and a variant of ID-GNN [130] take a step further
and augment the node features with the count of various
motifs (e.g., cycles). Recently, LAGNN [70] adopts feature
addition by a trained feature generator from which nodes
with few neighbors can benefit greatly.

Another line of work argues that the limitation of the 1-WL
test (and 1-WL test-based GNNs) is related to the struc-
ture of rooted trees. Based on that, graph sampling tech-
nique can enhance the GNN expressiveness. Specifically,

NGNN [142] claims that node representations from sam-
pled rooted subgraphs are more expressive than those from
rooted trees. Interestingly, ID-GNN [130] shares a similar
insight with NGNN [142] and also samples an ego network
for every node for computing the node embedding.

As the node representations are obtained through the ag-
gregation of node features within the receptive fields, to
enhance the propagation of messages for long distance, a
straightforward way is to apply node insertion by insert-
ing virtual nodes (i.e., super nodes or master nodes) [33;
65; 48; 84] into the graphs which are connected with all the
existing nodes.

Alleviating Over-Smoothing/Squashing of GNNs. Due
to the inherent design limit of GNNs, as the depth of the
model increases, the representations of different nodes in
the graph eventually become indistinguishable with itera-
tive message passing. The so-called over-smoothing phe-
nomenon generally leads to failure in the graph learning
tasks [67]. To counter the over-smoothing issue, GraphDA,
especially graph rewiring methods have been shown as an
effective solution. For example, DropEdge [86] randomly
removes graph edges during message passing to alleviate
over-smoothing. TADropEdge [32] exploits graph structural
information to compute edge weights for edge dropping,
such that the augmented subgraphs can avoid the arbitrary
data augmentation issue in DropEdge. AdaEdge [9] itera-
tively adds or removes edges to the graph topology based on
the classification results (from a GNNs-based classifier) and
trains GNN classifiers on the updated graphs to overcome
the over-smoothing issue. SHADOW-GNN [135] samples in-
formative subgraphs centered on each node and then builds
a deep GNN operating on subgraphs instead of the whole
graph to decouple the depth and scope of GNNs.

Note that over-smoothing is mostly demonstrated in tasks
that depend mostly on short-range information, while GNNs
are also ineffective for capturing long-range node interac-
tions. A recent study [1] points out that the distortion of
information flowing from distant nodes (i.e., over-squashing)
is the main factor limiting the efficiency of message pass-
ing for tasks relying on long-distance interactions. As the
layer depth increases, the number of nodes in each node’s
receptive field grows exponentially and leads to the over-
squashing issue. To overcome over-squashing, graph diffu-
sion and graph rewiring are two effective choices. Graph
Diffusion Convolution (GDC) [61] constructs a new graph
based on a generalized form of graph diffusion, which can be
further used to enlarge a larger neighborhood for message-
passing. Adaptive Diffusion Convolution (ADC) [146] sup-
ports learning the optimal neighborhood from the data au-
tomatically to eliminate the manual search process of the op-
timal propagation neighborhood in GDC. Alon & Yahav [1]
propose to rewire the graph to build a fully-adjacent GNN
layer for reducing the bottleneck. Similarly, Stochastic Dis-
crete Ricci Flow (SDRF) [100] is a curvature-based method
for graph rewiring to mitigate the over-squashing issue.

Scalable Graph Training. Scalability is always a cru-
cial challenge for GNNs which hinders the applicability of
a broad class of GNN models over large real-world graphs.
GraphDA techniques, such as graph sampling , graph dif-
fusion , and graph generation play an important role to
speed up the training and inferring of GNNs.

Based on the idea of graph sampling , GraphSAGE [36]

11



uniformly samples the neighbors of the target nodes to en-
able GNN inductive learning on large graphs. FastGCN [11]
shares a similar idea with GraphSAGE but follows the idea
of importance sampling to sample vertices in every layer.
To overcome the redundant sampling and sparse connec-
tion problem brought by the GraphSAGE [36] and Fast-
GCN [11] respectively, Zou et al. [154] propose LADIES
which is a layer-dependent sampling strategy. In addition,
GraphSAINT [136] is another sampling-based method that
applies various sampling methods (e.g., based on random
walk) to improve the scalability of training rather than mod-
ifying the vanilla GCN model [59]. Similar to sampling
methods, graph partition is also effective to lower the mem-
ory requirement. For example, Cluster-GCN [17] partitions
the given graph into clusters and conducts convolution op-
eration within every cluster to avoid heavy neighborhood
search and sampling.

Another line of GraphDA research on scaling the training
of GNNs adopts a decoupled design that trains MLP on
the augmented graphs via graph diffusion [12; 112; 60;
87]. Given the above model design, the graph diffusion
matrix can be pre-computed, which makes the training of
MLP more efficient. A set of representative works adopt
PageRank [81] and its variant (e.g., personalized PageR-
ank [49]) to infer the diffusion matrix such as SGC [112]
and APPNP [60]. Similarly, PPRGo [6] adopts the For-
ward Push algorithm [2] to approximate the personalized
PageRank matrix for efficiency. GBP [14] revisits the core
idea of PPRGo and further speeds up the computation of
the generalized PageRank matrix by the Bidirectional Prop-
agation algorithm. In addition, a very recent work named
GRAND+ [29] also approximates the graph diffusion matrix
to scale the training of graph random neural networks [30]
in the consistency training context.

In addition, works on “graph condensation” and “graph
coarsening” try to shrink the given graph G by graph gen-
eration so that the generated graph G̃ can be handled by
GNNs [46]. Their core idea is to minimize a ‘quantity of in-

terest’ between the input graph G and augmented graph G̃.
For example, Jin et al. [56] propose to minimize the spec-

tral distance between G and G̃. GOREN [8] aims to keep

Laplace operators from G and G̃ comparable. GCOND [55]
and DosCond [54] minimize the difference of training gradi-

ents on G and G̃.

6. FUTURE DIRECTIONS
GraphDA is an emerging and fast-developing field. Although
substantial progress has been achieved, many challenges re-
main under-explored. In this section, we discuss some promis-
ing research directions as follows.

Data Augmentation beyond Simple Graphs. Most
of the aforementioned works develop augmentation strate-
gies on homophilic (i.e., assortative) graphs where edges
tend to connect nodes with the same properties (e.g., la-
bels, features). However, heterophily (i.e., disassortativity)
also exists commonly in networks such as heterosexual dat-
ing networks. Many existing augmentation approaches [94]
on heterophilic graphs focus on improving the assortativity
of the given graphs or dropping/deweighting the existing
disassortative edges [129]. The augmentation of node fea-
tures, labels, and non-existing edges of heterophilic graphs
remains understudied. Besides, existing GraphDA efforts

are mainly developed for either plain or attributed graphs,
while principled augmentation approaches for other types of
graphs (e.g., heterogeneous graphs, hypergraphs, multiplex
graphs, dynamic graphs) remain largely unexplored. Those
complex graphs provide broader design space for augmenta-
tion but also challenge the effectiveness of existing GraphDA
methods greatly, which is vital to explore in the future.

Automated and Generalizable Graph Data Augmen-
tation. In general, the effectiveness of DGL problems hinges
on adhoc graph data augmentations, which have to be manu-
ally picked per dataset, by either rules of thumb or trial-and-
errors. For example, researchers observe that different data
augmentations affect downstream tasks differently across
datasets, which suggests that searching over augmentation
functions is crucial for graph self-supervised learning [131].
Nevertheless, evaluating representations derived from multi-
ple augmentation functions without direct access to ground
truth labels makes this problem challenging. Hence, it is
necessary to develop automated data augmentation solu-
tions to adaptively customize augmentation strategies for
each graph dataset [77]. Meanwhile, considering that differ-
ent graphs usually have distinct graph properties, developing
generalizable data augmentation methods without learning
from scratch for each domain is also a promising direction
to improve the practical usage of GraphDA methods.

Semantic-Preserving Graph Data Augmentation. De-
signing effective data augmentation for graphs is challeng-
ing due to their non-Euclidean nature and the dependen-
cies between data samples. Most graph data augmenta-
tion methods adopt arbitrary augmentations on the input
graph, which may unexpectedly change both structural and
semantic patterns of the graph [82]. For example, drop-
ping a carbon atom from the phenyl ring of aspirin breaks
the aromatic system and results in a alkene chain, which is
an entirely different chemical compound. Hence, proposing
a label-consistent/semantic-preserving GraphDA method is
of necessity. To this end, recent studies [64; 121; 134] per-
form data augmentation on the latent space to avoid the
perturbation on the semantics.

Graph Data Augmentation for Trustworthy DGL.
Despite the success of DGL, how to ensure various DGL al-
gorithms behave in a socially responsible manner and meet
regulatory compliance requirements becomes an emerging
problem, especially in risk-sensitive applications. In fact,
GraphDA can be an effective tool to achieve Trustworthy
GML, especially on fairness, causality, explainability of DGL
algorithms. For example, counterfactural graph data aug-
mentation [75; 148] has been used to explain the behavior of
GNNs in the literature. Moreover, data augmentation itself
is typically performed in an adhoc manner with little under-
standing of the underlying theoretical principles. Existing
work on GraphDA is mainly surface-level, and rarely investi-
gates the theoretical underpinnings and principles. Overall,
there indeed appears to be a lack of research on interpret
why exactly GraphDA works.

7. CONCLUSION
In this paper, we present a forward-looking and structured
survey of graph data augmentation (GraphDA). To inspect
the nature of GraphDA, we give a formal formulation and
a taxonomy to facilitate the understanding of this emerging
research problem. Specifically, we frame GraphDA meth-
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ods into three categories according to the target augmenta-
tion modalities, i.e., feature-wise, structure-wise, and label-
wise augmentations. We further review the application of
GraphDA methods to address two data-centric DGL prob-
lems (i.e., low-resource graph learning and reliable graph
learning) and discuss the prevailing GraphDA-based algo-
rithms. Finally, we outline current challenges as well as
opportunities for future research in this field.
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dict then propagate: Graph neural networks meet per-
sonalized pagerank. In ICLR, 2018.

[61] J. Klicpera, S. Weißenberger, and S. Günnemann. Dif-
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