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ABSTRACT

Knowledge graph question answering aims to identify answers of
the query according to the facts in the knowledge graph. In the
vast majority of the existing works, the input queries are consid-
ered perfect and can precisely express the user’s query intention.
However, in reality, input queries might be ambiguous and elusive
which only contain a limited amount of information. Directly an-
swering these ambiguous queries may yield unwanted answers and
deteriorate user experience. In this paper, we propose PREFNET
which focuses on answering ambiguous queries with pseudo rel-
evance feedback on knowledge graphs. In order to leverage the
hidden (pseudo) relevance information existed in the results that
are initially returned from a given query, PREFNET treats the top-
k returned candidate answers as a set of most relevant answers,
and uses variational Bayesian inference to infer user’s query inten-
tion. To boost the quality of the inferred queries, a neighborhood
embedding based VGAE model is used to prune inferior inferred
queries. The inferred high quality queries will be returned to the
users to help them search with ease. Moreover, all the high-quality
candidate nodes will be re-ranked according to the inferred queries.
The experiment results show that our proposed method can recom-
mend high-quality query graphs to users and improve the question
answering accuracy.

CCS CONCEPTS

« Computing methodologies — Reasoning about belief and
knowledge; - Information systems — Data mining,.
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1 INTRODUCTION

Knowledge graphs are ubiquitous, which have been used in a variety
of applications, such as recommendation [6], alignment [27], fact
checking [12] and many more. A knowledge graph is a graph data
structure which contains a multitude of triples denoting real world
facts. Each triple contains a head entity (e.g.,Harvard_University),
atail entity (e.g., United_States) and a relation between them (e.g.,
locatedIn).

Knowledge graph question answering (short for KGQA) aims to
find entities in the knowledge graph which can correctly answer
the given question. This problem has attracted great attention from
both academia and industry, and abundant algorithms have been
proposed recently. For example, RnG-KBQA [28] adopts a rank-and-
generate approach to transform the input natural language question
to a query graph and finds the answer according to the query graph.
This strategy of finding answers based on the query graph can
also be referred to as subgraph matching [13]. Key-Value Memory
Network (KVMem) [16] stores KG facts in a memory table and uses
it to retrieve entities which have the most similar embedding as
the input query. EmbedKGQA [20] embeds both the input question
and entities in the knowledge graph to points in the embedding
space and finds answers according to their embedding similarity.

Despite the great progress, most works focus on answering de-
fectless queries on knowledge graphs. These queries are assumed
to be perfect and can precisely express users’ query intentions.
However, this is not true most of the time in real cases for the
following reasons. First, the vocabulary of different users can vary
dramatically. According to a prominent study on the human vocab-
ulary problem [8], about 80-90% of the times two persons will give
different representations when they are asked to name the same
concept [21]. This means the input queries of different users could
be very different from each other. Second, some KGQA methods
(e.g., [28] [4]) need to transform the natural language questions to
graph queries, and then search the results according to these query
graphs. The transformation algorithm may generate queries with


https://doi.org/10.1145/3543507.3583316
https://doi.org/10.1145/3543507.3583316
https://doi.org/10.1145/3543507.3583316
mailto:permissions@acm.org
mailto:htong@illinois.edu
mailto:haoyang@visa.edu
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3543507.3583316&domain=pdf&date_stamp=2023-04-30

WWW °23, April 30-May 04, 2023, Austin, TX, USA

inaccurate graph structure. Last but not the least, allowing users
to input query graphs directly may introduce additional structural
noise or inaccuracy due to their lack of full background knowledge
of the underlying KG [21].

To address these issues, query ambiguity and vagueness need to
be correctly resolved, which in turn requires new information in
addition to the query itself. Relevance feedback (short for ReF) is
one promising solution. The general idea behind relevance feedback
is to take the results that are initially returned from a given query,
to gather user feedback, and to use information about whether
or not those results are relevant to form a new query !. The user
feedback can be explicit (e.g., clicking like or dislike), implicit (e.g.,
the duration of time spent viewing a document) or pseudo feedback
(no feedback is given). In spite of the fact that relevance feedback has
been studied extensively and proven to be effective in information
retrieval, it has not been well studied in graph query system. Due
to the unique characteristics of graph query, traditional relevance
feedback methods are not directly applicable. How to use relevance
feedback to improve query performance on graph data largely
remains an open problem.

In this paper, we propose PREFNET which applies pseudo rel-
evance feedback (short for PReF) to graph data to infer the true
query structure from an ambiguous query and improve answering
performance. More specifically, guided by Bayes rule, the proposed
PREFNET decomposes the question answering problem into several
components and models each component as a neural network. To
infer the true query, PREFNET utilizes variational Bayesian infer-
ence. To boost the quality of the inferred query, a neighborhood
embedding based VGAE model is used to prune inferior query. Fi-
nally, the newly inferred queries will be used to re-rank the original
candidate answers. The experiment results show that our methods
can achieve better question answering accuracy compared with the
state-of-the-art baselines and better infer the user’s query intention.

In summary, the main contributions of this paper are:

e Problem Setting. To our best knowledge, we are the first to
study using neural network based pseudo relevance feedback
on knowledge graphs to infer queries and improve question
answering performance at the same time.

e Algorithm We propose to decompose the question answer-
ing problem into several components and model each com-
ponent as a neural network model.

e Empirical Evaluations. The experimental results on sev-
eral real-world datasets demonstrate the effectiveness of the
proposed PREFNET{ramework.

The rest of the paper is organized as follows. Section 2 introduces
notations used in this paper and gives the problem definition. Sec-
tion 3 introduces the overall framework of the proposed algorithm
and its technical details. The experiment results are presented in
Section 4, and the related work is reviewed in Section 5. Finally, the
paper is concluded in Section 6.

2 PROBLEM DEFINITION

Table 1 gives the main notations used throughout this paper. A
knowledge graph can be denoted as G = (V,R, L) where V =
{v1,02, ...,0n } is the set of nodes/entities, R = {ry,r2, ..., 'm } is the

!https://en.wikipedia.org/wiki/Relevance_feedback
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Table 1: Notations and definitions

Symbols Definition
G=(V,R L) the knowledge graph
Vv the entity set
R the relation set
L the fact set
v; the it entity/node in knowledge graph
ri the it relation/edge in knowledge graph
ey, /€ the embedding of node v;
r; the embedding of relation r;
(0] the ambiguous question
ho the ambiguous question embedding
T the true query graph of Q
o) the natural language question training set
Ao the answer set of question Q
a a candidate answer of question Q
(%) the topic entity in question
z the latent path
pi the i-th relation in latent path
w the it word in Q
ro the relation of query

set of relations and L is the list of triples. Each triple in the knowl-
edge graph can be denoted as (h,r,t) where h € V is the head (i.e.,
subject) of the triple, t € V is the tail (i.e., object) of the triple and
r € R is the edge (i.e., relation, predicate) of the triple which con-
nects the head h to the tail ¢. For example, (New_York, locatedIn,
United_States) and (London, locatedIn, United_Kingdom) are
two triples in knowledge graph Yago.

Knowledge graph question answering aims to answer a question
with the help of knowledge graphs. According to the study in [21],
most users formulate queries using their own knowledge and vocab-
ulary during the search process. They might not have a fairly good
understanding of the underlying data schema and the knowledge
graph structure. This means that the users’ true intentions behind
the queries may be frequently misinterpreted or misrepresented.
For example, if a user inputs query “thomas jefferson role in decla-
ration independence”, the phrase “role in" should be interpreted as
predicate “profession” or “occupation”, and the phrase “declaration
independence" refers to the pronouncement and founding docu-
ment adopted by the Second Continental Congress. While in query
“John Litel role in declaration independence”, the phrase “role in"
should be interpreted as predicate “film actor” or “act in”, and the
phrase “declaration independence” represents a movie. The same
phrases “role in" and “declaration independence" have totally dif-
ferent interpretations in the two queries. Unless the transformation
algorithm can accurately understand the user’s intention, directly
answering these ambiguous queries may yield unwanted answers
and deteriorate user experience. Here, a promising way to disam-
biguate the query is via relevance feedback as follows. With the help
of relevance feedback, we can infer from the top rank candidates
(e.g., White_House, Politician, President for “thomas jefferson”
and United_States, Actor, Albany_Wisconsin for “John Litel")
that “thomas jefferson" is a statesman and “John Litel" is a actor.
These candidates provide clear and useful interpretation to users.
The new interpretation can not only help users understand the
background knowledge graph better, but also return more accurate
answers. More examples can be found in Subsection 4.5B.
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In this paper, we focus on answering ambiguous one-hop ques-
tion over knowledge graph. We assume the input ambiguous query
Q contains a topic/anchor entity vg € V and a sequence of words
Q = (w1, wo, ..y W|Q|). Ideally, each question can be mapped to a
unique relation rg in the knowledge graph. The goal of question an-
swering over knowledge graph is to identify a set of nodes Ag € V
which can answer the ambiguous question. We assume that all the
answer entities exist in the knowledge graph, each question only
contains a single topic/anchor entity vg € V and vg is given.

To disambiguate the query and improve query accuracy, a natural
idea is to effectively acquire more query-specific information. This
can be achieved by relevance feedback which has been extensively
studied in Information Retrieval Systems. In this paper, we focus on
utilizing pseudo relevance feedback to infer true query intention
and improve question answering accuracy. More specifically, the
proposed PREFNET treats the top-k candidate answers of a KGQA
system as most relevant information and uses them to derive the
true query so that more accurate answers can be found. The derived
queries will in turn help the users better formulate their queries
and obtain better understanding of the background knowledge.

Formally, the problem this paper studies is defined as follows.

PROBLEM DEFINITION. Answering Ambiguous Query:

Given: (1) A knowledge graph G, (2) an ambiguous one-hop natu-
ral language question;

Output: (1) The answer of the question, (2) Top-k most likely
correct query relations of the input query.

3 PROPOSED METHOD

In this section, we first introduce the framework and basic idea
behind our method. Then, the details of each specific component
are elaborated.

3.1 Model Overview

The key idea of PREFNET is as follows. We treat the top-k results
of the KGQA system as potentially correct answers, and use them
to predict the true query relation. Given the ambiguous query and
its anchor entity, we give the following lemma to decompose the
problem of question answering over knowledge graph (KGQA).

LEmMA 1. (KGQA Decomposition) Given an ambiguous query Q
and its anchor node vg, let Pr(T|Q,vg) denote the probability that
query relation T is generated from Q and let Pr(a|T,vg) denote the
probability that candidate answer a found by T is the true answer, we
have
Pr(T|Q,v0)Pr(alT,vg) o« Pr(QI|T,vg)Pr(T|a,vg)Pr(alug).

Proor. The probability of inferring the true query relation can
be expressed as the following equation according to Bayes rule:

P , T
Pr(T|Q.00) = Q?Twlg)

o Pr(Q,Tlog)
= Pr(QIT,vg)Pr(T|ovp),

where Pr(Q|vg) can be ignored since it is irrelevant to inferring T.
Furthermore, given a candidate answer a of ambiguous query Q,

1)
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we have
Pr(a,Tlvg)
Pr(a|T, UQ) = W,
This means
Pr(a,Tlvg)
Pr(T = —
r(TQ) = 5 e 0g) "
p Pr(T|a,vg)
= r(a|UQ)—Pr(a|T, UQ)‘
Plugging Eq. (2) to Eq. (1), we can get
Pr(T|a,vg)
Pr(T|Q,vg) o Pr(QI|T,vg)Pr(alog) 3)

Pr(alT,vg)
Consequently, we obtain

Pr(T|Q,vQ)Pr(a|T,vg) o Pr(Q|T,vg)Pr(T|a,vg)Pr(alog). (4)
O

In Eq. (4), Pr(alvg) (prior of candidate answer) can be treated
as the prior probability that node a is the correct answer given vg.
It describes experts’ beliefs when giving no evidence. The intuition
is that if a is close to vg (e.g., the shortest distance of a to vg on the
KG is small), it may have a high probability to be the answer. On the
other hand, if a is far from vQ, its probability to be the answer will
be low. Pr(Q|T,vp) (likelihood of ambiguous query) refers to
the probability that given the anchor entity v and the true query
relation T, how likely the users will input ambiguous query Q. In
general, if Q is similar to T, Pr(Q|T, ZJQ) should be high. Otherwise,
it should be low. Pr(T|a, vp) (posterior of true query) presents
that given vp and candidate answer a, how likely T is the correct
relation that reflects the true relationship between them.

The left hand side of Eq. (4) shows the main idea of question
answering over knowledge graph. The KGQA system first trans-
forms the input natural language question Q to a high quality query
relation T, then finds the answer according to T and the anchor
node vg. The goal of KGQA is to maximize Pr(T|Q, vp)Pr(a|T,vp),
which is equivalent to find query relation T which can maximize
Pr(QIT,vg)Pr(alvg)Pr(T|a,vg). However, directly calculating Eq. (4)
is impossible since we do not know the real world distribution. A
general idea is to use Pr(T|a, vg) (posterior of true query) predict
the “hidden relevance” between candidate a and anchor node vg. If
the “hidden relevance” T is highly related to the original query Q,
it can be used to re-rank the top candidate answers. Otherwise, the

“hidden relevance” T is considered as noise and ignored.

More specifically, two neural network components are used in
PREFNET. The first neural network is used to model Pr(T|a,vg)
(posterior of true query) which performs like a generator to
produce high quality candidate query relations (the “hidden rele-
vance” T). The second neural network is used to model Pr(Q|T,v0)
(likelihood of ambiguous query) which behaves like a discrimi-
nator to measure the similarity between Q and T, and prunes T if
the similarity is too low.

Figure 1 shows the Framework of PREFNET. The yellow part
corresponds to the method EmbedKGQA [20] 2. In the first step,
EmbedKGQA is used to find k top candidates based on the input
ambiguous query Q. Then, the query inference part (Pr(T|a, vp)

2We use EmbedKGQA because it’s one of the state of the art methods.
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Figure 1: The Framework of PREFNET. The yellow part shows the architecture of EmbedKGQA [20].

subsection 3.2) is used to infer the true relation between anchor
node v and each candidate node e;. Because not every candidate
node is good, to boost the quality of those inferred relations, we use
a neighborhood embedding based VGAE [10] model to prune low
quality relations. Finally, the rest of the high quality inferred rela-
tions will be used by Query Ranking (Pr(Q|T,vg) subsection 3.4)
and Answer Re-ranking (subsection 3.5).

After we have introduced the general idea of PREFNET, in the
following subsections, we introduce how to model each component
in detail.

3.2 Query Inference: Posterior of True Query

When using pseudo relevance feedback to find out the true inten-
tion of the input query, we assume the top-k candidate answers
returned by the existing algorithm in the first round is an initial set
of most relevant answers. To better understand the query intention,
PREFNET infers the query structure according to the anchor entity
v, potential/candidate answers, and the background knowledge
graph.

When the input query is a one-hop query, this problem is equiv-
alent to the link prediction problem in the knowledge graph. Given
an entity pair (v, a), we assume that there is a latent measure for a
given entity pair in the KG, i.e. the collection of linked paths; these
hidden information can reveal the underlying semantics between
these two entities. More specifically, the posterior of the true query
log Pr(T|a,vp) can be calculated by

log Pr(T|a,vg) = log Z Pry(zla,vg)Pry(T|z,a,00) (5)
z

where 1 and 6 are model parameters, z is the latent path between
vp and a in the knowledge graph. Pry(z|a,vg) can be treated as
the prior distribution denoting how likely z can represent the re-
lation between a and vg, and Pry(T|z, a,vp) can be treated as the
likelihood that T is the true query between a and vg given latent
variable z.

2480

A - Estimate Pry(z|a, vg). When calculating Pry(z|a, vg), neigh-
borhood of anchor node vg and candidate answer a usually pro-
vides us extra information which can imply their similarity to z.
For example, if g is surrounded by relations like bornAt, 1iveln,
hasChild, etc., it alludes that vQ is a person. And if a is surrounded
by hasMajor, locatedIn, university_founder, etc, we can infer
that a might be a university. Therefore, if z is a latent path which ex-
presses the relation between a person and a university, Prg(z|a, vg)
should have a high value. Otherwise, Pry(z|a,vp) should be low.

In order to encode the neighborhood information of anchor node
vp and candidate answer a, PREFNET utilizes the relation/edge mes-
sage passing graph neural network [23] to learn their embeddings
as follows

k k
my= ) s
eeN(v)
£ = o([mb, mE, sLIWF +5%),00,a € N (e),

where [-] is the concatenation function, v is an arbitrary node in
the knowledge graph, WK and b¥ are the learnable transformation
matrix and bias, respectively. s§ is the embedding of edge e at iter-
ation k, s0 is the initial edge embedding re. Relation/Edge message
passing is repeated for K times. The final message mX-! and mK—1
are taken as the representation for anchor node vg and candidate
answer a, respectively.

On the other hand, given a path z = (p1, p2, ..., p||) in the knowl-
edge graph , the path embedding can be calculated by an LSTM as
follows:

Z = LSTM(z), (6)
where Z denotes the embedding with all relational information
aggregated throughout path z. The neighborhood information of a
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Figure 2: Using relation/edge message passing to estimate
Prg(zl|a,vg).

and vg can be aggregated by
S(upa) = MLP(mgg >t mig 1)

= o([ma, 'y mg WS 4B,

™

Finally, the probability Prg(z|a,vp) can be measured by the simi-
larity between Z and s(y5, 4):

Pro(zla,vg) = Sigmoid(S(UQ,a) -Z), 8)

where - is the dot product. An illustrative example is given in Fig-
ure 2.

B - Estimate Pry)(T|z, a,vp). For likelihood Pry(T|z, a,vp), it can
be modeled by a graph decoder, which takes the embeddings of
z, vg and a as its initial input and generates a relation. It can be
simply modeled as:

Pry(T =rjlz,a,00) = softmax(FNN(S(uQ’a) HZ) [j], )
where FNN is the feedforward neural network.

3.3 Query Inference Training

Directly optimizing the objective in Eq. (5) is challenging, because
the summation over all possible paths is intractable. In order to
maximize Eq. (5), we resort to variational inference and minimize
its negative evidence lower bound:

ProproSITION 1. Let L(¢,0,n) be defined as in Eq. (10), we have
log Pr(Tla,vg) =2 —L(¢,0,n)

L(4,6,1n) =Ez~q¢(z|T,a,uQ) [- logPr,, (Tlz a, UQ)]

+KL(q¢(z|T, a,00)|Prg(z|a,vp)) (10)

where q4(z|T, a,00) is the variational posterior.
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ProoF. According to Eq. (5), we have
log Pr(T|a,0g) = log Z Prg(zl|a,0g)Pry(T|z,a,00)
z

Pry(zla,v0)Pry(T|z a,00)
49 (2IT, a,00)

Prg(z|a,0g)Pry(T|z,a,00)
q¢ (2T, a,09)

= Ez~q,(2IT.a,00) 108 Pro(zla, vp)

+log Pry(T|z, a,00) — log g4 (2|T, a,v0)]

=-L(¢,0.n)

= log Z q4(2IT, a,00)

> Z q4(zIT, a,00) log
z

(11)

O

According to Proposition 1, Eq. (10) is the negative lower bound
of Eq. (5). Therefore, minimizing Eq. (10) can best approximate
log Pr(T|a,vp).

When approximating the posterior g4 (z|T, a,00), we use the
same model as prior (Eq. (8)), except that we replace Eq. (8) by

X = S(vQ,a) +er
. . (12)
q4(2|T, a,00) = Sigmoid(x - Z)
where et is the embedding of T. , and - is the dot product.
When updating the model, we leverage gradient descent to min-
imize the loss. The gradient of the loss w.r.t. g4 (z|T, a,0¢) can be
calculated as:

VoL =Eq,(21T.a,00) [ Vg (2T, a,00) (log Prg(z]a, 00)

13
+log Pry(T|z, a,00) — log q4(2|T. a,00))]. (13)

The gradient in Eq. (13) can be approximated by the Monte Carlo
method using N samples of the latent variable from variational
distribution

1 N

VoL ~ N Z[V¢q¢(zi|T, a,00)(log Prg(zi|a,vg)
i=1

+log Pry(T|zi,a,00) — log gy (zilT, a,00))].

(14)

When updating other parameters: 6, , the gradient of L(¢, 0, 1)
with respect to n can be calculated directly, and the gradient of
L(¢,0,n) with respect to 0 is equivalent to calculating the gradient
of KL-divergence of KL(qy(z|T, a,00)|Prg(zla,vg)) with respect
to 6.

3.4 Query Ranking: Likelihood of Ambiguous
Query

After we introduce how to model Pr(T|a,vgp) (posterior of true
query), we now introduce how to model Pr(Q|T,vp) (likelihood
of ambiguous query).

Given the initial top-k answer candidates, a set of potential true
query relations are generated by Pr(T|a,vp) (posterior of true
query). Because noise may exist in the initial candidate set, to
boost the qualify of the new generated T, we use a neighborhood
embedding based VGAE [10] to prune low quality T. The details
of the neighborhood embedding based VGAE model is given in
Appendix.
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After pruning low qualify inferred queries, we use another neu-
ral network to model Pr(QI|T,vp) which calculates the similar-
ity between T and the input ambiguous query Q. Inspired by [1],
Pr(QI|T,vp) is approximated according to their distance in the em-
bedding space. Given a ambiguous query, since the query is a natu-
ral language question, we use a pre-trained BERT [5] to learn its
embedding:

[hers, wi, ... W|0ls hg] = BERT([CLS], w1, ..., Wi, < S >),

where herg is the embedding of the [CLS] token and hg is the
embedding of the < s > token. The final question embedding is
obtained from hy g as below, where FNN is a feed forward neural
network

hp = FNN([hcrs]).

When training the Query Ranking model (Pr(Q|T,vg)), we ran-
domly sample some negative relations from the knowledge graph.
The positive query relations are given in the training data. In sum-
mary, given a positive pair and a negative pair, the loss is defined
as

L= >y +d(hg,er) - d(hg,er)], (15)

er ers
where e7- is the embedding of the negative sample T’, d(hg, er)
measures the distance between embedding hgp and er, which can
be either the L; or the Ly-norm, and y is a margin hyperparameter.

During the test, we use the neighborhood embedding based
VGAE to measure the quality of the inferred queries. If the score is
greater than 0.5, we think the queries have high quality and return
them directly. Otherwise, all the high qualify potential queries
generated by query inference Pr(T|a,vgp) are ranked according to
their distances calculated by d() in Eq. (15).

3.5 Answering Re-ranking

After getting high quality inferred queries, we can re-rank all
the top-k candidate answers. The ranking function is calculate
by X1 Pr(a|T,vp). Similar to [20], we approximate Y1 Pr(a|T,vg)
as

10gZPr(a|T, vQ) « y * |[Rg N Rr|,
T

where Rj is the set of relations on the shortest path between anchor
entity v and candidate answer a. Ry is the top-ranked potential
queries generated by query inference Pr(T|a,vg) (posterior of
true query). To keep the high quality of the inferred query T, we
prune those queries which are scored less than 0.2 by the neighbor-
hood embedding based VGAE [10] model.

4 EXPERIMENTS

In this section, we evaluate the performance of the proposed PREFNET

on several public datasets. We first introduce the datasets and base-

lines used in the paper, and then present the experiment results.
We aim to answer the following questions.

4.1 Experimental Setting

Three datasets are used in the paper which are summarized below:
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e WebQuestionsSP contains both the 1-hop questions and
2-hop natural language questions. There are 4,000 questions
in total and all questions can be answered by Freebase.

¢ SimpleQuestions contains more than 100K simple 1-hop
natural language questions which can be answered by Free-
base.

e MetaQA is a dataset on movie domain which contains more
than 400K natural language questions. The background knowl-
edge graph contains information about directors, movies,
genres and actors. We use the 1-hop questions in our experi-
ment.

The statistics of these datasets are shown in Table 10 in Appendix.
Their corresponding knowledge graphs are shown in Table 11 in
Appendix. In the experiment, we test the effectiveness of PREFNET
on complete KG and incomplete KG with 50% and 20% missing
edges respectively. All missing edges are randomly deleted.

We test the query ranking performance on 4 baselines, including

e HGNet [4] uses a generation method to transform the input
query to a SPARQL query and uses it to find the results.
RnG-KBQA [28] adopts a bootstrapping strategy to train a
query graph ranker and generator, and searches the back-
ground knowledge graph according to the generated query.
e VGAE is a variant of variational autoencoder [10]. We model
the encoder component with a pre-trained Bert [5] and de-
coder component with a feedforward neural network. No
neighborhood information is used here.

Neighborhood VGAE is the relation pruning model used
in the proposed PREFNET which has been introduced in
subsection 3.4. The details are given in Appendix.

Wi
ing:

[¢)

test question answering performance on 3 baselines, includ-

GraftNet [22] finds a question-specific subgraph containing
KG facts, and then uses a graph neural network to predict
the answers.

e Key-Value Memory Network (KVMem) [16] maintains a
memory table which stores KG facts and uses this for re-
trieval.

EmbedKGQA [20] conducts multi-hop reasoning through
matching pre-trained entity embeddings with question em-
bedding obtained from RoBERTa [5]. We use EmbedKGQA
with relation matching which has better performance com-
pared with the EmbedKGQA without relation matching.

Another related method is GRF [21]. However, neither the code
nor the datasets are publicly available, and thus we leave the com-
parison with GRF to future work.

4.2 Performance of Query Ranking

Traditional KBQA methods usually transform the natural language
query to a query graph, and then find the answer according to
the query graph. However, because of the ambiguity in the input
query, the generated query graph is usually inaccurate. The pseudo
relevance feedback, on the other hand, can infer queries according
to the top candidate answers. We run the experiments on datasets
WebQSP and SimpleQA. Because the data format of the background
knowledge graph of MetaQA is different from that required by
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Table 2: Query ranking Hit@1.

Webgsp 50% KG | Webgsp 80% KG | Webgsp full | SimpleQA 50% KG [ SimpleQA 80% KG [ SimpleQA full
HGNet 52.5 55.3 58.2 -
RnG-KBQA 61.2 63.3 66.7 -
VGAE 70.7 71.3 73.7 87.4 89.1 91.6
Neighborhood-VGAE 74.2 76.1 78.1 90.3 92.3 93.5
PREFNET 75.7 77.2 79.0 90.8 92.7 94.5

Table 3: KGQA Hit@1 results of Webqsp on complete, 50%
and 80% completeness knowledge graphs.

Model  |Webgsp 50%|Webgsp 80%| Webgsp
GraftNet 32.7 39.8 -
KVMem 44.2 - 46.7

HGNet 37.8 454 46.1

RnG-KBQA 40.6 48.5 53.1
EmbedKGQA 46.3 52.8 56.7
PREFNET 47.7 53.7 57.2

Table 4: KGQA Hit@1 results of SimpleQA on complete, 50%
and 80% completeness knowledge graphs.

Model simpleQA50% |simpleQA80% | simpleQA
GraftNet 39.8 - -
KVMem 28.9 - -

EmbedKGQA 46.5 58.9 64.3
PREFNET 48.8 60.1 64.8

Table 5: KGQA Hit@1 results of MetaQA on complete, 50%
and 80% completeness knowledge graphs.

Model MetaQA 50%|MetaQA 80%|MetaQA
GraftNet 64.0 - -
KVMem 63.6 - -

EmbedKGQA 83.1 90.1 95.3
PREFNET 83.9 90.6 95.6

HGNet and RnG-KBQA, we omit the query ranking experiment on
MetaQA.

Following the same setup as in [20], we evaluate the accuracy
using the Hit@1 metrics which is the fraction of times a correct
answer was retrieved within the top-1 positions. Table 2 shows the
results of Query Ranking. Four different methods have been used
in the experiments. HGNet and RnG-KBQA are knowledge graph
question answering algorithms. They first transform the ambiguous
natural language question to a query graph, and then search the
knowledge graph according to the generated query graph. VGAE
is a variational autoencoder and decoder method. Neighborhood-
VGAE is the proposed pruning method used in PREFNET.

As observed in Table 2, the proposed PREFNET has the highest
query ranking accuracy compared with other baselines. For Webgsp,
the performance boosts are 5.0% and 5.9% with 50% and 80% of the
underlying knowledge graph respectively, compared with VGAE,
and 0.9% on average compared with Neighborhood-VGAE. Similar
results can be found in complete knowledge graph as well. Besides,
compared with 50% knowledge graph, the query ranking accuracy
on 80% and full knowledge graph of all four baselines is higher. This
means if the background knowledge graph becomes more complete,
all baselines tend to generate more accurate query graphs.
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4.3 Performance of Question Answering

Table 3 shows the results of all baseline methods on Webgqsp dataset
with 50% complete KG, 80% complete KG and complete KG, respec-
tively. As shown in Table 3, the Hit@1 of all methods decreases as
the sparsity (incompleteness) of the background knowledge graph
increases. This means that the quality of the background knowl-
edge graph has a significant impact on the KGQA task. Among all
the methods, EmbedKGQA with relation matching can achieve the
highest accuracy. PREFNET further increases the accuracy by 1%
on average. Table 4 and Table 5 show the performance of different
methods on SimpleQuestions and MetaQA datasets. Similar results
can be observed.

4.4 Efficiency

Figure 3 shows the training time and test time of the query inference
component on different datasets. As we can see, the runtime of the
Query Inference component on Webgsp and SimpleQA is much
larger than that on MetaQA dataset. This is because the background
knowledge graph of Webgsp and SimpleQA is much larger than
that of MetaQA. Despite the long training time, the test time of the
Query Inference component is relatively short.

30

@A Training Time
w7 Test Time

LL.

Webgsp SimpleQA MetaQA
Dataset

25

Time (Hours)
= ok N
o w (=]

w

=}

Figure 3: Query Inference Training and Test Time.

Compared with the running time of query inference, the running
time of the query ranking (subsection 3.4) and answer re-ranking
(subsection 3.5) is negligible (e.g., less than 20 minutes on the whole
test dataset).

4.5 Ablation Study

A - Query Inference. In this subsection, we show the effectiveness
of the query inference module. We first pretrain the module only on
the background knowledge graph of each dataset, and then retrain
the module on the question training dataset. During the pretrain
and retrain processes, we split all the data into training set (80%),
valid set (10%) and test set (10%). As shown in Table 6 3, the query
3For the full background knowledge graph, because we can directly find correct paths

between anchor node v and candidate answer node a, we do not need query inference
module.
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inference module has a very high Hit@K on all datasets. It can
achieve 88.8% Hit@1, 95.8% Hit@3 and 96.9% Hit@5 on average.

Table 6: Query Inference Performance. wsp means WebQues-
tionsSP. sQA means SimpleQuestions.

Model | wsp50% |wsp80% | SQA50% |sQA80% | MetaQA50% | MetaQA80%
Hit@1| 824 87.4 92.6 95.9 86.2 88.4
Hit@3| 91.8 93.4 98.8 99.6 98.1 93.2
Hit@5| 93.7 94.7 99.3 99.9 99.9 94.1

B - Query Ranking,.

In this subsection, we show the effectiveness of the query rank-
ing module. Some examples are shown in Table 7. As we can see,
when the input question is ambiguous, it is very hard to correctly
predict its true query intention. For example, for query "thomas
jefferson role in declaration independence”, the query generator
VGAE thinks the query intention is "film.actor.film". Because the
phrase "role in" is usually used to describle "someone plays/acts
a role in a movie". However, with pseudo relevance feedback, the
query inference module can discover "thomas jefferson” is a state-
man/diplomat, and that helps the module correctly predict the true
intention "people.person.profession” and finds the correct answer
(statesperson) in the background knowledge graph.

C - Question Answering.

Table 8 shows the ablation study on question answering task.
EmbedKGQA - RM stands for EmbedKGQA without relation match-
ing. EmbedKGQA+QI denotes that we add the query information
inferred by query inference module to relation matching process in
EmbedKGQA. More specifically, the relation matching process of
EmbedKGQA finds the shortest path between the anchor node vp
and candidate answer a, and order the candidate answers accord-
ing to their shortest paths. We add the relation inferred by query
inference module to the shortest path when ordering the candidate
answer. It is observed that the proposed PREFNET achieves the best
performance.

5 RELATED WORK

5.1 Knowledge Graph Question Answering

Knowledge graph has many applications [2, 3, 6, 7, 9, 12, 15, 19, 24—
26]. Among them, knowledge Graph Question Answering has been
studied for a long time. When the input query is a natural language
sentence, a general strategy to answer the question is to transform
the question to a query graph, and search the answer according
to the query graph. For example, in [28], Xi et.al. propose a model
which contains candidate query graphs ranking component and
a true query graph generation component. By iteratively updat-
ing these two components, both components’ performance can
be improved. The query graph is finally generated by the second
component and can be used to search the KG. In [14], Liu et.al.
propose a multi-task model to tackle KGQA and KGC at the same
time. Other methods, e.g., [20], [16], directly learn an embedding
from the natural language sentence and search answers in the em-
bedding space. When the input query is a graph query, [18] models
different operations in the query graph as different neural network
and transform the query process to an entity search problem in the
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embedding space. In principle, all of them can be used as the query
system in our method. That is, the top-k answers of these methods
can be treated as the pseudo relevance feedback of our method.

5.2 Relevance Feedback

Relevance feedback is a widely studied topic in Information Re-
trieval. However, it has not been well studied for graph data. In [21],
Su et.al. use relevance feedback to infer additional information and
use them to enrich the query. The original ranking function is
re-tuned according to the results in relevance feedback. In [11],
Matteo et.al. concentrate on assisting the user by expanding the
query according to the additional information in relevance feed-
back to provide a more informative (full) query that can retrieve
more detailed and relevant answers. However, different from our
work which aims to infer the true intention of users, they expand
the query graph at each round until they find the answer. In other
words, the setting is different.

5.3 Variational Inference

The goal of variational inference is to approximate difficult-to-
compute posterior density. In [29], Zhang et.al. treat the topic entity
in the input question as a latent variable and utilize variational
reasoning network to handle noise in questions, and learn multi-hop
reasoning simultaneously. In [17], Qu et.al. propose a probabilistic
model called RNNLogic which treats logic rules as latent variables,
and simultaneously trains a rule generator as well as a reasoning
predictor with logic rules. These logic rules are similar to the latent
paths in our model. There are many other works using variational
inference. Different from these works, we are the first to utilize
variational inference in relevance feedback on graph data.

6 CONCLUSION

In this paper, we propose a model PREFNET which utilizes pseudo
relevance feedback to answer ambiguous query over knowledge
graph. Guided by Bayes rule, we decompose the question answering
problem to several components and model each component with a
neural network. To infer hidden queries, we resort to variational in-
ference to update intractable model with latent variables. To ensure
the high quality of the inferred queries, we propose a neighborhood
embedding based VGAE model to prune inferior queries. The exper-
iment results show that the proposed PREFNET consistently boosts
the state-of-the-art methods on both query ranking and question
answering tasks on multiple datasets.
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SUPPLEMENTARY MATERIAL:
REPRODUCIBILITY

Reproducibility. All experiments are performed on a machine
with an Intel(R) Xeon(R) Gold 6240R CPU, 1510GB memory and
NVIDIA-SMI Tesla V100-SXM2. The details of datasets, machine
and parameters can be found in Section 4. All datasets are publicly
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Table 11 shows the statistics of different KGs used in the experi-
ments.

Table 11: Statistics of the 50% KG, 80% KG and complete KG
for the three datasets. Note that WebQSP and SimpleQA use
the same background knowledge graph.

available. The source code of this paper can be found at https: — 50‘.% KG _
//github.com/lihuiliullh/PrefNet, Dataset Entities | Relations | Train Edges | Test Edges
Baselines.The implementation code of HGNet, RnG-KBQA, Graft- MetaQA 43,234 18 66,791 4,000
Net, Key-Value Memory Network and EmbedKGQA can be found WebQSP | 1,886,683 1,144 2,872,880 20,000
from the Table below. SimpleQA | 1,886,683 1,144 2,872,880 20,000
80% KG
Table 9: Baseline Source. MetaQA 43,234 18 109,520 4,000
WebQSP 1,886,683 1,144 4,624,196 20,000
Model github SimpleQA | 1,886,683 1,144 4,624,196 20,000
HGNet https://github.com/Bahuia/HGNet full KG
RnG-KBQA https://github.com/salesforce/rng-kbqa MetaQA 43234 18 133,582 4,053
GraftNet https://github.com/haitian-sun/GraftNet WebQSP 1,886,683 1,144 5.780,246 20,000
KV-Mem https://github.c.om/jojonki/key-vfl'lue-memory-networks SimpleQA | 1,886,683 1144 5.780.246 20,000
EmbedKGQA https://github.com/malllabiisc/EmbedKGQA

THE NEIGHBORHOOD EMBEDDING BASED
VAGE
In this section, we introduce the details of the neighborhood embed-
ding based VAGE model in PREFNET. The goal of Neighborhood-
VGAE is to score the quality of a relation r; w.r.t. the given ambigu-
ous query Q. Given a ambiguous query Q, a pretrained Bert model
is used to learn its embedding, which is given below.

[hers, wi, ..., Wio| hg] = BERT([CLS], w1, ..., Wi, < $ >)

hp = FNN([hcrs])

To denoise the query, we utilize the idea of variational autoen-
coder to generate the mean p and variance § from the query em-
bedding, and randomly sample a point from the distribution.

i =MLP(hg)
8 = MLP(hp)
A=p+80e

where € ~ N(0,1).
The quality of a relation r; is calculated by
f(ri) = softmax(FNN(A||H (vp))) [i],
where H(vp) is the neighborhood embedding of anchor node vg.

STATISTICS OF DATASETS
Table 10 represents the details of the datasets used in this paper.

Table 10: Number of queries in each dataset.
Dataset Train | Valid | Test
MetaQA 96,106 | 9,992 | 9,947
WebQSP 2,998 100 1,639

SimpleQA | 15,3188 | 2,105 | 4,345
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LIMITATIONS AND FUTURE WORKS

One limitation of the proposed PREFNET model lies in its generaliz-
abilitys. In this paper, PREFNET can only support one hop queries.
To generalize multihop queries, one way is to let the output of
the Query Inference be the distribution of multihop queries. More
specifically, we can replace Eq. (9) as a path decoder. For future
improvements, the inferred queries can be extended to handle multi-
hop queries, and the variational inference model can be swapped
with Bayesian Variational Inference to enhance its robustness.
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