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ABSTRACT 
Knowledge graph question answering aims to identify answers of 
the query according to the facts in the knowledge graph. In the 
vast majority of the existing works, the input queries are consid-
ered perfect and can precisely express the user’s query intention. 
However, in reality, input queries might be ambiguous and elusive 
which only contain a limited amount of information. Directly an-
swering these ambiguous queries may yield unwanted answers and 
deteriorate user experience. In this paper, we propose PReFNet 
which focuses on answering ambiguous queries with pseudo rel-
evance feedback on knowledge graphs. In order to leverage the 
hidden (pseudo) relevance information existed in the results that 
are initially returned from a given query, PReFNet treats the top-
k returned candidate answers as a set of most relevant answers, 
and uses variational Bayesian inference to infer user’s query inten-
tion. To boost the quality of the inferred queries, a neighborhood 
embedding based VGAE model is used to prune inferior inferred 
queries. The inferred high quality queries will be returned to the 
users to help them search with ease. Moreover, all the high-quality 
candidate nodes will be re-ranked according to the inferred queries. 
The experiment results show that our proposed method can recom-
mend high-quality query graphs to users and improve the question 
answering accuracy. 

CCS CONCEPTS 
• Computing methodologies → Reasoning about belief and 
knowledge; • Information systems → Data mining. 
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Knowledge graph question answering 
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1 INTRODUCTION 
Knowledge graphs are ubiquitous, which have been used in a variety 
of applications, such as recommendation [6], alignment [27], fact 
checking [12] and many more. A knowledge graph is a graph data 
structure which contains a multitude of triples denoting real world 
facts. Each triple contains a head entity (e.g., Harvard_University), 
a tail entity (e.g., United_States) and a relation between them (e.g., 
locatedIn). 

Knowledge graph question answering (short for KGQA) aims to 
fnd entities in the knowledge graph which can correctly answer 
the given question. This problem has attracted great attention from 
both academia and industry, and abundant algorithms have been 
proposed recently. For example, RnG-KBQA [28] adopts a rank-and-
generate approach to transform the input natural language question 
to a query graph and fnds the answer according to the query graph. 
This strategy of fnding answers based on the query graph can 
also be referred to as subgraph matching [13]. Key-Value Memory 
Network (KVMem) [16] stores KG facts in a memory table and uses 
it to retrieve entities which have the most similar embedding as 
the input query. EmbedKGQA [20] embeds both the input question 
and entities in the knowledge graph to points in the embedding 
space and fnds answers according to their embedding similarity. 

Despite the great progress, most works focus on answering de-
fectless queries on knowledge graphs. These queries are assumed 
to be perfect and can precisely express users’ query intentions. 
However, this is not true most of the time in real cases for the 
following reasons. First, the vocabulary of diferent users can vary 
dramatically. According to a prominent study on the human vocab-
ulary problem [8], about 80-90% of the times two persons will give 
diferent representations when they are asked to name the same 
concept [21]. This means the input queries of diferent users could 
be very diferent from each other. Second, some KGQA methods 
(e.g., [28] [4]) need to transform the natural language questions to 
graph queries, and then search the results according to these query 
graphs. The transformation algorithm may generate queries with 
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inaccurate graph structure. Last but not the least, allowing users 
to input query graphs directly may introduce additional structural 
noise or inaccuracy due to their lack of full background knowledge 
of the underlying KG [21]. 

To address these issues, query ambiguity and vagueness need to 
be correctly resolved, which in turn requires new information in 
addition to the query itself. Relevance feedback (short for ReF) is 
one promising solution. The general idea behind relevance feedback 
is to take the results that are initially returned from a given query, 
to gather user feedback, and to use information about whether 
or not those results are relevant to form a new query 1. The user 
feedback can be explicit (e.g., clicking like or dislike), implicit (e.g., 
the duration of time spent viewing a document) or pseudo feedback 
(no feedback is given). In spite of the fact that relevance feedback has 
been studied extensively and proven to be efective in information 
retrieval, it has not been well studied in graph query system. Due 
to the unique characteristics of graph query, traditional relevance 
feedback methods are not directly applicable. How to use relevance 
feedback to improve query performance on graph data largely 
remains an open problem. 

In this paper, we propose PReFNet which applies pseudo rel-
evance feedback (short for PReF) to graph data to infer the true 
query structure from an ambiguous query and improve answering 
performance. More specifcally, guided by Bayes rule, the proposed 
PReFNet decomposes the question answering problem into several 
components and models each component as a neural network. To 
infer the true query, PReFNet utilizes variational Bayesian infer-
ence. To boost the quality of the inferred query, a neighborhood 
embedding based VGAE model is used to prune inferior query. Fi-
nally, the newly inferred queries will be used to re-rank the original 
candidate answers. The experiment results show that our methods 
can achieve better question answering accuracy compared with the 
state-of-the-art baselines and better infer the user’s query intention. 

In summary, the main contributions of this paper are: 
• Problem Setting. To our best knowledge, we are the frst to 
study using neural network based pseudo relevance feedback 
on knowledge graphs to infer queries and improve question 
answering performance at the same time. 

• Algorithm We propose to decompose the question answer-
ing problem into several components and model each com-
ponent as a neural network model. 

• Empirical Evaluations. The experimental results on sev-
eral real-world datasets demonstrate the efectiveness of the 
proposed PReFNetframework. 

The rest of the paper is organized as follows. Section 2 introduces 
notations used in this paper and gives the problem defnition. Sec-
tion 3 introduces the overall framework of the proposed algorithm 
and its technical details. The experiment results are presented in 
Section 4, and the related work is reviewed in Section 5. Finally, the 
paper is concluded in Section 6. 

2 PROBLEM DEFINITION 
Table 1 gives the main notations used throughout this paper. A 
knowledge graph can be denoted as G = (V, R, L) where V = 
{�1, �2, ..., �� } is the set of nodes/entities, R = {�1, �2, ..., �� } is the 
1https://en.wikipedia.org/wiki/Relevance_feedback 

Table 1: Notations and defnitions 

Symbols Defnition 
G = (V, R, L) 

V 
the knowledge graph 

the entity set 
R the relation set 
L the fact set 
�� the �th entity/node in knowledge graph 
�� the �th relation/edge in knowledge graph 

e�� / e� the embedding of node �� 
r� the embedding of relation �� 
� the ambiguous question 
ℎ� the ambiguous question embedding 
� the true query graph of � 
� the natural language question training set 
�� the answer set of question � 
� a candidate answer of question � 
�� the topic entity in question 
� the latent path 
�� the i-th relation in latent path 
�� the �th word in � 
�� the relation of query 

set of relations and L is the list of triples. Each triple in the knowl-
edge graph can be denoted as (ℎ, �, �) where ℎ ∈ V is the head (i.e., 
subject) of the triple, � ∈ V is the tail (i.e., object) of the triple and 
� ∈ R is the edge (i.e., relation, predicate) of the triple which con-
nects the head ℎ to the tail � . For example, (New_York, locatedIn, 
United_States) and (London, locatedIn, United_Kingdom) are 
two triples in knowledge graph Yago. 

Knowledge graph question answering aims to answer a question 
with the help of knowledge graphs. According to the study in [21], 
most users formulate queries using their own knowledge and vocab-
ulary during the search process. They might not have a fairly good 
understanding of the underlying data schema and the knowledge 
graph structure. This means that the users’ true intentions behind 
the queries may be frequently misinterpreted or misrepresented. 
For example, if a user inputs query “thomas jeferson role in decla-
ration independence", the phrase “role in" should be interpreted as 
predicate “profession” or “occupation”, and the phrase “declaration 
independence" refers to the pronouncement and founding docu-
ment adopted by the Second Continental Congress. While in query 
“John Litel role in declaration independence", the phrase “role in" 
should be interpreted as predicate “flm actor” or “act in”, and the 
phrase “declaration independence" represents a movie. The same 
phrases “role in" and “declaration independence" have totally dif-
ferent interpretations in the two queries. Unless the transformation 
algorithm can accurately understand the user’s intention, directly 
answering these ambiguous queries may yield unwanted answers 
and deteriorate user experience. Here, a promising way to disam-
biguate the query is via relevance feedback as follows. With the help 
of relevance feedback, we can infer from the top rank candidates 
(e.g., White_House, Politician, President for “thomas jeferson" 
and United_States, Actor, Albany_Wisconsin for “John Litel") 
that “thomas jeferson" is a statesman and “John Litel" is a actor. 
These candidates provide clear and useful interpretation to users. 
The new interpretation can not only help users understand the 
background knowledge graph better, but also return more accurate 
answers. More examples can be found in Subsection 4.5B. 
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In this paper, we focus on answering ambiguous one-hop ques-
tion over knowledge graph. We assume the input ambiguous query 
� contains a topic/anchor entity �� ∈ V and a sequence of words 
� = (�1, �2, ...,� |� | ). Ideally, each question can be mapped to a 
unique relation �� in the knowledge graph. The goal of question an-
swering over knowledge graph is to identify a set of nodes �� ⊆ V 
which can answer the ambiguous question. We assume that all the 
answer entities exist in the knowledge graph, each question only 
contains a single topic/anchor entity �� ∈ V and �� is given. 

To disambiguate the query and improve query accuracy, a natural 
idea is to efectively acquire more query-specifc information. This 
can be achieved by relevance feedback which has been extensively 
studied in Information Retrieval Systems. In this paper, we focus on 
utilizing pseudo relevance feedback to infer true query intention 
and improve question answering accuracy. More specifcally, the 
proposed PReFNet treats the top-k candidate answers of a KGQA 
system as most relevant information and uses them to derive the 
true query so that more accurate answers can be found. The derived 
queries will in turn help the users better formulate their queries 
and obtain better understanding of the background knowledge. 

Formally, the problem this paper studies is defned as follows. 

Problem Definition. Answering Ambiguous Query: 
Given: (1) A knowledge graph G, (2) an ambiguous one-hop natu-

ral language question; 
Output: (1) The answer of the question, (2) Top-k most likely 

correct query relations of the input query. 

3 PROPOSED METHOD 
In this section, we frst introduce the framework and basic idea 
behind our method. Then, the details of each specifc component 
are elaborated. 

3.1 Model Overview 
The key idea of PReFNet is as follows. We treat the top-k results 
of the KGQA system as potentially correct answers, and use them 
to predict the true query relation. Given the ambiguous query and 
its anchor entity, we give the following lemma to decompose the 
problem of question answering over knowledge graph (KGQA). 

Lemma 1. (KGQA Decomposition) Given an ambiguous query � 
and its anchor node �� , let �� (� |�, �� ) denote the probability that 
query relation � is generated from � and let �� (� |�, �� ) denote the 
probability that candidate answer � found by � is the true answer, we 
have 
�� (� |�, �� )�� (� |�, �� ) ∝ �� (� |�, �� )�� (� |�, �� )�� (� |�� ). 

Proof. The probability of inferring the true query relation can 
be expressed as the following equation according to Bayes rule: 

�� (�,� |�� )
�� (� |�, �� ) = 

�� (� |�� ) 
(1)∝ �� (�,� |�� ) 

= �� (� |�, �� )�� (� |�� ), 

where �� (� |�� ) can be ignored since it is irrelevant to inferring � . 
Furthermore, given a candidate answer � of ambiguous query � , 

we have 
�� (�,� |�� )

�� (� |�, �� ) = ,
�� (� |�� )

This means 
�� (�,� |�� )

�� (� |�� ) = 
�� (� |�, �� ) (2)

�� (� |�, �� )
= �� (� |�  )�  . 

�� (� |�, �� )
Plugging Eq. (2) to Eq. (1), we can get 

�� (� |�, �� )
�� (� |�, � ) ∝ ( | ) ( | )�   �� � � , �� �� � ��  . (3) 

�� (� |� , �� )
Consequently, we obtain 

�� (� |�, �  )�� (� | )� � , ��  ∝ �� (� |� , �� )�� (� |�, � ) ( | )� �� � �� . (4) 

□ 

In Eq. (4), �� (� |�� ) (prior of candidate answer) can be treated 
as the prior probability that node � is the correct answer given �� . 
It describes experts’ beliefs when giving no evidence. The intuition 
is that if � is close to �� (e.g., the shortest distance of � to �� on the 
KG is small), it may have a high probability to be the answer. On the 
other hand, if � is far from �� , its probability to be the answer will 
be low. �� (� |�, �� ) (likelihood of ambiguous query) refers to 
the probability that given the anchor entity �� and the true query 
relation � , how likely the users will input ambiguous query � . In 
general, if � is similar to � , �� (� |�, �� ) should be high. Otherwise, 
it should be low. �� (� |�, �� ) (posterior of true query) presents 
that given �� and candidate answer �, how likely � is the correct 
relation that refects the true relationship between them. 

The left hand side of Eq. (4) shows the main idea of question 
answering over knowledge graph. The KGQA system frst trans-
forms the input natural language question � to a high quality query 
relation � , then fnds the answer according to � and the anchor 
node �� . The goal of KGQA is to maximize �� (� |�, �� )�� (� |�, �� ), 
which is equivalent to fnd query relation � which can maximize 
�� (� |�, �� )�� (� |�� )�� (� |�, �� ). However, directly calculating Eq. (4) 
is impossible since we do not know the real world distribution. A 
general idea is to use �� (� |�, �� ) (posterior of true query) predict 
the “hidden relevance” between candidate � and anchor node �� . If 
the “hidden relevance” � is highly related to the original query � , 
it can be used to re-rank the top candidate answers. Otherwise, the 
“hidden relevance” � is considered as noise and ignored. 

More specifcally, two neural network components are used in 
PReFNet. The frst neural network is used to model �� (� |�, �� )
(posterior of true query) which performs like a generator to 
produce high quality candidate query relations (the “hidden rele-
vance” � ). The second neural network is used to model �� (� |�, �� )
(likelihood of ambiguous query) which behaves like a discrimi-
nator to measure the similarity between � and � , and prunes � if 
the similarity is too low. 

Figure 1 shows the Framework of PReFNet. The yellow part 
corresponds to the method EmbedKGQA [20] 2. In the frst step, 
EmbedKGQA is used to fnd � top candidates based on the input 
ambiguous query � . Then, the query inference part (�� (� |�, �� ) 
2We use EmbedKGQA because it’s one of the state of the art methods. 
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Figure 1: The Framework of PReFNet. The yellow part shows the architecture of EmbedKGQA [20]. 

subsection 3.2) is used to infer the true relation between anchor 
node �� and each candidate node �� . Because not every candidate 
node is good, to boost the quality of those inferred relations, we use 
a neighborhood embedding based VGAE [10] model to prune low 
quality relations. Finally, the rest of the high quality inferred rela-
tions will be used by Query Ranking (�� (� |�, �� ) subsection 3.4) 
and Answer Re-ranking (subsection 3.5). 

After we have introduced the general idea of PReFNet, in the 
following subsections, we introduce how to model each component 
in detail. 

3.2 Query Inference: Posterior of True Query 
When using pseudo relevance feedback to fnd out the true inten-
tion of the input query, we assume the top-k candidate answers 
returned by the existing algorithm in the frst round is an initial set 
of most relevant answers. To better understand the query intention, 
PReFNet infers the query structure according to the anchor entity 
�� , potential/candidate answers, and the background knowledge 
graph. 

When the input query is a one-hop query, this problem is equiv-
alent to the link prediction problem in the knowledge graph. Given 
an entity pair (�� , �), we assume that there is a latent measure for a 
given entity pair in the KG, i.e. the collection of linked paths; these 
hidden information can reveal the underlying semantics between 
these two entities. More specifcally, the posterior of the true query 
log �� (� |�, �� ) can be calculated by ∑ 

log �� (� |�, �� ) = log ��� (� |�, �� )��� (� |�, �, �� ) (5) 
� 

where � and � are model parameters, � is the latent path between 
�� and � in the knowledge graph. ��� (� |�, �� ) can be treated as 
the prior distribution denoting how likely � can represent the re-
lation between � and �� , and ��� (� |�, �, �� ) can be treated as the 
likelihood that � is the true query between � and �� given latent 
variable �. 

A - Estimate ��� (� |�, �� ). When calculating ��� (� |�, �� ), neigh-
borhood of anchor node �� and candidate answer � usually pro-
vides us extra information which can imply their similarity to �. 
For example, if �� is surrounded by relations like bornAt, liveIn, 
hasChild, etc., it alludes that �� is a person. And if � is surrounded 
by hasMajor, locatedIn, university_founder, etc, we can infer 
that � might be a university. Therefore, if � is a latent path which ex-
presses the relation between a person and a university, ��� (� |�, �� )
should have a high value. Otherwise, ��� (� |�, �� ) should be low. 

In order to encode the neighborhood information of anchor node 
�� and candidate answer �, PReFNet utilizes the relation/edge mes-
sage passing graph neural network [23] to learn their embeddings 
as follows ∑ 

�� �� = � � , 
� ∈� (�) 

��+1 = � ( [�� ,��
� , ��

� ]� � + �� ), �� , � ∈ � (�),� �� 

where [·] is the concatenation function, � is an arbitrary node in 
the knowledge graph, � � and �� are the learnable transformation 
matrix and bias, respectively. �� is the embedding of edge � at iter-� 
ation � , �� 

0 is the initial edge embedding re. Relation/Edge message 
passing is repeated for K times. The fnal message �K−1 and �K−1 

�� � 
are taken as the representation for anchor node �� and candidate 
answer �, respectively. 

On the other hand, given a path � = (�1, �2, ..., � |� | ) in the knowl-
edge graph , the path embedding can be calculated by an LSTM as 
follows: 

Z = LSTM(�), (6) 

where Z denotes the embedding with all relational information 
aggregated throughout path �. The neighborhood information of � 
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Anchor Node Candidate Node

𝑣𝑄 𝑎

Edge-GNN Edge-GNNLSTM

MLP Similarity 

𝑧

Figure 2: Using relation/edge message passing to estimate 
��� (� |�, �� ). 

and �� can be aggregated by 

� (�� ,�) = MLP(�� 
K 
� 
−1,�� 

K−1) 

= � ( [�K−1,�K−1]� K−1 + �K−1). 
(7) 

�� � 

Finally, the probability ��� (� |�, �� ) can be measured by the simi-
larity between Z and � (�� ,�) : 

��� (� |�, �� ) = Sigmoid(� (�� ,�) · Z), (8) 

where · is the dot product. An illustrative example is given in Fig-
ure 2. 

B - Estimate ��� (� |�, �, �� ). For likelihood ��� (� |�, �, �� ), it can 
be modeled by a graph decoder, which takes the embeddings of 
�, �� and � as its initial input and generates a relation. It can be 
simply modeled as: 

��� (� = � � |�, �, �� ) = softmax(FNN(� (�� ,�) | |Z)) [ �], (9) 

where FNN is the feedforward neural network. 

3.3 Query Inference Training 
Directly optimizing the objective in Eq. (5) is challenging, because 
the summation over all possible paths is intractable. In order to 
maximize Eq. (5), we resort to variational inference and minimize 
its negative evidence lower bound: 

Proposition 1. Let L(�, �, �) be defned as in Eq. (10), we have 
log �� (� |�, �� ) ≥ −L(�, �, �) 

L(�, �, �) =��∼�� (� |� ,�,�� ) [− log ��� (� |�, �, �� )] 
(10)+��(�� (� |�, �, �� ) |��� (� |�, �� )) 

where �� (� |�, �, �� ) is the variational posterior. 

WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Proof. According to Eq. (5), we have∑ 
log �� (� |�, �� ) = log ��� (� |�, �� )��� (� |�, �, �� )

� ∑ ��� (� |�, �� )��� (� |�, �, �� )
= log �� (� |�, �, �� ) 

�� (� |�, �, �� )� ∑ ��� (� |�, �� )��� (� |�, �, �� )≥ �� (� |�, �, �� ) log 
�� (� |�, �, �� )� 

= ��∼�� (� |� ,�,�� ) [log ��� (� |�, �� ) 
+ log ��� (� |�, �, �� ) − log �� (� |�, �, �� )] 
= −L(�, �, �) 

(11) 

□ 

According to Proposition 1, Eq. (10) is the negative lower bound 
of Eq. (5). Therefore, minimizing Eq. (10) can best approximate 
log �� (� |�, �� ). 

When approximating the posterior �� (� |�, �, �� ), we use the 
same model as prior (Eq. (8)), except that we replace Eq. (8) by 

� = � (�� ,�) + �� 

�� (� |�, �, �� ) = Sigmoid(� · Z) (12) 

where �� is the embedding of � . , and · is the dot product. 
When updating the model, we leverage gradient descent to min-

imize the loss. The gradient of the loss w.r.t. �� (� |�, �, �� ) can be 
calculated as: 

= ��� (� |� ,�,�� ) [∇� �� (� |�, �, �� ) (log ��� (� |�, �� )∇� L 
+ log ��� (� |�, �, �� ) − log �� (� |�, �, �� ))] . 

(13) 

The gradient in Eq. (13) can be approximated by the Monte Carlo 
method using � samples of the latent variable from variational 
distribution ∑ 1 � 

∇� L ≈ [∇��� (�� |�, �, �� ) (log ��� (�� |�, �� )
� 

�=1 (14) 

+ log ��� (� |�� , �, �� ) − log �� (�� |�, �, �� ))] . 

When updating other parameters: �, �, the gradient of L(�, �, �)
with respect to � can be calculated directly, and the gradient of 
L(�, �, �) with respect to � is equivalent to calculating the gradient 
of KL-divergence of ��(�� (� |�, �, �� ) |��� (� |�, �� )) with respect 
to � . 

3.4 Query Ranking: Likelihood of Ambiguous 
Query 

After we introduce how to model �� (� |�, �� ) (posterior of true 
query), we now introduce how to model �� (� |�, �� ) (likelihood 
of ambiguous query). 

Given the initial top-� answer candidates, a set of potential true 
query relations are generated by �� (� |�, �� ) (posterior of true 
query). Because noise may exist in the initial candidate set, to 
boost the qualify of the new generated � , we use a neighborhood 
embedding based VGAE [10] to prune low quality � . The details 
of the neighborhood embedding based VGAE model is given in 
Appendix. 
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After pruning low qualify inferred queries, we use another neu-
ral network to model �� (� |�, �� ) which calculates the similar-
ity between � and the input ambiguous query � . Inspired by [1], 
�� (� |�, �� ) is approximated according to their distance in the em-
bedding space. Given a ambiguous query, since the query is a natu-
ral language question, we use a pre-trained BERT [5] to learn its 
embedding: 

[h��� , w1, ..., w |� | , hs] = BERT( [���],�1, ..., � |� | , < � >), 

where h��� is the embedding of the [CLS] token and hs is the 
embedding of the < � > token. The fnal question embedding is 
obtained from h��� as below, where FNN is a feed forward neural 
network 

h� = FNN( [h��� ]) . 

When training the Query Ranking model (�� (� |�, �� )), we ran-
domly sample some negative relations from the knowledge graph. 
The positive query relations are given in the training data. In sum-
mary, given a positive pair and a negative pair, the loss is defned 
as ∑ ∑ 

� = [� + � (ℎ� , �� ) − � (ℎ� , �� ′ )], (15) 
�� �� ′ 

′where �� ′ is the embedding of the negative sample � , � (ℎ� , �� )
measures the distance between embedding ℎ� and �� , which can 
be either the �1 or the �2-norm, and � is a margin hyperparameter. 

During the test, we use the neighborhood embedding based 
VGAE to measure the quality of the inferred queries. If the score is 
greater than 0.5, we think the queries have high quality and return 
them directly. Otherwise, all the high qualify potential queries 
generated by query inference �� (� |�, �� ) are ranked according to 
their distances calculated by � () in Eq. (15). 

3.5 Answering Re-ranking 
After getting high quality inferred queries, we can re-rank all 
the top-k candidate answers. The ranking function is calculate 
by 

Í 
� �� (� |�, �� ). Similar to [20], we approximate 

Í 
� �� (� |�, �� )

as ∑ 
log �� (� |�, �� ) ∝ � ∗ |�� ∩ �� |, 

� 

where �� is the set of relations on the shortest path between anchor 
entity �� and candidate answer �. �� is the top-ranked potential 
queries generated by query inference �� (� |�, �� ) (posterior of 
true query). To keep the high quality of the inferred query � , we 
prune those queries which are scored less than 0.2 by the neighbor-
hood embedding based VGAE [10] model. 

4 EXPERIMENTS 
In this section, we evaluate the performance of the proposed PReFNet 
on several public datasets. We frst introduce the datasets and base-
lines used in the paper, and then present the experiment results. 

We aim to answer the following questions. 

4.1 Experimental Setting 
Three datasets are used in the paper which are summarized below: 

• WebQuestionsSP contains both the 1-hop questions and 
2-hop natural language questions. There are 4,000 questions 
in total and all questions can be answered by Freebase. 

• SimpleQuestions contains more than 100K simple 1-hop 
natural language questions which can be answered by Free-
base. 

• MetaQA is a dataset on movie domain which contains more 
than 400K natural language questions. The background knowl-
edge graph contains information about directors, movies, 
genres and actors. We use the 1-hop questions in our experi-
ment. 

The statistics of these datasets are shown in Table 10 in Appendix. 
Their corresponding knowledge graphs are shown in Table 11 in 
Appendix. In the experiment, we test the efectiveness of PReFNet 
on complete KG and incomplete KG with 50% and 20% missing 
edges respectively. All missing edges are randomly deleted. 

We test the query ranking performance on 4 baselines, including 
• HGNet [4] uses a generation method to transform the input 
query to a SPARQL query and uses it to fnd the results. 

• RnG-KBQA [28] adopts a bootstrapping strategy to train a 
query graph ranker and generator, and searches the back-
ground knowledge graph according to the generated query. 

• VGAE is a variant of variational autoencoder [10]. We model 
the encoder component with a pre-trained Bert [5] and de-
coder component with a feedforward neural network. No 
neighborhood information is used here. 

• Neighborhood VGAE is the relation pruning model used 
in the proposed PReFNet which has been introduced in 
subsection 3.4. The details are given in Appendix. 

We test question answering performance on 3 baselines, includ-
ing: 

• GraftNet [22] fnds a question-specifc subgraph containing 
KG facts, and then uses a graph neural network to predict 
the answers. 

• Key-Value Memory Network (KVMem) [16] maintains a 
memory table which stores KG facts and uses this for re-
trieval. 

• EmbedKGQA [20] conducts multi-hop reasoning through 
matching pre-trained entity embeddings with question em-
bedding obtained from RoBERTa [5]. We use EmbedKGQA 
with relation matching which has better performance com-
pared with the EmbedKGQA without relation matching. 

Another related method is GRF [21]. However, neither the code 
nor the datasets are publicly available, and thus we leave the com-
parison with GRF to future work. 

4.2 Performance of Query Ranking 
Traditional KBQA methods usually transform the natural language 
query to a query graph, and then fnd the answer according to 
the query graph. However, because of the ambiguity in the input 
query, the generated query graph is usually inaccurate. The pseudo 
relevance feedback, on the other hand, can infer queries according 
to the top candidate answers. We run the experiments on datasets 
WebQSP and SimpleQA. Because the data format of the background 
knowledge graph of MetaQA is diferent from that required by 
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Table 2: Query ranking Hit@1. 
Webqsp 50% KG Webqsp 80% KG Webqsp full SimpleQA 50% KG SimpleQA 80% KG SimpleQA full 

HGNet 52.5 55.3 58.2 -
RnG-KBQA 61.2 63.3 66.7 -

VGAE 70.7 71.3 73.7 87.4 89.1 91.6 
Neighborhood-VGAE 74.2 76.1 78.1 90.3 92.3 93.5 

PReFNet 75.7 77.2 79.0 90.8 92.7 94.5 

Table 3: KGQA Hit@1 results of Webqsp on complete, 50% 
and 80% completeness knowledge graphs. 

Model Webqsp 50% Webqsp 80% Webqsp 
GraftNet 32.7 39.8 -
KVMem 44.2 - 46.7 
HGNet 37.8 45.4 46.1 

RnG-KBQA 40.6 48.5 53.1 
EmbedKGQA 46.3 52.8 56.7 
PReFNet 47.7 53.7 57.2 

Table 4: KGQA Hit@1 results of SimpleQA on complete, 50% 
and 80% completeness knowledge graphs. 

Model simpleQA50% simpleQA80% simpleQA 
GraftNet 39.8 - -
KVMem 28.9 - -

EmbedKGQA 46.5 58.9 64.3 
PReFNet 48.8 60.1 64.8 

Table 5: KGQA Hit@1 results of MetaQA on complete, 50% 
and 80% completeness knowledge graphs. 

Model MetaQA 50% MetaQA 80% MetaQA 
GraftNet 64.0 - -
KVMem 63.6 - -

EmbedKGQA 83.1 90.1 95.3 
PReFNet 83.9 90.6 95.6 

HGNet and RnG-KBQA, we omit the query ranking experiment on 
MetaQA. 

Following the same setup as in [20], we evaluate the accuracy 
using the Hit@1 metrics which is the fraction of times a correct 
answer was retrieved within the top-1 positions. Table 2 shows the 
results of Query Ranking. Four diferent methods have been used 
in the experiments. HGNet and RnG-KBQA are knowledge graph 
question answering algorithms. They frst transform the ambiguous 
natural language question to a query graph, and then search the 
knowledge graph according to the generated query graph. VGAE 
is a variational autoencoder and decoder method. Neighborhood-
VGAE is the proposed pruning method used in PReFNet. 

As observed in Table 2, the proposed PReFNet has the highest 
query ranking accuracy compared with other baselines. For Webqsp, 
the performance boosts are 5.0% and 5.9% with 50% and 80% of the 
underlying knowledge graph respectively, compared with VGAE, 
and 0.9% on average compared with Neighborhood-VGAE. Similar 
results can be found in complete knowledge graph as well. Besides, 
compared with 50% knowledge graph, the query ranking accuracy 
on 80% and full knowledge graph of all four baselines is higher. This 
means if the background knowledge graph becomes more complete, 
all baselines tend to generate more accurate query graphs. 

4.3 Performance of Question Answering 
Table 3 shows the results of all baseline methods on Webqsp dataset 
with 50% complete KG, 80% complete KG and complete KG, respec-
tively. As shown in Table 3, the Hit@1 of all methods decreases as 
the sparsity (incompleteness) of the background knowledge graph 
increases. This means that the quality of the background knowl-
edge graph has a signifcant impact on the KGQA task. Among all 
the methods, EmbedKGQA with relation matching can achieve the 
highest accuracy. PReFNet further increases the accuracy by 1% 
on average. Table 4 and Table 5 show the performance of diferent 
methods on SimpleQuestions and MetaQA datasets. Similar results 
can be observed. 

4.4 Efciency 
Figure 3 shows the training time and test time of the query inference 
component on diferent datasets. As we can see, the runtime of the 
Query Inference component on Webqsp and SimpleQA is much 
larger than that on MetaQA dataset. This is because the background 
knowledge graph of Webqsp and SimpleQA is much larger than 
that of MetaQA. Despite the long training time, the test time of the 
Query Inference component is relatively short. 

Figure 3: Query Inference Training and Test Time. 

Compared with the running time of query inference, the running 
time of the query ranking (subsection 3.4) and answer re-ranking 
(subsection 3.5) is negligible (e.g., less than 20 minutes on the whole 
test dataset). 

4.5 Ablation Study 
A - Query Inference. In this subsection, we show the efectiveness 
of the query inference module. We frst pretrain the module only on 
the background knowledge graph of each dataset, and then retrain 
the module on the question training dataset. During the pretrain 
and retrain processes, we split all the data into training set (80%), 
valid set (10%) and test set (10%). As shown in Table 6 3, the query 
3For the full background knowledge graph, because we can directly fnd correct paths 
between anchor node �� and candidate answer node �, we do not need query inference 
module. 
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inference module has a very high Hit@K on all datasets. It can 
achieve 88.8% Hit@1, 95.8% Hit@3 and 96.9% Hit@5 on average. 

Table 6: Query Inference Performance. wsp means WebQues-

tionsSP. sQA means SimpleQuestions. 
Model wsp50% wsp80% sQA50% sQA80% MetaQA50% MetaQA80% 
Hit@1 82.4 87.4 92.6 95.9 86.2 88.4 
Hit@3 91.8 93.4 98.8 99.6 98.1 93.2 
Hit@5 93.7 94.7 99.3 99.9 99.9 94.1 

B - Query Ranking. 
In this subsection, we show the efectiveness of the query rank-

ing module. Some examples are shown in Table 7. As we can see, 
when the input question is ambiguous, it is very hard to correctly 
predict its true query intention. For example, for query "thomas 
jeferson role in declaration independence", the query generator 
VGAE thinks the query intention is "flm.actor.flm". Because the 
phrase "role in" is usually used to describle "someone plays/acts 
a role in a movie". However, with pseudo relevance feedback, the 
query inference module can discover "thomas jeferson" is a state-
man/diplomat, and that helps the module correctly predict the true 
intention "people.person.profession" and fnds the correct answer 
(statesperson) in the background knowledge graph. 

C - Question Answering. 
Table 8 shows the ablation study on question answering task. 

EmbedKGQA - RM stands for EmbedKGQA without relation match-
ing. EmbedKGQA+QI denotes that we add the query information 
inferred by query inference module to relation matching process in 
EmbedKGQA. More specifcally, the relation matching process of 
EmbedKGQA fnds the shortest path between the anchor node �� 
and candidate answer �, and order the candidate answers accord-
ing to their shortest paths. We add the relation inferred by query 
inference module to the shortest path when ordering the candidate 
answer. It is observed that the proposed PReFNet achieves the best 
performance. 

5 RELATED WORK 
5.1 Knowledge Graph Question Answering 
Knowledge graph has many applications [2, 3, 6, 7, 9, 12, 15, 19, 24– 
26]. Among them, knowledge Graph Question Answering has been 
studied for a long time. When the input query is a natural language 
sentence, a general strategy to answer the question is to transform 
the question to a query graph, and search the answer according 
to the query graph. For example, in [28], Xi et.al. propose a model 
which contains candidate query graphs ranking component and 
a true query graph generation component. By iteratively updat-
ing these two components, both components’ performance can 
be improved. The query graph is fnally generated by the second 
component and can be used to search the KG. In [14], Liu et.al. 
propose a multi-task model to tackle KGQA and KGC at the same 
time. Other methods, e.g., [20], [16], directly learn an embedding 
from the natural language sentence and search answers in the em-
bedding space. When the input query is a graph query, [18] models 
diferent operations in the query graph as diferent neural network 
and transform the query process to an entity search problem in the 

embedding space. In principle, all of them can be used as the query 
system in our method. That is, the top-k answers of these methods 
can be treated as the pseudo relevance feedback of our method. 

5.2 Relevance Feedback 
Relevance feedback is a widely studied topic in Information Re-
trieval. However, it has not been well studied for graph data. In [21], 
Su et.al. use relevance feedback to infer additional information and 
use them to enrich the query. The original ranking function is 
re-tuned according to the results in relevance feedback. In [11], 
Matteo et.al. concentrate on assisting the user by expanding the 
query according to the additional information in relevance feed-
back to provide a more informative (full) query that can retrieve 
more detailed and relevant answers. However, diferent from our 
work which aims to infer the true intention of users, they expand 
the query graph at each round until they fnd the answer. In other 
words, the setting is diferent. 

5.3 Variational Inference 
The goal of variational inference is to approximate difcult-to-
compute posterior density. In [29], Zhang et.al. treat the topic entity 
in the input question as a latent variable and utilize variational 
reasoning network to handle noise in questions, and learn multi-hop 
reasoning simultaneously. In [17], Qu et.al. propose a probabilistic 
model called RNNLogic which treats logic rules as latent variables, 
and simultaneously trains a rule generator as well as a reasoning 
predictor with logic rules. These logic rules are similar to the latent 
paths in our model. There are many other works using variational 
inference. Diferent from these works, we are the frst to utilize 
variational inference in relevance feedback on graph data. 

6 CONCLUSION 
In this paper, we propose a model PReFNet which utilizes pseudo 
relevance feedback to answer ambiguous query over knowledge 
graph. Guided by Bayes rule, we decompose the question answering 
problem to several components and model each component with a 
neural network. To infer hidden queries, we resort to variational in-
ference to update intractable model with latent variables. To ensure 
the high quality of the inferred queries, we propose a neighborhood 
embedding based VGAE model to prune inferior queries. The exper-
iment results show that the proposed PReFNet consistently boosts 
the state-of-the-art methods on both query ranking and question 
answering tasks on multiple datasets. 

ACKNOWLEDGMENTS 
The LL and HT are partially supported by NSF (1947135, 2134079 
and 1939725), DARPA (HR001121C0165), NIFA (2020-67021-32799) 
and ARO (W911NF2110088). 

REFERENCES 
[1] A Bordes and Usunier N. 2013. Translating Embeddings for Modeling Multi-

relational Data. In Advances in Neural Information Processing Systems 26 (NeurIPS 
’21). 

[2] Wenhu Chen, Wenhan Xiong, Xifeng Yan, and William Yang Wang. [n. d.]. Vari-
ational Knowledge Graph Reasoning. In Proceedings of the 2018 Conference of 
the North American Chapter of the Association for Computational. Association for 
Computational Linguistics. 

2484



Knowledge Graph Qestion Answering with Ambiguous Qery 
WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

Table 7: Results of relation found by diferent methods. 
Question Query Relation found by PReFNet Query Relation found by VGAE 

thomas jeferson role in declaration independence people.person.profession flm.actor.flm 
state mount st. helens in location.location.containedby geography.mountain.mountain_type 

monarchy japan location.country.form_of_government schema.administrative_area.administrative_children 
frst gulf war fought time.event.locations military_command.military_commander 

buddha come people.person.place_of_birth people.person.places_lived 
part country new england location.location.containedby base.locations.countries.continent 

drink john pemberton create inventor.inventions symbols.name_source.namesakes 
jesus after he died cross people.deceased_person.place_of_death people.person.profession 
charles babbage discover inventor.inventions base.argumentmaps.innovator.original_ideas 
country code mexico location.country.internet_tld location.location.adjoin_s 

Table 8: Ablation study of question answering. 
Model webqsp50% webqsp80% simpleQA50% simpleQA80% 

EmbedKGQA - RM 44.8 50.3 46.5 58.9 
EmbedKGQA 45.9 52.8 46.6 58.8 

EmbedKGQA+QI 46.3 52.8 46.7 58.9 
PReFNet 47.7 53.7 48.8 60.1 

[3] Xiusi Chen, Yu Zhang, Jinliang Deng, Jyun-Yu Jiang, and Wei Wang. [n. d.]. Gotta: 
Generative Few-shot Question Answering by Prompt-based Cloze Data Augmenta-
tion. 

[4] Yongrui Chen, Huiying Li, Guilin Qi, Tianxing Wu, and Tenggou Wang. 2021. 
Outlining and Filling: Hierarchical Query Graph Generation for Answering 
Complex Questions over Knowledge Graph. arXiv. 

[5] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2018. BERT: 
Pre-training of Deep Bidirectional Transformers for Language Understanding. In 
Proceedings of the 2019 Conference of the North American Chapter of the Association 
for Computational Linguistics: Human Language Technologies. 

[6] Boxin Du, Lihui Liu, and Hanghang Tong. 2021. Sylvester Tensor Equation 
for Multi-Way Association. In Proceedings of the 27th ACM SIGKDD Conference 
on Knowledge Discovery and Data Mining (Virtual Event, Singapore) (KDD ’21). 
Association for Computing Machinery, New York, NY, USA, 311–321. 

[7] Dongqi Fu and Jingrui He. 2021. SDG: A Simplifed and Dynamic Graph Neural 
Network. In SIGIR ’21: The 44th International ACM SIGIR Conference on Research 
and Development in Information Retrieval, Virtual Event, Canada, July 11-15, 
2021, Fernando Diaz, Chirag Shah, Torsten Suel, Pablo Castells, Rosie Jones, and 
Tetsuya Sakai (Eds.). ACM, 2273–2277. https://doi.org/10.1145/3404835.3463059 

[8] G. W. Furnas, T. K. Landauer, L. M. Gomez, and S. T. Dumais. 1987. The Vocabulary 
Problem in Human-System Communication. (1987). 

[9] Zijie Huang, Zheng Li, Haoming Jiang, Tianyu Cao, Hanqing Lu, Bing Yin, Karthik 
Subbian, Yizhou Sun, and Wei Wang. 2022. Multilingual Knowledge Graph 
Completion with Self-Supervised Adaptive Graph Alignment. In Annual Meeting 
of the Association for Computational Linguistics (ACL). 

[10] Diederik P Kingma and Max Welling. 2013. Auto-Encoding Variational Bayes. 
arXiv. 

[11] Matteo Lissandrini, Davide Mottin, Themis Palpanas, and Yannis Velegrakis. 
2020. Graph-Query Suggestions for Knowledge Graph Exploration. Association for 
Computing Machinery, New York, NY, USA, 2549–2555. https://doi.org/10.1145/ 
3366423.3380005 

[12] Lihui Liu, Boxin Du, Yi Ren Fung, Heng Ji, Jiejun Xu, and Hanghang Tong. 2021. 
KompaRe: A Knowledge Graph Comparative Reasoning System. In Proceedings 
of the 27th ACM SIGKDD Conference on Knowledge Discovery and Data Mining 
(Virtual Event, Singapore) (KDD ’21). Association for Computing Machinery, 
New York, NY, USA, 3308–3318. 

[13] L. Liu, B. Du, and H. Tong. 2019. GFinder: Approximate Attributed Subgraph 
Matching (BigData ’19). 

[14] Lihui Liu, Boxin Du, Jiejun Xu, Yinglong Xia, and Hanghang Tong. 2022. Joint 
Knowledge Graph Completion and Question Answering. In Proceedings of the 28th 
ACM SIGKDD Conference on Knowledge Discovery and Data Mining (Washington 
DC, USA) (KDD ’22). Association for Computing Machinery, New York, NY, USA, 
1098–1108. 

[15] Denis Lukovnikov, Asja Fischer, Jens Lehmann, and Sören Auer. 2017. Neural 
Network-Based Question Answering over Knowledge Graphs on Word and 
Character Level. In Proceedings of the 26th International Conference on World Wide 
Web (Perth, Australia) (WWW ’17). International World Wide Web Conferences 
Steering Committee, Republic and Canton of Geneva, CHE, 1211–1220. https: 
//doi.org/10.1145/3038912.3052675 

[16] Alexander Miller, Adam Fisch, Jesse Dodge, Amir-Hossein Karimi, Antoine Bor-
des, and Jason Weston. 2016. Key-Value Memory Networks for Directly Reading 
Documents. arXiv:1606.03126 [cs.CL] 

[17] Meng Qu, Junkun Chen, Louis-Pascal Xhonneux, Yoshua Bengio, and Jian Tang. 
2020. RNNLogic: Learning Logic Rules for Reasoning on Knowledge Graphs. 
arXiv. https://doi.org/10.48550/ARXIV.2010.04029 

[18] Hongyu Ren, Weihua Hu, and Jure Leskovec. 2020. Query2box: Reasoning over 
Knowledge Graphs in Vector Space using Box Embeddings. In International 
Conference on Learning Representations. 

[19] Marta Sabou and Konrad Höfner. 2017. Survey on Challenges of Question 
Answering in the Semantic Web. Semant. Web 8, 6 (jan 2017), 895–920. https: 
//doi.org/10.3233/SW-160247 

[20] Apoorv Saxena, Aditay Tripathi, and Partha Talukdar. 2020. Improving multi-hop 
question answering over knowledge graphs using knowledge base embeddings. 
In Proceedings of the 58th Annual Meeting of the Association for Computational 
Linguistics. 4498–4507. 

[21] Yu Su, Shengqi Yang, Huan Sun, Mudhakar Srivatsa, Sue Kase, Michelle Vanni, 
and Xifeng Yan. 2015. Exploiting Relevance Feedback in Knowledge Graph Search 
(KDD ’15). Association for Computing Machinery, New York, NY, USA, 1135–1144. 
https://doi.org/10.1145/2783258.2783320 

[22] Haitian Sun, Bhuwan Dhingra, Manzil Zaheer, Kathryn Mazaitis, Ruslan Salakhut-
dinov, and William W. Cohen. 2018. Open Domain Question Answering Using 
Early Fusion of Knowledge Bases and Text. arXiv:1809.00782 [cs.CL] 

[23] Hongwei Wang, Hongyu Ren, and Jure Leskovec. 2021. Relational Message Pass-
ing for Knowledge Graph Completion. In Proceedings of the 27th ACM SIGKDD 
Conference on Knowledge Discovery and Data Mining (KDD ’21). 

[24] Ruijie Wang, Zheng Li, Danqing Zhang, Qingyu Yin, Tong Zhao, Bing Yin, and 
Tarek Abdelzaher. 2022. RETE: Retrieval-Enhanced Temporal Event Forecasting 
on Unifed Query Product Evolutionary Graph. In Proceedings of the ACM Web 
Conference 2022 (Virtual Event, Lyon, France) (WWW ’22). 462–472. 

[25] Ruijie Wang, zheng li, Dachun Sun, Shengzhong Liu, Jinning Li, Bing Yin, and 
Tarek Abdelzaher. 2022. Learning to Sample and Aggregate: Few-shot Reasoning 
over Temporal Knowledge Graphs. In Advances in Neural Information Processing 
Systems, Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho 
(Eds.). https://openreview.net/forum?id=1LmgISIDZJ 

[26] Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, and Hanghang Tong. 2021. Dy-
namic Knowledge Graph Alignment. Proceedings of the AAAI Conference on 
Artifcial Intelligence 35, 5 (May 2021), 4564–4572. 

[27] Yuchen Yan, Si Zhang, and Hanghang Tong. 2021. BRIGHT: A Bridging Algorithm 
for Network Alignment. In Proceedings of the Web Conference 2021 (Ljubljana, 
Slovenia) (WWW ’21). Association for Computing Machinery, New York, NY, 
USA, 3907–3917. https://doi.org/10.1145/3442381.3450053 

[28] Xi Ye, Semih Yavuz, Kazuma Hashimoto, Yingbo Zhou, and Caiming Xiong. 
2021. RnG-KBQA: Generation Augmented Iterative Ranking for Knowledge Base 
Question Answering. In Proceedings of the Annual Meeting of the Association for 
Computational Linguistics (ACL). 

[29] Yuyu Zhang, Hanjun Dai, Zornitsa Kozareva, Alexander J. Smola, and Le Song. 
2017. Variational Reasoning for Question Answering with Knowledge Graph. 
arXiv. 

2485

https://doi.org/10.1145/3404835.3463059
https://doi.org/10.1145/3366423.3380005
https://doi.org/10.1145/3366423.3380005
https://doi.org/10.1145/3038912.3052675
https://doi.org/10.1145/3038912.3052675
https://arxiv.org/abs/1606.03126
https://doi.org/10.48550/ARXIV.2010.04029
https://doi.org/10.3233/SW-160247
https://doi.org/10.3233/SW-160247
https://doi.org/10.1145/2783258.2783320
https://arxiv.org/abs/1809.00782
https://openreview.net/forum?id=1LmgISIDZJ
https://doi.org/10.1145/3442381.3450053


WWW ’23, April 30–May 04, 2023, Austin, TX, USA 

SUPPLEMENTARY MATERIAL: 
REPRODUCIBILITY 
Reproducibility. All experiments are performed on a machine 
with an Intel(R) Xeon(R) Gold 6240R CPU, 1510GB memory and 
NVIDIA-SMI Tesla V100-SXM2. The details of datasets, machine 
and parameters can be found in Section 4. All datasets are publicly 
available. The source code of this paper can be found at https: 
//github.com/lihuiliullh/PrefNet. 
Baselines.The implementation code of HGNet, RnG-KBQA, Graft-
Net, Key-Value Memory Network and EmbedKGQA can be found 
from the Table below. 

Table 9: Baseline Source. 

Model github 
HGNet https://github.com/Bahuia/HGNet 

RnG-KBQA https://github.com/salesforce/rng-kbqa 
GraftNet https://github.com/haitian-sun/GraftNet 
KV-Mem https://github.com/jojonki/key-value-memory-networks 

EmbedKGQA https://github.com/malllabiisc/EmbedKGQA 

THE NEIGHBORHOOD EMBEDDING BASED 
VAGE 
In this section, we introduce the details of the neighborhood embed-
ding based VAGE model in PReFNet. The goal of Neighborhood-
VGAE is to score the quality of a relation �� w.r.t. the given ambigu-
ous query � . Given a ambiguous query � , a pretrained Bert model 
is used to learn its embedding, which is given below. 

[h��� , w1, ..., w |� | , hs] = BERT( [���], �1, ...,� |� | , < � >)
h� = FNN( [h��� ]) 

To denoise the query, we utilize the idea of variational autoen-
coder to generate the mean � and variance � from the query em-
bedding, and randomly sample a point from the distribution. 

� = MLP(h� ) 
� = MLP(h� ) 
Λ = � + � ⊙ � 

where � ∼ � (0, I). 
The quality of a relation �� is calculated by 

� (�� ) = softmax(FNN(Λ| |� (�� ))) [�], 
where � (�� ) is the neighborhood embedding of anchor node �� . 

STATISTICS OF DATASETS 
Table 10 represents the details of the datasets used in this paper. 

Table 10: Number of queries in each dataset. 

Lihui Liu, Yuzhong Chen, Mahashweta Das, Hao Yang, and Hanghang Tong 

Table 11 shows the statistics of diferent KGs used in the experi-
ments. 

Table 11: Statistics of the 50% KG, 80% KG and complete KG 
for the three datasets. Note that WebQSP and SimpleQA use 
the same background knowledge graph. 

50% KG 
Dataset Entities Relations Train Edges Test Edges 
MetaQA 43,234 18 66,791 4,000 
WebQSP 1,886,683 1,144 2,872,880 20,000 
SimpleQA 1,886,683 1,144 2,872,880 20,000 

80% KG 
MetaQA 43,234 18 109,520 4,000 
WebQSP 1,886,683 1,144 4,624,196 20,000 
SimpleQA 1,886,683 1,144 4,624,196 20,000 

full KG 
MetaQA 43,234 18 133,582 4,053 
WebQSP 1,886,683 1,144 5,780,246 20,000 
SimpleQA 1,886,683 1,144 5,780,246 20,000 

LIMITATIONS AND FUTURE WORKS 
One limitation of the proposed PReFNet model lies in its generaliz-
abilitys. In this paper, PReFNet can only support one hop queries. 
To generalize multihop queries, one way is to let the output of 
the Query Inference be the distribution of multihop queries. More 
specifcally, we can replace Eq. (9) as a path decoder. For future 
improvements, the inferred queries can be extended to handle multi-
hop queries, and the variational inference model can be swapped 
with Bayesian Variational Inference to enhance its robustness. 

Dataset Train Valid Test 
MetaQA 96,106 9,992 9,947 
WebQSP 2,998 100 1,639 

SimpleQA 15,3188 2,105 4,345 
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