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ABSTRACT

Network alignment is a critical steppingstone behind a variety
of multi-network mining tasks. Most of the existing methods es-
sentially optimize a Frobenius-like distance or ranking-based loss,
ignoring the underlying geometry of graph data. Optimal trans-
port (OT), together with Wasserstein distance, has emerged to be
a powerful approach accounting for the underlying geometry ex-
plicitly. Promising as it might be, the state-of-the-art OT-based
alignment methods suffer from two fundamental limitations, in-
cluding (1) effectiveness due to the insufficient use of topology and
consistency information and (2) scalability due to the non-convex
formulation and repeated computationally costly loss calculation.
In this paper, we propose a position-aware regularized optimal
transport framework for network alignment named PARROT. To
tackle the effectiveness issue, the proposed PARROT captures topol-
ogy information by random walk with restart, with three carefully
designed consistency regularization terms. To tackle the scalability
issue, the regularized OT problem is decomposed into a series of
convex subproblems and can be efficiently solved by the proposed
constrained proximal point method with guaranteed convergence.
Extensive experiments show that our algorithm achieves significant
improvements in both effectiveness and scalability, outperforming
the state-of-the-art network alignment methods and speeding up
existing OT-based methods by up to 100 times.
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1 INTRODUCTION

Mining multiple networks collected from different resources is an
important task in many applications, including social network anal-
ysis, e-commerce recommendation, computer vision, and financial
fraud detection [8]. A fundamental step of multi-network mining
is to find the node correspondence across different networks, also
known as the network alignment problem. For example, aligning
users across different social networks helps improve the quality of
online recommender systems [1]. Integrating knowledge graphs,
such as Wikipedia and WorkNet, is essential to construct a coher-
ent knowledge base [3]. In bioinformatics, aligning tissue-specific
protein interaction networks improves gene prioritization [18].

Most existing methods, including consistency and embedding-
based methods, essentially optimize a Frobenius-like distance or
ranking-based loss. To be specific, consistency-based methods are
built upon the linearity and/or consistency assumptions [44]. Most
consistency-based methods [11, 26, 39, 40, 42], explicit or implicitly,
assume a linear transformation between two networks and aim to
minimize the Frobenius distance between the adjacency matrices
of one network and the permutation of another [45]. However, it
has been pointed out that the Frobenius distance may overlook
the underlying geometry of graph data [14]. Embedding-based
methods, on the other hand, aim to find two nonlinear projectors
that project two networks into a unified low-dimensional space
where positive node pairs are close while negative node pairs are
far away from each other, often enforced by ranking-based loss
functions [5, 21, 41, 44]. Nevertheless, the ranking-based loss only
addresses the relationship of positive and sampled negative node
pairs but ignores relationships between the rest node pairs, and
hence fails to capture the holistic structure of graph data.

More recently, optimal transport (OT), together withWasserstein
distance (WD), has emerged to be a powerful approach addressing
the underlying structure of two distributions [22]. Given a trans-
port cost measuring the distance between all sample pairs in two
distributions, OT seeks for the best coupling, or alignment, between
two distributions minimizing the expected cost, hence successfully
depicting the holistic structure of two distributions. Besides, the
OT framework can filter out noises in the cost measure and provide
more deterministic alignment results [16, 27]. Thus, OT provides a
potentially better approach to benefit the network alignment task.

The existing OT-based network alignment methods can be cate-
gorized into either continuous or discrete approaches. Continuous
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approaches [13–15] represent each graph by a multivariate Gauss-
ian distribution with a graph Laplacian-like covariance matrix,
while discrete approaches [2, 20, 31] associate each graph with
a discrete uniform distribution over its node set. However, most,
if not all, of existing OT-based methods suffer from effectiveness
and/or scalability limitations. First (effectiveness), the design of
transport cost is crucial to the OT problem, however, most existing
OT-based methods [2, 25, 31] only embrace node attributes or lo-
cal graph structure for cost design. Besides, the cost measure only
depicts node relationships, while edge and neighborhood relation-
ships are largely ignored. Second (scalability), although continuous
approaches encode graph structure by the graph Laplacian-like co-
variance matrix [13–15], the resulting problems are non-convex, in-
evitably involving gradient descent for optimization with repeated
computationally costly loss calculation.

In this paper, we propose a novel algorithm named PARROT
to address the above limitations. For the effectiveness limitation,
random walk with restart (RWR) is performed on separated and
product graphs to encode graph topology for a position-aware
transport cost. To incorporate alignment consistency, we neatly
design the regularization terms for edge consistency, neighborhood
consistency, and alignment preference. For the scalability limitation,
we formulate the network alignment problem as a regularized OT
problem and propose a constrained proximal point method for
a fast solution, which, as we theoretically prove, has guaranteed
convergence.

The main contributions of this paper are summarized as follows:

• Problem Formulation. We formulate the network align-
ment problem as an OT problem with alignment consistency
regularization at multiple levels.

• Algorithm and Analysis.We propose a fast and scalable
algorithm named PARROT for network alignment, which,
as we theoretically prove, has guaranteed convergence.

• Experimental Results. We perform extensive experiments
on both plain and attributed networks, and the results show
that our method achieves up to 13% improvement on plain
networks and 3% improvement on attributed networks in
terms of MRR compared with the best competitor. Besides,
PARROT is up to 100×+ faster than existing OT-based meth-
ods. See Figure 1 for comparison.

The rest of the paper is organized as follows. Section 2 defines
the OT problem in the context of network alignment and introduces
the preliminaries. Section 3 formulates the optimization problem.
Section 4 presents the proposed PARROT algorithm and relevant
analyses. Section 5 shows the experiment results. Related works
and conclusions are given in Sections 6 and 7 respectively.

2 PROBLEM DEFINITION

Table 1 summarizes the main symbols and notations used through-
out the paper. We use bold uppercase letters for matrices (e.g., A),
bold lowercase letters for vectors (e.g., s), and lowercase letters for
scalars (e.g., 𝛼). The element at the 𝑖-th row and 𝑗-th column of a
matrix A is denoted as A(𝑖, 𝑗). The transpose of A is denoted by the
superscript T (e.g., AT). An attributed network is represented by a
triplet G = {V,A,X} whereV,A,X denote the node set, adjacency
matrix, and node attribute matrix respectively. Given two attributed

(a) (b)

Figure 1: Mean Reciprocal Rank (MRR) and running time

of different methods. (a) Comparison with consistency and

embedding-based methods; (b) Comparison with OT-based

methods: numbers above bars indicate the ratio of MRR of

baselines and that of PARROT. Our proposed PARROT (1)

achieves much higher MRR than consistency-based methods

(FINAL and IsoRank) with a comparable running time and (2)

outperforms all embedding and OT-based methods in terms

of both MRR and speed.

Table 1: Symbols and Notations.

Symbol Definition

G1,G2 input networks
V1,V2 the sets of nodes of G1 and G2
A1,A2 adjacency matrices of G1 and G2
X1,X2 node attribute matrices of G1 and G2
𝑛𝑖 ,𝑚𝑖 number of nodes/edges in G𝑖

L the set of anchor node pairs

I, 1 an identity matrix and a column vector of all 1s
s = vec(S) vectorization of matrix 𝑆 in the column order
D = diag(d) diagonal matrix of a vector d

⊗ Kronecker product
⊙ Hadamard product
⟨·, ·⟩ inner product
Π probabilistic coupling

[·∥·] horizontal concatenation of vectors

networks G1 = {V1,A1,X1} and G2 = {V2,A2,X2}, and a set of
anchor node pairs L indicating which nodes are aligned a priori,
the semi-supervised attributed network alignment task aims to find
the best alignment matrix S ∈ R𝑛1×𝑛2 , where S(𝑥,𝑦) indicates how
likely node 𝑥 in V1 and node 𝑦 in V2 are aligned.

2.1 Optimal Transport

OT has recently been revisited in various domains including image
processing, data mining and machine learning [22]. We follow the
Kantorovich formulation which can be formally defined in terms
of two distributions and a cost matrix as follows:

Definition 1. Optimal Transport and Wasserstein distance [17].
Given two discrete distributions 𝝁,𝝂 defined on probability simplex
Δ1,Δ2 and a cost matrix C ∈ R𝑛1×𝑛2 measuring the distance between
all pairs (𝑥𝑖 , 𝑦 𝑗 ) ∈ Δ1 × Δ2 across two distributions. The OT problem
seeks for an optimal coupling/transport plan S ∈ Π(𝝁,𝝂) between 𝝁
and 𝝂 that minimizes the expected cost over the coupling as follows

S = argmin
S∈Π (𝝁,𝝂)

∑︁
𝑥𝑖 ,𝑦 𝑗

C(𝑥𝑖 , 𝑦 𝑗 )S(𝑥𝑖 , 𝑦 𝑗 ) = argmin
S∈Π (𝝁,𝝂)

⟨C, S⟩ (1)
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Figure 2: An example of OT-based network alignment: G1,G2
are represented as uniform distributions 𝝁 =

1𝑛1
𝑛1

,𝝂 =
1𝑛2
𝑛2

on

node sets. Bars in right boxes indicate the probability 𝑝 of

data points 𝑥𝑖 and 𝑦 𝑗 in the distribution. We may calculate

the cost matrix C and the transport plan S based on 𝐿1 norm.

where S is the optimal transport plan and corresponding ⟨C, S⟩ is the
Wasserstein distance between 𝝁 and 𝝂 .

Remark. To adopt the OT framework for network alignment, a
key question is how to represent networks as distributions. Figure 2
gives an example of the OT-based network alignment. Specifically,
by considering nodes as samples of a distribution, the input net-
works G1,G2 can be represented as discrete uniform distributions
𝝁 =

1𝑛1
𝑛1

,𝝂 =
1𝑛2
𝑛2

over their corresponding node sets [2]. Then,
together with the transport cost C ∈ R𝑛1×𝑛2 , the transport plan S
obtained by solving Eq. (1) indicates the node alignments.

2.2 Position-aware Node Embedding

Several recent works address the necessity of capturing node’s po-
sitional information within a network to generate position-aware
node embeddings. P-GNN [37] encodes positional information by
the distance between the target node and a set of landmarks, but
suffers from the space disparity issue due to the different landmark
selections of different graphs. BRIGHT [34] performs RWR on sep-
arated graphs and generates a unified RWR embedding space with
the help of anchor node pairs. By regarding anchor node pairs as
one identical landmark in the RWR embedding space, RWRs on G1
and G2 encode the positional information w.r.t. same landmarks,
and hence construct a unified RWR embedding space.

3 OPTIMIZATION FORMULATION

In this section, we present our regularized OT-based network align-
ment formulation. To leverage the topology information, we first
design a position-aware transport cost in Section 3.1. Then we in-
troduce three regularization terms to incorporate the alignment
consistency principle into the OT framework to form a regularized
OT-based network alignment formulation in Section 3.2.

3.1 Position-aware Transport Cost

The effectiveness of OT-based methods largely relies on the quality
of the transport cost. To fully exploit multi-aspect information
underlying multiple networks, our key idea is to exploit RWR on
separated networks capturing intra-network topology information,
as well as RWR on the product graph depicting cross-network
node pair relationships. Together with node attributes, we obtain

Figure 3: An illustrative example of RWR: (a) RWR on

separated graphs: RWRs encode positional information

for 𝑥1, 𝑥3 ∈ G1 and 𝑦1, 𝑦3 ∈ G2 w.r.t. the unified land-

mark nodes 𝑥2, 𝑦2; (b) RWR on the product graph: the co-

occurrence of RWR1 = (𝑥1, 𝑥2, 𝑥3, 𝑥1, 𝑥1) on G1 and RWR2 =

(𝑦1, 𝑦2, 𝑦3, 𝑦1, 𝑦3) on G2 is equivalent to the occurrence of

RWR= ((𝑥1, 𝑦1), (𝑥2, 𝑦2), (𝑥3, 𝑦3), (𝑥1, 𝑦1), (𝑥1, 𝑦3)) on G=G1⊗G2.

a position-aware transport cost that simultaneously encodes both
structural and attribute information of multiple networks.

RWR on separated graphs can capture intra-network topology
information w.r.t. shared landmarks [34]. An example is shown in
Figure 3 (a). Given the 𝑘-th anchor node pair (𝑥𝑙𝑘 , 𝑦𝑙𝑘 ) ∈ L where
𝑥𝑙𝑘 ∈ V1, 𝑦𝑙𝑘 ∈ V2 and 𝑘 = 1, · · · , |L|, the RWR score vectors
that depict the relative positions of nodes w.r.t. the corresponding
anchor node (e.g., nodes in V1 w.r.t. 𝑥𝑙𝑘 ) can be obtained by [29]

r𝑥𝑙𝑘 = (1 − 𝛽)W1r𝑥𝑙𝑘 + 𝛽e𝑥𝑙𝑘 , r𝑦𝑙𝑘 = (1 − 𝛽)W2r𝑦𝑙𝑘 + 𝛽e𝑦𝑙𝑘 (2)

where 𝛽 is the restart probability, W1 = (D−1
1 A1)T is the transpose

of the row normalized matrix of A1, e𝑥𝑙𝑘 is an 𝑛1-dimensional one-
hot vector with e𝑥𝑙𝑘 (𝑥𝑙𝑘 ) = 1, and similarly for W2, e𝑦𝑙𝑘 . With
the set of anchor node pairs L, we compute the RWR embed-
ding matrices R1 ∈ R𝑛1×|L | and R2 ∈ R𝑛2×|L | by concatenat-
ing the RWR scores w.r.t. different anchor node pairs via R1 =

[r𝑥𝑙1 ∥ · · · ∥r𝑥𝑙 |L|
],R2 = [r𝑦𝑙1 ∥ · · · ∥r𝑦𝑙 |L|

]. Note that these node em-
beddings R1,R2 naturally integrate the structural information of
each input network by RWR. To compute the transport cost, we
further leverage node attributes X1,X2 by a linear combination
with the cost based on RWR embeddings, which is computed by

Cnode = 𝛼𝑒−R1RT
2 + (1 − 𝛼)𝑒−X1XT

2 (3)
where 𝛼 is the weight parameter and Cnode (𝑥𝑖 , 𝑦 𝑗 ) describes the
cost of transporting/aligning node 𝑥𝑖 ∈ G1 to 𝑦 𝑗 ∈ G2.

This transport cost Cnode is computed solely based upon each
network individually, and hence may overlook the structural corre-
lations among node pairs across different networks. To encode this
cross-network information, we assume that not only the aligned
node pairs, but also their neighboring node pairs should be similar.
To this end, instead of measuring the cost of transporting node 𝑥1
and 𝑦1, we turn to measure the cost of transporting two synchro-
nized RWRs starting from 𝑥1 and 𝑦1. To obtain the co-occurrence
of RWR starting from node 𝑥1 ∈ G1, named RWR1 (𝑥1) on G1, and
RWR2 (𝑦1) on G2, from the view of product graph, it is equivalent
to measure the occurrence of RWR((𝑥1, 𝑦1)) on the product graph
G = G1 ⊗G2. An example is given in Figure 3 (b). For simplicity, we
denote the node pair visited at step 𝑖 as 𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖 ). Given the start
node pair 𝑠1, the RWR-level cross-network cost Crwr (𝑠1) can be
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Figure 4: An example of the consistency regularization.

computed as the expected discounted sum of node cost conditioned
on 𝑠1, that is [Cnode (𝑠𝑖 ) |𝑠1], along RWR on the product graph.

Crwr (𝑠1) = EW
∑︁∞

𝑖=1
𝛾𝑖−1 [Cnode (𝑠𝑖 ) |𝑠1]

= (1+𝛽)Cnode (𝑠1) + (1−𝛽)EW
∑︁∞

𝑖=1
𝛾𝑖 [Cnode (𝑠𝑖+1) |𝑠1]

= (1+𝛽)Cnode (𝑠1) + (1−𝛽)EW
∑︁∞

𝑖=1
𝛾𝑖W [Cnode (𝑠𝑖 ) |𝑠1]

= (1+𝛽)Cnode (𝑠1) + (1−𝛽)𝛾WCrwr (𝑠1)
where 𝛾 is the discounted factor of RWR and W = W2 ⊗ W1 is
the transition matrix of the product graph G. Since vec(ABC) =
(CT ⊗ A)vec(B), the above equation can be re-written as

Crwr = (1 + 𝛽)Cnode + (1 − 𝛽)𝛾W1CrwrWT
2 (4)

Note that Eq. (4) is known as Sylvester equation and is guaranteed
to converge through fixed point iteration [24].

3.2 Consistency-regularized OT

Most, if not all, of existing OT-based methods ignore the alignment
consistency principle, which assumes that the alignment between
two pairs of nodes across input networks should be consistent from
multiple perspectives. Inspired by [4, 40], for two aligned nodes
𝑥 ∈ G1, 𝑦 ∈ G2 and their neighbor nodes 𝑥 ′ ∈ N (𝑥), 𝑦′ ∈ N (𝑦),
we propose three types of consistency. First, the node consistency
assumes that aligned nodes (𝑥,𝑦) should be similar in terms of
node attributes and topology. Second, the edge consistency assumes
that if the corresponding neighbors 𝑥 ′, 𝑦′ of 𝑥,𝑦 are likely to be
aligned, then the edges (𝑥, 𝑥 ′), (𝑦,𝑦′) are likely to exhibit similar
relationships. For example, in Figure 4, if neighboring nodes 𝑥2, 𝑦2
and 𝑥3, 𝑦3 are likely to be aligned respectively, then (𝑥2, 𝑥3) and
(𝑦2, 𝑦3) are expected to exhibit similar intra-network relationships.
Third, the neighborhood consistency assumes that close nodes in
one graph are likely to match to close nodes in another graph, i.e.,
the alignment score of neighboring node pairs should be similar [4].
For example, in Figure 4, for neighboring nodes pairs 𝑥1, 𝑥2 ∈ G1
and 𝑦1, 𝑦2 ∈ G2, (𝑥1, 𝑦1) and (𝑥2, 𝑦2) are expected to have similar
alignment scores.

The OT problem in Eq. (1) naturally incorporates node consis-
tency by using the transport cost matrix Crwr to re-weight the
alignment S by element-wise product, that is

𝐿node =
∑︁
𝑥,𝑦

Crwr (𝑥,𝑦)S(𝑥,𝑦) = ⟨Crwr, S⟩ (5)

In addition, for edge consistency, we integrate it with an ad-
ditional regularization term 𝐿𝑒 to emphasize the consistency of

node pair relationships. From the view of dual graphs, where edges
are projected as nodes and vice versa, the edge consistency can
be interpreted as aligning edges of two networks [2]. To measure
the intra-network relationships along edges, we compute the intra-
network dissimilarity matrices C1,C2 based on node attributes by

C1 = 𝑒−X1XT
1 ⊙ A1, C2 = 𝑒−X2XT

2 ⊙ A2 (6)
which we further use to define the edge consistency regularization
term as

𝐿𝑒 =
∑︁

𝑥,𝑥 ′,𝑦,𝑦′
L𝑒 (𝑥, 𝑥 ′, 𝑦,𝑦′)

=
∑︁
𝑥,𝑦

𝑥′∈N(𝑥 ),𝑦′∈N(𝑦)

|C1 (𝑥, 𝑥 ′) − C2 (𝑦,𝑦′) |2S(𝑥,𝑦)S(𝑥 ′, 𝑦′)
(7)

Note that Eq. (7) is equivalent to the Gromov-Wasserstein distance
(GWD). Based on [23], we further derive it into an inner product
form for fast computation as

𝐿𝑒 = ⟨L, S⟩

where

L = C2

1𝝁1
T
𝑛2 + 1𝑛1𝝂

TC2
2 − 2C1SCT

2

𝝁 =
1𝑛1

𝑛1
,𝝂 =

1𝑛2

𝑛2

(8)

The neighborhood consistency L𝑛 (𝑥, 𝑥 ′, 𝑦,𝑦′) measures the con-
sistency of alignment scores among neighboring node pairs. In
other words, for any node pairs (𝑥,𝑦), we want the alignment score
S(𝑥,𝑦) to be similar to the average alignment score Ŝ(𝑥,𝑦) among
its neighbors. The average alignment score can be defined as

Ŝ(𝑥,𝑦) = 1
|N (𝑥) | |N (𝑦) |

∑︁
𝑥 ′∈N(𝑥),𝑦′∈N(𝑦)

S(𝑥 ′, 𝑦′)

= WT
1SW2

Bregman divergence is used to depict the distance between S and Ŝ,
and the neighborhood consistency regularization can be defined as

𝐿𝑛 =
∑︁

𝑥,𝑥 ′,𝑦,𝑦′
L𝑛 (𝑥, 𝑥 ′, 𝑦,𝑦′)

=
∑︁
𝑥,𝑦

[
S(𝑥,𝑦) log S(𝑥,𝑦)

Ŝ(𝑥,𝑦)
− S(𝑥,𝑦) + Ŝ(𝑥,𝑦)

]
= −⟨log Ŝ, S⟩ + ⟨log S, S⟩

(9)

The last equation is due to
∑
𝑥,𝑦 S(𝑥,𝑦) = 1 and

∑
𝑥,𝑦 Ŝ(𝑥,𝑦) = 1.

Furthermore, to exploit the supervision information L, we intro-
duce an alignment preference regularization term L𝑎 to encode prior
alignment preference H. Here, H ∈ R𝑛1×𝑛2 is a uniform distribution
on anchor node pairs, i.e., H(𝑥,𝑦) = 1

|L | if and only if (𝑥,𝑦) ∈ L.
By using Bregman divergence to measure the distance between S
and H, the alignment preference regularization is defined as

𝐿𝑎 =
∑︁
𝑥,𝑦

L𝑎 (𝑥,𝑦)

=
∑︁
𝑥,𝑦

[
S(𝑥,𝑦) log S(𝑥,𝑦)

H(𝑥,𝑦) − S(𝑥,𝑦) + H(𝑥,𝑦)
]

= −⟨logH, S⟩ + ⟨log S, S⟩

(10)

The last equation is due to
∑
𝑥,𝑦 S(𝑥,𝑦) =

∑
𝑥,𝑦 H(𝑥,𝑦) = 1.
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Algorithm 1 Position-Aware Transport Cost

Input: (1) networks G1 = {V1,A1,X1},G2 = {V2,A2,X2}, (2)
the set of anchor node pairs L, (3) parameter 𝛼, 𝛽,𝛾 , (4) the
maximum iteration number 𝑇 .

Output: cross-network cost Crwr.
1: Compute RWR scores by running Eq. (2) iteratively;
2: Compute node-level cost Cnode by Eq. (3);
3: Compute RWR-level cost Crwr by running Eq. (4) iteratively;
4: return transport cost Crwr.

At last, by combining Eq. (5)-(10), the overall consistency-regularized
OT problem is formulated as

min
S∈Π (𝝁,𝝂)

𝑓 (S) = 𝐿node + 𝜆𝑒𝐿𝑒 + 𝜆𝑛𝐿𝑛 + 𝜆𝑎𝐿𝑎 (11)

where 𝜆𝑒 , 𝜆𝑛, 𝜆𝑎 are the hyperparameters that control the impor-
tance of each regularization term.

4 ALGORITHM AND ANALYSIS

In this section, we present and analyze our proposed algorithm
PARROT. In Section 4.1, we first present the computation of the
position-aware transport cost. Then we introduce several approxi-
mations to consistency regularization for convexity guarantee and
the proximal operator for convergence guarantee. We further de-
compose the regularized OT into a series of convex subproblems
that can be regarded as classic OT problems with modified transport
costs and propose PARROT for fast computation. Convergence and
complexity analyses of PARROT are carried out in Section 4.2.

4.1 PARROT: Optimization Algorithm

The overall framework of PARROT can be divided into two parts:
(1) calculating the position-aware transport cost based on Eq. (2)-(4),
and (2) solving the regularized OT problem in Eq. (11).

To compute the transport cost Crwr, we apply the fixed-point
algorithm to iteratively update r𝑥𝑙𝑘 , r𝑦𝑙𝑘 and Crwr as in Eq. (2) and
Eq. (4). Since the eigenvalues of the normalized adjacency matrices
W1,W2 lie in [−1, 1], the convergence can be guaranteed. The
entire computation of Crwr is summarized in Algorithm 1.

To solve Eq. (11), we propose PARROT based on the constrained
proximal point method for fast solution with guaranteed conver-
gence. Proximal point method is a widely adopted method to find
the optimal solution to convex optimization problem. In general,
Given a fixed convex objective function 𝑓 (S) defined on the feasible
region S, the proximal point method finds the global optimal solu-
tion S∗ ∈ S that minimizes 𝑓 (S) by generating a solution sequence
{S(𝑡 ) }𝑡=1,2,... to the following subproblems.

S(𝑡+1) = argmin
S∈S

𝑓 (S) + 𝜆𝐿
(𝑡 )
𝑝 (12)

where 𝐿 (𝑡 )𝑝 is the proximal operator constraining the distance be-
tween two consecutive solutions for the sake of convergence. In
this work, we define 𝐿 (𝑡 )𝑝 as the Bregman divergence between S
and S(𝑡 ) as follows.

𝐿
(𝑡 )
𝑝 =

∑︁
𝑥,𝑦

[
S(𝑥,𝑦) log S(𝑥,𝑦)

S(𝑡 ) (𝑥,𝑦)
− S(𝑥,𝑦) + S(𝑡 ) (𝑥,𝑦)

]
= −⟨log S(𝑡 ) , S⟩ + ⟨log S, S⟩

(13)

The last equation is due to
∑
𝑥,𝑦 S(𝑥,𝑦) =

∑
𝑥,𝑦 S(𝑡 ) (𝑥,𝑦) = 1.

However, the edge consistency in Eq. (8) and neighborhood con-
sistency regularization in Eq. (9) are non-convex terms. To tackle
the non-convexity, our key idea is two-fold: (1) subproblem decom-
position and (2) convex approximation. First (subproblem decompo-
sition), the original problem in Eq. (12) is decomposed into a series
of subproblems where L(𝑡 ) in 𝐿

(𝑡 )
𝑒 and Ŝ(𝑡 ) in 𝐿

(𝑡 )
𝑛 are fixed.

S(𝑡+1) = argmin
S∈S

𝑓𝑡 (S) + 𝜆𝑝𝐿
(𝑡 )
𝑝

𝑓𝑡 (S) = 𝐿node + 𝜆𝑒𝐿
(𝑡 )
𝑒 + 𝜆𝑛𝐿

(𝑡 )
𝑛 + 𝜆𝑎𝐿𝑎

(14)

where 𝑓𝑡 (S) changes along the proximal point iteration. Second
(convex approximation), we introduce the following approxima-
tions to Eq. (8) and Eq. (9) to guarantee the convexity of 𝑓𝑡 (S).

𝐿
(𝑡 )
𝑒 = ⟨L(𝑡 ) , S⟩ ≈ ⟨C2

1𝝁1
T
𝑛2 + 1𝑛1𝝂

TC2
2 − 2C1S(𝑡 )CT

2, S⟩

𝐿
(𝑡 )
𝑛 ≈ −⟨log Ŝ(𝑡 ) , S⟩ + ⟨log S, S⟩

(15)

Combining Eq. (14) and (15), each subproblem is formulated as

min
S∈Π (𝝁,𝝂)

𝑓𝑡 (S) + 𝜆𝑝𝐿𝑝 (S, S(𝑡 ) )

= ⟨Crwr︸︷︷︸
node

+ 𝜆𝑒L(𝑡 )︸ ︷︷ ︸
edge

+ 𝜆𝑛 log
S

Ŝ(𝑡 )︸       ︷︷       ︸
neighborhood

+ 𝜆𝑎 log
S
H︸    ︷︷    ︸

preference

+ 𝜆𝑝 log
S

S(𝑡 )︸       ︷︷       ︸
proximal

, S⟩

= ⟨C(𝑡 ) , S⟩ + 𝜆⟨log S, S⟩

(16)

where C(𝑡 ) = Crwr + 𝜆𝑒L(𝑡 ) − 𝜆𝑛 log Ŝ(𝑡 ) − 𝜆𝑎 logH − 𝜆𝑝 log S(𝑡 )

and 𝜆 = 𝜆𝑛 +𝜆𝑎 +𝜆𝑝 . Notice that C(𝑡 ) is a fixed matrix, so that each
subproblem in Eq. (16) can be regarded as a classic OT problem
with modified cost C(𝑡 ) and can be efficiently solve by the Sinkhorn
algorithm [6]. Specifically, starting with b(0) =

1𝑛2
𝑛2

, the Sinkhorn
algorithm computes the scaling vector by the following iteration

a(𝑙) =
𝝁

𝑒−C(𝑡 ) /𝜆b(𝑙−1)
, b(𝑙) =

𝝂

𝑒−C(𝑡 )T/𝜆a(𝑙)
,∀𝑙 = 1, ..., 𝐿 (17)

and the optimal solution can be obtained by

S(𝑡 ) = diag(a(𝐿) )𝑒−C
(𝑡 ) /𝜆diag(b(𝐿) ) (18)

Note that the exponential term in Eq. (17) amplifies the gaps be-
tween values in C(𝑡 ) , hence providing a more deterministic, or
noise-reduced, alignment result. In fact, the doubly-stochastic ma-
trix S(𝑡 ) will approach a hard alignment when 𝜆 approaches 0 [16].

Although the proximal point method has guaranteed conver-
gence for a fixed convex optimization problem based on the descent
property, i.e. 𝑓 (S(𝑡+1) ) ≤ 𝑓 (S(𝑡 ) ), this is not the case in our formu-
lation as the objective 𝑓𝑡 (S) changes along the iteration. The major
problem is that alternating the objective function may violate the
descent property. To tackle this problem, we propose the following
constrained proximal point method that only updates the objective
function when the decrease property is satisfied.

S(𝑡+1) = argmin
S∈Π (𝝁,𝝂)

𝑓𝑡 (S) + 𝜆⟨log S, S⟩

where 𝑓𝑡 (S) =
{
⟨C(𝑡 ) , S⟩, if ⟨C(𝑡 ) , S(𝑡 ) ⟩ ≤ 𝑓𝑡−1 (S(𝑡 ) )
𝑓𝑡−1 (S), otherwise

(19)

Under such update constraint, the objective function, as we theoreti-
cally prove, is non-increasing and converges along the optimization
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Algorithm 2 PARROT

Input: (1) networks G1 = {V1,A1,X1},G2 = {V2,A2,X2}, (2)
prior alignment preferenceH, (3) parameters 𝛼, 𝛽,𝛾,𝑇 , 𝜆𝑒/𝑛/𝑝/𝑎 .

Output: the alignment matrix S.
1: Compute cross-network cost Crwr by Algorithm 1;
2: Compute intra-network cost C1,C2 by Eq. (6);
3: 𝝁 =

1𝑛1
𝑛1

,𝝂 =
1𝑛2
𝑛2

, S(0) = 𝝁 ⊗ 𝝂T, 𝜆 = 𝜆𝑛 + 𝜆𝑎 + 𝜆𝑝 ;
4: for 𝑡 = 0, 1, ...,𝑇 do

5: Compute L(𝑡 ) by Eq. (8) and C(𝑡 ) by Eq. (16);
6: if ⟨C(𝑡 ) , S(𝑡 ) ⟩ ≤ 𝑓𝑡−1 (S(𝑡 ) ) then
7: Update objective function 𝑓𝑡 (S) = ⟨C(𝑡 ) , S⟩;
8: else

9: Objective function stays unchanged 𝑓𝑡 (S) = 𝑓𝑡−1 (S);
10: end if

11: Solve S(𝑡+1) = argmin
S∈Π (𝝁,𝝂)

𝑓𝑡 (S) + 𝜆𝑝𝐿
(𝑡 )
𝑝 by Eq. (17) and (18);

12: end for

13: return alignment matrix S.

process. Therefore, our proposed PARROT summarized in Algo-
rithm 2 provides a fast solution to the consistency-regularized OT
problem with guaranteed convergence.

4.2 Proof and Analysis

In this subsection, we provide theoretical analyses of our proposed
PARROT. We first show the convergence of position-aware trans-
port cost computation (Propositions 1 and 2). Then we show the
strict convexity of subproblems in Eq. (16) (Lemma 1) and the con-
vergence analysis of PARROT (Lemma 2 and Theorem 1). The
complexity analysis (Theorem 2) is carried out thereafter. Without
loss of generality, we assume that graphs share a comparable size
(i.e., O(𝑛1) ≈ O(𝑛2) ≈ O(𝑛) nodes and O(𝑚1) ≈ O(𝑚2) ≈ O(𝑚)
edges).

Proposition 1. Convergence of RWR on separated graphs.With
the error tolerance 𝜖 ,𝑇 = log1−𝛽 𝜖 iterations guarantee ∥R∗1−R

(𝑇 )
1 ∥∞ ≤

𝜖 and ∥R∗2 − R(𝑇 )
2 ∥∞ ≤ 𝜖 .

Proposition 2. Convergence of RWR on the product graph.
With the error tolerance 𝜖 , 𝑇 = log(1−𝛽)𝛾 [(1 − 𝛾)𝜖] iterations guar-
antee ∥C∗

rwr − C(𝑇 )
rwr ∥∞ ≤ 𝜖 .

Lemma 1. Strict convexity of Eq. (16). The subproblem in Eq. (16)
is strictly convex.

Lemma 2. Convergence of proximal point method [30].
Given a convex objective function 𝑓 (S), the solution sequence {𝑓 (S(𝑡 ) )}
given by proximal point method is non-increasing and converges.

Theorem 1. Convergence of PARROT. The solution sequence
{𝑓𝑡 (S(𝑡 ) )} given by PARROT is non-increasing and converges.

Theorem 2. Complexity of PARROT. The overall time com-
plexity of PARROT is O(𝑇𝑚𝑛+𝑇𝐿𝑛2), where𝑇 is the number of outer
iterations and 𝐿 is the number of inner iterations in PARROT.

All the proofs for the above propositions, lemmas, and theorems
are provided in Appendix A.

5 EXPERIMENT

We apply the proposed algorithm PARROT to the network align-
ment task and evaluate it from the following aspects:

• Q1. How effective is the proposed PARROT in both plain and
attributed network alignment tasks?

• Q2. How efficient and scalable is the proposed PARROT?
• Q3. How is the empirical convergence of PARROT?
• Q4. To what extent does PARROT benefit from different
components of our method?

5.1 Experimental Setup

Datasets. Our method is evaluated on both plain and attributed
networks. The dataset statistics are shown in Table 5. Detailed
descriptions and experimental settings are in Appendix C1.
Baseline methods. PARROT is compared with the following meth-
ods on both attributed and plain networks under the semi-supervised
setting, including (1) Consistency-based methods: IsoRank [26]
and FINAL [40], and (2) Embedding-based methods: IONE [12],
CrossMNA [5], DANA [10], REGAL [9], NetTrans [44], BRIGHT [34]
and NeXtAlign [41]. Since many existing OT-based methods [13,
14, 20, 32] can not scale to large networks, we evaluate two unsu-
pervised OT-based methods S-GWL [31] and GOAT [25] on the
small Phone-Email dataset with 1,000 nodes. For a fair comparison,
we ablated the proposed PARROT with the known anchor links as
well as RWR on separated graphs (denoted as "PARROT (ablated)").
Metrics. In our experiment, we evaluate the effectiveness in terms
of Hits@K and Mean Reciprocal Rank (MRR). Given a test node
𝑥 ∈ G1, if the corresponding node 𝑥 ′ ∈ G2 is among the top-Kmost
similar nodes in G2, it is regarded as a hit. For a test dataset with 𝑛
node pairs, The Hits@K is computed by Hits@K = # of hits

𝑛 . MRR is
a widely-adopted metric computed by the average of the inverse of
alignment ranking MRR = 1

𝑛

∑𝑛
𝑖=1

1
rank( (𝑎𝑖 ,𝑥𝑖 )) .

5.2 Effectiveness Results

Comparison with consistency and embedding-based meth-

ods.We first compare the alignment performance with consistency
and embedding-based methods under the semi-supervised setting
on both attributed and plain networks. Using 20% data as the prior
knowledge, the results are shown in Tables 2 and 3. Compared
with consistency-based methods, PARROT achieves up to 17% im-
provement in Hits@30 and 25% improvement in MRR on plain
network tasks. On attributed network tasks, PARROT achieves up
to 9% improvement in Hits@30 and 27% improvement in MRR com-
pare with the state-of-the-art. These results indicate that the OT
framework consistently provides a better distance metric than those
Frobenius-like distances. Besides, the improvements on plain tasks
are even more significant than those on attributed tasks, indicating
the position-aware transport cost can depict the topology infor-
mation precisely. Compared with embedding-based methods, PAR-
ROT outperforms all embedding-based methods on plain tasks and
achieves up to 7% improvement in Hits@30 and 13% improvement
in MRR. On attributed tasks, PARROT outperforms embedding-
based methods achieving up to 1% improvement in Hits@30 and
3% improvement in MRR compared with the best competitor.

1Code and datasets are available at https://github.com/zhichenz98/PARROT-WWW23.

https://github.com/zhichenz98/PARROT-WWW23
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Table 2: Comparison with consistency and embedding-based

methods on plain network alignment.

Dataset Foursquare-Twitter ACM-DBLP

Metrics Hits@1 Hits@10 Hits@30 MRR Hits@1 Hits@10 Hits@30 MRR

IsoRank 0.023 0.117 0.223 0.055 0.151 0.632 0.796 0.294
IONE 0.042 0.168 0.281 0.085 0.312 0.748 0.843 0.467
FINAL 0.051 0.238 0.342 0.110 0.193 0.692 0.832 0.353

CrossMNA 0.000 0.036 0.119 0.015 0.082 0.646 0.795 0.238
DANA 0.127 0.344 0.486 0.197 0.234 0.432 0.467 0.290
BRIGHT 0.064 0.252 0.335 0.130 0.405 0.813 0.841 0.539
NextAlign 0.102 0.277 0.371 0.224 0.403 0.816 0.870 0.585

PARROT 0.245 0.409 0.508 0.304 0.619 0.912 0.940 0.719

Table 3: Comparison with consistency and embedding-based

methods on attributed network alignment.

Dataset Cora1-Cora2 ACM(A)-DBLP(A)

Metrics Hits@1 Hits@10 Hits@30 MRR Hits@1 Hits@10 Hits@30 MRR

FINAL 0.710 0.881 0.907 0.773 0.397 0.833 0.925 0.541

REGAL 0.453 0.611 0.689 0.510 0.361 0.629 0.696 0.449
NetTrans 0.993 0.999 1.000 0.995 0.692 0.931 0.960 0.774
BRIGHT 0.839 0.991 0.997 0.904 0.453 0.878 0.922 0.599
NeXtAlign 0.492 0.729 0.786 0.577 0.487 0.859 0.915 0.633

PARROT 0.996 1.000 1.000 0.998 0.721 0.960 0.971 0.806

Table 4: Comparison with OT-based methods on plain net-

work alignment under unsupervised setting. PARROT (ab-

lated) is the unsupervised version and PARROT is the semi-

supervised version with 20% data as prior knowledge.

Dataset Phone-Email

Metrics Hits@1 Hits@10 Hits@30 MRR

S-GWL 0.003 0.021 0.058 0.014
GOAT 0.000 0.009 0.026 0.005

PARROT (ablated) 0.043 0.314 0.649 0.131
PARROT 0.323 0.749 0.931 0.469

Comparison with OT-based methods. We also compare the
alignment performance with OT-based methods. We use the unsu-
pervised PARROT (ablated) for a fair comparison and also report
the performance of PARROT using 20% data as prior knowledge in
Table 3. It is shown that without the anchor links/supervision, none
of the OT-based methods in Table 4 performs well. Nonetheless, the
proposed PARROT (ablated) still consistently outperforms both S-
GWL [31] and GOAT [25], thanks to the RWR-level cross-network
transport cost and consistency regularization. With the additional
supervision of anchor links and more importantly equipped with
our RWR on separated graphs, the proposed PARROT (i.e., the
last row of Table 4) leads to significant alignment performance
improvement over both existing OT-based methods. In Section 5.4,
we present further ablation studies to quantify the relative contri-
butions of different components in the proposed PARROT.

5.3 Scalability Results

We compare the running time of the proposed PARROTwith that of
S-GWL [31] and GOAT [25], and results are shown in Figure 5. Note
that the numbers above the blue/green curves are the ratios of MRR
of S-GWL/GOAT to that of PARROT. For example, for networks
with 20,000 edges, PARROT runs 100 times faster than S-GWL
while S-GWL’s MRR is only 37% of that of PARROT, and PARROT
runs 5 times faster than GOAT while GOAT’s MRR is about 56%

Figure 5: Scalability analysis: numbers over curves indicate

the ratio of MRR of baseline methods and that of PARROT.

of PARROT. Under 600-second running time limit, PARROT can
process networks 6 times the size of S-GWL and twice the size of
GOAT. Combining with the effectiveness comparison in Table 4,
we conclude that the proposed PARROT improves the existing OT-
based methods in both effectiveness and scalability (up to 100×+
speed-up).

5.4 Convergence Results

We evaluate the convergence of the proposed PARROT in terms of
the difference between two consecutive solutions ΔS(𝑡 ) = ∥S(𝑡 ) −
S(𝑡−1) ∥1 and the values of the objective function 𝑓𝑡 (S(𝑡 ) ). Results
given in Figure 6 show that the solution and the objective function
generated by PARROT converges along the optimization process.

(a) (b)

Figure 6: Convergence analysis. (a) Difference between con-

secutive solutions; (b) Values of the objective function.

5.5 Analysis of the Method

Hyperparameter sensitivity study.We analyze how the align-
ment performance varies with different hyperparameters. We first
analyze regularization parameters (𝜆𝑒 , 𝜆𝑛, 𝜆𝑝 , 𝜆𝑎) by varying be-
tween 0.1 to 10 times of the default value. Then we analyze ratio
parameters (𝛼, 𝛽,𝛾 ) with values from {0.1, 0.2, 0.5, 0.7, 0.9}. Results
are shown in Figure 7. It shown that our method is robust to hyper-
parameters in a relatively wide range.
Ablation study on regularization. To evaluate the effectiveness
of our proposed consistency regularization, we use PARROT with-
out any regularization as baseline and compare the performance
of each regularization (edge/neighborhood/preference) on differ-
ent datasets. Results are shown in Figure 8. Compared with the
baseline, all regularization terms can boost the alignment perfor-
mance. The edge consistency leads to the largest improvement. As
stated before, node consistency and edge consistency are mutually
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(a) (b)

Figure 7: Hyperparameter study on ACM-DBLP: (a) Study on

regularization parameters; (b) Study on ratio parameters.

Figure 8: Study on consistency regularization.

complementary which forces the OT framework to align nodes
and edges simultaneously. Besides, the neighborhood consistency
and alignment preference also improve the performance to some
extent. Therefore, this ablation study validates the necessities of
introducing consistency regularization to the OT framework.

6 RELATED WORK

In this section, we review the relatedwork, which can be categorized
into two groups: network alignment and optimal transport.

6.1 Network Alignment

Most existing network alignment methods can be categorized into
consistency-based and embedding-based methods. Consistency-
based methods are built upon the linearity and/or consistency as-
sumptions. The linearity assumption assumes a noisy permutation
P between two networks forming a Frobenius-like objective [11, 38].
Some variants address the network alignment problem from the
view of alignment consistency. IsoRank [26] propagates node simi-
larities on the product graph to achieve topology consistency. FI-
NAL [40] further integrates node, edge, and topology consistency to
deal with attributed networks. Although consistency-based meth-
ods address neighborhood topology and attribute consistency, the
global structure is often under-exploited. Besides, the consistency
assumption may be violated due to network disparity [41].

Another line of work is based on node embeddings. These meth-
ods aim to find informative low-dimensional node embeddings that
(1) preserve the topology information of each network and (2) make
anchor node pairs as close as possible [33, 34]. To achieve these
two goals, IONE [12] adopts the follower/followee-ship to generate
embeddings preserving node proximities. REGAL [9] learns effec-
tive and low-variance node embeddings via cross-network matrix
factorization. CrossMNA [5] utilizes diverse embeddings to address
global/intra/inter-network features. NetTrans [44] handles network

alignment from the view of network transformation. BRIGHT [34]
and FITO [35] generate position embeddings via the random walk
with restart to tackle the space disparity issue. DANA [10] and
RNA [47] study the network alignment problem via adversarial
learning to obtain robust alignments. Several recent works focus
on augmenting dataset for model training. Attent [46] involves
human in loop for data labeling via active learning. NeXtAlign [41]
studies the negative sampling strategy to achieve a balance between
alignment consistency and disparity. CPUGA [21] introduces a non-
sampling schema that progressively selects and utilizes trusty node
pairs for model training. The advantage of embedding-based meth-
ods comes from the power of nonlinear functions, at the cost of the
computationally expensive training processes whose convergence
guarantee is intractable. Besides, embedding-based methods may
introduce the space disparity issue [41, 44].

6.2 Optimal Transport

OT is recently introduced to cope with network alignment and com-
parison tasks. The idea is to represent graphs as distributions and
optimize for distribution matching via minimizing the cost of trans-
porting one distribution to another [2]. EMD [19] performs OT on
eigenvector-based node embeddings for alignment. GOT1 [14] and
fGOT [13] use Gaussian distribution w.r.t. different graph kernels
for graph representation, and apply stochastic gradient descent to
find the solution. GOT2 [2] utilizes WD and GWD to address both
node and edge correspondence. S-GWL [31] aligns two networks
based on the GWD discrepancy. More recently, GraphOTC [20]
performs OT on stationary Markov chains for network alignment
and comparison. GOAT [25] attempts to handle the scalability is-
sue by taking advantage of the Sinkhorn algorithm [6]. Though
great progress has been made, most existing OT-based methods
demand repeated computationally expensive loss calculations and
bear relatively poor scalability. Besides, existing OT-based methods
do not fully make use of topology information and hardly address
the alignment consistency principle. These limitations collectively
lead to relatively poor effectiveness and scalability.

7 CONCLUSION

In this paper, we study the semi-supervised network alignment
problem from the view of optimal transport (OT). The OT frame-
work provides a better distance measure (WD) capturing the un-
derlying structure of graph data, compared with the Frobenius-
like distance or ranking-based loss behind the existing consistency
and embedding-based methods. To overcome the effectiveness and
scalability issues of existing OT-based methods, we introduce a
position-aware transport cost to capture topology information and
consistency regularization to address the alignment consistency
principle. We further decompose the regularized OT problem into a
series of convex subproblems that can be efficiently solved by a scal-
able algorithm named PARROT based on the constrained proximal
pointmethod, with guaranteed convergence. Extensive experiments
show that PARROT significantly outperforms the state-of-the-art.
Specifically, the proposed PARROT is up to 3% - 13% better than the
best competitor among consistency and embedding-based methods
and runs 100×+ faster than existing OT-based methods.



PARROT: Position-Aware Regularized Optimal Transport for Network Alignment WWW ’23, April 30-May 4, 2023, Austin, TX, USA

ACKNOWLEDGEMENT

The ZZ and HT are partially supported by NSF (1947135, 2134079
and 1939725), DARPA (HR001121C0165), NIFA (2020-67021-32799)
and ARO (W911NF2110088).

REFERENCES

[1] Xuezhi Cao and Yong Yu. 2017. Joint User Modeling Across Aligned Heteroge-
neous Sites Using Neural Networks. In Joint European Conference on Machine
Learning and Knowledge Discovery in Databases. Springer, 799–815.

[2] Liqun Chen, Zhe Gan, Yu Cheng, Linjie Li, Lawrence Carin, and Jingjing Liu. 2020.
Graph optimal transport for cross-domain alignment. In International Conference
on Machine Learning. PMLR, 1542–1553.

[3] Muhao Chen, Yingtao Tian, Mohan Yang, and Carlo Zaniolo. 2016. Multilingual
knowledge graph embeddings for cross-lingual knowledge alignment. arXiv
preprint arXiv:1611.03954 (2016).

[4] Xiyuan Chen, Mark Heimann, Fatemeh Vahedian, and Danai Koutra. 2020. Cone-
align: Consistent network alignment with proximity-preserving node embedding.
In Proceedings of the 29th ACM International Conference on Information & Knowl-
edge Management. 1985–1988.

[5] Xiaokai Chu, Xinxin Fan, Di Yao, Zhihua Zhu, Jianhui Huang, and Jingping Bi.
2019. Cross-network embedding for multi-network alignment. In The world wide
web conference. 273–284.

[6] Marco Cuturi. 2013. Sinkhorn distances: Lightspeed computation of optimal
transport. Advances in neural information processing systems 26 (2013), 2292–2300.

[7] Boxin Du and Hanghang Tong. 2018. Fasten: Fast sylvester equation solver for
graph mining. In Proceedings of the 24th ACM SIGKDD International Conference
on Knowledge Discovery & Data Mining. 1339–1347.

[8] Boxin Du, Si Zhang, Yuchen Yan, and Hanghang Tong. 2021. New frontiers of
multi-network mining: Recent developments and future trend. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
4038–4039.

[9] Mark Heimann, Haoming Shen, Tara Safavi, and Danai Koutra. 2018. Regal:
Representation learning-based graph alignment. In Proceedings of the 27th ACM
international conference on information and knowledge management. 117–126.

[10] Huiting Hong, Xin Li, Yuangang Pan, and Ivor Tsang. 2020. Domain-adversarial
Network Alignment. IEEE Transactions on Knowledge and Data Engineering
(2020).

[11] Danai Koutra, Hanghang Tong, and David Lubensky. 2013. Big-align: Fast bipar-
tite graph alignment. In 2013 IEEE 13th international conference on data mining.
IEEE, 389–398.

[12] Li Liu, William K Cheung, Xin Li, and Lejian Liao. 2016. Aligning Users across
Social Networks Using Network Embedding.. In Ijcai. 1774–1780.

[13] Hermina Petric Maretic, Mireille El Gheche, Giovanni Chierchia, and Pascal
Frossard. 2022. FGOT: Graph distances based on filters and optimal transport. In
Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 36. 7710–7718.

[14] Hermina Petric Maretic, Mireille EL Gheche, Giovanni Chierchia, and Pascal
Frossard. 2019. GOT: An optimal transport framework for graph comparison.
arXiv preprint arXiv:1906.02085 (2019).

[15] Hermina Petric Maretic, Mireille El Gheche, Matthias Minder, Giovanni Chierchia,
and Pascal Frossard. 2020. Wasserstein-based graph alignment. arXiv preprint
arXiv:2003.06048 (2020).

[16] Gonzalo Mena, David Belanger, Scott Linderman, and Jasper Snoek. 2018.
Learning latent permutations with gumbel-sinkhorn networks. arXiv preprint
arXiv:1802.08665 (2018).

[17] Gaspard Monge. 1781. Mémoire sur la théorie des déblais et des remblais. Histoire
de l’Académie Royale des Sciences de Paris (1781).

[18] Jingchao Ni, Hanghang Tong, Wei Fan, and Xiang Zhang. 2014. Inside the atoms:
ranking on a network of networks. In Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 1356–1365.

[19] Giannis Nikolentzos, Polykarpos Meladianos, and Michalis Vazirgiannis. 2017.
Matching node embeddings for graph similarity. In Thirty-first AAAI conference
on artificial intelligence.

[20] Kevin O’Connor, Bongsoo Yi, Kevin McGoff, and Andrew B Nobel. 2021. Graph
Optimal Transport with Transition Couplings of Random Walks. arXiv preprint
arXiv:2106.07106 (2021).

[21] Shichao Pei, Lu Yu, Guoxian Yu, and Xiangliang Zhang. 2022. Graph Alignment
with Noisy Supervision. In Proceedings of the ACM Web Conference 2022. 1104–
1114.

[22] Gabriel Peyré, Marco Cuturi, et al. 2019. Computational optimal transport: With
applications to data science. Foundations and Trends® in Machine Learning 11,
5-6 (2019), 355–607.

[23] Gabriel Peyré, Marco Cuturi, and Justin Solomon. 2016. Gromov-Wasserstein
averaging of kernel and distance matrices. In International Conference on Machine
Learning. PMLR, 2664–2672.

[24] Yousef Saad. 2003. Iterative methods for sparse linear systems. SIAM.

[25] Ali Saad-Eldin, Benjamin D Pedigo, Carey E Priebe, and Joshua T Vogelstein.
2021. Graph Matching via Optimal Transport. arXiv preprint arXiv:2111.05366
(2021).

[26] Rohit Singh, Jinbo Xu, and Bonnie Berger. 2008. Global alignment of multiple
protein interaction networks with application to functional orthology detection.
Proceedings of the National Academy of Sciences 105, 35 (2008), 12763–12768.

[27] Derek Tam, Nicholas Monath, Ari Kobren, Aaron Traylor, Rajarshi Das, and
AndrewMcCallum. 2019. Optimal transport-based alignment of learned character
representations for string similarity. arXiv preprint arXiv:1907.10165 (2019).

[28] Jie Tang, Jing Zhang, Limin Yao, Juanzi Li, Li Zhang, and Zhong Su. 2008. Ar-
netminer: extraction and mining of academic social networks. In Proceedings of
the 14th ACM SIGKDD international conference on Knowledge discovery and data
mining. 990–998.

[29] Hanghang Tong, Christos Faloutsos, and Jia-Yu Pan. 2006. Fast random walk
with restart and its applications. In Sixth international conference on data mining
(ICDM’06). IEEE, 613–622.

[30] Yujia Xie, Xiangfeng Wang, Ruijia Wang, and Hongyuan Zha. 2020. A fast
proximal point method for computing exact wasserstein distance. In Uncertainty
in Artificial Intelligence. PMLR, 433–453.

[31] Hongteng Xu, Dixin Luo, and Lawrence Carin. 2019. Scalable Gromov-
Wasserstein learning for graph partitioning and matching. Advances in neural
information processing systems 32 (2019), 3052–3062.

[32] Hongteng Xu, Dixin Luo, Hongyuan Zha, and Lawrence Carin Duke. 2019.
Gromov-wasserstein learning for graph matching and node embedding. In Inter-
national conference on machine learning. PMLR, 6932–6941.

[33] Yuchen Yan, Lihui Liu, Yikun Ban, Baoyu Jing, and Hanghang Tong. 2021. Dy-
namic knowledge graph alignment. In Proceedings of the AAAI Conference on
Artificial Intelligence, Vol. 35. 4564–4572.

[34] Yuchen Yan, Si Zhang, and Hanghang Tong. 2021. BRIGHT: A Bridging Algorithm
for Network Alignment. In Proceedings of the Web Conference 2021. 3907–3917.

[35] Yuchen Yan, Qinghai Zhou, Jinning Li, Tarek Abdelzaher, and Hanghang Tong.
2022. Dissecting cross-layer dependency inference on multi-layered inter-
dependent networks. In Proceedings of the 31st ACM International Conference on
Information & Knowledge Management. 2341–2351.

[36] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-
supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[37] Jiaxuan You, Rex Ying, and Jure Leskovec. 2019. Position-aware graph neural
networks. In International Conference on Machine Learning. PMLR, 7134–7143.

[38] Jiawei Zhang and S Yu Philip. 2015. Integrated anchor and social link predictions
across social networks. In Twenty-fourth international joint conference on artificial
intelligence.

[39] Jiawei Zhang and S Yu Philip. 2015. Multiple anonymized social networks
alignment. In 2015 IEEE International Conference on Data Mining. IEEE, 599–608.

[40] Si Zhang and Hanghang Tong. 2016. Final: Fast attributed network alignment.
In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining. 1345–1354.

[41] Si Zhang, Hanghang Tong, Long Jin, Yinglong Xia, and Yunsong Guo. 2021.
Balancing Consistency and Disparity in Network Alignment. In Proceedings
of the 27th ACM SIGKDD Conference on Knowledge Discovery & Data Mining.
2212–2222.

[42] Si Zhang, Hanghang Tong, Ross Maciejewski, and Tina Eliassi-Rad. 2019. Multi-
level network alignment. In The World Wide Web Conference. 2344–2354.

[43] Si Zhang, Hanghang Tong, Jie Tang, Jiejun Xu, and Wei Fan. 2020. Incomplete
network alignment: Problem definitions and fast solutions. ACM Transactions on
Knowledge Discovery from Data (TKDD) 14, 4 (2020), 1–26.

[44] Si Zhang, Hanghang Tong, Yinglong Xia, Liang Xiong, and Jiejun Xu. 2020.
Nettrans: Neural cross-network transformation. In Proceedings of the 26th ACM
SIGKDD International Conference on Knowledge Discovery & Data Mining. 986–
996.

[45] Si Zhang, Hanghang Tong, Jiejun Xu, Yifan Hu, and Ross Maciejewski. 2019.
Origin: Non-rigid network alignment. In 2019 IEEE International Conference on
Big Data (Big Data). IEEE, 998–1007.

[46] Qinghai Zhou, Liangyue Li, Xintao Wu, Nan Cao, Lei Ying, and Hanghang Tong.
2021. Attent: Active attributed network alignment. In Proceedings of the Web
Conference 2021. 3896–3906.

[47] Yang Zhou, Zeru Zhang, Sixing Wu, Victor Sheng, Xiaoying Han, Zijie Zhang,
and Ruoming Jin. 2021. Robust network alignment via attack signal scaling and
adversarial perturbation elimination. In Proceedings of the Web Conference 2021.
3884–3895.



WWW ’23, April 30-May 4, 2023, Austin, TX, USA Zhichen Zeng, Si Zhang, Yinglong Xia, and Hanghang Tong

A PROOF

A.1 Proof of Proposition 1

Proposition. Convergence of RWR on separated graphs.

With the error tolerance 𝜖 , 𝑇 = log1−𝛽 𝜖 iterations guarantee ∥R∗1 −
R(𝑇 )
1 ∥∞ ≤ 𝜖 and ∥R∗2 − R(𝑇 )

2 ∥∞ ≤ 𝜖 .

Proof. RWR on separated graphs aims to find the fixed point
solution to Eq. (2), or in the matrix form, R1 = (1 − 𝛽)W1R1 + 𝛽e1.
By denoting the initial solution as R(0)

1 , fixed point solution as R∗1 ,
and solution at the 𝑡-th iteration as R(𝑡 )

1 , we have:

∥R∗1 − R(𝑡 )
1 ∥∞ =




(1 − 𝛽)W1R∗1 − (1 − 𝛽)W1R
(𝑡−1)
1





∞

Since W1 is the transpose of the row normalized adjacency matrix
with ∥W1∥∞ ≤ 1, we have:

∥R∗1 − R(𝑡 )
1 ∥∞ ≤ (1 − 𝛽)∥R∗1 − R(𝑡−1)

1 ∥∞

≤ (1 − 𝛽)𝑡 ∥R∗1 − R(0)
1 ∥∞

Due to ∥R(0)
1 ∥∞ ≤ 1 and ∥R∗1∥∞ ≤ 1, we have

∥R∗1 − R(𝑡 )
1 ∥∞ ≤ (1 − 𝛽)𝑡

Therefore, 𝑇 = log1−𝛽 𝜖 iterations guarantee ∥R∗1 − R(𝑇 )
1 ∥ ≤ 𝜖 .

Similar proof can be derived for R2. We omitted here for brevity. □

A.2 Proof of Proposition 2

Proposition. Convergence of RWR on the product graph.

With the error tolerance 𝜖 , 𝑇 = log(1−𝛽)𝛾 [(1 − 𝛾)𝜖] iterations guar-
antee ∥C∗

cross − C(𝑇 )
cross∥∞ ≤ 𝜖 .

Proof. Similar to the proof of Proposition 1, with the initial
solution C(0)

cross, the fixed point solution C∗
cross and the solution at

the 𝑡-th iteration as C(𝑡 )
cross, we have

∥C∗
cross − C(𝑡 )

cross∥∞ ≤ [(1 − 𝛽)𝛾]𝑡 ∥C∗
cross − C(0)

cross∥∞
Since we adopt the exponential of the negative cosine similarity to
calculate Cnode with its infinite norm less than or equal to 1, we
have

C∗
cross = EW

∞∑︁
𝑖=1

𝛾𝑖−1Cnode (𝑠𝑖 ) ≤ EW
∞∑︁
𝑖=1

𝛾𝑖−1∥Cnode∥∞ ≤ 1
1 − 𝛾

.

By combining the above two inequalities, we have

∥C∗
cross − C(𝑡 )

cross∥∞ ≤ (1 − 𝛽)𝑡𝛾𝑡
1 − 𝛾

Therefore, 𝑇 = log(1−𝛽)𝛾 [(1 − 𝛾)𝜖] iterations guarantee ∥C∗
cross −

C(𝑇 )
cross∥∞ ≤ 𝜖 . □

A.3 Proof of Lemma 1

Lemma. Strict convexity of Eq. (16). The subproblem in Eq. (16)
is strictly convex.

Proof. Since the C(𝑡 ) is a fixed matrix, the second derivative
of the inner product ⟨C(𝑡 ) , S⟩ w.r.t. S equals to zero. Therefore, we
only need to focus on the convexity of ⟨log S, S⟩.

For ⟨log S, S⟩, its second derivative w.r.t. S can be computed as
follows.

∇2
S⟨log S, S⟩ = diag

(
1

vec(S)

)
Since all entries of the alignment score S are positive, the second
derivative ∇2

S⟨log S, S⟩ is a positive definite matrix and ⟨log S, S⟩ is
strictly convex. Therefore, the consistency-regularized OT problem
is strictly convex. □

A.4 Proof of Lemma 2

Lemma. Convergence of proximal point method [30]. Given
a convex objective function 𝑓 (S), the solution sequence {𝑓 (S(𝑡 ) )}
generated by the proximal point method is non-increasing.

Proof. The first-order optimality condition of Eq. (12) can be
written as:(

S − S(𝑡+1)
)T [

∇𝑓 (S(𝑡+1) ) + 𝜆∇𝐿 (𝑡 )𝑝

]
≥ 0,∀S ∈ S

The convexity of 𝑓 can be written as:(
S − S(𝑡+1)

)T
∇𝑓 (S(𝑡+1) ) ≤ 𝑓 (S) − 𝑓 (S(𝑡+1) ),∀S ∈ S

Combine the above two inequality and set S = S(𝑡 ) , we have:

𝑓 (S(𝑡+1) ) ≤ 𝑓 (S(𝑡 ) ) + 𝜆

(
S(𝑡 ) − S(𝑡+1)

)T (
1𝑛1×𝑛2 + log

S(t)

S(𝑡 )

)
= 𝑓 (S(𝑡 ) )

The last equation is based on the fact that S(𝑡 ) , S(𝑡+1) ∈ Π(𝝁,𝝂),
so that

(
S(𝑡 ) − S(𝑡+1)

)T
1𝑛1×𝑛2 = 0𝑛1×𝑛2 . Therefore, the solution

sequence {𝑓 (S(𝑡 ) )} is non-increasing, i.e. 𝑓 (S(𝑡+1) ) ≤ 𝑓 (S(𝑡 ) ), and
converges as lim

𝑇→∞
𝑓 (S(𝑇 ) ) ≤ 𝑓 (S),∀S ∈ Π(𝝁,𝝂). □

A.5 Proof of Theorem 1

Theorem. Convergence of PARROT. The solution sequence
{𝑓𝑡 (S(𝑡 ) )} generated by PARROT is non-increasing and converges.

Proof. The constrained proximal point method can be divided
into two cases: (1) 𝑓𝑡 (S) stays unchanged when ⟨C(𝑡 ) , S(𝑡 ) ⟩ >

𝑓𝑡−1 (S(𝑡 ) ), and (2) 𝑓𝑡 (S) = ⟨C(𝑡 ) , S⟩ when ⟨C(𝑡 ) , S(𝑡 ) ⟩ ≤ 𝑓𝑡−1 (S(𝑡 ) ).
For case (1), consecutive iterations 𝑡 and 𝑡 + 1 are optimizing the

same objective function based on proximal point method. According
to Lemma 1 and 2, we have:

𝑓𝑡 (S(𝑡 ) ) = 𝑓𝑡−1 (S(𝑡 ) ) ≤ 𝑓𝑡−1 (S(𝑡−1) )

For case (2), according to the constraint, we have:

𝑓𝑡 (S(𝑡 ) ) = ⟨C(𝑡 ) , S(𝑡 ) ⟩ ≤ 𝑓𝑡−1 (S(𝑡 ) )

Further based on Lemma 1 and 2 that 𝑓𝑡−1 (S(𝑡 ) ) ≤ 𝑓𝑡−1 (S(𝑡−1) ), we
conclude that 𝑓𝑡 (S(𝑡 ) ) ≤ 𝑓𝑡−1 (S(𝑡−1) ) in case (2).

Therefore, the solution sequence {𝑓𝑡 (S(𝑡 ) )} given by the con-
straint proximal point method is non-increasing and converges as
lim

𝑇→∞
𝑓𝑇 (S(𝑇 ) ) ≤ 𝑓𝑡 (S(𝑡 ) ),∀𝑡 = 0, 1, 2, . . . . □
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Figure 9: Visualization of the OT mapping on the Phone-

Email dataset. Darker the pixel, lower the value.

A.6 Proof of Theorem 2

Theorem. Complexity of PARROT. The overall time complex-
ity of PARROT is O(𝑇𝑚𝑛 + 𝑇𝐿𝑛2), where 𝑇 is the number of outer
iterations and 𝐿 is the number of inner iterations in PARROT.

Proof. SinceW1 andW2 are sparse matrices with O(𝑚) non-
zero entries, the complexity of RWR calculation in Eq. (2) and
Eq. (4) are O(𝑚𝑛).2 For the constrained proximal point method in
Algorithm 2, since C1,C2 and W1,W2 are sparse matrices with
O(𝑚) non-zero entries the complexity for calculating L(𝑡 ) and C(𝑡 )

are O(𝑚𝑛) per outer iteration. Solving each subproblem by Eq. (17)
is O(𝑛2) per inner iteration. Therefore, with 𝑇 outer iterations
and 𝐿 inner iterations, the overall time complexity of PARROT is
O(𝑇𝑚𝑛 +𝑇𝐿𝑛2). □

B VISUALIZATION OF OT MAPPINGS

We provide the visualization of the learned OT mapping between
the first 100 nodes in the Phone-Email dataset in Figure 9. The
groundtruth alignment is the diagonal matrix (i.e., the 𝑖-th node
in G1 is aligned to the 𝑖-th node in G2). We reverse the values in
the cost matrix so that higher the value (brighter the pixel), the
more likely two nodes are aligned. It is shown that the cost matrix
is a noisy matrix of the groundtruth alignment, while PARROT
produces a denoised alignment matrix that is consistent with the
groundtruth alignment.

C REPRODUCIBILITY

Dataset Descriptions. The datasets used in our experiments in-
clude:

• Foursquare-Twitter [38]: Two online social networks with
nodes as users and edges as friendships. Foursquare network
includes 5,313 nodes and 54,233 edges. Twitter network in-
cludes 5,120 nodes and 130,575 edges. Both networks are
plain networks. There are 1,609 common users across two
networks.

• ACM-DBLP [28]: Two co-authorship networks of the ACM
Digital library and DBLP bibliography. Nodes represent au-
thors and an edge exists between two authors if they are
co-author for at least one publication. ACM co-author net-
work includes 9,916 nodes and 44,808 edges. DBLP co-author

2Using the recent advancement of faster Sylvester Equation solver, such as implicit
Krylov subspace methods [7], it is possible to reduce this cost to be linear in𝑚.

Table 5: Dataset Summary.

Scenarios Networks # nodes # edges # attributes

Plain

Foursquare 5,313 54,233 0
Twitter 5,120 130,575 0

ACM 9,872 39,561 0
DBLP 9,916 44,808 0

Phone 1,000 41,191 0
Email 1,003 4,627 0

Attributed

ACM(A) 9,872 39,561 17
DBLP(A) 9,916 44,808 17

Cora1 2,708 6,334 1,433
Cora2 2,708 4,542 1,433

network includes 9,872 nodes and 39,561 edges. Both net-
works are attributed networks where attributes indicate the
number of papers that are published in different venues by
that author. There are 6,325 common authors across two
networks. In our experiment, we use ACM(A)/DBLP(A) to
denote the dataset with node attributes and ACM/DBLP to
denote the dataset without node attributes.

• Phone-Email [43]: Two communication networks among
people via phone or email. Nodes represent people and an
edge exists between two people if they communicate via
phone or email at least once. Phone network includes 1,000
nodes and 41,191 edges. Email network includes 1,003 nodes
and 4,627 edges. Both networks are plain networks. There
are 1,000 common people across two networks.

• Cora1-Cora2 [36]: A citation network with nodes as publi-
cations and edges as citations among publications. Cora1
and Cora2 are two permuted networks with noise added.
More specifically, 10% edges are first added to Cora1 and 15%
edges are removed from Cora2 thereafter. Cora1 includes
2,708 nodes and 6,334 edges. Cora2 includes 2,708 nodes and
4,542 edges. Both networks are attributed networks where
node attributes are binary feature vector represented by bag-
of-words. There are 2,708 common publications across two
networks.

Dataset statistics are shown in Table 5. In our experiments, we use
20% ground-truth as the prior knowledge/training data and test on
the rest of the ground-truth.
Machine configuration and code. The proposed method is im-
plemented in MATLAB. We use an Apple M1 chip with 16 GB RAM
to run PARROT, IsoRank, FINAL, and OT-based methods. We use
NVIDIA Tesla V100 SXM2 as GPU for embedding-based methods.
Hyperparameters settings. An overview of hyperparameters
settings for our experiments is shown in Table 6.

Table 6: Hyperparameters settings

Dataset 𝜆𝑒 𝜆𝑛 𝜆𝑎 𝜆𝑝 𝛼 𝛽 𝛾

Foursquare-Twitter 3e-6 5e-3 5e-4 1e-3 0.5 0.15 0.8
ACM-DBLP 1e-5 4e-4 1e-2 1e-3 0.1 0.5 0.9
Phone-Email 2e-5 5e-3 5e-4 5e-4 0.5 0.15 0.7

ACM(A)-DBLP(A) 5e-5 1e-2 1e-2 1e-1 0.1 0.15 0.2
Cora1-Cora2 1e-6 1e-2 2e-3 2e-3 0.5 0.3 0.2
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