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Navigating unfamiliar websites is challenging for users with visual impairments. Although many websites
offer visual cues to facilitate access to pages/features most websites are expected to have (e.g., log in at the
top right), such visual shortcuts are not accessible to users with visual impairments. Moreover, although
such pages serve the same functionality across websites (e.g., to log in, to sign up), the location, wording, and
navigation path of links to these pages vary from one website to another. Such inconsistencies are challenging
for users with visual impairments, especially for users of screen readers, who often need to linearly listen to
content of pages to figure out how to access certain website features. To study how to improve access to main
website features, we iteratively designed and tested a command-based approach for main features of websites
via a browser extension powered by machine learning and human input. The browser extension gives users a
way to access high-level website features (e.g., log in, find stores, contact) via keyboard commands. We tested
the browser extension in a lab setting with 15 Internet users, including 9 users with visual impairments and 6
without. Our study showed that commands for main website features can greatly improve the experience of
users with visual impairments. People without visual impairments also found command-based access helpful
when visiting unfamiliar, cluttered, or infrequently visited websites, suggesting that this approach can support
users with visual impairments while also benefiting other user groups (i.e., universal design). Our study
reveals concerns about the handling of unsupported commands and the availability and trustworthiness of
human input. We discuss how websites, browsers, and assistive technologies could incorporate a command-
based paradigm to enhance web accessibility and provide more consistency on the web to benefit users with
varied abilities when navigating unfamiliar or complex websites.
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1 INTRODUCTION

Navigating websites requires disparate effort from users with visual impairments [15, 23, 69].
When browsing complex websites with a screen reader (e.g., online shopping), users with visual
impairments can get overwhelmed and confused due to the way in which websites are rendered,
often having to deal with inaccessible content and parsing long lists of links. When navigating an
unfamiliar website, common features found on many websites conveyed via visual cues are not
immediately accessible to users with visual impairments. For example, when visiting a website for
the first time, one may expect to find the login and sign-up links somewhere near the top-right
corner of a website, and contact links appearing toward the bottom. However, when using screen
readers, users may not be able to rely on such visual conventions, as (1) the content is narrated
on a linear fashion based on the document-level structure of the page and (2) there is no enforced
standard about how the desired feature might be implemented (e.g., is the link “log in,” “sign in,”
or “my account?”), requiring users to engage in trial-and-error strategies [69]. Such lack of consis-
tency causes frustration and inefficiency among users with visual impairments, preventing them
from experiencing the web in ways others might do with less effort. For instance, Figure 1 shows
the diversity of the wording of hyperlinks of two features, log in and store finding, across some
popular websites in the United States. These discrepancies can be challenging for users when first
visiting websites: they need to learn (and later recall) each website’s wording, which can diminish
users’ confidence and independence [61]. Therefore, more consistency could benefit users with
visual impairments.

Recent studies involving intelligent personal assistants (IPAs) (e.g., [1, 2, 46, 61]) hint at an
emerging paradigm of giving users with visual impairments ways to “actively solicit” features and
information they desire as an alternative to the long-established “passive listener” [61] approach to
accessibility. As an illustration, in the current paradigm, websites are parsed by users as a directory
of links: screen reader users rely heavily on keyboard shortcuts to navigate links and page sections.
This passive listening paradigm has been shown to overwhelm users of assistive technologies [69].
Alternatively, active solicitation [61] allows users to focus on their goals and provides consistency
across websites, enabling users to easily access the resources they need to complete the task at
hand without having to deal with individual design differences. Arguably, users of screen readers
have to “figure out” how each website is structured to access a certain common feature (e.g., log
in, contact, deals). In contrast, enabling users to actively solicit higher-level features could provide
a consistent way for them to browse, in which more focus is given to the task at hand rather than
requiring users to navigate the content and structure of each website effectively “figure out” how
to access common features on each website’s unique design.

To address this issue, we aimed to study whether command-based browsing for main website
features—especially common features across websites—could be a beneficial interaction modality
for users with visual impairments. By using commands to access major features of websites (e.g.,
sign up, contact, find nearby stores), users would not have to deal with website design variations or
learn the structure of each individual website. To test whether this paradigm would benefit users
with visual impairments, we iteratively designed and evaluated a system allowing users to actively
solicit high-level features they wish to access on the present website, which are mapped to target
pages via machine learning models and human input. We designed, implemented, and evaluated
our system in a lab setting, starting with a Wizard-of-Oz prototype, then building and evaluating
a functional system. Inspired by universal design—the idea of designs for underserved groups
benefiting everyone [43, 62, 63]—we also tested our system with users without visual impairments.

We found that our system enabled users to access common features across websites more quickly
(measured by logs) and directly (based on qualitative feedback). Participants thought the command-
based approach afforded added consistency and reduced the number of steps and unexpected
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Fig. 1. Diversity of hyperlink wording for common features across popular websites in the United States.
Although visual shortcuts are present (e.g., log in at the top right or left, store finding near the top), these
are not accessible to users with visual impairments, thus requiring users to learn each website. Our goal
is to support access to common features via commands in a consistent way, even if they are implemented
differently.

challenges faced along the way. The system was found to be most useful on unfamiliar, cluttered,
or infrequently visited websites or features, even by users without visual impairments. Partici-
pants also wished to use “crowd-favorite” website features and human input from affinity groups
while attempting to access a main website feature. Participants raised some concerns about website
discovery, privacy and security, and the handling of unsupported features and commands.

Drawing from our findings, we discuss how machine learning and human input can assist
command-based browsing and present design implications for personal assistants and assistive
technologies. We also discuss how implementing a “consistency” infrastructure and/or metadata
for main, common website features could enable personal assistants to interact with individual
websites on behalf of users in an active solicitation paradigm.

Our main contribution is showing that active solicitation of common website features is an effec-
tive interaction modality for users with visual impairments, providing consistency and preventing
usability challenges faced due to the diversity of designs found across the web.

2 RELATED WORK
2.1 Making Web Browsing More Accessible

Navigating the web can be a daunting activity for users with visual impairments. Unexpected
distractions, information overload, inaccessible content, and a lack of consistency make browsing
the web quite challenging for this user group [15, 23, 69]—especially when completing tasks that
may involve visiting multiple pages [13, 23, 28, 69]. As a result, users with visual impairments adopt
strategies such as memorizing links [69] and exhaustively scanning a page [15, 69]. Such strategies
can be very cognitively demanding, more so when inter-page navigation is required, such as when
users must navigate several pages and websites to achieve their goal, and on unfamiliar websites
[15, 61], as websites vary greatly in their structure and design.

Several approaches have been developed and evaluated to assist users with visual impairments
in completing tasks online, including programming by demonstration to automate repetitive tasks
(e.g., [11, 14, 40, 49]) (i.e., recording and reproducing a series of steps), using how-to knowledge
repositories (e.g., [13, 40]), simplifying interactions with a given page’s content and user interface
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elements (e.g., [9, 44, 51, 66]), automating individual interactions with page elements such as “click
search button,” via voice commands [8, 9], and re-narrating or re-structuring the content of web
pages in ways suitable to assistive technology users [16, 21, 47, 52].

Most notably, BrowseWithMe by Stangl et al. [61] is an intelligent online assistant created to
help users with visual impairments shop for clothes on different websites. The system works by au-
tomatically parsing product web pages and converting content into structured representations that
can be accessed by users via questions (i.e., commands) such as “what is the price?” or “can I see a
magnified image of the pants?” across different shopping websites (e.g., a standard). Through a user
study, the authors identified several advantages in the paradigm shift from “treating users with vi-
sual impairments as passive listeners of unparsed information” to “giving users the ability to actively
solicit desired information.” While specifically focused on shopping and on product pages, their
interviews and user studies uncovered many benefits of command-based browser assistants more
broadly, such as the consistency and effectiveness provided via commands that work across differ-
ent websites, and increased trust and independence when interacting with features of websites.

Like in BrowseWithMe [61], a common, overlapping theme of these prior works is a depar-
ture from requiring users to linearly consume content, shifting toward more command-based and
conversational approaches to web browsing for users with visual impairments. For example, the
ability to interact via commands has been shown to be a promising modality for users with visual
impairments, such as in accessing key sections of a given web page [28] and performing the next
action on a given web page, such as when booking flights [7], and interacting with virtual world
games [26]. This type of active solicitation modality has also shown promise in use of IPAs (e.g.,
Siri, Alexa) by users with visual impairments [1].

In our work, we study how to support quick and consistent (i.e., standardized) access to main,
common website features (e.g., signing up, finding deals, finding popular items, and checking pric-
ing information) across different websites. For example, users wanting to reset their password on
websites that have user accounts would enter the “reset password” command and then be taken
directly to the page where they could do so—regardless of website design. This approach is funda-
mentally different from the works presented earlier because it is not focused on page-level inter-
actions (e.g., click button X) but website-level features (e.g., find nearby stores). For example, most
prior works that share similar command-based or conversational approaches are scoped to interac-
tions within a given web page and its user interface elements, whereas the approach we evaluated
in this work aims at giving users quick access to the entry points for the most commonly expected
features to be supported by websites. In facilitating access to main, common website features, it is
our hope to (1) provide a layer of abstraction and consistency for users to access the main features
of websites as they browse the web and (2) surface the most important or common features as
users encounter new, unfamiliar websites or deal with website re-designs.

We note that some of the prior works could indirectly provide similar consistency. For example,
TrailBlazer [13] could store scripts for each website’s main features that still work on a different,
albeit very similar, website where the script still works. In contrast, with our approach, such main
features could be automatically recognized at any website visited without requiring manual anno-
tations from website users, which is a scalability advantage. Similarly, in the work of Ashok et al.
[8, 9], users could use the Navigate command to access portions of the present page, which could
coincidentally relate to main website features (e.g., login forms), yet its scope is to facilitate gran-
ular, page-level interactions, not website-level access to features like in the approach we explore
in this article.

Despite the aforementioned distinctions, we build our work from promising directions identified
in prior works such as not completing tasks on behalf of the users (e.g., filling in forms) [48],
allowing users to specify “commands” (i.e., their goals), leveraging natural language to allow users
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to express high-level goals in a more conversational manner [50], and leveraging the wisdom of the
crowd [28]. We note that in combination, these directions align well with the paradigm of active
solicitation over sequentially narrating or describing content of websites, which we endorse. It is
our hope that our work encourages a feasible path to more standardized access to website-wide
features for people with visual impairments, complementing the numerous existing solutions for
interacting with individual web pages.

2.2 Goal-Oriented Browsing

Not applicable only to users with visual impairments, prior work has shown that users browse
websites for a variety of purposes, with a large amount of browsing activities consisting of trans-
actions [36]. Thus, molding browsing to purpose can support many interactions online, especially
when users make purposeful use of the web [42] (i.e., going online to complete certain tasks). Ar-
guably, when supporting access to main features of websites such as “sign up,” “check pricing,” or
“find store,” executing such commands would directly support higher-level user goals. Nonetheless,
no comprehensive user studies have been conducted to further evaluate this approach, resulting
in a dearth of user evaluations on how goal-oriented browsing would work in practice and for
whom it can be most beneficial. Most prior works that consider user intent when browsing the
web are in the realm of query intent in search engines (e.g., [64]), but opportunities exist to sup-
port user intents from within the website—that is, how to support browsing goals once a user is
already at a website, such as informational (e.g., “phone number”), navigational (e.g., “help page”),
and transactional (e.g., “reset password”), within-website tasks.

To the best of our knowledge, the closest work to ours is a goal-oriented browser presented
by Faaborg and Lieberman [25], which relied on programming by demonstration and a system
for detecting high-level user goals on the current page based on semantic knowledge bases. They
combined both approaches to map content on the current page to potential high-level user goals.
For example, in seeing “cornstarch” on a recipe web page, the browser would add an “order food”
hyperlink to the word, pointing to the user’s favorite grocery store.

Our work is different from the system of Faaborg and Lieberman [25] in several ways. First, our
system aims at achieving user goals within the scope of the website—that is, supporting access to
features of the current website (e.g., find popular items) while also supporting access to features
that may be common across most websites (e.g., sign up, contact). Second, in their system, the
mapping between content and goal is based on semantic networks, whereas in our system, we
use supervised learning models that do not require the maintenance of semantic constructs. Third,
their system worked in a passive manner by identifying potential goals based on the content of the
page, whereas our system allows users to actively solicit the desired features within the scope of the
website. Fourth, they conducted a preliminary user evaluation with technically oriented users (the
majority being programmers), whereas our evaluation includes users with diverse backgrounds
and abilities. We also do not use programming by demonstration, which has limitations such as
the inability to deviate from sequences [51] and lack of user control [48]. Last, but not least, we also
use complementary human input when mapping features to target pages to overcome limitations
of machine learning.

3 THE SYSTEM

Our system was designed to support command-based browsing for main, common features of
websites. We define “intent” as a user’s need to access a specific feature of a website. Throughout
the article, we often use “intent” and “feature” interchangeably. As seen in Figure 1, the hyperlinks
to the website features are implemented differently across websites, but visual conventions and
cues can make access to these features a trivial task. For instance, the login link is likely to be
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Fig. 2. Features can be accessed via direct input (left) or via the list of available features (right) as detected
by the system (via machine learning) or prior annotations of users. On the left, users enter their intent—log
in—on Amazon.com (i.e., the desired feature), and on the right, users choose from a list of available features
on Costco.com that were detected by the system automatically. Upon entering or choosing the feature, users
are taken to the target page, and mark it as correct, find the page manually, or get help from another user.

at the top-right corner of the website, and on retail websites, one can expect to find a link to
find stores either near the top or the bottom. Unfortunately, a user browsing with a screen reader
cannot leverage such cues and would have to explore and learn how the feature is denoted on
each website by attempting to search for content on the page or browsing lists of hyperlinks via
a trial-and-error approach (e.g., is it “log in” or “sign in?” Is it “store locations” or “find stores?”).
Our system aims at overcoming these design variations via machine learning and crowdsourcing,
making common features of websites accessible via commands to support a user’s intent on a given
website.

Figure 2 shows the system’s user interface. Users can use the system once arriving at the web-
site and pressing a shortcut to bring up the command prompt. Then, they specify what their intent
is—the task they are looking to accomplish or feature they wish to access on that website. Users
can directly enter the desired feature (i.e. their intent) and be taken directly to the page of interest.
For example, to reach the registration page on the present website, users enter “sign up” as their in-
tent, after which the system takes them directly to the page where they can complete the intended
task. The purpose of our system is to offer consistent access to common features of websites. In
addition to actively soliciting a specific feature, users can access a list of features supported by the
website—as recognized by the system and identified by other users—available as “intent examples,’
then choose the one they wish to access. This list (Figure 2, right) surfaces the main features of
the website that are supported by the system or have been previously identified by other users.
This short list can help users quickly find links to common tasks on unfamiliar websites, such as
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tracking a package or contacting the website owner, thus removing the need for users to “figure
out” how these features were implemented for a particular website. We named our system proto-
type CrowdIntent, which was the name used for the system in the user study.

Associations between user intents/commands and target pages are done in three ways. The first
one is by classifying hyperlinks on the website via trained machine learning models and assigning
them to the initial system-supported intents. The second is by using pages marked as correct by
users for previously entered intents, via majority voting. If machine learning fails and there are no
previously identified pages for the user’s intent, then the third mechanism is to perform a “feeling-
lucky” background search for the given intent and domain (on DuckDuckGo). A “feeling-lucky”
search redirects the user to the first entry in the search results. If none of these options work, users
can ask for human input, which triggers a help request broadcast to online users on the website
who are also using the system, asking them to find the page for the intent entered by another
user. Help requests can also be attended to asynchronously, available through a list of unfulfilled
requests at any given time. We refer to the annotations and real-time help as “human input.”

3.1 Example Scenario

Consider a scenario where a blind user is looking to sign up for a specific grocery delivery service
for which there is a subscription. Without our system, one of the ways to do so involves going to a
search engine and entering appropriate keywords, then browsing through the search results using
screen reader shortcuts or iterating through the result links. Another way is to find the website
via search engines or enter the domain directly, then find the hyperlink on the website worded
“pricing,” “costs, or “subscription® via screen reader shortcuts or content search (e.g., Ctrl+F) or
iterating through all links on the web page. Using our system, the user can simply go to any page
on the grocery delivery website, then enter “pricing,” “subscription,” or a related synonym into the
system, and they would be taken directly to the target page, which had been found either via ma-
chine learning or prior human input. Users are not required to know or memorize the commands
ahead of time: they can use the list of features depicted in Figure 2 (right) to see the supported
features for the websites they visit, identified automatically by the system or via human input.
Users also do not have to provide a matching keyword for the specific hyperlink on the website
that leads to the feature they wish to access. Instead, the system embeds synonyms into the com-
mand interpreter to identify the most likely feature from the command provided, and individual
differences in implementation are handled by the patterns learned via machine learning, which is
able to categorize “sign up,” “register,” and “create new account” as hyperlinks relating to the same
high-level feature of different websites due to having been trained about a diverse set of such links.

3.2 Implementation

3.2.1 System Architecture. Figure 3 describes the system workflow. Once target pages are pre-
dicted and marked as correct, they are stored in the intent repository and become available for all
users who enter the same intent in the future. The initial list of intents supported grows as pages
are marked as correct for intents entered by users. Initially, available intents are those supported by
the machine learning models we created. In other words, these are commands/features for which
supervised learning models attempt to classify hyperlinks on the website as associated with each
feature, which are listed as follows:

e Login e Contact e Find popular e Track order

e Reset password e Find deals items e Search website
e Sign up e Browse items e Pricing

e Help e Find store
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page hyperlinks

Prediction
Server

intent (e.g., "sign up")

target hyperlinks

‘—o—l é for known intents

User redirect intent, target page,
or help request

intents, target pages,
help requests,
hyperlink hashes

Intent Repository

Fig. 3. System workflow. The browser connects to the intent repository and prediction server (via a browser
extension). (1) The browser reads list of intents (initially supported), target pages, and hyperlink hashes from
the intent repository, then (2) sends hyperlinks on current page to the prediction server, which will (3) return
target hyperlinks for known intents. When users (4) enter an intent, it is parsed and interpreted, then (5) the
browser extension checks for a target page or hyperlink, and if a new target page or hyperlink is identified
either via machine learning, human input, or background search, (6) the data is sent to the intent repository
after the user is redirected. The intent repository also manages requests for human input.

Users can specify these intents from any web page on the website. The reason we chose these
intents is twofold. First, even though browser built-in password managers remember user cre-
dentials, users with visual impairments have great difficulty performing authentication tasks on
websites [23], especially locating login, sign-up, and password recovery pages [12], due to the fact
that these pages are named differently from one website to another (e.g., “sign in” vs. “log in,” “sign
up” vs. “register”). Second, the preceding and other features (e.g., “contact,” “browse items,” “help”)
are common, expected features in most websites, and like the authentication features, they also
vary in how they are implemented. Therefore, these website-level features are good candidates to
test command-based browsing for main website features.

When design changes are made to a website, such as changes to hyperlinks and URLs, the ma-
chine learning models might be able to readily detect the new hyperlinks for the intents supported,
whereas the user might have to re-learn how to access the feature.

If a design change affects a target page associated via human input (instead of machine learning)
such as the “buy gift card” command leading to a broken link, the user will mark the page incorrect,
and upon finding the new, functioning target page, the new association will have precedence over
the ones marked as incorrect (i.e., wisdom of the crowd).

Any command-target page association marked correct by users is available for future use by the
same user and other users of the same website. Intents are defined with their corresponding input
and a few synonyms configured in the back-end (e.g., “log in,” “sign in,” “login”), and when intents
are entered, the given command input is checked against the list of supported commands (and
their synonyms) and the command is mapped to the intent with the lowest Jaro-Winkler distance
[73] (a string similarity metric) from the user input to the supported commands (or any of their
synonyms). We implemented our system via user scripts that could be added to users’ browsers
using a browser extension such as TamperMonkey [68], making our system widely compatible.

Our proposed design considers scalability of supported commands in three major ways. The
first one is via the system learning about a hyperlink that gets classified by the supervised learning
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Table 1. Features in the Supervised Learning Model for Hyperlink-Based Website Feature Classification

Hyperlink: <a href="https://craigslist.org/login/home">my account</a>

Feature Example Transformation

Text my account Vector of token occurrences in hyperlink’s inner text
Context post to classifieds my account  TF-IDF vector of hyperlink grandparent’s inner text
Position 0.1123 The element’s relative index in the document tree (%)
Length 10 Number of characters in the inner text

URL words log in home TF-IDF vector of URL word segmentation

models created for intents originally supported by the system. In such a case, if a link exists that
maps to one of the main features supported, it will be immediately available for users to access via a
command (Figure 2, left) or the list of supported features (Figure 2, right). The second way in which
scalability is supported is by allowing users to manually mark a hyperlink they have found them-
selves, via clicking through the website to land on the target page, as a result of the background
search query, or as a result of helping another user. This is the process that gets executed automat-
ically when the machine learning models cannot find a corresponding hyperlink for a given com-
mand. In such a case, the new command is added to the list of supported commands, and any user
who enters that command for that particular website will be redirected accordingly. This process
will naturally surface important commands for each website over time with system usage, creating
a long tail of shared, crowdsourced list of important commands for a given website (e.g., Figure 8
in the appendix shows all of the different commands entered by users during the study). The
third way in which scalability is considered is via distant supervision (described in Appendix A),
through which machine learning support for new intents can be added by the system developers.

3.2.2  User Workflow. From the perspective of the user, as soon as the page loads, the system
starts working in the background to detect hyperlinks for supported intents (e.g., common features
of websites) based on hyperlinks on the current page. When hyperlinks are classified, they are
automatically mapped to the intents supported by the system. To bring up the system, users press
a shortcut (e.g., pressing the Shift key twice), which prompts them for what they are looking to
do (i.e., what their intent is). After they enter their intents, if there is a predicted hyperlink for
the desired common feature, then users are directed to the target page via a simulated click on
the classified hyperlink. If there is no predicted target page, users are redirected to the first search
result of a “feeling-lucky” background search query constrained to the present domain. Users can
mark pages as correct or incorrect for the intent, and such markings are considered later by the
system in selecting the target page (e.g., select the page with the most correct marks), effectively
leveraging the wisdom of the crowd [74]. If users believe the target page is incorrect, they can
request human help—other users of the same website—to find and mark the page in real time, or
later when someone is online. In our study, one of the researchers provided the real-time help to
participants as if they were another user on the same website for a couple of tasks where this
aspect was tested.

3.2.3 Website Feature Classification. We built Support Vector Machine (SVM) back-end mod-
els using scikit-learn [57] to classify hyperlinks leading to target pages for user intents. We used
hyperlinks as the unit of classification following recommendations from prior works in web search
and genre classification of web pages [6, 19, 27, 33, 34, 38, 41, 54, 55, 72]. We used features such as
the text of hyperlinks, along with their grandparent’s text in the document tree as their context,
their relative index in the document tree, and word segmentation of the URL (example in Table 1).
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We chose these features because they carry information about the hyperlink or button that gives
access to a certain page, which has been found to be an efficient way to classify web pages [33].

We used a combination of data collected via distant supervision [45] (i.e., weakly labeling via
heuristics) and manual labeling on Amazon Mechanical Turk (AMT). We collected hyperlinks
and screenshots for labeling by scraping a stratified sample of Alexa’s Top 1 Million Websites list
[4] as well as by looking at top five websites for each category on SimilarWeb [59], identifying
common features across the categories and collecting similar websites via the ‘“related:” search
feature on Google for each of the top websites in each of categories.

Our resulting machine learning models have F1 validation (10-fold) scores ranging from 0.74 to
0.95, and 0.60 to 0.92 when making predictions on a hold-out test dataset containing a sample of
20% of instances not included during training. Model details are shown in depth in Appendix A.

3.24 Human Input. To mitigate machine learning failures and explore the potential of crowd-
sourcing in accessibility (e.g., [13, 28]) in our work, we added a help feature to our functional
system. Users can explicitly ask for help when they determine the target page is incorrect for the
intents they enter. If other users are online using the same website (and using the system), they re-
ceive a notification saying “someone needs help finding the page for [user’s entered intent].” If users
on the receiving side of the notification choose to help, they are asked to find the target page on
the website and mark the page as correct when found, which will trigger a notification to the re-
questers saying that “someone found the page for [user’s entered intent],” asking users if they want
to visit the page, and taking the requesters to the page found by the helpers, if they choose to do
so. Any page marked as correct by users is mapped to an intent and identified as “found by the
crowd,” becoming available to other users of the website in the future.

Human contributions are also provided passively, via marking pages found via machine learning
or background search as “correct”—a feedback loop. After entering an intent and being taken to
the page via either of these mechanisms, if the page is correct, users can mark the page as correct.
If not, users can mark the page as incorrect, and they will be given the option to try to find the
page manually or get human help (in the manner described earlier). In the former case (i.e., if the
page is correct), user markings will be considered when intents are entered in the future by any
user (including themselves) and the target page with the highest number of correct marks will be
selected. In the latter case (when pages are marked as incorrect), the target page is moved down
the list of intent examples because it was marked as incorrect before, with highest correct marks
moving to the top of the list within the alphabetical order of intents. In addition, when target
pages are marked as correct, a hash of the hyperlink or the actual page URL (if a hyperlink is not
available, e.g., found manually or via web search) is stored in the intent repository so that in the
future, hyperlinks matching the hash for the target page no longer need to be sent out to the server
for classification, thus preventing unnecessary network traffic and computation. Figure 4 shows
the human input workflow from the user’s (the requester) perspective.

4 METHOD

Our goal was to study whether command-based browsing for main website features could im-
prove the browsing experiences of users with visual impairments over their conventional/usual
way of browsing websites. Our study aimed at evaluating the command-based paradigm focused
on usability evaluation and insights from using a real system. We conducted the study with 15
participants, including 9 with visual impairments and 6 without. The reason we included users
without visual impairments in our study was to gauge whether command-based navigation could
also benefit users without visual impairments (i.e., the potential for universal benefit). In the sys-
tem evaluation, we also included some tasks involving human input, which was evaluated to gauge
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Fig. 4. Flow diagram of how human contributions are marked in the human input process. Contributions
can be made by marking a target page as correct or incorrect after entering a command. Target pages can
be found automatically via the system, via helpers who would choose to take on help requests, or manually
by the user. Help requests can be made by users when they determine the page they were redirected to may
not be correct for their entered intent/command.

user impressions of crowdsourcing access to main website features. We conducted our study in a
lab setting between August 2017 and August 2018.

We conducted an evaluation of the overall system performance, such as the System Usability
Scale (SUS) and task completion times from log data. We also incorporated a few exploratory
components to this phase, namely gauging user acceptance and utility of crowdsourcing access to
main website features, and a comparison with search engines (e.g., Google) in follow-up sessions
with participants.

The system evaluation was preceded by a formative evaluation with 14 participants, conducted
in the United States in the fall of 2016. The goal of this formative evaluation was to learn whether
the command-based paradigm would be useful, acceptable, and desired by users with visual im-
pairments, which we did through testing a Wizard-of-Oz [20] prototype along with participant
interviews. This formative study aimed at understanding acceptance and perceptions of command-
based browsing in general (e.g., the interaction modality) as well as the need for such an approach
(e.g., what features to support), by hard-coding intents to target pages related to authentication
on participant-provided websites ahead of user study sessions. Follow-up sessions helped uncover
learning effects and whether participants preferred using the command-based paradigm after two
sessions. We studied 14 participants in the formative study, including 7 users with visual impair-
ments and 7 without. Table 2 shows a summary of the questions explored in the formative and
summative evaluations.

4.1 Study Design

Our study involved observing and logging participants testing the system and their own conven-
tional method of browsing, which we refer to as “methods” hereafter. Each participant tested both
methods (i.e., within-subject, using the same websites for both methods in the session). To mitigate
carry-over biases, we counterbalanced the order in which these two methods were tested; odd-
numbered participants (e.g., P1, P3, P5, and so on) tested the conventional method first, whereas
even-numbered participants (e.g., P2, P4, P6, and so on) tested the system first. Our participants in-
cluded blind users, users with low vision, and users without visual impairments. Participants were
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Table 2. Research Questions in the Formative Evaluation and the Evaluation of the Functional System

Formative Evaluation (n = 14) Summative Evaluation (n = 15)
Session 1 Do users like command-based How beneficial is command-based
browsing? What are some desired ~ browsing in practice? Is crowdsourcing
commands? commands a promising direction?
Session 2 Do users remember how to use How does command-based browsing
commands and the system? Do compare to using search engines? Are
users prefer using the system? website-specific intents beneficial?

paid $30 for each session, lasting approximately 2 hours at their preferred location (e.g., their home,
workplace, or our lab). To prevent social desirability bias, we did not voluntarily tell participants
we built the system they were testing.

We encouraged participants to use their own computer to strengthen the ecological validity of
our evaluation (i.e., participants used their usual computer, operating system, browser, and assis-
tive technology). Otherwise, we provided a laptop with popular assistive technology (e.g., Zoom-
Text, JAWS) and browsers (e.g., Chrome, Firefox, Internet Explorer) for participants to use. Our
study was reviewed and approved by the institutional review board at Syracuse University.'

4.2 Study Procedure

This section describes our study protocol as experienced by participants. Participants started with
some time for familiarization, then tested tasks, responded to a SUS questionnaire, and answered
interview questions, twice (one for each method).

4.2.1 Familiarization. Participants started each session by completing three training tasks for
each method on a familiar website to allow them to get acquainted with the methods. Participants
could ask questions and then continued the study once they understood the methods. For all par-
ticipants, the familiarization tasks were the same for both when using the system and when not: to
find the page for logging in, resetting password, and buying a gift card on Amazon.com. In other
words, participants were given time to test these three tasks before starting the actual study tasks.
We did not allow participants to test these three tasks on Amazon.com for the actual study tasks
due to the risk of carry-over effects from familiarization. This familiarization was also included
in the counterbalancing mechanism we used. In other words, if the first method to be tested was
the system, participants familiarized with the system first. If the first method to be tested was
their conventional way of browsing, they were asked to test these familiarization tasks with that
method before starting the actual tasks.

4.2.2 Tasks. After familiarization, participants used the system and conventional browsing
(counterbalanced order) to test different commands on different websites. In the first session, par-
ticipants used four websites, of which they picked three (two familiar, one unfamiliar), with the
fourth being a fixed website we chose to pose as an unfamiliar website (a DMV (Department of
Motor Vehicles) website from a different state than that of the participants: California). In the
follow-up, participants picked all four websites: two familiar and two unfamiliar. Table 3 shows
the structure of the study with regard to tasks and websites tested, and Figure 7 (in the appendix)
shows all websites tested in the study. We cleaned up the intent repository before every session to
ensure consistency among participants. Even though participants picked different websites, they
tested the same tasks on the different websites they picked for both methods (e.g., always the same

IThe study was conducted when the authors were at Syracuse University.
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Table 3. Websites and Tasks Tested for Each Website

Session #1
Task #1 Task #2 Task #3 Task #4
Website #1 (familiar) Log in Reset password ~ User choice Provide help
Website #2 (familiar) Contact Help User choice (helped) Researcher choice
Website #3 (unfamiliar) Sign up Log in Reset password -
Website #4 (unfamiliar—DMV)  Sign up Appointment Register to vote Change address
Session #2
Task #1 Task #2 Task #3 Task #4
Website #1 (familiar) Log in Reset password ~ User choice Provide help
Website #2 (familiar, shopping) Browse items Find deals User choice (helped) Researcher choice
Website #3 (unfamiliar) Find popular items  Pricing Sign up
Website #4 (unfamiliar) Search Find store Contact

Note: Website #2 Task #3 and Website #1 Task #4 involved human input. Researcher-choice tasks (Website #2 Task #4)
were chosen by the interviewer on the spot, upon knowing which familiar website the participant chose to use. The
study was a within-subject evaluation between participants’ conventional way of browsing and the system.

tasks on the first, second, third, and fourth website). Participants tested commands supported by
the real system’s machine learning models (presented earlier in Section 3) as well as commands
of their own choosing (Figure 8 in the appendix shows all commands tested). Two of the tasks
involved crowdsourcing, one with the participant being the requester, and another with the par-
ticipant being the helper. We acted as the helpers when participants were the requesters.

In designing the study, we attempted to create a balance between ecological validity and con-
trolled settings. For example, we allowed participants to choose the websites and two of the tasks to
strengthen the ecological validity of our study, since different participants picked different, random
websites and tasks. However, we ensured that participants picked two familiar and two unfamiliar
websites, and made the fourth website in session 1 the same across all participants.

All participants used four websites, testing up to four tasks on each website, according to the
structure in Table 3. In both methods, testing a task consisted of arriving at the target or entry
page of the desired website feature. We did not ask participants to fully complete the task (ie.,
interact with page-level content) since that is outside of our scope and covered elsewhere (e.g.,
[8, 13, 44, 49-51]). Participants tested study tasks in the order specified in Table 3. For example, for
the first website (chosen by the participant), participants tested logging in, resetting a password,
any task of their choosing, and fulfilling a help request. For the fourth website, in the first session,
participants tested signing up, scheduling an appointment, registering to vote, and changing an
address.

For the first session, participants (except for P14 and P15) were instructed to start the task on
the home page of each website rather than using a search engine (e.g., Google) for the tasks. Par-
ticipants could still use websites” internal search as needed. The decision to have the website’s
home page as the entry point for each task was done to mitigate any bias that could be introduced
by challenges users could have when navigating search engine results (see [5, 23, 37, 56, 69]). In
the follow-up session, we allowed participants to use search engines to test the tasks when using
the conventional method to learn whether our system would still outperform the conventional
method even when using search engines, resulting in eight participants: six follow-ups in addition
to P14 and P15’s first sessions, using search engines in the conventional method.

4.2.3 SUS Questionnaire. After completing the tasks with each method, participants responded
to a SUS questionnaire about the methods. When using the SUS questionnaire for the conventional
method, we used the word “method” instead of “system” and told participants to consider the usual
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way of doing things—using their own tools and strategies (e.g., screen reader shortcuts, search
engines, magnifiers)—when responding for that method.

4.24  Exit Interview. After working through the tasks with both methods, participants answered
exit interview questions aimed at capturing participants’ acceptance, preferences, and perceptions
of the system (e.g., “which browsing mechanism do you prefer and why?” “what tasks did you find
the system most useful for?” and “when did you find the system to be rather unnecessary?”). We also
included questions about preferences on target page identification (e.g., system vs. human input)
as well as individual questions about any particular behaviors that stood out. For example, if a user
voluntarily praised a certain feature of the system, or looked confused or lost, we asked follow-up
questions. We note that our goal was not to use our system as a benchmark, but to understand
how command-based browsing for main website features could benefit users with varied abilities.

4.3 Participants

We recruited participants from our prior studies involving users with visual impairments, also
reaching out to new participants via email, phone, Craigslist ads, and using mailing lists of local
organizations serving people with visual impairments. We also encouraged participants to refer
more prospective participants to us (i.e., snowball sampling). We recruited five participants who
are blind, four with low vision, and six without visual impairments. Six participants did follow-up
sessions, which were conducted to confirm whether our system would still be useful when partici-
pants could use search engines (e.g., Google, Bing), and we reached saturation after eight sessions
(i-e., the same findings were repeatedly observed across the sessions). Our participants were from
diverse backgrounds, including students, consultants, a retired teacher, a production worker, an I'T
consultant, a college professor, and unemployed. Participants who self-described as low-vision re-
ported varied conditions, including presbyopia, amblyopia, visual-motor integration, chronic ver-
tigo, bilateral coloboma of the iris and retina, and cerebral palsy with legal blindness in one eye.

For the formative study, we recruited three blind users, four with low vision, and seven without
visual impairments for both the first and the follow-up sessions. The procedure for the formative
study sessions was nearly identical to the procedure of the sessions with the functional system. In
the end, we studied a total of 27 participants, 14 of whom have visual impairments and 13 do not,
conducting 49 study sessions when considering the formative evaluation. Table 5 (in the appendix)
shows the demographics of our participants.

4.4 Data Analysis

We instrumented back-end logs for intents entered, tasks tested, and target page identification
mechanisms used (e.g., predicted, human input, or background search), among other interactions,
using the logs and video recordings to measure completion times. Completion times from the
videos were measured from the moment the task was given to the participant to the moment they
confirmed the correct page (verbally in the conventional method), marking the time to reach the
website and the time after reaching the website. For our quantitative analyses of completion times,
we did not include the time for tasks involving human input, as those tasks involved the researcher.

We transcribed the audio recordings to conduct iterative thematic analyses [18] on the exit
interview questions. Our process consisted of first immersing ourselves in the transcribed data
by reading and actively looking for meanings and patterns. Then, two researchers independently
coded the data at sentence level via open coding, creating codes for recurring ideas and insights,
meeting to discuss and converge into 29 codes. Then, the codes were grouped and nine themes
were derived from the codes, which guided our results presented in Section 5. The themes are
“Inconsistency of Websites,” “Search Engine Challenges,” “System Is Streamlined/Direct,” “Utility of
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Crowd Commands,” “System as a Fallback Mechanism,” “Human Input Is Useful, with Reservations,”
“Habit of Conventional Method,” “System Is Like a Search Engine,” and “System Should Be More
Personal”

5 RESULTS

We first summarize the findings from the formative evaluation, then focus on findings from the
study with the real system for the remainder of the section. Throughout this section, we use the
acronyms B for blind participants, LV for participants with low vision, and WVI for participants
without visual impairments, according to participants’ own self-descriptions.

5.1 Formative Evaluation

We learned through our formative evaluation that command-based browsing is a desirable mech-
anism for users with visual impairments, with the main advantage being an added layer of con-
sistency across websites, giving users direct access to common features in a consistent way. For
instance, P5 (LV) noted, “well, I don’t have to think about how it works each time. If I know it’s going
to work with the sites that I use, I don’t have to rely on my intuition and using everyone’s different
interface.” Command-based browsing was deemed most useful by users with visual impairments,
but users without visual impairments would use it as a fallback mechanism when they were visit-
ing unfamiliar websites or completing infrequent tasks (e.g., changing a password). For example,
P12 (WVI) noted, “only if login is the criteria, then I can go with any of the methods. But if you asked
me to change my password [...], then I would prefer the system which you installed.”

After the follow-up session, the majority of participants (11 out of 14) preferred our system
over using conventional browsing, with our system being preferred by six out of seven users with
visual impairments. Participants wished the system worked on different websites, supported more
intents, and supported intents for specific website categories (e.g., “edit social media profile” on
social media websites, “change payment methods” on shopping websites).

Blind and low vision users completed tasks faster with the system, and provided higher SUS
scores (mean=380.8, SD=16.5) for the system for the system comparing to the conventional way of
browsing (mean=50.4, SD=19.9).

These findings strongly supported our design intuition that the command-based paradigm
would be better suited for users with visual impairments when accessing common features of web-
sites. Users with visual impairments also wished that features specific to certain websites were
accessible in a command-based manner. We also learned that users preferred the system in the
follow-up session more than in the first session (see Table 5 in the appendix), and deeming it more
useful in the follow-up session, as indicated by the SUS values given by participants. This forma-
tive evaluation was beneficial in validating our design intuition and probing users for their needs
before placing significant effort into designing a functional system.

5.2 Tasks Completed

A total of 585 tasks (59 distinct commands) were completed during our study, across 57 distinct
websites. Out of the 585 tasks, 317 were completed with the system and 268 without it (the conven-
tional method). Fewer tasks were completed with the conventional method because our protocol
did not require tasks where participants could solicit human help in the conventional method.
When using our system, 72% (228) of the tasks were completed for features supported by the ma-
chine learning models, out of which 51% (116 out of 228) were successfully supported by model
predictions, 29% (67 out of 228) supported by feeling-lucky background search, and 1% being found
manually by participants. Out of the 317 tasks completed with our system, 21% (65) tasks were
completed via help requests, which were answered by the researchers providing human input.
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Fig. 5. Time measurements for all tasks in sessions 1 and 2. Baseline is the conventional method. We present
per-participant measurements due to the small sample size and variability in participants’ vision abilities.
Differences were most notable for blind participants.

These results suggest that the machine learning models were effective in supporting the com-
mands and features for which they were created. For a complete list of websites and tasks, see
Figures 7 and 8 in the appendix.

5.3 Time to Complete Tasks

On average, task completion times were shorter with our system compared with the conven-
tional browsing. Specifically, blind participants took an average of 42 seconds per task (median=31,
SD=34.1) with our system and 112 seconds (median=51, SD=126) in the conventional method. Par-
ticipants with low vision had an average completion time of 36.6 seconds (median=22, SD=33.3)
with our system, and 61.5 (median=39, SD=65) using the conventional method. For participants
without visual impairments, the average time with our system was 14 seconds (median=8, SD=14.1)
and 19.5 seconds (median=12, SD=22.5) in the conventional method. These numbers support the
idea that command-based browsing for main website features can reduce the effort users with
visual impairments have to spend to access common website features. Figure 5 shows task com-
pletion times.

For participants without visual impairments, using the system generally contributed to slower
task completion times, since they had to respond to and explore the system prompts shown on
the screen, which was added overhead over dealing with the visual cues of each website. We note
that time measurements for our system include the time waiting for the page-mark prompt, which
took from 2 to 20 seconds, depending on the participant’s preferences. This means that completion
times for our system were actually shorter, but because we did not keep track of delay seconds
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Fig. 6. SUS scores given by the different participant groups. Horizontal bars denote median, and points
denote mean. Higher scores were given to our system, suggesting that participants perceived our system as
easier to use.

used for each participant, we cannot subtract this number in our analyses. We set up this delay to
accommodate for individual participants, since screen reader users took more time to determine
the correctness of pages, whereas users without visual impairments found the delay unnecessary.

5.4 System Usability Scale

The average SUS scores given to our system was 81.2 (median=82.5, SD=11.2) and 52 to the con-
ventional method (median=55, SD=18.8). The full SUS score is 100. For blind participants, the mean
score for our system was 88.6 (median=90, SD=5.93), 75.8 (median=78.8, SD=11.6) for users with
low vision, and 78.8 (median=75, SD=12.1) for users without visual impairments. For the conven-
tional method, the average score of blind users was 43.6 (median=40, SD=17.1), 44.6 (median=46.2,
SD=18) for low vision, and 65 (mean=61.2, SD=14.7) for users without visual impairments. Figure 6
shows the distribution of SUS scores by participant group.

In particular, participants with visual impairments gave average SUS scores of 88.6 (B) and 75.8
(LV) to our system, suggesting positive experiences. In comparison, their SUS scores of 43.6 (B) and
44.6 (LV) for the conventional method, which are well below 68 (the empirical average of large-
scale studies) [10], indicated poor experiences. These scores further reinforce that our system was
well received in enabling participants to access common website features more readily.

5.5 User Preference

In the first session, 12 out of 15 participants (80%, B=5, LV=3, WVI=4) preferred our system,
whereas 3 (B=0, LV=1, WVI=2) preferred the conventional method. In the follow-up sessions, 4
out of 6 participants preferred our system (66.6%, B=2, LV=1, WVI=1), with 2 participants pre-
ferring the conventional method (B=0, LV=1, WVI=1). The following sections shed light on user
preferences and impressions, as captured via our thematic analysis of the exit interviews.

5.6 Why Is Command-Based Browsing Preferred?

5.6.1 Consistency. The fact that there is a lot of inconsistency on the web was brought up by 11
participants, with the main consequence being having to figure out how to use each website, which
can be overwhelming for users with visual impairments. For example, P8 (B) commented, “since no
two websites are the same, some place would say sign in, or log in, or whatever and with [the system]
you just type in login and it puts you right where you need to be, therefore it is more consistent.” She
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further added that such inconsistencies are aggravated by accessibility problems, saying T wish
that people should check their sites to ensure that they are accessible to screen reader users. I think
that would make things a lot easier for all of us instead of trying to figure out, like every website is
a puzzle.” Her comments suggest that there is even more effort into “figuring out” websites when
they are not designed and tested to work with assistive technologies used by people with visual
impairments, which is a common occurrence. As a consequence, by incorporating a command-
based paradigm for common and/or certain expected features of a website, a significant portion of
this “figuring out” work could be avoided, at least for the most common features expected to be in
most websites.

5.6.2 Fewer Steps and Challenges. Four other participants echoed P8’s comments about acces-
sibility, especially when navigating multiple steps to achieve their goals. For instance, P9 (B) noted,
“sometimes it’s trial and error and it keeps changing, it’s more visual and they are making it more so-
phisticated, the more it’s sophisticated the more difficult for us. If I can get a page in 4 steps, tomorrow
is different, tomorrow is 6 steps and it is very hidden.” P9’s trial-and-error strategy was a common
behavior observed during our study sessions, where participants would think a certain link would
lead them to the desired feature, but they often had to go back or start over. He also noted that
website changes can be challenging and make it difficult for him to access something he previously
knew how to access. In this matter, command-based browsing can provide a consistent/expected
way of accessing certain features, not requiring users to memorize the steps or pathways that lead
them to a certain feature, and possibly not subject to fail due to changes in the website structure.

5.7 When Is Command-Based Browsing Most Useful?

As evidenced by participant preferences, most users with visual impairments preferred the system
over the conventional method overall, meaning that they would use the system as a tool to help
them complete tasks online because it is a more direct, consistent, and streamlined way of browsing
websites. Participants with visual impairments have mentioned that there are “very few steps,” and
that it is “straightforward.” The following are the circumstances where command-based browsing
was deemed most useful by participants in all groups, with and without visual impairments.

5.7.1 Unfamiliar, Cluttered, and Infrequently Accessed Websites. Command-based browsing was
deemed most useful for websites that are unfamiliar, cluttered, or infrequently visited, and for
features that are not frequently accessed, or features that are available across many websites. This
was even the case for users without visual impairments. For example, P3 (WVI) found the system
most useful “for finding things that almost every website has that aren’t immediately obvious to
the eye like help and contact.” She explained her comment saying that although most websites
have these features, they are implemented in different ways and many times she thinks they are
purposefully “hidden” or “buried deep down” somewhere on the website structure, possibly to
make it harder for people to access, such as contact information. This remark suggests that making
common features more readily available could benefit many users, but it could also pose changes
to the frequency in which certain features get accessed, which could be potentially unwelcoming
to some website owners. For instance, because people find the contact feature more easily, the
volume of requests for contact may increase.

5.7.2  Website-Specific Features. Giving users easier access to features via commands could also
be helpful for website-specific features. For example, P10 (B) described his difficulty trying to
change a setting on the bank website, when he was asked what commands he would like to use:
“Setting changes, and then again this goes back to account specific things. Like today I spent 5 minutes
on Key Bank’s website just trying to figure out how to change paper statements off so I was only getting
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electronic statements. It took me forever to try to find out where to go. And then I couldn’t get JAWS to
do it correctly because their web page is horrible.” His comment reflects a common challenge of users
with visual impairments, which is having to learn how the website implements a certain feature
while dealing with accessibility problems along the way. We note that this may even happen on
websites users are familiar with, but when the feature they wish to access is infrequently accessed.

5.8 Drawbacks

Participants also mentioned some drawbacks of using the system over the conventional method.

5.8.1 Discoverability. Two participants pointed out that by using direct input of intents instead
of exploring and learning how to use each website, they are less likely to learn about features or
links they are not aware of, which may help them complete another task in the future. For instance,
P10 (B) noted discoverability as an advantage of the conventional method, saying “pros, you kind
of get a feel for how the web page is laid out. So if you’re looking for something different next time you
might already have an idea of where to find it or as you’re browsing links to try to find something you
might find something else that you didn’t know was there.” Although the issue of discoverability was
also identified previously in studies of personal assistants for users with visual impairments [1, 46],
our findings also indicate that one drawback of command-based browsing is the potential for users
to never become fully familiar with the features a website may offer, as their interactions will be
more direct and focused on the desired features they wish to access at a given time. Nonetheless,
our system can provide a list of supported intents on a website, although such a list would still be
constrained by the intents supported by the system and intents mapped by the crowd.

5.8.2 Handling Failure. Participants raised concerns about human help availability (eight par-
ticipants) and when machine learning does not find the page (four participants). For instance, P13
(WVI) noted, “so if there’s a new website, and no one knows about it and no one tried it, it’s not going
to help you.” Other concerns were related to whether people would help without incentives, and
whether there would be anyone online: “What if no one’s there? I know you can’t always be there.
It depends on what time of day or night it is. Is this worldwide or is it local?”

In regard to when the system fails, P2 (LV) noted, “the cons are that sometimes the system did not
work when you did a search to find something because it was not available on the website.” This is
interesting because in contrast with keyword-based approaches, where either there are matches
or there are not, it is not easy to tell when a machine learning model has failed, for example. This
brings about the issue of trust and how heavily it depends on whether a personal assistant is able
to fulfill the user request [1]. Nevertheless, 10 participants commented that having the help feature
when the system fails is nice, and they would like to have this fallback option.

5.9 Comparison with Search Engines

Consistent with prior work [23, 69], we observed search engines being challenging for participants
with visual impairments due to reasons such as difficulty while switching websites (e.g., back and
forth between search engine and search result), trying to formulate and complete their search
queries, and ultimately struggling to navigate search results provided by search engines.

5.9.1 Website Switching. The first reason given was the challenge of switching back and forth
between websites. For instance, P15 (B) mentioned, “[with the system] I don’t need to worry about
re-doing a search, like going back, exiting out of the whole search and then going back to, in this case
Internet Explorer and it’s much less frustrating.” She added that in some cases she was “caught in a
loop” trying to find the page to complete the task. We observed that blind participants encountered
this common challenge, which greatly hindered their experiences with search engines and caused
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much frustration. There were many times during our study where participants searched for a
feature associated with a website, and had to either go back to the search engine results or start
their search over because they chose a link from the search results on a website that was different
from the intended one, or a page on the intended website that did not implement the feature they
wanted. When doing so, participants struggled to identify whether the browser had gone back, and
where they were at that point in time (e.g., search results, the target website, or the search engine
home page). Therefore, in supporting certain features via commands, a user would not have to deal
with website switching, and instead could simply go to any page on the target website and provide
aknown command to access the desired feature. Arguably, website switching could also occur with
the system if participants land on a different website when trying to complete a command, but the
system would pick up where the user left off if they manage to go back to any page on the original
website and the user would be able to continue their task there.

5.9.2 Keyword Matching Expectation. The second reason search engines can be challenging
is because of the expectation that the results may depend heavily on the quality of the search
query itself, which may lead to multiple trial-and-error attempts, and ultimately more steps. For
example, P2 (LV) commented, “because Google only uses keywords and then they combine all the
keywords and then they can come up with something totally different than what you were looking
for.” Her comment highlighted the fact that because certain features are implemented differently
from one website to another, the keywords used in a search query therefore must somewhat match
the implementation. Such a problem could be mitigated via commands that “learn” how to identify
certain common features and access them, which would be more desired by users. For instance,
after describing to participants how the system connects intents to website features at the end of
the session, five participants commented that they would prefer it over keyword matching because
they do not have to worry about formulating queries correctly. For instance, P5 (WVI) mentioned,
“sojust knowing that it’s a mapping thing and it knows the website structure and it’s more likely to find
the map and less likely to get deterred by a wrong keyword search, so when I was worried about having
the exact word, I didn’t really have to worry about it because it wasn’t about a word, it was about
a mapping function, so yeah, that makes me more confident.” This is an advantage over having to
formulate a search query with the proper keywords that match a given website’s implementation,
but it also relies on the system to cover enough synonyms for each command. Although modern
search engines do not merely match keywords, users may still have the expectation that their
search query has great impact in the quality of the search results returned, and this can affect
the user’s confidence in finding what they need: five participants noted being careful to enter the
“right” keywords into the system when entering commands.

5.9.3 Navigating Search Results. Navigating search results can be a cumbersome task for users
with visual impairments. For example, P9 mentioned that he spends a long time browsing through
search results and finding ways to determine which link is the most appropriate: T always try to
use a shortcut, maybe initial if I can start, maybe, like that, you know,” referring to how he navigates
search results using JAWS’ links list feature. His comment highlights the fact that in using search
engines to access a desired feature of a website, users not only have to deal with the website itself
but also the search engine website and the navigation between the two.

5.9.4  Search Engine Time Logs. In our study, eight participants used search engines, with seven
of them being participants with visual impairments. Our time measurements among these users
corroborate the challenges described by participants when navigating search results: the average
time spent using search engines to access target website features was 90.9 seconds for blind partic-
ipants (median=60.6, SD=119), 36.5 seconds for participants with low vision (median=23, SD=36.2),
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and 20.9 seconds (median=18, SD=16.7) for the user without visual impairment. Among the seven
users with visual impairments (B and LV), the average time to complete tasks with the baseline
method was 166 seconds (median=114, SD=146) and 91.5 seconds (median=67.5, SD=57.2) when
using the system. This means that even when using search engines, users with visual impairments
spent less time finding the desired website features when they could use the system.

The breakdown of measured time between browsing search engine results and browsing the
target website provides more nuance about this difference. For example, when considering only
the time spent browsing search engine results to find the desired feature of a website, participants
with visual impairments took an average of 99.6 seconds (median=67, SD=120) in the baseline,
whereas the same measurement was 34 seconds (median=21, SD=31.6) with the system. The main
reason for the shorter time with the system was that without it, participants attempted to find the
correct website and target page combination for the desired feature by browsing the search engine
results, often having to go back and forth, whereas with the system, participants did not have to
worry about finding the correct page from the search results and instead only needed to find any
page on the target website, then use the system to access the desired feature once at the website.

When considering proportions of time spent on the search engine and the website, among users
with visual impairments, the average proportion search engine:website time—that is, the proportion
of time browsing search engine results to the time browsing the target website—was 2.19 when us-
ing search engines as the baseline, with the same measurement being 0.73 for the system. In other
words, when not using the system, participants with visual impairments spent more than double
the time browsing search engine results than they did browsing the target website, which further
heightens the challenges of navigating search results to find the desired feature of the target web-
site. Accordingly, the time browsing the target website spent by users with visual impairments
after clicking a search result was 66.6 seconds (median=39, SD=58.7) in the baseline and 57.4 (me-
dian=42.5, SD=43.4) with the system. This means that after reaching the website, the time taken
to complete the task with and without the system was comparable, suggesting that the bulk of the
difference was observed in having to browse through search engine results to find the correct link
when not using the system. Finally, among users with visual impairments, the average percentage
of time browsing search results in relation to the total time to complete a task was 55.6% in the
baseline, whereas that time was 36.3% with the system, since participants only had to reach the
website via any search engine results, then enter their command.

5.10 Feedback about Human Input

In general, participants liked having the ability to ask for help. For example P6 (WVI) noted that
in the conventional method, “if the website is just not navigable, you can’t just hit a button and ask
someone for help.” However, concerns and insights have emerged regarding the ability to get help
from others when accessing common features of websites via commands.

5.10.1 Crowd Favorites. Five participants thought one advantage of the human contributions
is surfacing common intents for a website, seeing it as a “way of seeing how other people have dealt
with things.” (P8, B), which was an intended effect of the human input process. In other words,
by making a list of supported features of a website readily available and giving access to such
features in form of commands, users can quickly learn what features are available and supported
by websites when visiting them for the first time (i.e., main features).

5.10.2  Privacy/Security Concerns. Five participants raised privacy concerns about the help re-
quests. For instance, P3 (WVI) noted, “[...] I don’t know if that makes me anxious or not that I just
Jjoined this community that you know is the security there I guess? If I get help from someone do they
know who I am? Is there anyway they could hack me?” This was a common concern in our study,
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with participants believing that others would have access to their data or identity, and saying they
would be more comfortable if volunteers were somehow affiliated with the website.

5.10.3  Affinity Groups. Four participants expressed that they believed the help would be most
beneficial if they could make use of affinity groups, such as coworkers, people with similar or
different abilities (e.g., other blind users, users who are not blind), local versus global users, peo-
ple affiliated with the website, and people speaking different languages. For instance, P3 (WVI)
commented about using the system in a professional setting, saying “it would be useful if I could
identify a group of people I wanted to have as my personal cluster of people who I ask [...] if I could
group them like ask group one ask group two I could have for different projects.” In another instance,
P8 (B) mentioned that she would like to use help from people she knows, saying “strangers don’t
know you and your habits and the things you are interested in,” adding that for certain tasks it would
be useful to get help from another blind user, saying “if there is another blind person helping you, I
mean they may be more familiar with the site or whatever, can find something quicker, or know where
to look for something.” Blind participants also commented that getting help from people without
visual impairments could be helpful for certain tasks requiring vision abilities, such as buying a
product with desired visual features (e.g., color, shape).

5.11 A Personal Browsing Assistant Emerges

Participants made several suggestions on how to improve the system, with support for more so-
phisticated tasks, making it more personal, and adding voice input capabilities.

For example, four participants mentioned that they would like to use more sophisticated and
specific tasks in the system, such as “shop women’s apparel,” and that supporting such tasks would
be quite beneficial. Multi-step, more interactive tasks were also suggested. For example, P10 (B)
mentioned, ‘Tt would be cool if I could type in what I want and [the system] would maybe come back
and say here’s the top 10 matches based on what you typed. And just by clicking on it, it would add
it to your cart.” Participants also wanted to be able to express their intents via voice. For instance,
P12 (WVI) mentioned, “for the [the system] I would recommend a voice version so somewhere people
might not need to type so just say it and that takes [them] to the page.” P10 (B) also noted that the
system would also be very useful on mobile devices, where it is much more difficult to navigate
websites.

Three participants wanted the system to be more personal. For example, P3 (WVI) suggested
the system to adopt a more human-like presentation, saying ‘T would like it to be more inviting, like
with a smiley face or something that makes it feel like that’s my friend. That’s my go to person right
there.” In making the system work more like a personal assistant, four participants wanted it to
integrate many websites at once. For example, P8 (B) suggested, “Well, would it be possible to add
a search feature on there to go to different website? Instead of having to go to Google, you could do a
search of websites within the prompt.”

These comments point to opportunities to integrate command-based web browsing into voice
assistants to assist users in completing a variety of tasks within and across websites, and that doing
so could benefit large number of users. For example, by enabling a user with motor impairments
to give a command to a website on their smartphone, unnecessary steps and challenges could
be avoided. These could be possible had there been a standard way to access common website
features.

6 DISCUSSION

Our findings suggest that command-based browsing for main website features can help users
with visual impairments overcome challenges when accessing common features of websites by
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providing consistency in how such features are accessed. We show through our work that ma-
chine learning can be used to support command-based browsing, and that there are opportunities
to integrate human contributions (e.g., crowdsourcing) into such systems. Our findings also sug-
gest that command-based browsing could also benefit people without visual impairments when
they use unfamiliar and/or cluttered websites, as well as when accessing features they would infre-
quently use. In this section, we discuss the potential of command-based browsing and associated
design challenges.

6.1 Consistency

As observed in our study, the main benefit offered by command-based browsing is that it removes
the need of “figuring out” each website as far as what features or tasks they support. More specif-
ically, it removes the need to learn, for each website, how it serves a common feature that is ex-
pected to be present, but likely to be different in implementation. This is achieved by providing
consistency in the way features are accessed, in which regardless of how websites are designed, a
command will attempt to give the user access to the desired feature. In our implementation, the
work of “figuring out” was transferred to the machine learning models, which identify the map-
ping of hyperlinks to features. Overall, such consistency in how to access the common features of
websites was appreciated by most of the users with visual impairments who participated in our
study.

6.2 Self-Confidence

Comments made by participants also suggest that such consistency not only streamlines the way
in which users can access website features but also gives users more confidence that they will be
able to access the desired features, by entering the same command on each website. According
to participants, this is a desired characteristic because very often they are not confident that they
will be able to access certain features, unless they have memorized each step along the way and
the website did not change, in which case they would have to resort to trial and error. Five partici-
pants also mentioned that with command-based browsing, they would not have to “worry” about
formulating a search query with the right keywords, like when using a search engine.
Consistency and self-confidence have been observed before in an evaluation of a shopping as-
sistant for users with visual impairments [61] that works across websites, and our work provides
additional evidence of such benefits being observed when accessing higher-level website features
via commands. Such a paradigm could give users with visual impairments affordances akin to
visually scanning a page for visual cues of access to common features (e.g., log in at top right).

6.3 But Aren’t Search Engines Enough?

It is a fact that search engines provide great benefit to many user groups. In addition, features
such as Google Search Sitelinks [30] aim at “helping users navigate” a website and “find shortcuts
that will save users time and allow them to quickly find the information they’re looking for” [30].
Therefore, one could argue that Sitelinks are serving a similar purpose of the system we designed.
However, throughout the follow-up sessions, we observed participants with visual impairments
having difficulties using search engines to access the desired features for the websites they tested,
even when the features were listed under Google Sitelinks. These difficulties came from navigating
the search engine user interface and results, and switching websites or “going back and forth” to
find the relevant page for the feature they wished to access, which was behavior also observed
in prior works (e.g., [5, 23, 37, 56, 69]). We observed through our studies that command-based
browsing could prevent this from happening, by, for example, giving users the ability to enter the
desired feature they wish to access anywhere on a website, from any page they visit. This would
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avoid the work of switching back and forth, re-doing search queries, and having to find the right
link among search results.

The aforementioned back and forth requires users to be aware of what website they are on,
which can be confusing to screen reader users, since they seldomly rely on visual cues. For example,
users with low vision using a screen magnifier can quickly tell whether they have gone back to
the search results by observing a difference in the color theme or overall visual aspect of the page
they are exploring, but hardly screen reader users. Screen reader users often have to explore both
websites by listening to content headers, lists of links, and other content features, and in doing
so they cannot easily distinguish from one website to another. Moreover, when interacting with
both websites in this manner, they have to deal not only with potential accessibility problems
of the target website they wish to access a feature on but also issues on the search engine, such
as unintentionally clicking promoted links or phishing/illegitimate websites, which did happen
during our study with Bing, the default search engine of Internet Explorer, thus making matters
worse.

6.4 Design Implications

We identified three major design directions in which command-based browsing could be further
explored. We describe these next.

6.4.1 Personal Assistants and Interaction with Websites. The first direction is through better
integration with existing IPAs, which have been shown to improve the lives of people with visual
impairments [1, 2]. For example, we identified in our study that users would like commands to
be more sophisticated, such as “shop women’s apparel,” as well as commands to support tasks
that could cross website boundaries, such as comparing prices and obtaining information from
different sources. We also identified user needs around commands for more content-focused tasks.
For example, P10 (B) wanted to “expand the tool” to support “describing a picture or a graph,” and
P9 (B) wanted to be able to ask for human input in tasks that require describing visual features
of products. These suggestions point to an opportunity for IPAs from companies such as Apple,
Amazon, and Google to further incorporate support for website-related tasks more seamlessly. As
of now, such assistants go only as far as making a web search and showing results, and this has
been noted as insufficient in prior studies (e.g., [32]), and as a direction worth further exploration
(e.g., NL2API: integrating web services into IPAs [65]). There could also be an opportunity for
crowdsourcing to be incorporated in these personal assistants—even if via affinity groups or phone
contacts—especially for tasks in which machine learning may not be sufficient. This overall design
direction is further reinforced by participant comments indicating that they wanted the system to
support voice commands and become a more personal tool.

6.4.2 Tasks over Content. The second design direction is to explore how to design assistive
technologies and websites with user intents in mind. For example, browsing based on intents may
allow users to skip navigational hurdles as well as avoid inconsistencies caused by different design
choices of website developers. Users with visual impairments rely on assistive technologies to nav-
igate from page to page, often facing inaccessible content and continually changing websites [69].
In contrast, task-level assistance in accessibility is more concerned with getting things done [41]
rather than simply making content accessible. Therefore, our work has implications for both the
design of assistive technologies and that of websites in general. First, our work demonstrates how
user intents could be incorporated into assistive technologies, which as of now relies on describing
page content rather than supporting user goals, leaving it up to users to “figure it out.” We argue
that state-of-the-art assistive technologies could leverage machine learning, crowdsourcing, and
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even search engines to empower users to complete common tasks. Second, in designing websites,
developers can help users by providing a list of tasks that can be accomplished on the website,
thus promoting discoverability. Another alternative would be to develop web metadata standards
that allow developers to map certain pages to high-level user goals pertinent to each website. Ex-
pecting the entire web to change is unrealistic, but such infrastructure could also be a consistent
way to support user intents in search engines and personal assistants.

6.4.3 Crowdsourced Browsing. In implementing command-based browsing, crowdsourcing can
be a useful feature to consider. We identified in our study that human input could be most beneficial
with affinity groups—for instance, allowing a user with visual impairments to request help from
other users with visual impairments for websites they often visit. In other cases, it may be beneficial
to allow a user with visual impairment to request help from a user without visual impairment to
get help with visual tasks. Last, but not least, it may be beneficial to allow users to request help
from people they know, such as family members, friends, and coworkers, also known as “allies”
[31]. Without affinity groups, we noticed privacy concerns around the help feature, with users
reporting being more comfortable with either affinity groups or website-affiliated helpers.

6.5 Anticipated Design Challenges

6.5.1 Restricted Areas. In supporting user intents, a major challenge for search engines and
personal assistants is supporting transactions within restricted areas. For example, to check bank
account balances, users must first log in. This is not a new challenge to search engines, and realistic
solutions may involve developers adding metadata to their pages to map user intents to pages as
well as providing users with a list of transactions post-login. This is also a major challenge for
supervised learning approaches aimed at predicting target pages, as it can be difficult to develop
a web scraper to collect training data from restricted areas at a large scale.

6.5.2 Fulfilling a Task Completely. Rather than predicting user intents, we allowed users to
enter their intent directly. What other ways exist to implement intent-oriented browsing? For ex-
ample, simply directing users to target pages gives them more agency as opposed to programming
by demonstration approaches, but there are more levels to completing tasks than just redirect-
ing to pages. Perhaps adding more features such as intent classification based on usage behavior
[22, 24, 35] and page-level interactions [9] could help.

6.5.3 Long-Term Intents. Another open challenge in this direction is how to support long-term
intents, such as “getting a driver’s license” In such cases, the relevance of target pages would
change over time. Building on our approach, we could incorporate stages into system intents and
allow the model to predict likely hyperlinks for each stage based on crowd-contributed and page-
level interaction patterns [7, 28].

6.5.4 Automatic Support of New Tasks. Browser-based IPAs should be able to support tasks
beyond those incorporated into the machine learning models. Crowdsourcing can contribute to
growing the list of system-supported intents via continuous machine learning. For example, when
target pages are marked for specific intents on many websites, the supervised model could auto-
matically be retrained to support the new intent to predict pages for the same intent in the future.
The list of supported intents could also grow by collecting data in a large scale for distant super-
vision, which can be effective and cost efficient.

6.5.5 Privacy Concerns. Users could have mixed feelings about privacy in receiving human help
with their intents. Most thought they could be vulnerable, whereas others made up their mind
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based on their understanding of the technology. For example, some users believed that they could
not be hacked when the helper is trying to find the page for them, not completing the task on their
behalf. Such concerns align with prior work on crowdsourcing showing that although privacy
concerns may hinder adoption [17], they can be mitigated by making users aware of how systems
operate [39], which in our case could include statements such as “help is anonymous” or “there’s
no direct connection between your computer and the helper’s” Other solutions are affinity groups
(e.g., workplace [40], friends, family), which also came up in our study, and reputation systems

[67].

6.6 Limitations

6.6.1 Simulated Helpers. In our study, a researcher provided the human input and participants
knew this. We understand that this affects the ecological validity of our results of this system’s
portion. In addition, although we did include tasks involving users providing help, our evaluation
did not focus on crowd workers. Nonetheless, we believe to have captured user preferences about
receiving human help to access main website features.

6.6.2 Introduction of New Risks. Although in our study it was assumed that users would be well
intentioned, a new vulnerability is also introduced when an ill-intentioned user aims to deceive
others via our system. Although phishing is mitigated by the imposed domain-binding requirement
of our system, users could be misled to access pages they do not intend, for the potential benefit
of the attacker. For example, one could offer to help only to point the user to a page promoting a
product they are selling. One potential solution surfaced in our study, such as to enable users to
identify trusted helpers, such as family and friends, which could mitigate risks for websites that
may be target of attackers such as those involving involving payment or financial information.

6.6.3 Limited Number of Intents. Our system supports a limited number of intents via machine
learning. Nonetheless, we showed that our approach of mapping target pages to intents could
work well in providing easy access to features that are common across websites. Moreover, users
did not know about the distinction between background search and machine learning being used
to fulfill their commands. Therefore, we believe that user impressions about what the system can
achieve went beyond the main website features originally supported by machine learning, due to
the system having fulfilled specific commands users entered during the study (see Figure 8 in the
appendix). Although the initial list of intents is limited, we believe that the design we propose can
support scalability to more cross-website and website-specific commands as the system gets usage
over time. That being said, we did not systematically evaluate the scalability of the system in this
exploratory laboratory study, which could be done in future works.

6.6.4 Voice Commands Not Supported. The system only supported typed-in commands. The
system could be implemented to support voice commands and be used on mobile devices with rel-
ative ease, therefore not being limited to desktop or laptop computers. Nevertheless, our decision
to support typed-in commands on desktops and laptops was motivated by (1) the fact that users
with visual impairments rely heavily on the keyboard for navigation [70, 71], and (2) that our in-
tention was to evaluate the interaction modality of intent-oriented browsing as a formative step in
the process of supporting this modality across other devices and platforms more broadly. We note
however that (1) speech recognition remains a challenge for personal assistants [1, 46]; (2) users
with visual impairments rely heavily on the keyboard for navigation [70, 71]; and (3) users with
visual impairments are generally concerned about drawing unwanted attention when interacting
with speech-based technologies, believing that such interactions can compromise their privacy
through eavesdropping and surveillance [3].
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7 CONCLUSION

Differences and inconsistencies in how websites are structured make browsing quite challenging
for users with visual impairments, who often rely on linearly listening to content structure via
a screen reader or magnifying small sections of the page. Such challenges could be overcome by
incorporating a command-based paradigm that gives users access to main, common features of
websites in a consistent manner. To address this problem, we iteratively designed and evaluated a
system implementing a command-based paradigm to access main website features, implementing
a layer of consistency for commonly supported features across websites via machine learning and
human input. Our user study with 15 participants—including 9 with visual impairments—showing
that command-based browsing can greatly improve the experiences of users with visual impair-
ments by providing a layer of consistency through which they can access common features on
different websites. People without visual impairments also found command-based browsing ben-
eficial, but more so on unfamiliar, cluttered, or infrequently visited websites. We also found that
search engines may be insufficient in supporting access to main, common features of websites and
that human input could also be beneficial, especially via affinity groups. Our findings have im-
plications for incorporating the design of command-based interactions into assistive technologies
and integrating common website features into full-fledged IPAs (e.g., Siri, Alexa) to benefit a large
number of users.

APPENDICES
A MACHINE LEARNING DETAILS

In this section, we provide an in-depth description of our machine learning approach to classifying
hyperlinks associated with the website features supported by the system.

A.1 Classification Unit

In attempting to map website pages to main website features, we drew inspiration from prior
works on retrieving search results for transactional search queries [41] and genre classification of
web pages [6, 54, 55]. Hyperlink features are good indicators of what transactions the target page
can support [34, 41], and web page genres can assist users in goal-directed browsing [29] as well
as in improving effectiveness of web searches [53-55, 75]. Moreover, structural information (e.g.,
URL, anchor text, nearby text) can help improve link-based page classification [19, 27, 38, 72]. With
fast link-based classification of pages surpassing accuracy of content-based classification [33], we
deemed hyperlinks as practical indicators of target pages for user intents because the system would
not be required to parse the content of potential target pages, but only consider hyperlinks leading
to them instead. Therefore, our classification task consists of identifying the main website features
based on their originating hyperlinks that point to the entry or target page for such features. For
example, to support the command “find stores,” the system inputs hyperlinks into a trained model
that learned from many labeled instances of hyperlinks for the store-finding feature to determine
if any hyperlink is classified for that feature.

To obtain our training dataset, we turned to the methodologies used in genre classification of
web pages [6, 54, 55], except unlike prior work in this field, we label origin hyperlinks instead of
pages. Still, in manually labeling the hyperlinks, what human annotators saw were the rendered
target pages resulting from a click on the respective hyperlink that was being annotated. In other
words, annotators saw (and annotated) screenshots of rendered web pages to choose a website
feature that is present on that page, but in reality each screenshot was associated with an originat-
ing hyperlink that received the label. Our dataset contains weakly labeled data obtained through
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distant supervision [45] (not done before in web genre labeling) and manually labeled data. Distant
supervision consists of using heuristics to “weakly” label a training set [45]. This approach allowed
us to obtain many training samples without prohibitive costs. Our target classes are “login,” “reg-

» < » &« » <

ister,” “recover password,” “help,” “faq,” “contact,” “find deals,” “browse items,” “find popular items,”

» ¢

“pricing,” “find store,” “track order,” “search website,” and “other”

A.2 Distant Supervision

We applied distant supervision by scraping websites that were sampled in two ways. In one ap-
proach, we knew ahead of time which features to support, and in the other, we identified features
based on common features of websites in different categories (e.g., shopping, entertainment).

In the first approach, used for authentication and contact-related intents, we extracted a strat-
ified sample of 3,000 websites from Alexa’s [4] list of top 1 million websites in October 2016. We
selected 1,000 websites from the top of the list, 1,000 from the bottom, and 1,000 random websites
between the 1,001st and 999,999th website, inclusive. We then removed from our sample any web-
sites that were not “.com,” attempting to filter out most non-English websites. Finally, because we
would manually label a sample of the data based on screenshots, we used a blocklist to remove
any websites with adult and violent content, resulting in a sample of 1,486 websites.

Still on the first approach, we then defined our heuristics for distant supervision by visiting the
top 100 websites on Alexa’s Top 1 Million list manually and extracting the inner text of hyperlinks
leading to the target pages of interest. For example, for the “login” class, we had keywords such as
“sign in,” “log in,” “login,” and “my account”

The second sampling approach involved obtaining popular websites via SimilarWeb [59] for
each top-level website category (e.g. Food and Drink, Shopping) and identifying common features
across websites from these categories. This approach was used for the various features that were
not related to authentication or contact actions. We first collected the top five websites in each top
category, then used the Google search engine with the “related:” search feature to obtain similar
websites to each top website. This resulted in a list containing 519 distinct websites that were
scraped using the heuristics defined in the following.

The heuristics used in the second approach were obtained by visiting each of the top five web-
sites from each top category on SimilarWeb and collecting the inner text of hyperlinks leading
to the common features across the websites (e.g., browse items, find deals, pricing, find popular
items), which were later used for scraping.

The two preceding procedures resulted in heuristics used to scrape websites for hyperlink in-
stances and label them automatically in the process. After gathering the heuristics, we developed
and used a web scraper built with Scrapy [58] and Splash [60] to visit the websites present in our
samples and collect the hyperlink features of the elements matching the keywords for each tar-
get class, thus labeling them automatically as belonging to the respective target class if they were
found. We also collected screenshots from the page rendered immediately after the hyperlink was
clicked, assigning each screenshot to its respective hyperlink. For every website, we also collected
up to five random hyperlinks belonging to an “other” class (i.e., hyperlinks not belonging to any
of the other target classes according to heuristics). This process resulted in the weak labeling of
11,931 hyperlinks.

A.3 Manual Labeling

From the weakly labeled dataset containing authentication (e.g., login, register, reset password)
and contact-related hyperlinks (e.g., contact, FAQ, help), we selected a random sample of 688
authentication-related hyperlinks and a random sample of 688 contact-related hyperlinks for
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manual labeling. In each sample, we made sure to have 50% of the samples belonging to the
“other” class, as labeled by the web scraper. We conducted one crowdsourcing experiment (sep-
arately) for each sample on AMT. This was to ensure that crowd workers would not be over-
whelmed with the multiple options for each page they had to label. We set up a Human Intelligence
Task (HIT) consisting of labeling 10 pages. Before they could label the actual pages, in addition
to being required to have over 95% all-time approval rates, crowd workers completed a qualifi-
cation task in which they had to correctly label 7 out of 10 “training” samples after seeing four
examples.

Labeling a page consisted of viewing a screenshot and choosing from a multiple choice question
on which type of page (i.e., our target classes) users thought each to be, giving their confidence
level ranging from 1 to 5, and entering the major reasons behind their decision into a text field.
We followed recommendations set forth by prior work on user-based labeling of web page genres
[6, 54]. We had each hyperlink labeled by five different crowd workers, taking the majority vote as
the true class, and we did allow crowd workers to assign multiple classes to each page. However,
we removed these multi-class instances from our dataset because there were fewer than 10 belong-
ing to multiple target classes after majority voting. The experiments were conducted following a
successful small pilot labeling 96 authentication-related hyperlinks on AMT.

All in all, a total of 774 unique crowd workers participated in our labeling experiments, each
of whom were compensated with $0.04 per labeled page, with a total of $0.80 per task, which
consisted of 10 qualification pages and 10 actual pages. The median time to complete the task was
about 8.6 minutes. The inter-coder reliability score (Fleiss kappa) was 0.853 for authentication-
related pages and 0.766 for pages not related to authentication (i.e., help and contact), which are
considered acceptable agreement [6].

In the end, we obtained a dataset of 11,931 hyperlinks, with 1,454 (~12%) being manually labeled
and 10,477 weakly labeled (~88%).

A.4 Models

We created three models—one for authentication-related pages, another for “help” and “contact”
pages, and another for various tasks—based on an SVM classifier with linear kernel, combining all
of the data obtained through distant supervision and manual labeling. In the system, we mapped
the “get help” command to target pages classified as either “help” or “faq.” We created three models
because we conducted the scraping and manual labeling experiments separately for each subset of
intents—for example, in the experiment with the “help” pages, there could be “login” pages marked
as “other,” which would confuse a single model. Table 4 shows the results of the performance
evaluation of our models. The model is able to predict pages for the “recover password” (F1=.92)
and “contact” (F1=.90) intents most accurately but making more mistakes on “track order” (F1=.57)
and “faq” (F1=.75) hyperlinks. Coincidentally, the “track order” and “faq” had the smallest sample
sizes within their feature groups, which could explain the poor performance, but could also suggest
that the weak labeling approach was not effective for these two features. The models performed
best when trained with both data obtained through distant supervision and manual labeling, but
have reasonably accurate performance when training on weakly labeled data alone, as seen in
the results involving hyperlinks for the various features (see the bottom section of Table 4). We
created our models with scikit-learn [57] and used them in the back-end, available on a web server
running a Python application, where an instance of each model was kept in memory for real-time
predictions. Each model classifies all of the hyperlinks transferred from the browser, and in the end,
a final list of classifications is merged and returned to the browser with the response containing
the class (i.e., the main website feature) for each hyperlink.
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Table 4. Model Evaluation of SVM Classifiers to Predict Target Hyperlinks for Common Features,
Ordered by F-1 Score, with the “other” Class Always Last

10-Fold Cross Validation

Hold-out Manually Labeled Test Set

Authentication Tasks Authentication Tasks
Precision Recall F1 # Precision Recall F1 #
recover password .87 .94 .9 244 | recover password .94 .89 92 19
login .87 91 .89 368 login .86 .82 84 22
register .82 .83 .82 368 | register 9 .79 .84 24
other .98 .97 97 3,641 | other .88 .93 9 19
4,621 150
Contact & Help Tasks Contact & Help Tasks
Precision Recall F1 # Precision Recall F1 #
contact .95 .95 .95 413 | contact .92 .88 .9 83
faq .87 .87 .87 134 | faq .75 .75 75 36
help .75 74 74 168 | help .66 .55 6 42
other .99 .99 99 3,548 | other .89 .95 92 179
4,263 340
Various Tasks Various Tasks
Precision Recall F1 # Precision Recall F1 #
pricing 98 .87 .92 150 | pricing .88 .96 92 24
find deals .90 91 91 103 | find deals 73 .86 79 22
track order .88 .88 .88 40 | track order 1 4 57 5
find popular items .93 .8 .86 178 | find popular items .78 97 86 33
find store .85 .8 .82 55 | find store .89 .84 .86 19
search .85 .76 .8 252 | search 71 .87 78 39
browse items .85 74 .8 244 | browse items .76 .79 77 43
other .94 .99 97 2,025 | other .99 .94 96 425
3,047 610

Note: The hold-out sets contain a random sample of 20% of the manually labeled data, except for the “various tasks”
model, in which there was no manually labeled data. The 10-fold Cross Validation column includes all of the data (both
manually and weakly labeled). The prediction results on the test sets indicate that our approach can successfully assign
hyperlinks to common website features.

In predicting hyperlinks in real time, we noticed the word segmentation algorithm was a per-
formance bottleneck when handling query string values such as “&pf rd_r=MN30C7K3CER2B
JNK1V72” and therefore we excluded query string values from word segmentation, considering
only URL path components and query string keys for the url words feature. The system also sends
hyperlinks for prediction in three batches, with the first batch being a third of hyperlinks from
the top of the page, the second being a third from the bottom, and the third being the ones in
between. In doing so, target pages are available more quickly since website-wide hyperlinks—that
is, common features of websites—are likely located at the top or at the bottom, with the middle
portion most likely showing page-specific content.
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B PARTICIPANT DEMOGRAPHICS

Table 5. Table of User Study Participants and Their Preferred Methods

ID Gender Age Self-Reported Ability Assist. Tech. Prefer.S1  Prefer. S2
P1* M 35 Blind JAWS X

P2 F 56 Low vision (20/400 w/correction, legal blindness) ~ZoomText X X
P3 F 65 Without visual impairments None X

P4 M 72 Without visual impairments None (0] o
P5 F 26 Without visual impairments None X

P6 F 22 Without visual impairments Magnifier (0]

P7 F 53 Low vision (legal blindness) 0s (o) o
P8 F 47 Blind JAWS X X
P9 M 45 Blind JAWS X X
P10 M 42 Blind JAWS X

P11 M 70 Low vision (no further description given) ZoomText X

P12 M 30 Without visual impairments None X

P13 M 24 Without visual impairments None X X
P14 F 49 Low vision (legal blindness) ZoomText X

P15 F 60 Blind JAWS X

Formative Evaluation

ID Gender Age Self-Reported Ability Assist. Tech. Prefer.S1  Prefer. S2
P1I M 60 Low vision (presbyopia, amblyopia) None X X
P2 M 70 Blind VoiceOver o X
P3 F 45 Blind JAWS X X
P4 F 19 Low vision (visual-motor integration) None X X
P5 M 25 Low vision (bilateral colobomas) None X X
P6 F 52 Low vision (cerebral palsy, legal blindness) None X X
P7 M 34 Without visual impairments None (0] (0]
P8 M 33 Blind JAWS X X
P9 M 25 Without visual impairments None (0] (o]
P10 F 24 Without visual impairments None - X
P11 M 26 Without visual impairments None - -
P12 F 61 Without visual impairments None X X
P13 M 72 Without visual impairments None X X
P14 F 56 Without visual impairments None X X

*P1 and P8 were also recruited in the formative evaluation. X, preferred our system; O, preferred conventional
browsing; S1, first session; S2, follow-up session.

C WEBSITES USED AND TASKS COMPLETED

Tasks Completed
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Fig. 7. Frequency of tasks completed by the website used in the study. A total of 57 distinct websites were
used.
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Fig. 8. Number of tasks completed per command.
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