7

8

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

2.7

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

46

47

48

49

50

51

52

53

54

55

56

57

ScienceDirect

current Opinion in Insect Science

Urban insect bioarks of the 21st century

Sarah E Diamond¹, Grace Bellino² and Gideon G Deme³

Insects exhibit divergent biodiversity responses to cities. Many urban populations are not at equilibrium: biodiversity declines or biodiversity recovery from environmental perturbation is often still in progress. Substantial variation in urban biodiversity patterns suggests the need to understand its mechanistic basis. In addition, current urban infrastructure decisions might profoundly influence future biodiversity trends. Although many nature-based solutions to urban climate problems also support urban insect biodiversity, trade-offs are possible and should be avoided to maximize biodiversity—climate cobenefits. Because insects are coping with the dual threats of urbanization and climate change, there is an urgent need to design cities that facilitate persistence within the city footprint or facilitate compensatory responses to global climate change as species transit through the city footprint.

Address

Department of Biology, Case Western Reserve University, Cleveland, OH 44106, USA

Corresponding author: Diamond, Sarah E (sed62@case.edu)

¹ ORCID: 0000-0001-8518-773X ² ORCID: 0000-0002-8391-1509

³ ORCID: 0000-0002-0537-6707

Current Opinion in Insect Science xxx, xx:xx-xx

This review comes from a themed issue on Global change biology Edited by Matthew Forister, Angela Smilanich, Lee Dyer and Zach Gompert

Available online xxxx

https://doi.org/10.1016/j.cois.2023.101028

2214-5745/© 2023 Elsevier Inc. All rights reserved.

Urban insect biodiversity

Unsurprisingly, cities with their attendant novel biophysical landscapes can lead to declines in insect species richness and the abundance of individual species [1,2], but not exclusively. In some cases, enhanced urban insect richness can be driven by the concentration of exotic insects in highly urbanized landscapes [3]. While in other cases, urban insect richness has been shown to be the same or higher than insect richness at nearby undeveloped locations based solely on trends among native species [4,5].

Because each of the possible biodiversity gradients — declines, increases, or the maintenance of biodiversity — have been documented for insects living across urbanization gradients, this variation likely reflects the fact that a combination of different mechanisms underlies these patterns. Such variation could arise from methodological issues in quantifying biodiversity or from biologically meaningful factors [6]. These include the taxonomic identity of the insects under consideration, the regional species pool and species-specific capacity to colonize and persist in or around cities, and aspects of the development and geographic position of the particular urban landscape. Below, we unpack these different potential contributions to insect biodiversity trends across urbanization gradients, and consider how ongoing and future changes in cities could either serve to enhance or dampen urban insect biodiversity.

Challenges and opportunities in quantifying insect biodiversity in cities

Before considering how to quantify urban insect biodiversity, it is important to clarify what is meant by 'urban'. We adopt a broad definition encompassing human-modified landscapes for settlement and associated functions (e.g. commercial and industrial development), though we acknowledge the large heterogeneity of such environments [7]. Throughout, we refer to comparisons of urban versus rural habitats (or gradients between the habitats) as a heuristic to distinguish urban habitats from habitats with little-to-no human modification. This definition excludes human-modified habitats for agricultural use from consideration as 'rural'.

On the surface, the quantification of urban biodiversity is simple enough: standard survey methods such as visual observations, pitfall traps, bait traps, and light traps can be used to quantify the number of species and their individual abundances at sampling points from beyond the urban footprint to the city core. However, in practice, both universal and urban-specific factors make this task complex [8]. As one example, site-selection biases can yield misleading estimates of biodiversity gradients [9], and such considerations can be magnified in cities with rapid landscape changes over compressed spatial scales [10]. As another example, urban changes themselves might interfere with the ability to sample particular groups of insects, for example, light pollution that interferes with light trapping, or air pollution that interferes with bait trapping [11].

72

73

74

75

76

77

78

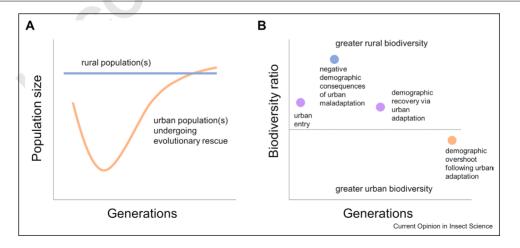
79

80

81

82

83


84

85

Biodiversity patterns emerge from the population dynamics of individual species [6]. Understanding population-level responses to urbanization can both link biodiversity patterns with their mechanistic underpinnings and identify methodological issues in quantifying urban biodiversity. To wit, urban boundaries are often porous with respect to movement of individuals, and transient use of urban habitats could complicate biodiversity assessments. At the most extreme, strong gene flow across the urbanization gradient, for example, driven by high dispersal capability, could blur the distinction between urban and nonurban populations of some species [12]. Alternatively, meta-population dynamics within or across the urbanization gradient [13] could enhance or diminish apparent biodiversity depending on the time point at which the populations are sampled. For example, some butterflies are resident outside the city footprint, but transiently use urban spaces for resource supplementation [14]. Relatedly, urban-associated changes in phenology driven by urban heat island effects or artificial light at night [15,16] could similarly bias estimates of biodiversity when there are limited sampling intervals across the activity season of a particular species. As a consequence, single or limited time point measurements of biodiversity across an urbanized-to-undeveloped gradient might fail to capture relevant urban biodiversity.

Indeed, the importance of sampling frequency within the activity season of an organism also extends to issues surrounding sampling intervals over longer, cross-generation timescales. For example, evolutionary rescue of insect populations in cities is expected to be preceded by demographic loss followed by recovery [17], so biodiversity estimates could be biased depending on when populations are sampled in the rescue process (Figure 1). These initial demographic losses could be severe given the effects of urban fragmentation on effective population sizes [18], and thus measurement of increasing or decreasing population trends could be more relevant than comparisons of absolute biodiversity estimates across urbanization gradients at a given time point. Relatedly, species with long generation times, such as periodical cicadas, necessarily incur limits on evolutionary rescue under rapidly changing environments [19] such as those found in cities. This could subject them to extirpation lags that would be missed in biodiversity measurements without decadal-scale sampling. Further supporting the need for long-interval sampling, widespread geographic range shifts under contemporary climate change are likely to influence urban biodiversity. There is relatively high variation in the magnitude (and sometimes direction) of the shift among species, with some species able to perfectly track their historical climatic niches, while other species imperfectly track climate and experience 'climate debt' [20]. Although the nature of the shift response is likely to modulate whether species encounter and are able enter the urban environment (e.g. species experiencing large climate debt might be excluded from already-warm cities), range-shifting species could influence urban biodiversity in a number of ways. For example, in the case of leadingedge expansions, climate-driven range shifts could add new species to the urban landscape, bolster numerical representation of a species already occurring within the

Figure 1

A hypothetical example of temporal changes in urban versus rural biodiversity patterns assuming evolutionary rescue (demographic loss and recovery) of the urban populations. (a) Population size over time (expressed as number of generations) for unperturbed rural populations and urban populations undergoing evolutionary rescue characterized by a demographic decline followed by recovery in conjunction with adaptive evolution to altered urban environments. (b) Biodiversity-level consequences of urban evolutionary rescue that initially results in greater rural biodiversity owing to negative effects of urban entry and negative demographic consequences of urban maladaptation followed by narrowing of the urban-rural biodiversity gap, leading to maintenance of biodiversity across the gradient or potential overshoot of the urban population through the urban adaptation process.

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

53

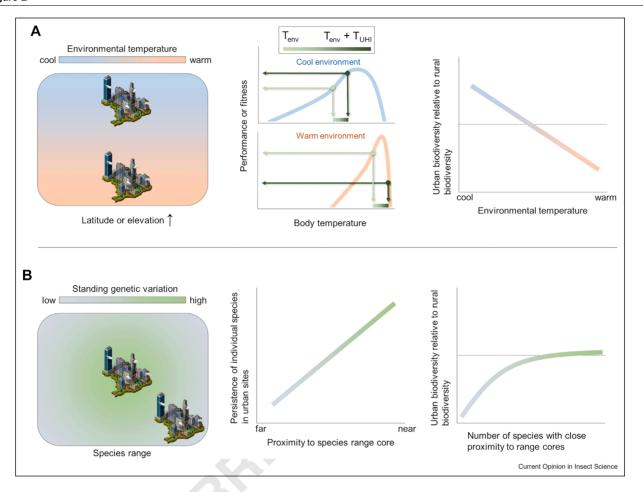
54

55

56

57

urban environment, bring new alleles into extant urban populations that influence evolutionary trajectories and population demography [21], and impact the abundance of other current urban-dwelling species [22]. The effects of different climatic forces on pushing-and-pulling species ranges and distributions under global climate change are currently under intense study [23], as are the effects of the human footprint on contemporary range shifts, mostly from the perspective of dampening range shifts [20]. However, the mechanistic linkages between these two research areas, that is, how urban areas act as repellers, or potentially even attractors, as species shift their geographic ranges under climate change, are not well established. While datasets exist that are relevant for addressing this question, including those on climatedriven range shifts [20] and urban biodiversity [1,2], the degree of overlap of comparable species in comparable geographic locations might be limited.


As one tangible way to begin to tackle this question of the interactive effects of climate change and urbanization, we can consider how the background climate throughout a species' range and its effects on thermal physiology might mediate local population responses to urbanization. Biogeographic studies of the effects of background climate on physiological traits of insects show that thermal tolerance breadth tends to increase with latitude [24]. This pattern largely arises from gains in the ability of high-latitude species to tolerate low temperatures coupled with minimal changes across latitude in the ability of species to tolerate high temperatures. Global climate change is anticipated to relax constraints on populations limited by low-temperature physiology at high latitudes, potentially leading to increased population growth [25]. Cities, through the generation of urban heat islands, might have similar effects at high latitude. Specifically, insect populations at high-latitude cities could thrive in these environments and be 'pulled' into urban habitats (Figure 2a). By contrast, low-latitude cities could negatively impact insect population growth, as these populations tend to already be close to their thermal optimum and upper thermal limits, leaving them vulnerable to additional warming and 'pushing' them out of urban habitats [26]. Indeed, recent work in ants is suggestive of this process [27]. Yet, the evidence from Lepidoptera is more mixed. While there are data showing large declines in urban moth diversity at low latitude (e.g. in southern Ecuador, Ref. [28]), there are also data showing evidence of declines in urban moth and butterfly diversity at high latitude (e.g. in Belgium, Ref. [11]). Thus, refinement of expectations might be in order. Specifically, while urbanization might consistently diminish biodiversity for some taxa, the magnitude of species loss might be relatively lower for high-latitude cities. This pattern is borne out by comparing urban biodiversity loss of the Lepidopteran exemplar studies described above. Urban moths in Ecuador exhibited a 65% loss in diversity compared with rural moths (based on the Shannon index of biodiversity) [28], whereas moths in Belgium exhibited a 43% loss in diversity (also using the Shannon index) [11]. Whether this pattern holds more broadly is unclear, and is an area ripe for formal synthetic analysis. As a final update to our expectations, it is necessary to point out that the strength of the urban heat island effect relative to the background climate can diminish in magnitude or even change direction in already-warm habitats at the lowest latitudes [29]. In this case, very low-latitude urban environments might not act as repellers, or might even become attractors.

The relative biogeographic position of a city within a species' range could have similar effects to the position of a city across latitude. Cities at cold-range edges could relax constraints on low-temperature physiology, whereas cities at warm-range edges might exert additional pressure on high-temperature physiology to be able to persist in that location [30]. Though, these effects might be opposed by other forces. For example, the location of the city within the species geographic range can also determine the standing genetic variance and thus influence the response to selection (Figure 2b). The ability to colonize and persist in cities might be more difficult at range edges due to low genetic diversity and high genetic load (accumulation of deleterious mutations) compared with range cores [31]. Thus, at leading-range edges, while relaxation of constraints on low-temperature physiology might allow entry to the urban environment, the rate of genetic adaptation might be slowed. At trailing-range edges, the negative effects of high urban temperatures on organismal physiology combined with limited evolutionary potential might hasten extirpations. Although the effects of the latitudinal position of cities and their position within a species' geographic range are largely unknown, empirical tests of and support for these hypotheses could enable broad-scale forecasting of urbanization effects on insect biodiversity. That is, readily obtained biogeographic variables such as the latitudinal position of a particular city and its relative position within species ranges might usefully approximate harder-won data such as thermal physiological traits or genetic diversity.

Using data on urban insect biodiversity patterns and the underlying mechanisms

The data collected to understand urban insect biodiversity patterns and their underlying mechanisms can be used to address a spectrum of basic-to-applied research goals. We have demonstrated this idea with our exploration of the effects of latitude and geographic position within a species' range on whether urban habitats will serve as repellers or attractors of insect biodiversity based on thermal physiology and evolutionary potential.

Figure 2

Hypotheses for the influence of geographic position (high or low latitude; equivalently, high or low elevation) and geographic position within a species range (edge or core) for the effects of urbanization on insect populations with potential consequences for biodiversity estimation across urban-to-rural gradients. (a) Persistence of individual species is expected to be greater owing to higher standing genetic variation at the range core. For cities positioned near the range cores of increasing numbers of species, overall biodiversity in urban environments is expected to approach that of undeveloped rural areas. (b) Biodiversity in cities in cool-background climates (high latitude or elevation) could be enhanced relative to rural habitats, whereas urban biodiversity could be dampened in warm-background climates. Thermal physiology could mediate these responses with cities and their urban heat island effects pushing populations toward their thermal optimum in cool environments, leading to performance and fitness benefits, or causing populations to exceed their thermal optimum in warm environments, leading to performance and fitness declines.

Yet, there are many more questions that can be addressed with data on responses to urbanization. For basic research goals, cities can be used as sandboxes to interrogate core ecological and evolutionary questions [10,32]. As specific, but by no means comprehensive examples, cities can be used to explore colonization and extinction dynamics in the context of island biogeography. Urban-driven habitat fragmentation generates urban islands and differences in proximity of those islands to the rural mainland locations that can be used to test expectations for biodiversity responses [32]. Likewise, cities can be used to explore coexistence mechanisms, as cities modify many aspects of the niche (e.g. patch size and connectivity, and spatiotemporal variation) with consequences for altered species interactions [33]. Because different aspects of the urban

niche can be characterized by either greater homogeneity of spatiotemporal habitat variation or greater heterogeneity compared with nearby undeveloped areas [7], cities provide unique opportunities to disentangle the drivers of species coexistence. Further, given the now-widespread support for contemporary evolution, cities can be used to examine rapid evolutionary responses to altered urban landscapes [10]. For example, cities can be used to explore understudied topics such as plasticity-led evolution [34,35], or classic questions such as the repeatability and pace of contemporary evolution [36], and the prevalence and strength of contemporary local adaptation [37,38]. Cities can also be used to better understand hypotheses with mixed empirical support such as the potential trade-off between basal physiological tolerance and trait plasticity [39].

50

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

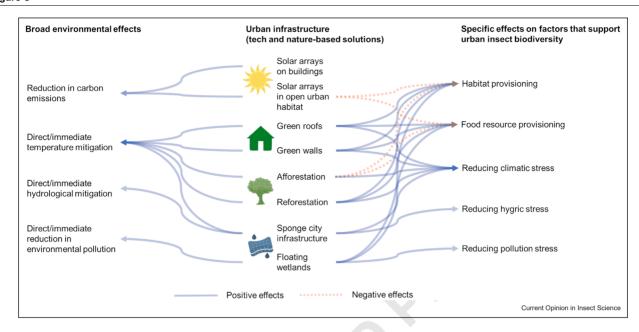
55

56

57

While these types of inquiries can help to address fundamental questions in ecology and evolution, critically, a better understanding of the mechanisms that underlie urban success or failure can also improve urban land management and conservation plans [40]. Indeed, a greater understanding of mechanism appears crucial as the data so far suggest highly taxon-specific responses to cities. For example, even within the same urbanization gradient, biodiversity losses were documented in Lepidoptera and Diptera, whereas biodiversity gains were found in Hymenoptera (with a particular focus on bees) [41]. Yet, whether this enhanced urban biodiversity is driven by resource supplementation in cities or the remarkably high physiological tolerances of this taxon relative to others that might allow them to persist at high abundance in urban environments [42] is unclear. The mechanistic distinction is important because different mechanisms suggest pursuing different management and conservation strategies, for example, in this case, whether supplemental resources need to be maintained for bees, and whether other intervention strategies are needed for butterflies and flies such as increasing thermal refuges in urban habitats or assisted evolution [43].

In the context of land management and conservation, it is important to bear in mind that the effects of urbanization extend beyond the city footprint. In the most simplistic sense, this occurs through spillover of both environmental effects and individuals between urbanized and natural areas. Thus, the influence of urban changes on populations can have direct influences on the broader regional fauna [44]. But the relevance of cities can also extend beyond their footprint in more abstract ways. In particular, as cities are mesocosms of broader global changes to the environment and climate — that is, climatic warming and aridification, habitat loss, degradation and fragmentation, and general reshuffling of species in time and space — they can be used as spacefor-time substitutions to gain insights into future changes beyond the city footprint [32,36]. For example, beneficial thermal acclimation and evolutionary responses to urban heat island effects can be used to uncover population capacities for responding to climatic warming more broadly [36]. Beyond their use as proxies for global climate change effects, cities also directly interact with global climate change. For example, as many species, including insects, are shifting their geographic ranges to track historical climatic niches, they are encountering new habitats, including urbanized landscapes. Urban design elements such as dispersal corridors, linear parks, or greenways can facilitate transit through urbanized landscapes, enabling compensatory responses to climate change [45].


Urban insect conservation and management

From these studies of the capacity of urban insects to cope with environmental change through trait plasticity and rapid evolutionary change, it is clear that compensatory mechanisms, while nonzero, are often insufficient to completely buffer insects against these changes [38,46,47]. In effect, these mechanisms might buy time for insect populations. This is true not only in the biological sense of plasticity buying time for evolution to occur [34], but also in the policy-focused sense of buying time until mitigation measures can be enacted to ameliorate the negative aspects of urban land-use change. In the meantime, it is worthwhile to consider the extent to which cities can be a refuge or 'bioark' [48] for insect biodiversity, now and into the future. We view such considerations for building urban insect bioarks through the lens of the mechanistic, population-level thinking we developed earlier.

Insects, through their generally high capacity to respond to environmental change (e.g. large population sizes and fast generation times) and their small body size [46], are likely more amenable to reaping the benefits of urban refugia compared with other taxa, such as large mammals. However, insects are still subject to important constraints, such as their complex life cycles, that need to be accounted for in conservation plans [49]. For example, in phytophagous insects, cities need to support both larval host plants and adult food resources [50]. Other insects, such as Odonates, require both freshwater and terrestrial habitat for development [51]. And many insects, including beetles and butterflies, pupate belowground, yet cities can be limited in availability of leaf litter and appropriate soil substrate, especially with leaf removal and widespread soil compaction in urban landscapes [1]. Recognizing the needs of urban insects, a number of direct and indirect support initiatives have already been enacted. Direct support for particular species or taxa is evidenced by milkweed planting for monarch butterflies, pollinator gardens more generally for Lepidopterans, and installation of bee hotels [50]. However, care must be taken with these approaches, as they can all too easily provide little-to-no support for insects, or worse, become ecological traps [52]. Indirect support could come from altered mowing regimes such as 'no-mow May' that can provide larval and adult resources for insects in cities. Related research in remediated agricultural systems demonstrates association between the timing of mowing and insect abundance [53]. Similarly, 'leave the leaves' initiatives could provide habitat structure for ground-dwelling, metamorphosing, or dormant insects, as the availability of litter is positively associated with biodiversity in some urban insect communities [54]. Such interventions carry minimal-to-no risk of inadvertent harm to insects.

Although it is useful to consider practices that better support insects in cities, it is equally important to consider interventions that avoid harm to urban insects. In particular, cities can generate ecological and evolutionary

Figure 3

A depiction of how interventions to mitigate urban hazards might not always benefit urban insects. The relationships between urban infrastructure and both its broad environmental effects (left-pointing arrows) and its specific effects on factors that support urban insect biodiversity (right-pointing arrows) are shown. Positive effects are indicated with blue-shaded solid arrows. Negative effects in orange-shaded dashed arrows. Neutral effects are indicated by the absence of an arrow. These relationships are intended to be used as a general heuristic, as the positive, neutral, or negative nature of the effects could change depending on the particularities of implementation (e.g. afforestation with a monoculture versus diverse plantings) and of timescale (e.g. solar arrays that reduce carbon emissions and eventually lead to reducing climatic stress in cities).

traps for insects. The traps arise through insect responses to cues that are typically adaptive in the rural environment, but lead to low fitness in urbanized landscapes [55]. For example, Odonates use polarized light to determine oviposition sites for their eggs. However, in cities, they interpret polarized light from vehicle windshields as an oviposition cue, depositing eggs in an environment that will not support their development [51]. Artificial light at night in cities can likewise trap insects [56]. For example, glow-worms preferred to remain under simulated street light rather than disperse to find mates in more poorly lit areas [57]. Such traps can be avoided through interventions, for example, by reducing urban light pollution.

As a further related consideration, there can be challenges associated with the specificity of interventions, that is, aiding benign insects while curtailing the spread of harmful insect species (e.g. disease vectors and crop pests) in cities [49]. Indeed, cities can directly increase the number of harmful insects through the activation of so-called 'sleeper' species, that is, unproblematic insect species that become harmful, such as through release from natural enemies in urban landscapes [58]. In response to harmful urban insect species, much effort has been devoted to interventions to mitigate their spread and their effects. However, interventions to halt the spread of harmful insects such as mosquito disease vectors can have negative effects on nontarget insect species

[59]. Human commensal insects in cities, for example, bedbugs and cockroaches, are an especially acute form of this problem, as interventions such as habitat elimination are difficult or impossible and interventions such as insecticides can harm nonpest insects [60]. Urban food production is an interesting example of this issue: from a production standpoint, the goal is to maximize insect services such as pollination while minimizing disservices such as herbivory. However, from a biodiversity perspective, discouraging herbivory could be less than ideal, since many nonpest insects use crops as a resource while providing ecosystem services in other capacities (e.g. as pollinators or food for other species) [61]. Relatedly, direct farming of insects (e.g. honeybee apiculture) can have negative consequences for native pollinators [62]. These considerations suggest a multifaceted view of urban biodiversity that incorporates functional diversity and the multiple roles that many species play in ecosystems might be warranted [49,63].

The complexity of interventions to promote insect biodiversity in cities is further evidenced at the level of major urban infrastructure changes. Urban infrastructure developed to mitigate urban hazards such as elevated temperature, extreme hydrological events, and environmental pollution, can have both positive and negative effects on factors that shape insect biodiversity in cities. Many solutions to urban hazards could benefit insects in cities (Figure 3). For example, green roofs and walls, 50

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 77

78

79

80

81

82

83

84

85

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

Box 1 Ways forward in building the urban insect bioark.

- 1. Test key hypotheses with currently available data. Given the broad availability of insect biodiversity datasets and gridded climatological and land-use datasets, questions such as whether cities are predictable repellers or attractors of insect biodiversity based on factors such as geographic position and local climate - among many others - can already be addressed.
- 2. Understand the mechanisms driving urban insect biodiversity patterns. Although support for various mechanisms can be developed from correlational studies, more experiments are needed to understand the causal mechanisms driving insect entry, exit, and transformation in cities [70]. These data can be used to better tailor conservation and management plans for urban insects.
- 3. Quantify spatiotemporal dynamics of urban insect biodiversity. This question could be answered through improved monitoring, making full use of community science [6], tech-based monitoring (e.g. drones) [71], and eDNA [72]. However, with the growing number of resources available on temporal dynamics of insect populations, such as the InsectChange database [73], EntoGem [74], and long-term ecological research (LTER and ILTER), including sites specifically in urbanized settings, such questions might begin to be tackled immediately. Importantly though, the standard issues with inferring changes over time apply to such datasets (see exchange between Ref. [75] and Ref. [76]).
- 4. Understand the relationship between urbanization and climate change. Doing so can take several forms, from using cities as proxies for expectations under future climate change, to understanding the interaction between urbanization and climate. In the latter case, this could involve urban design elements that achieve climate-biodiversity cobenefits within the city footprint or elements that support insects as they respond to global climate change, for example, dispersal corridors for range-shifting, climate-tracking species [45]. Likewise, forecasting future climate where a city is located and developing appropriate infrastructure for those changes (e.g. cities that are in locations becoming more arid versus more mesic under climate change) could help benefit urban insect biodiversity in the future [7]
- 5. Achieve biodiversity-climate goals in cities. Because of the often-substantial linkages and feedbacks between the climate system and biodiversity [78], recognition and implementation of the urban climate interventions that lead to climate and biodiversity cobenefits, rather than strong trade-offs, can simultaneously benefit future climate and insect biodiversity goals [77].

reforestation, sponge city infrastructure, and floating wetlands are designed to ameliorate urban warming, aridity, and pollution, with downstream benefits that provision insects with habitat, food resources, and mitigation of abiotic urban stressors [45,49,64,65]. However, some urban solutions could have negative effects, such as the development of renewable energy infrastructure within urban insect habitats [66] (but see Ref. [67]). Likewise, afforestation that radically changes community structure and ecosystem function could harm openhabitat insect species or facilitate the invasion of insect pest species that displace others [68].

Given these considerations, there are several clear recommendations for building and assessing the efficacy of urban insect bioarks (Box 1). We argue that an understanding of the ecological and evolutionary mechanisms shaping urban insect spatiotemporal population dynamics might enable improved forecasting of urban insect biodiversity. Such mechanistically informed forecasts would ideally aid conservation practitioners, land managers, and urban planners to maximize cobenefits for people and nature, including insects, in cities while minimizing trade-offs. In the context of building urban insect bioarks, we re-emphasize our broad definition of what is considered 'urban'. Although megacities certainly impact insect biodiversity, the effects are still apparent at much lower levels of urbanization such as within suburban locations or informal settlements [69]. Therefore, low-to-moderate levels of urbanization cannot be ignored in policy and management decisions to conserve urban insects.

Funding

55

56

57

This work was supported by the National Science Foundation [DEB-1845126].

Author contributions

All authors contributed to conceptualization of the review, writing the first draft of the paper, and revisions.

Data Availability

No data were used for the research described in the article.

Declaration of Competing Interest

None.

Acknowledgements

We thank the editors for the opportunity to contribute to this special issue and Ryan Martin for helpful comments on a previous version of this paper.

References and recommended reading

Papers of particular interest, published within the period of review, have been highlighted as:

- of special interest
- of outstanding interest
- Fenoglio MS, Calviño A, González E, Salvo A, Videla M:
- Urbanisation drivers and underlying mechanisms of terrestrial insect diversity loss in cities. Ecol Entomol 2021, 46:757-771

In this data-driven synthesis, the authors employ a trait-based approach to understand biodiversity declines among urban insect populations. They found important direct effects of urban attributes such as imperviousness, pollution, heat islands, fragmentation, and exotic species on insect populations and communities. The authors further found that traits, including body size, mobility, and nesting requirements, were the key direct moderators of urban insect biodiversity and that indirect moderators were the strongest through the resource base rather than species interactions.

Piano E, Souffreau C, Merckx T, Baardsen LF, Backeljau T, Bonte D, Brans KI, Cours M, Dahirel M, Debortoli N, et al.: Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob Change Biol 2020, 26:1196-1211.

57

- Adams BJ, Li E, Bahlai CA, Meineke EK, McGlynn TP, Brown BV: Local- and landscape-scale variables shape insect diversity in an urban biodiversity hot spot. Ecol Appl 2020, 30:e02089.
- Perez A, Diamond SE: Idiosyncrasies in cities: evaluating patterns and drivers of ant biodiversity along urbanization gradients. J Urban Ecol 2019, 5:juz017.
- Mata L, Andersen AN, Morán-Ordóñez A, Hahs AK, Backstrom A, Ives CD, Bickel D, Duncan D, Palma E, Thomas F, et al.: Indigenous plants promote insect biodiversity in urban greenspaces. Ecol Appl 2021, 31:e02309.
- Montgomery GA, Belitz MW, Guralnick RP, Tingley MW: Standards and best practices for monitoring and benchmarking insects. Front Ecol Evol 2021, 8:579193.

This article provides an overview of seven different sampling methods used to quantify insect biodiversity. The sampling schemes span different taxa and habitats by including protocols for ground and aerial insect sampling and day- versus night-active insects. The authors discuss the benefits and limitations of each method while providing recommendations on spatiotemporal sampling resolution and key metadata to record.

- Moll RJ, Cepek JD, Lorch PD, Dennis PM, Tans E, Robison T, Millspaugh JJ, Montgomery RA: What does urbanization actually mean? A framework for urban metrics in wildlife research. J Appl Ecol 2019, 56:1289-1300.
- Wepprich T: Monarch butterfly trends are sensitive to unexamined changes in museum collections over time. PNAS 2019, 116:13742-13744.
- Mentges A, Blowes SA, Hodapp D, Hillebrand H, Chase JM: Effects of site-selection bias on estimates of biodiversity change. Conserv Biol 2021, 35:688-698.
- 10. Diamond SE, Martin RA: Evolution in cities. Annu Rev Ecol EvolSyst 2021, 52:519-540.

This review considers how cities can be used to test new and longstanding questions in evolutionary biology. It also develops a framework for comparative work within and among cities, including the extent to which cities can be used to isolate specific drivers of change with the goal of extrapolating the findings beyond the city footprint.

- Merckx T, Van Dyck H: Urbanization-driven homogenization is more pronounced and happens at wider spatial scales in nocturnal and mobile flying insects. Glob Ecol Biogeogr 2019, 28:1440-1455.
- Remon J, Moulherat S, Cornuau JH, Gendron L, Richard M, Baguette M, Prunier JG: Patterns of gene flow across multiple anthropogenic infrastructures: insights from a multi-species approach. Land Urban Plan 2022, 226:104507.
- Camacho LF, Barragán G, Espinosa S: Local ecological knowledge reveals combined landscape effects of light pollution, habitat loss, and fragmentation on insect populations. Biol Conserv 2021, 262:109311.
- Altermatt F: Temperature-related shifts in butterfly phenology depend on the habitat. Glob Change Biol 2012, 18:2429-2438.
- Mukai A, Yamaguchi K, Goto SG: Urban warming and artificial light alter dormancy in the flesh fly. R Soc Open Sci 2021, 8:210866.
- Merckx T, Nielsen ME, Heliölä J, Kuussaari M, Pettersson LB, Pöyry J, Tiainen J, Gotthard K, Kivelä SM: Urbanization extends flight phenology and leads to local adaptation of seasonal plasticity in Lepidoptera. PNAS 2021, 118:e2106006118.
- Carlson SM, Cunningham CJ, Westley PAH: Evolutionary rescue in a changing world. Trends Ecol Evol 2014, 29:521-530.
- Delnevo N, van Etten EJ, Byrne M, Petraglia A, Carbognani M, Stock WD: Habitat fragmentation restricts insect pollinators and pollen quality in a threatened Proteaceae species. Biol Conserv 2020, 252:108824.
- Moriyama M, Numata H: Ecophysiological responses to climate change in cicadas. Physiol Entomol 2019, 44:65-76.
- Lenoir J, Bertrand R, Comte L, Bourgeaud L, Hattab T, Murienne J, Grenouillet G: Species better track climate warming in the oceans than on land. Nat Ecol Evol 2020, 4:1044-1059.

21. Larson EL, Tinghitella RM, Taylor SA: Insect hybridization and climate change. Front Ecol Evol 2019, 7:348.

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76 77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

- Ghisbain G, Gérard M, Wood TJ, Hines HM, Michez D: Expanding insect pollinators in the Anthropocene. *Biol Rev* 2021, 96:2755-2770.
- Tingley MW, Koo MS, Moritz C, Rush AC, Beissinger SR: The push and pull of climate change causes heterogeneous shifts in avian elevational ranges. Glob Change Biol 2012, 18:3279-3290.
- Sunday J, Bennett JM, Calosi P, Clusella-Trullas S, Gravel S, Hargreaves AL, Leiva FP, Verberk WC, Olalla-Tárraga MÁ, Morales-Castilla I: Thermal tolerance patterns across latitude and elevation. Philos Trans R Soc 2019, 374:20190036.
- Deutsch CA, Tewksbury JJ, Huey RB, Sheldon KS, Ghalambor CK, Haak DC, Martin PR: Impacts of climate warming on terrestrial ectotherms across latitude. PNAS 2008, 105:6668-6672.
- Diamond SE, Dunn RR, Frank SD, Haddad NM, Martin RA: Shared and unique responses of insects to the interaction of urbanization and background climate. Curr Opin Insect Sci 2015, 11:71-77
- Perez A, Chick L, Menke S, Lessard J-P, Sanders N, Del Toro I, Meldgaard NS, Diamond S: Urbanisation dampens the latitudediversity cline in ants. Insect Conserv Divers 2022, 15:763-771.
- Gaona FP, Iñiguez-Armijos C, Brehm G, Fiedler K, Espinosa CI: Drastic loss of insects (Lepidoptera: Geometridae) in urban landscapes in a tropical biodiversity hotspot. J Insect Conserv 2021, 25:395-405.
- Manoli G, Fatichi S, Schläpfer M, Yu K, Crowther TW, Meili N, Burlando P, Katul GG, Bou-Zeid E: Magnitude of urban heat islands largely explained by climate and population. Nature 2019, 573:55-60.
- Comte L, Murienne J, Grenouillet G: Species traits and phylogenetic conservatism of climate-induced range shifts in stream fishes. Nat Commun 2014, 5:5053.
- Angert AL, Bontrager MG, Ågren J: What do we really know about adaptation at range edges? Annu Rev Ecol Evol Syst 2020, 51:341-361.
- 32. Dunn RR, Burger JR, Carlen EJ, Koltz AM, Light JE, Martin RA,
 Munshi-South J, Nichols LM, Vargo EL, Yitbarek S, et al.: A theory of city biogeography and the origin of urban species. Front Conserv Sci 2022, 3

In this review, the authors use island biogeography theory to develop predictions for the effects of urban fragmentation on biodiversity. They consider near- and long-term consequences for biodiversity based on altered ecological and evolutionary dynamics in cities.

- Luo M, Wang S, Saavedra S, Ebert D, Altermatt F: Multispecies coexistence in fragmented landscapes. PNAS 2022, 119:e2201503119.
- Diamond SE, Martin RA: Buying time: plasticity and population persistence. In Phenotypic Plasticity Evolution: Causes, Consequences, Controversies. Edited by Pfennig DW. CRC Press; 2021.
- 35. Feiner N, Brun-Usan M, Uller T: Evolvability and evolutionary rescue. Evol Dev 2021, 23:308-319.
- Diamond SE, Martin RA: Physiological adaptation to cities as a proxy to forecast global-scale responses to climate change. J Exp Biol 2021, 224:jeb229336.
- Martin RA, Chick LD, Garvin ML, Diamond SE: In a nutshell, a reciprocal transplant experiment reveals local adaptation and fitness trade-offs in response to urban evolution in an acorndwelling ant. Evolution 2021. 75:876-887.
- 38. Diamond SE, Prileson EG, Martin RA: Adaptation to urban environments. Curr Opin Insect Sci 2022, 51:100893.
- 39. van Heerwaarden B, Kellermann V: Does plasticity trade off with basal heat tolerance? Trends Ecol Evol 2020, 35:874-885.
- 40. Lambert MR, Donihue CM: Urban biodiversity management
 using evolutionary tools. Nat Ecol Evol 2020, 4:903-910.

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

56

57

This is a comprehensive review of how core principles of evolutionary biology can be directly applied to improve urban biodiversity management. The authors approach this idea both from the perspective of supporting beneficial responses, such as managing connectivity and gene flow or habitat restoration to relax selective pressures, but also from the perspective of avoiding negative impacts, such as facilitation of pests and pathogens.

41. Theodorou P, Radzevičiūtė R, Lentendu G, Kahnt B, Husemann M,

• Bleidorn C, Settele J, Schweiger O, Grosse I, Wubet T, et al.: Urban areas as hotspots for bees and pollination but not a panacea for all insects. Nat Commun 2020, 11:576.

In this study, flying insect diversity and ecosystem services (pollination) were measured across multiple cities. To accomplish this, the authors used a combination of pan trapping of flying insects, metabarcoding, and observations of insect visitation to standardized indicator plants ('pollinometers'). They found that while flies and butterflies tended to have lower richness and pollination rates in cities, bees exhibited the opposite trend, highlighting the often taxon-specific nature of insect responses to urbanization.

- 42. Burdine JD, McCluney KE: Differential sensitivity of bees to urbanization-driven changes in body temperature and water content. Sci Rep 2019, 9:1643.
- Prober SM, Doerr VAJ, Broadhurst LM, Williams KJ, Dickson F: Shifting the conservation paradigm: a synthesis of options for renovating nature under climate change. Ecol Monogr 2019,
- Spotswood EN, Beller EE, Grossinger R, Grenier JL, Heller NE, Aronson MFJ: **The biological deserts fallacy: cities in their** 44. landscapes contribute more than we think to regional biodiversity. *BioScience* 2021, **71**:148-160.

The key argument of this review is that cities are not isolated from the biological communities in which they are embedded but rather interact with and contribute meaningfully to biodiversity in the peri-urban landscape. The authors outline five ways in which this process can occur, including, for example, cities that act as migratory stopovers for species or cities, leading to pre-adaptation to climate change through compensatory responses to shared stressors such as heat or aridity.

- Lepczyk CA, Aronson MFJ, Evans KL, Goddard MA, Lerman SB, MacIvor JS: Biodiversity in the city: fundamental questions for understanding the ecology of urban green spaces for biodiversity conservation. BioScience 2017, 67:799-807.
- 46. Diamond SE, Martin RA, Bellino G, Crown KN, Prileson EG: Urban evolution of thermal physiology in a range-expanding, mycophagous fruit fly, Drosophila tripunctata. Biol J Linn Soc 2022. **137**:409-420.
- 47. Weaving H, Terblanche JS, Pottier P, English S: Meta-analysis reveals weak but pervasive plasticity in insect thermal limits. Nat Commun 2022, 13:5292.
- 48. Shaffer HB: Urban biodiversity arks. Nat Sustain 2018, 1:725-727.
- 49. Kotze DJ, Lowe EC, MacIvor JS, Ossola A, Norton BA, Hochuli DF, Mata L, Moretti M, Gagné SA, Handa IT, Jones TM: Urban forest invertebrates: how they shape and respond to the urban environment. Urban Ecosyst 2022, 25:1589-1609.

This far-reaching review considers the effects of urbanization on forest invertebrates and uses this synthesis to develop a set of management recommendations to conserve urban forest invertebrates. The content of this review is both unique and timely as it integrates a large volume of information, including among the ecological and evolutionary mechanisms shaping urban forest invertebrates, the ecosystem services and disservices these organisms provide, and a clear set of data-driven management recommendations, many of which focus on nature-based

50. Majewska AA, Altizer S: Planting gardens to support insect pollinators. Conserv Biol 2020, 34:15-25

The study reports on a meta-analysis of insect pollinator responses to aspects of urban garden planning, including the diversity of plant species, garden size, and prevalence of woody vegetation. The results of the meta-analysis are used to develop recommendations to improve urban gardening for insect biodiversity conservation.

Suárez-Tovar CM, Ulises Castillo-Pérez E, Antonio Sandoval-García I, Schondube JE, Cano-Santana Z, Córdoba-Aguilar A: Resilient dragons: exploring Odonata communities in an urbanization gradient. Ecol Indic 2022, 141:109134.

- **52.** Geslin B, Gachet S, Deschamps-Cottin M, Flacher F, Ignace B, Knoploch C, Meineri É, Robles C, Ropars L, Schurr L, Le Féon V: Bee hotels host a high abundance of exotic bees in an urban context. Acta Oecol 2020, 105:103556.
- 53. van Klink R, Menz MHM, Baur H, Dosch O, Kühne I, Lischer L, Luka H, Meyer S, Szikora T, Unternährer D, et al.: Larval and phenological traits predict insect community response to mowing regime manipulations. Ecol Appl 2019, 29:e01900.
- 54. Barr AE, van Diik LJA, Hylander K, Tack AJM; Local habitat factors and spatial connectivity jointly shape an urban insect community. Land Urban Plan 2021, 214:104177
- Zuñiga-Palacios J, Zuria I, Castellanos I, Lara C, Sánchez-Rojas G: What do we know (and need to know) about the role of urban habitats as ecological traps? Systematic review and metaanalysis. Sci Total Environ 2021, 780:146559.
- 56. Haynes KJ, Robertson BA: A transdisciplinary research agenda for understanding insect responses to ecological light pollution informed by evolutionary trap theory. Curr Opin Insect Sci 2021, **45**:91-96.
- 57. Elgert C, Hopkins J, Kaitala A, Candolin U: Reproduction under light pollution: maladaptive response to spatial variation in artificial light in a glow-worm. *Proc R Soc B* 2020, **287**:20200806.
- 58. Frank SD, Just MG: Can cities activate sleeper species and predict future forest pests? A case study of scale insects. Insects 2020, 11:142.
- 59. Lee NSM, Clements GR, Ting ASY, Wong ZH, Yek SH: Persistent mosquito fogging can be detrimental to non-target invertebrates in an urban tropical forest, PeerJ 2020, 8:e10033.
- 60. Zhu F, Lavine L, O'Neal S, Lavine M, Foss C, Walsh D: Insecticide resistance and management strategies in urban ecosystems. Insects 2016. 7:2.
- 61. Clucas B, Parker ID, Feldpausch-Parker AM: A systematic review of the relationship between urban agriculture and biodiversity. Urban Ecosyst 2018, 21:635-643.
- 62. Page ML, Williams NM: Honey bee introductions displace native bees and decrease pollination of a native wildflower. Ecology in press, (doi:10.1002/ecy.3939).
- 63. Banaszak-Cibicka W, Dylewski Ł: Species and functional diversity a better understanding of the impact of urbanization on bee communities. Sci Total Environ 2021, 774:145729.
- Merckx T, Souffreau C, Kaiser A, Baardsen LF, Backeljau T, Bonte D, Brans KI, Cours M, Dahirel M, Debortoli N, De Wolf K: Body-size shifts in aquatic and terrestrial urban communities. Nature 2018, **558**:113-116.
- 65. Teo HC, Zeng Y, Sarira TV, Fung TK, Zheng Q, Song XP, Chong KY, Koh LP: Global urban reforestation can be an important natural climate solution. Environ Res Lett 2021, 16:034059.
- 66. Kim JY, Koide D, Ishihama F, Kadoya T, Nishihiro J: Current site planning of medium to large solar power systems accelerates the loss of the remaining semi-natural and agricultural habitats. Sci Total Environ 2021, 779:146475.
- 67. Armstrong JH, Kulikowski AJ, Philpott SM: Urban renewable energy and ecosystems: integrating vegetation with groundmounted solar arrays increases arthropod abundance of key functional groups. Urban Ecosyst 2021. 24:621-631.
- 68. Oldfield EE, Warren RJ, Felson AJ, Bradford MA: Challenges and future directions in urban afforestation. J Appl Ecol 2013, **50**:1169-1177.
- Ramsay EE, Fleming GM, Faber PA, Barker SF, Sweeney R, Taruc RR, Chown SL, Duffy GA: Chronic heat stress in tropical urban informal settlements. iScience 2021, 24:103248.
- 70. Chown SL, Duffy GA: Thermal physiology and urbanization: perspectives on exit, entry and transformation rules. Funct Ecol 2015, **29**:902-912.
- Rhodes MW, Bennie JJ, Spalding A, ffrench-Constant RH, Maclean IMD: Recent advances in the remote sensing of insects. Biol Rev 2022, 97:343-360.

Global change biology

10

11

12

13

14

15

1	72.	Roger F, Ghanavi HR, Danielsson N, Wahlberg N, Löndahl J, Pettersson LB, Andersson GKS, Boke Olén N, Clough Y: Airborne environmental DNA metabarcoding for the monitoring of terrestrial insects — a proof of concept from the field. <i>Environ DNA</i> 2022, 4 :790-807.
2		
3		
4		
5	73.	van Klink R, Bowler DE, Comay O, Driessen MM, Ernest SKM, Gentile A, Gilbert F, Gongalsky KB, Owen J, Pe'er G, et al.: InsectChange: a global database of temporal changes in insect and arachnid assemblages. <i>Ecology</i> 2021, 102 :e03354.
6		
7		
0		

- sect
- 74. Grames EM, Montgomery GA, Boyes DH, Dicks LV, Forister ML, Matson TA, Nakagawa S, Prendergast KS, Taylor NG, Tingley MW, et al.: A framework and case study to systematically identify long-term insect abundance and diversity datasets. Conserv Sci Pract 2022, 4:e12687.
- 75. Crossley MS, Meier AR, Baldwin EM, Berry LL, Crenshaw LC, Hartman GL, Lagos-Kutz D, Nichols DH, Patel K, Varriano S, et al.: arsity ...y Platfor ...21. No net insect abundance and diversity declines across US Long Term Ecological Research sites. Nat Ecol Evol 2020, **4**:1368-1376.

76.	Welti EAR, Joern A, Ellison AM, Lightfoot DC, Record S,
	Rodenhouse N, Stanley EH, Kaspari M: Studies of insect
	temporal trends must account for the complex sampling
	histories inherent to many long-term monitoring efforts. Nat
	Ecol Evol 2021, 5 :589-591.

16

17 18

19

20

21

22

23

24

25

26

27

28

29

30

77. Egerer M, Haase D, McPhearson T, Frantzeskaki N, Andersson E, Nagendra H, Ossola A: Urban change as an untapped opportunity for climate adaptation. Urban Sustain 2021, 1:1-9.

This perspective article argues for cities as a focal point to catalyze climate change adaptation and mitigation strategies. The authors take a social-ecological-technological system approach to build their argument. Among the far-reaching themes explored in this article, the authors consider urban interventions focused on climate, including naturebased climate solutions and their impacts on ecological systems.

 Pörtner HO, Scholes RJ, Agard J, Archer E, Arneth A, Bai X, Barnes D, Burrows M, Chan L, Cheung WL (William), et al.: Scientific Outcome of the IPBES-IPCC Co-sponsored Workshop on Biodiversity and Climate Change. Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services (IPBES);