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Urban insect bioarks of the 21st century 
Sarah E Diamond1, Grace Bellino2 and Gideon G Deme3   

Insects exhibit divergent biodiversity responses to cities. Many 
urban populations are not at equilibrium: biodiversity declines 
or biodiversity recovery from environmental perturbation is 
often still in progress. Substantial variation in urban biodiversity 
patterns suggests the need to understand its mechanistic 
basis. In addition, current urban infrastructure decisions might 
profoundly influence future biodiversity trends. Although many 
nature-based solutions to urban climate problems also support 
urban insect biodiversity, trade-offs are possible and should be 
avoided to maximize biodiversity–climate cobenefits. Because 
insects are coping with the dual threats of urbanization and 
climate change, there is an urgent need to design cities that 
facilitate persistence within the city footprint or facilitate 
compensatory responses to global climate change as species 
transit through the city footprint. 
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Urban insect biodiversity 
Unsurprisingly, cities with their attendant novel bio
physical landscapes can lead to declines in insect species 
richness and the abundance of individual species [1,2], 
but not exclusively. In some cases, enhanced urban in
sect richness can be driven by the concentration of 
exotic insects in highly urbanized landscapes [3]. While 
in other cases, urban insect richness has been shown to 
be the same or higher than insect richness at nearby 
undeveloped locations based solely on trends among 
native species [4,5]. 

Because each of the possible biodiversity gra
dients — declines, increases, or the maintenance of 
biodiversity — have been documented for insects living 
across urbanization gradients, this variation likely reflects 
the fact that a combination of different mechanisms 
underlies these patterns. Such variation could arise from 
methodological issues in quantifying biodiversity or from 
biologically meaningful factors [6]. These include the 
taxonomic identity of the insects under consideration, 
the regional species pool and species-specific capacity to 
colonize and persist in or around cities, and aspects of 
the development and geographic position of the parti
cular urban landscape. Below, we unpack these different 
potential contributions to insect biodiversity trends 
across urbanization gradients, and consider how ongoing 
and future changes in cities could either serve to en
hance or dampen urban insect biodiversity. 

Challenges and opportunities in quantifying 
insect biodiversity in cities 
Before considering how to quantify urban insect biodi
versity, it is important to clarify what is meant by ‘urban’. 
We adopt a broad definition encompassing human- 
modified landscapes for settlement and associated 
functions (e.g. commercial and industrial development), 
though we acknowledge the large heterogeneity of such 
environments [7]. Throughout, we refer to comparisons 
of urban versus rural habitats (or gradients between the 
habitats) as a heuristic to distinguish urban habitats from 
habitats with little-to-no human modification. This de
finition excludes human-modified habitats for agri
cultural use from consideration as ‘rural’. 

On the surface, the quantification of urban biodiversity 
is simple enough: standard survey methods such as 
visual observations, pitfall traps, bait traps, and light 
traps can be used to quantify the number of species 
and their individual abundances at sampling points 
from beyond the urban footprint to the city core. 
However, in practice, both universal and urban-specific 
factors make this task complex [8]. As one example, 
site-selection biases can yield misleading estimates of 
biodiversity gradients [9], and such considerations can 
be magnified in cities with rapid landscape changes 
over compressed spatial scales [10]. As another ex
ample, urban changes themselves might interfere with 
the ability to sample particular groups of insects, for 
example, light pollution that interferes with light 
trapping, or air pollution that interferes with bait 
trapping [11]. 
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Biodiversity patterns emerge from the population dy
namics of individual species [6]. Understanding popu
lation-level responses to urbanization can both link 
biodiversity patterns with their mechanistic under
pinnings and identify methodological issues in quanti
fying urban biodiversity. To wit, urban boundaries are 
often porous with respect to movement of individuals, 
and transient use of urban habitats could complicate 
biodiversity assessments. At the most extreme, strong 
gene flow across the urbanization gradient, for example, 
driven by high dispersal capability, could blur the dis
tinction between urban and nonurban populations of 
some species [12]. Alternatively, meta-population dy
namics within or across the urbanization gradient [13] 
could enhance or diminish apparent biodiversity de
pending on the time point at which the populations are 
sampled. For example, some butterflies are resident 
outside the city footprint, but transiently use urban 
spaces for resource supplementation [14]. Relatedly, 
urban-associated changes in phenology driven by urban 
heat island effects or artificial light at night [15,16] could 
similarly bias estimates of biodiversity when there are 
limited sampling intervals across the activity season of a 
particular species. As a consequence, single or limited 
time point measurements of biodiversity across an ur
banized-to-undeveloped gradient might fail to capture 
relevant urban biodiversity. 

Indeed, the importance of sampling frequency within 
the activity season of an organism also extends to issues 
surrounding sampling intervals over longer, cross-gen
eration timescales. For example, evolutionary rescue of 
insect populations in cities is expected to be preceded 

by demographic loss followed by recovery [17], so bio
diversity estimates could be biased depending on when 
populations are sampled in the rescue process (Figure 1). 
These initial demographic losses could be severe given 
the effects of urban fragmentation on effective popula
tion sizes [18], and thus measurement of increasing or 
decreasing population trends could be more relevant 
than comparisons of absolute biodiversity estimates 
across urbanization gradients at a given time point. Re
latedly, species with long generation times, such as 
periodical cicadas, necessarily incur limits on evolu
tionary rescue under rapidly changing environments [19] 
such as those found in cities. This could subject them to 
extirpation lags that would be missed in biodiversity 
measurements without decadal-scale sampling. 

Further supporting the need for long-interval sampling, 
widespread geographic range shifts under contemporary 
climate change are likely to influence urban biodiversity. 
There is relatively high variation in the magnitude (and 
sometimes direction) of the shift among species, with 
some species able to perfectly track their historical cli
matic niches, while other species imperfectly track cli
mate and experience ‘climate debt’ [20]. Although the 
nature of the shift response is likely to modulate whe
ther species encounter and are able enter the urban 
environment (e.g. species experiencing large climate 
debt might be excluded from already-warm cities), 
range-shifting species could influence urban biodiversity 
in a number of ways. For example, in the case of leading- 
edge expansions, climate-driven range shifts could add 
new species to the urban landscape, bolster numerical 
representation of a species already occurring within the 
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Figure 1  

Current Opinion in Insect Science

A hypothetical example of temporal changes in urban versus rural biodiversity patterns assuming evolutionary rescue (demographic loss and recovery) 
of the urban populations. (a) Population size over time (expressed as number of generations) for unperturbed rural populations and urban populations 
undergoing evolutionary rescue characterized by a demographic decline followed by recovery in conjunction with adaptive evolution to altered urban 
environments. (b) Biodiversity-level consequences of urban evolutionary rescue that initially results in greater rural biodiversity owing to negative 
effects of urban entry and negative demographic consequences of urban maladaptation followed by narrowing of the urban–rural biodiversity gap, 
leading to maintenance of biodiversity across the gradient or potential overshoot of the urban population through the urban adaptation process. 
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urban environment, bring new alleles into extant urban 
populations that influence evolutionary trajectories and 
population demography [21], and impact the abundance 
of other current urban-dwelling species [22]. The effects 
of different climatic forces on pushing-and-pulling spe
cies ranges and distributions under global climate 
change are currently under intense study [23], as are the 
effects of the human footprint on contemporary range 
shifts, mostly from the perspective of dampening range 
shifts [20]. However, the mechanistic linkages between 
these two research areas, that is, how urban areas act as 
repellers, or potentially even attractors, as species shift 
their geographic ranges under climate change, are not 
well established. While datasets exist that are relevant 
for addressing this question, including those on climate- 
driven range shifts [20] and urban biodiversity [1,2], the 
degree of overlap of comparable species in comparable 
geographic locations might be limited. 

As one tangible way to begin to tackle this question of 
the interactive effects of climate change and urbaniza
tion, we can consider how the background climate 
throughout a species’ range and its effects on thermal 
physiology might mediate local population responses to 
urbanization. Biogeographic studies of the effects of 
background climate on physiological traits of insects 
show that thermal tolerance breadth tends to increase 
with latitude [24]. This pattern largely arises from gains 
in the ability of high-latitude species to tolerate low 
temperatures coupled with minimal changes across lati
tude in the ability of species to tolerate high tempera
tures. Global climate change is anticipated to relax 
constraints on populations limited by low-temperature 
physiology at high latitudes, potentially leading to in
creased population growth [25]. Cities, through the 
generation of urban heat islands, might have similar ef
fects at high latitude. Specifically, insect populations at 
high-latitude cities could thrive in these environments 
and be ‘pulled’ into urban habitats (Figure 2a). By 
contrast, low-latitude cities could negatively impact in
sect population growth, as these populations tend to al
ready be close to their thermal optimum and upper 
thermal limits, leaving them vulnerable to additional 
warming and ‘pushing’ them out of urban habitats [26]. 
Indeed, recent work in ants is suggestive of this process  
[27]. Yet, the evidence from Lepidoptera is more mixed. 
While there are data showing large declines in urban 
moth diversity at low latitude (e.g. in southern Ecuador, 
Ref. [28]), there are also data showing evidence of de
clines in urban moth and butterfly diversity at high la
titude (e.g. in Belgium, Ref. [11]). Thus, refinement of 
expectations might be in order. Specifically, while ur
banization might consistently diminish biodiversity for 
some taxa, the magnitude of species loss might be re
latively lower for high-latitude cities. This pattern is 
borne out by comparing urban biodiversity loss of the 
Lepidopteran exemplar studies described above. Urban 

moths in Ecuador exhibited a 65% loss in diversity 
compared with rural moths (based on the Shannon index 
of biodiversity) [28], whereas moths in Belgium ex
hibited a 43% loss in diversity (also using the Shannon 
index) [11]. Whether this pattern holds more broadly is 
unclear, and is an area ripe for formal synthetic analysis. 
As a final update to our expectations, it is necessary to 
point out that the strength of the urban heat island effect 
relative to the background climate can diminish in 
magnitude or even change direction in already-warm 
habitats at the lowest latitudes [29]. In this case, very 
low-latitude urban environments might not act as re
pellers, or might even become attractors. 

The relative biogeographic position of a city within a 
species’ range could have similar effects to the position 
of a city across latitude. Cities at cold-range edges could 
relax constraints on low-temperature physiology, 
whereas cities at warm-range edges might exert addi
tional pressure on high-temperature physiology to be 
able to persist in that location [30]. Though, these ef
fects might be opposed by other forces. For example, the 
location of the city within the species geographic range 
can also determine the standing genetic variance and 
thus influence the response to selection (Figure 2b). 
The ability to colonize and persist in cities might be 
more difficult at range edges due to low genetic diversity 
and high genetic load (accumulation of deleterious mu
tations) compared with range cores [31]. Thus, at 
leading-range edges, while relaxation of constraints on 
low-temperature physiology might allow entry to the 
urban environment, the rate of genetic adaptation might 
be slowed. At trailing-range edges, the negative effects 
of high urban temperatures on organismal physiology 
combined with limited evolutionary potential might 
hasten extirpations. Although the effects of the latitu
dinal position of cities and their position within a spe
cies’ geographic range are largely unknown, empirical 
tests of and support for these hypotheses could enable 
broad-scale forecasting of urbanization effects on insect 
biodiversity. That is, readily obtained biogeographic 
variables such as the latitudinal position of a particular 
city and its relative position within species ranges might 
usefully approximate harder-won data such as thermal 
physiological traits or genetic diversity. 

Using data on urban insect biodiversity 
patterns and the underlying mechanisms 
The data collected to understand urban insect biodi
versity patterns and their underlying mechanisms can be 
used to address a spectrum of basic-to-applied research 
goals. We have demonstrated this idea with our ex
ploration of the effects of latitude and geographic posi
tion within a species’ range on whether urban habitats 
will serve as repellers or attractors of insect biodiversity 
based on thermal physiology and evolutionary potential. 
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Yet, there are many more questions that can be ad
dressed with data on responses to urbanization. For basic 
research goals, cities can be used as sandboxes to inter
rogate core ecological and evolutionary questions  
[10,32]. As specific, but by no means comprehensive 
examples, cities can be used to explore colonization and 
extinction dynamics in the context of island biogeo
graphy. Urban-driven habitat fragmentation generates 
urban islands and differences in proximity of those is
lands to the rural mainland locations that can be used to 
test expectations for biodiversity responses [32]. Like
wise, cities can be used to explore coexistence me
chanisms, as cities modify many aspects of the niche 
(e.g. patch size and connectivity, and spatiotemporal 
variation) with consequences for altered species inter
actions [33]. Because different aspects of the urban 

niche can be characterized by either greater homo
geneity of spatiotemporal habitat variation or greater 
heterogeneity compared with nearby undeveloped areas  
[7], cities provide unique opportunities to disentangle 
the drivers of species coexistence. Further, given the 
now-widespread support for contemporary evolution, 
cities can be used to examine rapid evolutionary re
sponses to altered urban landscapes [10]. For example, 
cities can be used to explore understudied topics such as 
plasticity-led evolution [34,35], or classic questions such 
as the repeatability and pace of contemporary evolution  
[36], and the prevalence and strength of contemporary 
local adaptation [37,38]. Cities can also be used to better 
understand hypotheses with mixed empirical support 
such as the potential trade-off between basal physiolo
gical tolerance and trait plasticity [39]. 
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Figure 2  

Current Opinion in Insect Science

Hypotheses for the influence of geographic position (high or low latitude; equivalently, high or low elevation) and geographic position within a species 
range (edge or core) for the effects of urbanization on insect populations with potential consequences for biodiversity estimation across urban-to-rural 
gradients. (a) Persistence of individual species is expected to be greater owing to higher standing genetic variation at the range core. For cities 
positioned near the range cores of increasing numbers of species, overall biodiversity in urban environments is expected to approach that of 
undeveloped rural areas. (b) Biodiversity in cities in cool-background climates (high latitude or elevation) could be enhanced relative to rural habitats, 
whereas urban biodiversity could be dampened in warm-background climates. Thermal physiology could mediate these responses with cities and 
their urban heat island effects pushing populations toward their thermal optimum in cool environments, leading to performance and fitness benefits, or 
causing populations to exceed their thermal optimum in warm environments, leading to performance and fitness declines.   

4 Global change biology  

www.sciencedirect.com Current Opinion in Insect Science xxxx, xx:xxx 



While these types of inquiries can help to address funda
mental questions in ecology and evolution, critically, a better 
understanding of the mechanisms that underlie urban suc
cess or failure can also improve urban land management and 
conservation plans [40]. Indeed, a greater understanding of 
mechanism appears crucial as the data so far suggest highly 
taxon-specific responses to cities. For example, even within 
the same urbanization gradient, biodiversity losses were 
documented in Lepidoptera and Diptera, whereas biodi
versity gains were found in Hymenoptera (with a particular 
focus on bees) [41]. Yet, whether this enhanced urban bio
diversity is driven by resource supplementation in cities or 
the remarkably high physiological tolerances of this taxon 
relative to others that might allow them to persist at high 
abundance in urban environments [42] is unclear. The 
mechanistic distinction is important because different me
chanisms suggest pursuing different management and con
servation strategies, for example, in this case, whether 
supplemental resources need to be maintained for bees, and 
whether other intervention strategies are needed for but
terflies and flies such as increasing thermal refuges in urban 
habitats or assisted evolution [43]. 

In the context of land management and conservation, it 
is important to bear in mind that the effects of urbani
zation extend beyond the city footprint. In the most 
simplistic sense, this occurs through spillover of both 
environmental effects and individuals between urba
nized and natural areas. Thus, the influence of urban 
changes on populations can have direct influences on the 
broader regional fauna [44]. But the relevance of cities 
can also extend beyond their footprint in more abstract 
ways. In particular, as cities are mesocosms of broader 
global changes to the environment and climate — that is, 
climatic warming and aridification, habitat loss, de
gradation and fragmentation, and general reshuffling of 
species in time and space — they can be used as space- 
for-time substitutions to gain insights into future 
changes beyond the city footprint [32,36]. For example, 
beneficial thermal acclimation and evolutionary re
sponses to urban heat island effects can be used to un
cover population capacities for responding to climatic 
warming more broadly [36]. Beyond their use as proxies 
for global climate change effects, cities also directly in
teract with global climate change. For example, as many 
species, including insects, are shifting their geographic 
ranges to track historical climatic niches, they are en
countering new habitats, including urbanized land
scapes. Urban design elements such as dispersal 
corridors, linear parks, or greenways can facilitate transit 
through urbanized landscapes, enabling compensatory 
responses to climate change [45]. 

Urban insect conservation and management 
From these studies of the capacity of urban insects to 
cope with environmental change through trait plasticity 

and rapid evolutionary change, it is clear that compen
satory mechanisms, while nonzero, are often insufficient 
to completely buffer insects against these changes  
[38,46,47]. In effect, these mechanisms might buy time 
for insect populations. This is true not only in the bio
logical sense of plasticity buying time for evolution to 
occur [34], but also in the policy-focused sense of buying 
time until mitigation measures can be enacted to ame
liorate the negative aspects of urban land-use change. In 
the meantime, it is worthwhile to consider the extent to 
which cities can be a refuge or ‘bioark’ [48] for insect 
biodiversity, now and into the future. We view such 
considerations for building urban insect bioarks through 
the lens of the mechanistic, population-level thinking 
we developed earlier. 

Insects, through their generally high capacity to respond 
to environmental change (e.g. large population sizes and 
fast generation times) and their small body size [46], are 
likely more amenable to reaping the benefits of urban 
refugia compared with other taxa, such as large mam
mals. However, insects are still subject to important 
constraints, such as their complex life cycles, that need 
to be accounted for in conservation plans [49]. For ex
ample, in phytophagous insects, cities need to support 
both larval host plants and adult food resources [50]. 
Other insects, such as Odonates, require both freshwater 
and terrestrial habitat for development [51]. And many 
insects, including beetles and butterflies, pupate be
lowground, yet cities can be limited in availability of leaf 
litter and appropriate soil substrate, especially with leaf 
removal and widespread soil compaction in urban land
scapes [1]. Recognizing the needs of urban insects, a 
number of direct and indirect support initiatives have 
already been enacted. Direct support for particular spe
cies or taxa is evidenced by milkweed planting for 
monarch butterflies, pollinator gardens more generally 
for Lepidopterans, and installation of bee hotels [50]. 
However, care must be taken with these approaches, as 
they can all too easily provide little-to-no support for 
insects, or worse, become ecological traps [52]. Indirect 
support could come from altered mowing regimes such 
as ‘no-mow May’ that can provide larval and adult re
sources for insects in cities. Related research in re
mediated agricultural systems demonstrates an 
association between the timing of mowing and insect 
abundance [53]. Similarly, ‘leave the leaves’ initiatives 
could provide habitat structure for ground-dwelling, 
metamorphosing, or dormant insects, as the availability 
of litter is positively associated with biodiversity in some 
urban insect communities [54]. Such interventions carry 
minimal-to-no risk of inadvertent harm to insects. 

Although it is useful to consider practices that better 
support insects in cities, it is equally important to con
sider interventions that avoid harm to urban insects. In 
particular, cities can generate ecological and evolutionary 
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traps for insects. The traps arise through insect re
sponses to cues that are typically adaptive in the rural 
environment, but lead to low fitness in urbanized land
scapes [55]. For example, Odonates use polarized light 
to determine oviposition sites for their eggs. However, in 
cities, they interpret polarized light from vehicle wind
shields as an oviposition cue, depositing eggs in an en
vironment that will not support their development [51]. 
Artificial light at night in cities can likewise trap insects  
[56]. For example, glow-worms preferred to remain 
under simulated street light rather than disperse to find 
mates in more poorly lit areas [57]. Such traps can be 
avoided through interventions, for example, by reducing 
urban light pollution. 

As a further related consideration, there can be challenges 
associated with the specificity of interventions, that is, aiding 
benign insects while curtailing the spread of harmful insect 
species (e.g. disease vectors and crop pests) in cities [49]. 
Indeed, cities can directly increase the number of harmful 
insects through the activation of so-called ‘sleeper’ species, 
that is, unproblematic insect species that become harmful, 
such as through release from natural enemies in urban 
landscapes [58]. In response to harmful urban insect species, 
much effort has been devoted to interventions to mitigate 
their spread and their effects. However, interventions to halt 
the spread of harmful insects such as mosquito disease 
vectors can have negative effects on nontarget insect species  

[59]. Human commensal insects in cities, for example, 
bedbugs and cockroaches, are an especially acute form of 
this problem, as interventions such as habitat elimination are 
difficult or impossible and interventions such as insecticides 
can harm nonpest insects [60]. Urban food production is an 
interesting example of this issue: from a production stand
point, the goal is to maximize insect services such as polli
nation while minimizing disservices such as herbivory. 
However, from a biodiversity perspective, discouraging 
herbivory could be less than ideal, since many nonpest in
sects use crops as a resource while providing ecosystem 
services in other capacities (e.g. as pollinators or food for 
other species) [61]. Relatedly, direct farming of insects (e.g. 
honeybee apiculture) can have negative consequences for 
native pollinators [62]. These considerations suggest a 
multifaceted view of urban biodiversity that incorporates 
functional diversity and the multiple roles that many species 
play in ecosystems might be warranted [49,63]. 

The complexity of interventions to promote insect bio
diversity in cities is further evidenced at the level of 
major urban infrastructure changes. Urban infrastructure 
developed to mitigate urban hazards such as elevated 
temperature, extreme hydrological events, and environ
mental pollution, can have both positive and negative 
effects on factors that shape insect biodiversity in cities. 
Many solutions to urban hazards could benefit insects in 
cities (Figure 3). For example, green roofs and walls, 
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Figure 3  

Current Opinion in Insect Science

A depiction of how interventions to mitigate urban hazards might not always benefit urban insects. The relationships between urban infrastructure and 
both its broad environmental effects (left-pointing arrows) and its specific effects on factors that support urban insect biodiversity (right-pointing 
arrows) are shown. Positive effects are indicated with blue-shaded solid arrows. Negative effects in orange-shaded dashed arrows. Neutral effects are 
indicated by the absence of an arrow. These relationships are intended to be used as a general heuristic, as the positive, neutral, or negative nature of 
the effects could change depending on the particularities of implementation (e.g. afforestation with a monoculture versus diverse plantings) and of 
timescale (e.g. solar arrays that reduce carbon emissions and eventually lead to reducing climatic stress in cities).   
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reforestation, sponge city infrastructure, and floating 
wetlands are designed to ameliorate urban warming, ar
idity, and pollution, with downstream benefits that 
provision insects with habitat, food resources, and miti
gation of abiotic urban stressors [45,49,64,65]. However, 
some urban solutions could have negative effects, such 
as the development of renewable energy infrastructure 
within urban insect habitats [66] (but see Ref. [67]). 
Likewise, afforestation that radically changes commu
nity structure and ecosystem function could harm open- 
habitat insect species or facilitate the invasion of insect 
pest species that displace others [68]. 

Given these considerations, there are several clear re
commendations for building and assessing the efficacy of 
urban insect bioarks (Box 1). We argue that an under
standing of the ecological and evolutionary mechanisms 
shaping urban insect spatiotemporal population dynamics 
might enable improved forecasting of urban insect biodi
versity. Such mechanistically informed forecasts would ide
ally aid conservation practitioners, land managers, and urban 
planners to maximize cobenefits for people and nature, in
cluding insects, in cities while minimizing trade-offs. In the 
context of building urban insect bioarks, we re-emphasize 
our broad definition of what is considered ‘urban’. Although 
megacities certainly impact insect biodiversity, the effects 
are still apparent at much lower levels of urbanization such 
as within suburban locations or informal settlements [69]. 
Therefore, low-to-moderate levels of urbanization cannot be 
ignored in policy and management decisions to conserve 
urban insects. 
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