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ABSTRACT

Numerical embedding has become one standard technique for processing and analyzing unstructured data
that cannot be expressed in a predefined fashion. It stores the main characteristics of data by mapping
it onto a numerical vector. An embedding is often unsupervised and constructed by transfer leaming
from large-scale unannotated data. Given an embedding, a downstream learmning method, referred to as
a two-stage method, is applicable to unstructured data. In this article, we introduce a novel framework of
embedding learning to deliver a higher leaming accuracy than the two-stage method while identifying an
optimal learning-adaptive embadding. In particular, we propose a concept of U-minimal sufficient learning-
adaptive embeddings, based on which we seek an optimal one to maximize the leaming accuracy subject
to an embedding constraint. Moreover, when specializing the general framework to cassification, we derive
a graph embedding classifier based on a hyperlink tensor representing multiple hypergraphs, directed or
undirected, characterizing multi-way relations of unstructured data. Numerically, we design algorithms
based on blockwise coordinate descent and projected gradient descent to implement linear and feed-
forward neural network classifiers, respectively. Theoretically, we establish a learning theory to quantify the
generalization error of the proposed method. Moreover, we show, in linear regression, that the one-hot
encoder is more preferable among two-stage methods, yet its dimension restriction hinders its predictive
performance. For a graph embedding classifier, the generalization error matches up to the standard fast rate
or the parametric rate for linear or nonlinear classification. Finally, we demonstrate the utility of the classifiers
on two benchmarks in grammatical classification and sentiment analysis. Supplementary materials for this

ARTICLE HISTORY
Received December 2018
Accepted May 2020

KEYWORDS

Automatic feature
generation; Deep learning;
Natural language processing;
Representational learming;
Sentimental analysis; Text
mining

article are available online.

1. Introduction

Numerical embedding has become an essential part of modern
data analysis, particularly for unstructured data that cannot
be organized in predefined structures, including texts, graphs,
videos, objects, and chemical compounds. Tt maps unstructured
data onto lower-dimensional numerical vectors while retaining
key characteristics of the original unstructured data. Then the
numerical vectors can be used by any downstream methods
that are designed for numerical data to facilitate unstructured
data analysis, which would be otherwise rather difficult. This
strategy has been widely adopted, such as strings of plain text
in sentiment analysis, proteins in biological state prediction,
and search tokens and users’ watch history in YouTube video
recommendation.

Mumerical embedding learns numerical features from large
external unannotated data such as relational and knowledge
graphs based on certain principles. For instance, Word2Vec
(Pratt 1993; Mikolov et al. 2013; Mikolov, Yih, and Zweig 2013)
constructs embedding vectors through a skip-gram model by
maximizing the conditional likelihood of a word given other
surrounding words based on a large external unannotated text
corpus. Local linear embedding (LLE; Roweis and Saul 2000)
and Laplacian eigenmaps (LAFE; Belkin and Niyogi 2002) con-
struct neighborhood to preserve embeddings for each node in a
graph, which are used to capture pairwise similarities between

unstructured data, such as protein-protein interaction networks
(Grover and Leskovec 2016), and word-word co-occurrence
networks (Pennington, Socher. and Manning 2014).

After numerical embedding, any downstream method is
directly applicable to analyze unstructured data, which we refer
to as a two-stage method, and has become a standard tool of
machine learning. In sentiment analysis, logistic regression
is built on paragraph embedding with Doc2Vec (Le and
Mikolov 2014), and support vector machine is conducted on
word embedding with Word2Vec (Cortes and Vapnik 1995;
Socher et al. 2013). To predict the biological functionality
of each protein, multi-label classification is developed based
on a graph embedding from the protein-protein interaction
network (Grover and Leskovec 2016). In YouTuwbe video
recommendation, a users video watch history, and search
tokens are embedded as numerical features to fit a deep
neural network (Covington, Adams, and Sargin 2016). By
comparison, traditional classification and regression hinge on
features derived from limited domain knowledge or manually
constructed features. For instance, in sentiment analysis, Wang
et al. (2016) used bag-of-words for ordinal classification,
Genkin, Lewis, and Madigan (2007), Taddy (2013), and Miratrix
etal. (2011) relied on word counts or frequencies of a document
for the logistic or multinomial regression. Empirical evidence
of Mikolov et al. (2013) and Mikolov, Yih, and Zweig (2013)
suggests that numerical embedding such as Word2Vec and
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Doc2Vec is more effective for some learning tasks than the
traditional approach based on manually constructed features.

Despite the prominent role in the analysis of unstructured
data, a two-stage method has three major issues emerge. First, it
uses a generic embedding that is often unrelated to the objective
of learning in that it is unsupervised and constructed from
unannotated data. Second, little is known about theoretical
aspects of any two-stage method, particularly with respect to
how the embedding impacts the prediction accuracy, although
its superior empirical performance has been widely acknowl-
edged. Third, it is unclear how it can effectively integrate exter-
nal unannotated data in prediction. As a result, a common
practice is to use a large yet redundant embedding for a specific
learning task to capture all the information on original data,
thus impeding the learning performance. For instance, to keep
essential characteristics of text from external relational data.
numerical embedding, such as Word2Vec or Doc2Vec, requires
a sufficiently large vector, say 300 to more than 1000,

The main contribution of this article is the development of a
novel framework of embedding learning to enhance supervised
learning through the construction of a learning-specific embed-
ding based on annotated and unannotated data. Moreover, we
provide a theoretical justification for the proposed method and
illustrate its advantage over a two-stage method. As shown in
Lemma 5, in linear regression, the two-stage methods may fail
to provide adaptiveness. Moreover, it indicates that the one-hot
encoder (Weinberger et al. 2009) is more preferable among two-
stage methods, its dimension restriction hinders its predictive
performance as compared to the embedding learner. Finally,
we develop a large-scale computational tool for the proposed
methods.

Regarding the methodological development, we impose an
embedding constraint to maximize the prediction accuracy of
an embedding learner while identifying a U-minimal sufficient
learning-adaptive embedding. In a sense, we integrate annotated
unstructured data with unannotated data via the method of reg-
ularization. Then we apply the embedding learning framework
to graph embedding classification, based on a hyperlink ten-
sor reflecting multi-way relations of unstructured data (Berge
1973). For linear graph embedding classification, we develop
blockwise coordinate descent algorithms with exact and inex-
act updates. For the corresponding nonlinear neural network
classification, we develop a projected gradient descent algorithm
based on neural network back-propagation in TensorFlow.'

Theoretically, we develop the generalization error bounds to
shed light on why and when the proposed method is expected
to deliver higher accuracy than the two-stage method, and
the embedding learning without constraint. The generalization
error of the proposed method is determined by the complexity
of the embedding space induced by an [/-embedding loss.
Particularly, for graph embedding classification, the error
rate depends on the relational structure of an [V-embedding
loss, characterized by the eigenvalues and eigenvectors of the
corresponding graph matrix, which addresses the question of
how an U-embedding loss contributes to learning. Moreover,
under some conditions, the proposed linear and nonlinear
classifiers can achieve a fast rate of linear classification and

Table 1. Comparison of the learming regret error rate {upper bound) for three
methods, where K* |5, p*, and & are the effective dimension, the size of unstrsc-
tured data, the optimal size of embedding in Corollary 1, and & < b indicates
a/b does not converge to o0, and gy, gy, and egy denate the laring regrets
of the embedding leamner, ane-hot encoder, and the embedding learmner without
constraint, respectively.

f* is linear K* = |&8)p* =1 K* = |8)/p* =1

e < egH = eEN e0H = eEL < el

f*eWs K < (18- {“IISI}“%}IJI‘ K* = (18] - [nnSl}*_fg-_“}fp‘

8RS eoM S SEN €0H = €L S €N

MOTE: All logarithm terms are omitted for simplicity.

a standard rate of smooth classification, as if an optimal
embedding were known. Additionally, as indicated in Table 1,
the proposed method generally achieves faster convergence
rates than its competitors, except in a situation in which the
U-embedding loss is not informative.

Finally, we apply the embedding learning framework to two
domains of application: grammatical classification in Wikipedia
network and sentiment analysis in movie reviews, where the for-
mer explores grammatical category based on relations between
interacting words, while the latter learns the sentiment level of
a document. In particular, we investigate grammatical classifi-
cation supported by LLE (Roweis and Saul 2000) and Laplacian
eigenmaps (Belkin and Niyogi 2002) and movie reviews built
on Doc2Vec, Word2Vec, and Word2Vec-GoogleNews.> Tn these
examples, the proposed method consistently yields higher pre-
diction accuracy.

This article is organized as follows. Section 2 introduces the
framework of embedding learning, which incorporates embed-
ding into learning using the concept of UV-minimal sufficient
embedding. Section 3 develops a learning theory to quantify the
benefits of the proposed method over its competitors. Section 4
applies the embedding learning framework to graph embedding
classification. Section 5 develops scalable computation schemes
and implements linear classification and neural network clas-
sification. Section & discusses the connection of the proposed
method with other methods. Section 7 investigates the numer-
ical performance of the proposed method and compares with
its competitors in real applications. The technical proofs are
contained in the supplementary materials,

2. Embedding Learning

Consider a learning task of predicting the output Y, possibly a
vector, by unstructured predictors s € § = {s1,...,55} such
as words, texts, or documents, where |S| denotes the number
of unstructured elements in &. In sentiment analysis, words
of a document, represented by 5 in a dictionary &, are used
to identify the level of sentiment ¥ of an entire document. In
protein analysis, s € & denotes proteins to be used to predict its
functionality categorized by Y.

Tao reduce the dimension of &, an embedding X' = {X($)}ses
is constructed, where A'(s) maps from 5 < &S onto a p-
dimensional vector X'(s) = R, where p, a tuning parameter,

Uhitps: www.tensorflow.org’
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is usually no greater than |S]. Typically, an embedding such
as Word2Vec (Mikolov et al. 2013) is designed to characterize
unstructured data so that it can be analyzed by a learning
method. Given A'(s), a learning function or vector f(X'(s)) is
estimated to predict the outcome of Y.

Next we introduce the notation of sufficiency of A'(s) to
describe the situation of no information loss when using X'(s)
for learning,

Definition 1 (Sufficient learning-adapfive embedding). An
embedding X' = [X(5)}ses is learning-adaptive sufficient for
predicting the outcome of ¥ if the conditional distribution of ¥
given an embedding X'(s) = x does not depend on § = s, that
is, P(Y = yIS = 5, X(5) = x) = P(Y = y|X(5) = x).

This definition is analogous to that of the sufficient statistic
for numerical data (Casella and Berger 2002). As suggested by
Lemma 1, learning from a sufficient embedding is equivalent to
learning from original unstructured data,

Let L(#, ) be any learning loss; for example, L(¥, y) = (7—y)*
Is the L;-loss for regression, and L(¥, y) = I{¥y = 0) is the zero-
one loss for classification.

Lemma 1. Let X be a sufficient learning-adaptive embedding.
Then

m}n E(L(f(X(SN.Y)) = min E(L(g(s).Y)). (1)

In (1), minimizing the right-hand side is generally infeasible
due to unstructured data, whereas the left-hand side is man-
ageable given a sufficient embedding. Moreover, X'(5) retains
only the information relevant to prediction, allowing further
dimension-reduction of an embedding. Note that any one-to-
one mapping of a sufficient embedding is also sufficient. Thus,
we seek one U-minimal sufficient embedding A" over sufficient
embeddings to minimize UU(Y), what we refer to as an U-
embedding loss, which measures the amount of information

concerning s captured by 'is).

2.1. Embedding Loss

An U-embedding loss is often defined with a hyperlink tensor

W = {wﬂﬁ_ﬂ} describing the multi-way relations between
elements of &, where wﬁ,‘f{_ﬂ represents the k-order interactions
AMONE Sy, , . . . » 5y, from the dth data source. W can be obtained
from large-scale unannotated external data, or a pre-estimated
scientific knowledge graph (He et al. 2017), such as protein-
protein interactions (Stark et al. 2010), WordNet (Fellbaum
2010), and text-to-text frequencies. More specifically, given that
each element of & is embedded as a vector in [P, the U-
embedding loss is defined as U(X) : BF x ... x BF — T,
where BF x - - x B? is the |5|-way Cartesian power of [P,

Difterent U-embedding losses use disparate principles based
on various aspects of original data. We now give some examples
of U{X) as follows:

Locally linear Z 3 X () — Z wid, Xl ()

d=1 m
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Laplacian elgemnapsz E il X (5) — Xisg )3, (3)
d=1 Hydz

i)
Waluug

D
Ordinal embedding z Z

d=1 By H0,us

—X(su)3 = X (55

I(1X )
— X (su)113). (4)

wid

Hj---Hg

D
Word2Vec-multi-word — z Z
d=1 11,

( EXp [I_ ':Ek_l xfsu,-”-rxfsut]] )
Y exples (U X (s )T X )/

(5)

where || - ||2 is the Ly-norm. In particular, (2) and (3) construct
embeddings based on neighborhood preserving principle in a
pairwise relational hyper-graph (Roweis and Saul 2000; Belkin
and Niyogi 2002). A typical example is the WordNet dataset,
two different types (D = 2) of similarities are presented
for each pair of words, including semantic and syntactic
relations {Fellbaum 2010). Then, (2) and (3) provide close
numerical vectors in the Euclidean space to present words
with similar semantics and syntactics. Moreover, (4) focuses
on ordinal data and penalizes the misordering embeddings,

both structured or unstructured, where the weight wﬂ‘?uzuﬁ
measures the probability of misordering embeddings in terms
of the L;-Euclidean distance for an ordered triple wy, i3, 13
(Badoiu et al. 2008). Multiple-words Word2Vec embedding (5)
uses the information on the interaction between (s, ..., 5 _,)

and s,,, where wf,.j] u, Presents the frequency of word s,
given previous words (s,,...,5,, ), estimated from the dth
unannotated text corpus. The loss function in (5) is actually
the multinomial likelihood or the Kullback-Leibler loss on the
probability of 5, |$,,.....5,, , induced by an inner product of
embeddings (Mikolov et al. 2013). Consequently, similar words
can be close in terms of the inner product of the estimated

embeddings.

2.2. Transfer Embedding Loss

Many U-embedding losses do not have analytic expressions,
particularly Node2Vec (Grover and Leskovec 2016), which
explores the neighborhood structure based on random walks.
On the other hand, some embeddings are pre-trained by transfer
learning from large unannotated data, specifically, Word2Vec-
GoogleNews, and Global Vectors for Word Representation GloVe
(Pennington, Socher, and Manning 2014). One way to incorpo-
rate these embeddings is constructing a transfer embedding
loss to identify a sufficient learning-adaptive embedding in
a neighborhood of a pre-trained embedding. In particular, a
transfer embedding loss U(X') can be ZL":', diXi5,), fh{sp}},
where X" denotes a pre-trained embedding and d(X (s, ), X'(s.))
is a certain metric measuring the discrepancy between ' {su}
a_nd.-'l:’{s ), for instance, d{.X(s,). .J(.’{s 1= |X(s,) —J;’{s ;'|||‘1
As demonstrated in the numerical result of Section 6.2, a
transfer embedding loss yields a good prediction accuracy in
sentiment analysis.
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2.3. Proposed Framework

This subsection proposes a framework of embedding learn-
ing to identify a sufficient learning-adaptive embedding while
integrating training data with large external unannotated data
through regularization.

For a given U-embedding loss, it is natural to ask if there is
an embedding X" that is sufficient for predicting ¥ while being
the most efficient in terms of the U-embedding loss. This leads
to the definition of U-minimal sufficiency.

Definition 2 (U-minimal sufficient embedding). A sufficient
learning-adaptive embedding /X is U-minimal if it minimizes
an [J-embedding loss U(X") over all sufficient embeddings, or,

At e

argmin Ui

sufficient embedding &

Definition 2 says that A* is a most efficient embedding
that minimizes the U-embedding loss U(X) among all
sufficlent embeddings. Denote C* = U(X™*), then equivalently,
by Lemma 1, X* minimizes the corresponding learning
loss subject to the embedding constraint, that is, A* ¢
argmin y. iy y)<c> Ming E(L(f(X($)). Y)). Since the value of
C* is unknown, we replace it by a tuning parameter C to be
estimated by cross-validation as described in Section 6, which is
a manner similar to Tibshirani (1996), Mazumder, Hastie, and
Tibshirani (2010), and Hastie, Friedman, and Tibshirani (2009).
Then an embedding learner seeks (f, A') such that

min E(L{f(X©),Y)) subjto U(X)=C (6)
Lemma 2. Let f* = argming E(L(f(AX™*(8)), Y)), then (£*, X*)
is a minimizer of (6) for C = C*, and E(L{f*(X*(5)).Y)) =
ming E(L(g(5), Y)).

Lemma 2 says that (6) is able to recover a U-minimal suffi-
cient embedding A'™* defined in Definition 2.

In light of the foregoing discussion, we propose an empirical
emhedding learning cost function for (8} to integrate training

data {s',)'}7_, with large external data summarized by U(X):
[ ! Z V(F(X(H).y) + A(F) subjto U(X) = C,

=1

(@)

where V is a surrogate loss of L for the computation purpose,
for example, in classification, V{f(X (), y) = (1 — yf(X(s)) N
(Cortes and Vapnik 1995), V{(f (X (s)), y) = log (yf (X (s))/(1 —
¥(X())) (Zhu and Hastie 2002), and V(f(X()),y) =
min(l, (1 — pf(A'(s)))y) (Shen et al. 2003) with z, denoting
the nonnegative part of z, are the hinge, logistic and -loss;
in regression, V(f(X(s)Ly) = (¥ —f(:‘t’{s}]}z is the Ls-
loss. Here [{f) s a nonnegative regularizer for f such as the
inverse of the separation margin (Cortes and Vapnik 1995),
% = 0is a tuning parameter controlling the trade-off between
learning and regularization of f, and F is a class of candidate
functions.

3. Theory

This section develops an asymptotic theory to quantify the
learning accuracy of an embedding learner, as measured by
learning regret e(f) = E(L(f(X'(5)). 1*1 - L{f:i;.l" *(8)).Y)) =
0, where # = (f,X). In addition, # = (f, f} denotes a
minimizer of (7), and #* = (f*.X*) denotes the optimal
learning function as well as the optimal embedding.

Let ey (8) = E(V({(X(5),Y) — V(f*(X*(5),Y)) be the
learning regret under the surrogate loss V. # = (f, X)) be any
approximation of 8*, where f € F, X € D¢ = {X A =
C, sup,.c5 [[X(8) e = B}, and B is a constant such that B =
sup,. g [|X*(5)]| a0y a5 f* may not belong to the class of candidate
functions F in (7). Then the corresponding approximation
error is defined as u2 = ey (#). One typical example is, ¥ = X*
when C = C*,and thus f = argmin;eFE[VLf{X{S}}, Y). Note
that the approximation error bound for v2 has been studied
in Niyogl and Girosi (1996) and Yarotsky (2017). It is sensible
to assume that sup, g ||f (5)|ss = B as an embedding is
typically finite in practice. The following technical conditions
are assumed.

Assumption Al (Conversion). There exist constants & > 0 and
£1 = 0 such that for any small € = 0,

e(f) = et
feF. X eDoey ()=

Assumption A2 (Variance). There exist constants 1 = x = 0
and ¢z = 0 such that forany e = 0,

sup rvif) < cae¥,

{feF. A eDoevii)=e)
= var (V{f(X(SN. ¥) — V(F*(A* (S, Y)).

Assumption A3 (Complexity). For some constants ¢; = 0; j =
3,4, 5, there exists €, = 0 such that

where ry ()

sup ey 1) = an'2, pleyr)

r=1

Ci'rzt""‘"

:f H]“[u,‘.«’{r}]du,.-’{, (8)

&5
where ¢ = min(e2 + AJ(r/2 — 1),1), H(u, V(r)) is the L-
bracketing metric entropy H: or the L-bracketing metric
entropy Hag, and V(r) = |V(f(X(s)).y) — V(f (Jc’ (s).y) -
f e FJ) < IrUX) < C}, where ] = max(J(f), 1).

Assumption Al quantifies the relation between e(#) and
ey (#) to establish convergence of the learning regret of a global
minimizer # of (7). Assumption A2 characterizes the degree
of smoothness in terms of the mean and variance of V to
quantify the behavior of the resultant empirical processes. Both
the assumptions are widely used in the literature and can be
directly verified with many popular choices of V, including the
yr-loss with g = 1 and ¥ = 1 (Shen et al. 2003) and the
hinge loss with ¢ = 1/2 and ¥ = 1 (Shen and Wang 2007).
Assumption A3 measures the complexity of (f, X') with f £ F
and X e [& : U(A) = C}. Consequently, the [T-embedding
loss U{.X) incorporates the information of unannotated data to
reduce the complexity of the embedding space by tuning C.



Thearem 1. Undm* Assumptions A1-A3,if C = U{AX*) in (7),
and # = [f .-'t’} is a global minimizer of (7). then there exist
nonnegative constants cs—cg such that

P(e(ﬁ} > cedit) < crexp (— can(i))* ™), (9)

provided that A=' = 257% and 82 = min(e2 + v, 1).
Therefore, e(f) = Op(53") when n(1])>" is bounded away
from zero.

Waorthy of note is that the learning regret e(6) is governed by
the approximation error v and the estimation error determined
by €. from the metric entropy equation in (8). Clearly, the
learning regret is governed by J, V, U, and C. In particular,
the surrogate loss V' determines the degrees of smoothness p
and x in Assumptions Al and A2, for example, p = x = 1
in regression (Shen and Wang 2007); ¢ = land 0 = & = 1
when L{#.y) = I(7y < 0) and V(§y) = min((1 — )4, 1)
in classification and ¥ = 1 under the low-noise assumption
{Shen and Wong 1994; Shen et al. 2003). The estimation error
€2 increases but the approximation error v2 decreases when F
becomes larger. As illustrated by Corollary 2, the best learning
regret in the nonlinear deep network case can be obtained by
striking an optimal trade-off between €2 and v in (12). Finally,
the U-embedding loss and the tuning parameter C restrict the
embedding space D, which in turn impacts €. This aspect is
illustrated by Corollaries 1 and 2.

4. Graph Embedding Classification

This section applies the embedding learning framework (6) to
binary classification with unstructured training data (s, y'}7_|
where ¥ € {—1,1] is a label. The unstructured data is charac-
terized by a graph § = (&, W), describing the pairwise (two-
way) relations among the unstructured data elements, where
W= {W{d}'}dﬂ cand W@ = (i) c RISI*IS] 455 hyperlink
tensor obtahed fmm external data or prior knowledge, whose
the (u, v)th element wf,‘f,} is a d-source weight assigned to undi-
rected/directed hyperlink from s, to s,.

MNext, we analyze an U-embedding loss in a form of U{X') =
LyD  Tr(XQXT), where X = (X(s1).....X(58)) €
EP=I€l 5 an embedding matrix of X, and Tr(-) is the trace
of a matrix. This includes, but is not limited to LLE in (2)
with Q9 = (Iis — widyT (Iis; — W) and Laplacian
eigenmaps when -‘.'Qg = T — wid) j5 the graph Laplacian

and T is a diagonal matrix with Tf = E Ww} Let Q =

B, Q¥ and its eigendecomposition is Q = PAPT, where
A = diagloy,02,.. .. o5)) Is a diagonal matrix with eigenvalues
of Qg = a3 =+« = &5)), and P is an orthogonal matrix
consisting of the corresponding eigenvector vectors.
By (7}, the cost function of an embedding learner for graph
embedding classification is
i
- -1 .
fél};l} n g V(f{ﬂc’ts ‘_I],)")

Iy
+ 3J(f) subjto %meq“ﬂxr} =C. (10

d=1
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Solving (10) yields an estimated (f,;f ). Next we make a
technical assumption for (10).

Assumption B. Assume that the surrogate loss V(f, y) is a mar-
gin loss in that V({f,y) = Viz) with z = »f, where V(z) is
Lipschitz-continuous in z.

Assumption B is a continuity condition, which is met by most
surrogate losses, such as the hinge loss V(3. %) = (1 — y¥). for
support vector machines (SVM) (Cortes and Vapnik 1995) and
r-loss V(#, ¥) = min(1, (1 — y¥) ) for yr-learning (Shen et al.
2003). Subsequently, the classification regret of an embedding
learner is given in Corollaries 1 and 2,

In linear classification, let (f*, A'*) be a minimizer of (6) with
L(G.y) = I(yy = 0). Suppose f(x) = f*(x) = x"B* € F =
fx) = B'x : B € B}, and X = A*, wherep is the
dimension of X" (s). Moreover, let J(f) = ||| in (10) and
] = max(||8*||3. 1). In this case, the approximation error v?
is zero, when C = C* and p = p*,

Corollary 1 (Linear classification). Under Assumptions A1-A2
and B, for a global minimizer # of (10), e(#) = DP{S:‘”} with

(K* + 1)p HJP_TU + P Plloedy 72
( log ( ) an
H (K* +1)p
provided that K* = ||k : o < 4pr||P||§D{ﬁ'E-]?]1‘_“H is the
effective dimension of the underlying problem, C = U{X™),

P = P 1Pl and ||P]|; are the infinity-norm and 1-norm of
matrix P, and O,(-) denotes stochastic ordering (Vapnik 1998).

ﬁiz

In nonlinear classification, we consider a multi-layer neural
network with a rectified linear unit (RellJ) activation function
(Glorot, Bordes, and Bengio 2011). Tn this situation, we approx-
imate the optimal learning function and embedding #* =
(FHA. X" by = (f.X), where ¥ = X* € DewithC =
s f = argming_ [If — Fllogs | - lag is the supremum norm,
and F = [fu(x) = Amfr—1 + by with (£ = o (A1 +

b)) Ml By = 52 Ay € Rhm—i¥b b e B o = 1,... M}
is the space of neural network functions, M is the number of
layers, h,y, is the number of nodes in the mth la);er with iy =
and bar = 1, 0(zm) = (@ (Zm1)s- . o T (Zmn, ) | and aiz) isa
RelU activation function.

Assume that the optimal learning function f* belongs to
a Sobolev space WZL[—B, BJF (Yarotsky 2017), where B is
previously defined with sup,_g || X (s)l.c = B. Let J(f) =
Y (IAmly + bml) in (10), and Jy = max(/(f), 1).
Denote by @y = (A bm}I:f: , the collection of all parameters
of the nearal network and |®y| = EiL, (Fa— 1l + Ry ) 18 the
total number of parameters of the neural network.

Corollary 2 (Nonlinear classification via deep ReLU networks).
Under Assumptions Al-A2 and B, for a global minimizer # of
(10), e(8) = Oy (52") with 82 = €2 4 v? and

* 7. .42M 1
2 (I9N|+K o (u{M+ I[Pl 1 (| Plloc (2] ag) ))!—
. i M(|®@x| + K*p)

1 _m
vl = maxlm, @] 7 log( (12)

n }]
M(@y| + Ky’ 1
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provided that K* = ||k : or < 2CIPI5(2Tu/M)*™
() = . C = Cand p = p°.

In (11) and (12}, the optimal C with the constraint C =
Uix*) is C* = U(X™*), since a large value of C increases the
complexity of the embedding space D as well as the effective
dimension K* in the rates, while the optimal value of the embed-
ding dimension p is p = p*. In practice, C* and p* can be
estimated by cross-validation as discussed in Section 6. For deep
neural network, the depth M and the total number of parameters
|©y| are optimized to minimize &2, which balances the trade-
off between v2 and €2, depending on p*, C*, and the eigenvalues
and eigenvectors of (.

Corollaries 1 and 2 suggest that the rates in (11) and
(12) are proportional to the value of K*, which characterizes
the impact of the U-embedding loss on the performance of
embedding learning, Note that K™ usually decreases as (n})ﬂ,
increases and as | Pllo or U{A™) decreases, leading to faster
rates in (11) and (12). Interestingly, when K* is a constant
order, the rate becomes a standard one as if the optimal
numerical embedding were known in advance. For example,
in the linear case, if there exists a constant K independent of
n such that og /||P|la = G{C“p‘*{n;’p‘*}ﬁ, the rate becomes

GF{[% lag{%}] 55}, which is the squared parametric rate when

p = land ¥ = 1 as in yr-learning (Shen et al. 2003) and is the
parametric rate when g = 1/2 and & = 1 as in VM (Shen and
Wang 2007). For deep neural network classification, the rate

is Op((n* log* n) T+ ), which agrees with the generalization
error rate of a deep network classifier (Schmidt-Hieber 2017;
Xu and Wang 2018), where ¢ = .P‘W;Pﬁ? £ [0,1), when

- 2
o /IPloe = O(C*@u/M™ (satrzsy) ™) with M ~
log(n) and |@y| ~ n*. When p = & = 1, the rate reduces
to n wT log® n. While we conjecture that this rate is nearly
optimal, we are not aware of any lower bound for (12), except

that Tsybakov (2004) gives a lower bound of order n =+"-!
for estimation of classification sets of smooth epigraphs with a
smaller metric entropy.

5. Scalable Computation for Graph Embedding

This section develops a scalable computing scheme to solve (10}
for linear embedding classification and nonlinear embedding
classification.

5.1. Linear Classification

In linear embedding classification, we consider (10) with
FlX(s)) = BTX(5) by a blockwise coordinate descent (BCD;
Chen et al. 2012). The scheme relaxes bi-convex minimization
(10) into a sequence of convex subproblems, where each
subproblem can be efficiently solved. Specifically, (10) can be
written as

. " - .
min ;v{fﬁ X(s))

+AIBI swbjto STrXQXT)=C. (13)

Next, we consider learning and embedding blocks £ and X
separately, and use V{z) = (1 — z), for illustration. Then (13)
is solved by alternating two convex subproblems.

5.1.1. Learning Block

Given X, p Is updated by solving a linear SV M by Liblinear (Fan
et al. 2008):

]
min n' Y& + Aa[|B[l3, subjto

£ i=1
1-yB X1 =& &=0. (14)
5.1.2. Embedding Block
Given 8, X is updated by solving
min n! g (1—y 0y @ p) vec(X)),, subjto
%vec{X}T{Q ® I vec(X) = C, (15)

where @ is the Kronecker product and vec(X) is the column-
vectorization of X. Note that (15) is convex in vec(X). Then
we work with an equivalent regularization form of (15) with
regularization parameter A; corresponding to C:

min n” g&: + %v&c{X}T[Q ® Ip)vec(X),
subjto 1 —y'(1y®B) vecX) =& E=0i=1....m,
(16)

which involves a | 5] x p dimensional vector vec(X). By equiva-
lence tuning C is equivalent to that of &; (Rockafellar and Wets
2011). Therefore, we directly tune A; without converting back
to C in computation. Finally, to alleviate the potential issue of
memory, we consider the dual form of (16)

1813 v+ -
min S 3 ) ey (1,Q7'1,)
i=l j=1
1

mn
— E o subjto 0 < o; = —,
i

(17)
=1

which is a box-constrained quadratic problem and solved by

a standard coordinate descent algorithm (Fan et al. 2008).

Then the solution of vec(X) In (17) has the form vec(X) =

3_]—2 Yo e (Q @ B), where [eg]2, is a solution of (17).
The foregoing computational scheme is summarized in Algo-

rithm 1, where the final solution is denoted as ( 8, X). Then, each

T e
unstructured data s is classified by sign(g ().

Algorithm 1 (BCD with exact update).

Step 1 (Initialization). Initialize vec(X) and specify a toler-
ance level.

Step 2 (Learning-block). Update # by solving (14) with fixed
vec(X).

Step 3 (Embedding-block). Update vec(X) by solving (e;)_,
in (17)with fixed g.

Step 4 (Termination). Iterate Steps 2 and 3 until the decre-
ment of the cost function is less than the tolerance level.
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hidden layers

Figure 1. Architecture of nonlinear deep neural netwaork embedding classification,

Note that (14) and (17) are strictly convex minimization,
although (13) is nonconvex. We define a point (8% A7) to be
a stationary point of a cost function ly in (13) if

and X" = argmin [y (8" X).

B = argmin Iy (8, X",
g AU =C

The numerical convergence properties of Algorithm 1 can be
established as follows.

Lemma 3 (Convergence of Algorithm 1). A solution {ﬂ x ) of
Algorithm 1 is a stationary point of (13).1fly; is regular at (8. %),
then the solution is a local minimizer.

In the literature of scalable computing, it has become prevail-
ing to consider blockwise coordinate gradient descent method
(BCGD), which only updates parameters along their gradients
for one step. Specifically, the exact update in Steps 2 and 3 of
Algorithm 1 can be replaced by an inexact update for scalability,
which is summarized in Algorithm 1a.

Algorithm 1a (BCD with inexact update).

Step 1 (Initialization). Initialize X and @, and specify a toler-
ance level.

Step 2 (Learning-block). Update g along its gradient,

]
Bl+D = g _ =1y 3" iy
i=1
(@D ENTER) X —2r a8,
where ¥ is a step size of the algorithm.
Step 3 (Embedding-block). Update X along its gradient,

i
i+ _ xlB) n—l},{k‘az};w
=1

(VB g% ) g1 — y®ax®a.

Step 4 (Termination). Iterate Steps 2 and 3 until the decre-
ment of the cost function is less than the tolerance level.

(18)

The key difference between Algorithms 1 and 1a lies in the
update of # and X along their gradients for one step based on
the idea of BCGD. Yet, convergence properties of BCGD remain

largely unknown for nonconvex minimization, although it
delivers superior performance in some empirical studies (Udell
et al. 2016). Moreover, the update of # and X can be approxi-
mately solved by, for example, the blockwise coordinate proxi-
mal gradient method (Udell et al. 2016). Finally, classical gradi-
ent descent method is also applicable to update g and X simul-
taneously, which leads to a local minimum (Lee et al. 2016).

5.2. Deep Neural Network Classification

This subsection implements a deep neural network classifier
for solving (10) when f(x) is a neural net. Let £, (X (s')) =
O (Amfm 1 (X (D) + bp) € BRI, (X (7)) = X() e RP,
Ay € Rhim-ixhm b e Rhw; m = 1,..., M, M is the number of
layers, h,y, is the number of nodes in the mth layer with by = p
and kpy = 1, and o (z) Is a BelU. Other choices of oiz) are
possible, including the sigmoid and tanh functions. The neural
network architecture is displayed in Figure 1. From (10), we solve

min n IZ V(Y (s)))

M
+ 43 (I AmllLy + lIbwll1) subjto %Tr{mf:r <C
m=1
(19)
For (19), we employ the method of projected gradient
descent, and integrate it into the classical neural network back-
propagation algorithm (Linnainmaa 1976) for classification.
Specifically, we employ a projected gradient decent method
together with an analytic update of gradients, where the
gradients for learning and embedding parameters are given
subsequently.

5.2.1. Gradients for Learning

Let Vi = V(y'fl,), Va = 3L, Vi 2}, = Apfl_| + by, and
fi = Em(X (s')). The back-propagation uf the gradient of Oy is
computed as

av, -

E:_ _:'Z

Ve 1" .
Py m=—z 8T, (20
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where 8 = (¥'Veur Vi) 0 0/ (2y), 8, = (A5 418,41) 0020
m=M-—1,...,1,and o is the Hadamard product for matrices.

5.2.2. Gradients for Embedding
The gradient of V,, with respect to X is,

1o avi 1 aviaz]

1 ; | .
= A,T{; > 8n s Y d)=alal
i:5r=$||5|
The detail of projected gradient descent is summarized as
follows.

Algorithm 2 (BGD of deep neural network classification):

Step 1 (Initialization): Initialize X'’ and specify the learning
loss V{-), an U-embedding loss U(-) and a number of training
iterations.

Step 2 (Gradient update): Update the neural network param-
eters ®y and embedding X by (23) and (22) via the back-
propagation as follows.

Feed-forward: Compute £} = X (s), 27, = A1 | + by,
andfl =ao(zl si=1,...,nandm=1,..., M.

Back-propagation: Compute 8}, = 'V Vi o o' ().
By =(Ag 8 ) oo’ G i=1...mm=M—1,...,1L

Projected gradient descent: Based on (21), X in k-
iteration is updated as

ZHD — P (X0 — AT AL

—  amgmin  [Z—- X% —ATAL[Z
& (202 T ) =20)
XD — xR },Ik}(sz-l- 1 _ Xfﬂ}i (22)

where »™® is a step size determined by Armijo’s line search
as shown in the Appendix, Pp,. is the projection operator to
De, Z® is the projection for X — AT A1 into the convex set
Dy. Then we consider an equivalent regularization form of (22)
with a regularization parameter A; corresponding to C, where
analytic expression can be computed. Then X and ©y in k-
iteration are updated as

A
Zk+D argmin (| Z — x® A-lr&,',"f + ?ITT(ZQZT}}
i
= (X® — Af ADT +1,Q7,

k) n
k+1) k ¥ i k41
bl :bEﬂJ—TE 8l Al
i=1

k. .
—A®_¥Y Yot m = MM 1.1,
"
=1

XD x4 gkt _ xhyy (23)

where (I;5) + 12Q) ™! is pre-computed before the iterations.
Step 3 (Termination): lterate Step 2 for the training iterations.

Note that the updates in (23) can be computed by a stochastic
gradient scheme (Gelfand and Mitter 1991).

Lemma 4 (Convergence of Algorithm 2). A solution (@N, E} of
Algorithm 2 is a local minimizer of (13).

6. Connections With Other Methods

An embedding learner in (7) has its distinct characteristics,
although it may appear remotely related to supervised dimen-
sion reduction (Rish et al. 2008; Guo 2009), and multi-task
learning in reinforcement learning (de Bruin et al. 2018). Tt dif-
fers from the aforementioned methods in that it is designed for
unstructured data and leverages external unannotated data to
reduce the estimation error through the embedding constraint,
which collaboratively links the learning loss L(f{X'(5)).)) to
U,

Next, we examine two methods, a two-stage method and
the proposed method without the embedding loss constraint,
particularly for unstructured data.

6.1. Two-Stage Method
A two-stage method uses an embedding x:

L
-1 Fod T
min g (VEEENY)) +210), ¥ = argmin U(X),
(24)
possibly with some additional standardization constraints to
eliminate certain trivial embeddings, for example, ﬁ ZLS:ll
A‘J:’*{suj = 1and ztﬂl Xj(sy) = 0;j = 1,...,p, in the case of
LLE. In short, (24) first produces X from U (X') at the first stage,
and then proceeds with learning f given X’ in the second stage.
Critically, X may not be sufficient or unrelated to the outcome
of learning, and hence that the learning accuracy of (24) may be
governed primarily by the approximation error of using x.

6.1.1. One-Hot Encader

One-hot encoder (Weinberger et al. 2009) is a two-stage
method, which maps sto X'(s) = (I(s = 51),...,1{s = 5|S|})T
and then solves

min_ n~" Z (V{ﬁTX{s"].y'-]) + AI(B),
=1

FeRIS|

X(s) = (I = 1), .., I8 = 55)) (25)
which treats each individual 5 £ S separately and ignores inter-
actions among si,. .., 55 completely. As shown in Lemma 5,
the one-hot encoder is more preferable among all two-stage
methods in terms of prediction.

To understand the impact of the constraint U{X) = Cin(7),
we consider (7) without the embedding constraint.

6.2. Embedding Learner Without Constraint
It solves the following problem:

L

min 1" Y V(X)) ) + A,

feF.X (26)

=

which can be thought of as adding an embedding layer of a
neural network on the top of one-hot encoder.



Lemma 5 gives the adaptiveness of a two-stage method based
on X.

Lemma 5. Consider linear regressiﬂn in (24), where V(f (X' (s)),

= (f(X(s)) — y}z and f(x) = ﬂ x. Let P be the distribution
of (5,Y), g = (g(s1).....2(55)) T and g(s) = E(Y|S = s) be
the optimal prediction fum:tlon Then, forany P € P = {P :
lgllz < 1}

- _ aT iy 2 -

Igé." E(gs) —g' X(®) =0, (27)

1f and only if the rank of the embedding matrix X is |§], where
= {X{slj X{s|,g|}} isap x |5| matrix.

As suggested by Lemma 5, for an embedding X, (27) isa
minimal requirement, If it is violated, then /X incurs a bias, that
is, there exists a (5, ¥) cannot be approximated by a linear func-
tion of X, and the consistency may not hold. On this ground,
the approximation error is zero implies that the dimension of
X is no less than |&), or p = |S], which yields a slow rate
of convergence in the L;-loss due to the high dimensionality.
On the other hand, if p < |&], the approximation error of the
embedding in the first stage is always bounded away from zero
regardless of the sample size, leading to inconsistent estimation.
In other words, p = |&| yields the best convergence rate
for a two-stage method, one particular example is the one-hot

encoder, which has a rate Op [{@}*f_'] for linear regression or
classification.

As illustrated in Table 1, the embedding learner and one-hot
encoder are more preferred than the embedding learner without
the embedding loss constraint, implying that the embedding
constraint (A"} = C is indeed critical for the embedding
learner because it helps reduce the estimation complexity. Addi-
tionally, the embedding learner is more preferable than the one-
hot encoder, when the effective dimension K* defined in (1)
is not too large. Furthermore, the dimension of U7-minimal
sufficient embedding X' is usually smaller than ||, yielding a
more compact embedding than the one-hot encoder.

7. Numerical Examples

This section examines the numerical performance of an embed-
ding learner in two applications, grammatical classification in
Wikipedia network® (Grover and Leskovec 2016) and sentiment
analysis of movie reviews! (Pang and Lee 2005). In particular,
we compare an embedding learner in (10) against a two-stage
method in (24) based on four different embedding methods,
LLE, Laplacian eigenmaps (LAE), Doc2Vec, and Word2Vec, in
linear and nonlinear classification. Moreover, tuning parameters
(A1, Az) and p in Algorithms 1 and 5.2.2 can be optimized by
cross-validation on a validation set, as in Tibshirani (1998),
Mazumder, Hastie, and Tibshirani {2010}, and Hastie, Fried-
man, and Tibshirani (2009). This is achieved by minimizing the
misclassification error on a validation set with respect to the
tuning parameters.

2httpss¥snap.stanford edu node2vec #datasets
Ahttpsy www.cs.cornell.edu/ people’ pabod movie-review- data’
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7.1. Grammatical Classification in Wikipedia Network

A co-occurrence network is commonly used in representational
learning to provide a graphic visualization of potential rela-
tions between interacting units such as organizations, concepts,
organisms like bacteria, and other entities. One of its applica-
tions is to predict the outcome of one unit by utilizing its co-
occurrence relations between other units characterized by the
network, for example, automatic grammatical classification of
new words or phrases through word relations. In this situa-
tion, co-occurrence means an above-chance frequency of occur-
rence of two words or phrases, indicating semantic proximity
or idiomatic expressions. The data consist of a graph with 4777
nodes and 184,812 edges, where each node corresponds to one
word or phrase and an edge between two nodes represents their
co-occurrence relations. The label ¥ is defined by if a word
is tagged as a specific grammatical category by a benchmark
tagger, Stanford POS-Tagger (Toutanova et al. 2003).

In this application, we examine the performance for embed-
ding methods, based on linear SVM r:lassiﬁcatinn with the hinge
loss V(f.3) = V() = (1 — yf)s. f(x) = B x, and the U-
embedding loss as LLE or LAE. For two-stage methods, LLE
produces numerical embeddings as the bottom p + 1 eigenvec-
torsof Q = (I g — w1 |5 — W) except the eigenvectors cor-
responding to the smallest elgenvalue. LAE provides numerical
embeddings as the partial eigenvalue decomposition on graph
Laplacian of W. Here W = (w,,)  RISI*I5] is piven and wy,
is the frequency of occurrence of s, and s,.

For implementation, we code Algorithms 1 and 1a for an
embedding learner (10) and the two-stage method (24) in
Python and utilize a Python package for machine learning
scikit-learn.’

To evaluate the performance of each method, we randomly
split the dataset into three sets of training, validation, and testing
with respect to the nodes for a partition rate: 50%, 20%, and 30%.
Then we minimize the misclassification error on the validation
set, followed by an evaluation of a classifier on the test set. For
an embedding learner, we employ a grid search to estimate two
tuning parameters i) and Az in (16) of Algorithms 1 and la,
where 60 grid points of 4; j = 1,2 are chosen as {100 —31/1%,
v = 1,3,...,61}. For the two-stage method, X is tuned through
a grid search. Finally, the average test errors of the two methods
based on 50 random replications are reported in Table 2 for p =
5, 10, 30, 100, 200,

As suggested by Table 2, blockwise coordinate descent with
an inexact update (1IBCD) in Algorithm la and gradient descent
(GD) have similar performance, which slightly outperform the
blockwise coordinate descent with an exact update (BCD) in
Algorithm 1. Moreover, the embedding learner outperforms
the two-stage method in all cases. For a fixed p, the largest
amount of improvement on the two-stage method is (0.456 —
0.195)/0.456 = 57.2% when p = 10 for LLE, and (0.462 —
0.193)/0.462 = 58.2% for LAE. For the best performance
across p = 5, 10,50, 100, 200, the amount of improvement
becomes (0.434 — 0.195)/0.434 = 55.1% for LLE, and (0.378 —
0.193)/0.378 = 48.9% for LAE. The best performance of the
proposed method is achieved at p = 10, which is either better or

S hitps¥ scikit-fearn.org/ stable’
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Table 2. Test errors (standard errors in parentheses) of the embedding learner in (10} and the two-stage method (24) for SVM dassification of the Wikipedia network data

hased on 50 random partitions, denoted by EL and two-stage.

p=5 p=10 p=50 p=100 =200

EL (BCD): SVM+LLE 0.198{0.002) 0.195(0.002) 0L 198(0.002) 02070002} 0.202(0.002)
EL (iBCD): SUM+LLE 0.197{0.002) 0.195(0.002) 0.197{0.002) 0.197(0.003) 0.195(0.002)
EL {GD): SVM-+LLE 0.197(0.002) 0.195(0.002) 0.197{0.002) 0.197{0.002) 0.195(0.002)
Two-stage: SVM+LLE 0.453(0.003) 0.456(0.003) 0.442(0.002) 0.434(0.003) 0.435(0.002)
EL (BCD: SVM-+LAE O.198{0.001) 01990001} 0.197(0.002) 0.196(0.001) 0.196(0.002)
EL (iBCD): SYM+LAE 0.197{0.001) 0.193(0.002) 0.196(0.002) 0.197(0.003) 0.197(0.002)
EL {GOY: SVM+LAE Q.1970.002) 01970002} 0.196(0.002) 0.195(0.002) 0.195(0.002)
Two-stage: SYM+LAE 0.387(0.002) 0.378(0.013) 0.465(0.0:04) (.46200.004) 0.445(0.002)

MOTE: Here locally liner embedding loss (LLE) and Laplacian eigenmaps (LAE) are employed, and EL is implementad by gradient descent (GD), and blockwise coondinate
descent with an exact update (BCD) in Algorithm 1 and with inexact update BCD) in Algorithm 1a. The best performer is marked in bold.

U-LLE = 0.721

U-emebdding learmer = 32 7(.136)
Ll an 50

ernbed_|oss

Figure 2. Bowplot of the U-embedding loss (LLE) values for an embedding estimated by an embedding learer based on 50 random partitions {right) in grammatical

dlassification as well as those values for the two-stage method (LLE) as a reference.

comparable to that at p = 50, 100, 200. The amount of improve-
ment of the best performance of the embedding learner over that
the two-stage method that is tuned for p = 5, 10, 50, 100, 200 is
(0.456 — 0.195)/0.378 = 57.2% and (0.378 — 0.199)/0.378 =
47.4% for both LLE and LAE eigenmaps, respectively.

Moreover, as illustrated in Figure 2, although the U-
embedding loss (LLE) value for a two-stage method appears
much smaller than that for the embedding learner (proposed),
the two-stage method performs much worse in the learning
accuracy, as reported in Table 2. In other words, a minimizer
of an U-embedding loss does not necessarily render a good
embedding for a specific task of learning. By comparison, the
embedding learner not only produces a low-dimensional and
task-adaptive embedding but also delivers a higher prediction
accuracy than its two-stage competitor.

7.2, Sentiment Analysis in Movie Reviews

Sentiment analysis identifies sentiment from textual data toward
a specific event of interest. Now we examine the movie review
data, which is available at polarity dataset v2.0.° This data
consist of 1000 positive and 1000 negative processed movie text
reviews, serving as a positive or negative label for sentiment,
where each text review maybe comprised of hundreds of words
and phrases. For this data, we compare the neural network
embedding classifier with its two-stage counterpart, based
on U-embedding losses, including LLE, LAE, and a transfer

embedding based on GoogleNews.” Moreover, we also scrutinize
two-stage methods based on six embeddings LLE, LAE,
Bag-of-words, Doc2Vec, Word2Ver, and embeddings built on
GoogleNews.

To construct embeddings, we prepm-:r:ss text reviews by
removing stop words, and use Gensim® to construct embeddings
X for Doc2Vec, Word2Vec, and use pre-trained embeddings
GoogleNews based on a Google news database of about 100 bil-
lion words. For Word2Vec and GoogleNews, text review embed-
dings are generated by averaging their assoclated numerical
vectors of sentiment words Identified in Hu and Liu (2004).
For Bag-of-words, embeddings are generated by the number of
occurrences of each word in the given text review against a
domain dictionary, and it becomes an embedding learner with
constraint when M = 1,

For this data, the weight matrix W is implicit, and hence
that we obtain a rough estimate based on Figure 3, that is we
set wy, = 1 if the number of positive words exceeds that of
negative words by 12 or the number of negative words exceeds
that of positive words by 4 in a text, where positive words
and negative words are identified by Hu and Liu (2004), and
assigning 0, otherwise. Next, LLE and LAE are produced based
on the weight W, and the transfer embedding loss U(X) =

lell 1X (50 — Xisl? 7 is used to incorporate the informa-
tion about pre-trained embedding, where X is obtained from
GoogleNews when p = 300.

S hitpe wwwcs.comell edud people/pabo/movie-review-data/ poldata.
README. 2.0, bt

" hitps= code.google.com/ archives pfword2vec!
B hitpsy/ radimrehurek.comd gensim’
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Figure 3. Numbers of positive and negative words in labeled text reviews. Reviews tend to be negative when the number of negative words exceeds that of positive words
by 4, whereas it is the opposite when the number of positive words exceeds that of negative words by 12,

In this application, we construct a feed-forward neural net-
work of a fixed number of nodes per layer by = p.hy = -~
har_1 = 128, hyr = 1 and four different depths of hidden layer
M =0,1,2,4, where M = 0 indicates the network of no hidden
layers as a linear SVM. In what is to follow, we consider four
different embedding dimensions p = 20, 50, 100, 300 given that
the dimension of the pre-trained embedding generated from
GoogleNew is fixed at 300,

For implementation.” we code Algorithm 2 for the embed-
ding learner (10) and the two-stage method (24) as well as
Bag-of-words in TensorFlow,'” with 500 number of steps and a
learning rate decay as Adam. In this case, the learning loss is
the hinge loss, RelLU and linear the activation function for each
hidden layer and the output layer.

For evaluation, we randomly split the dataset into three sets
of training, validation, and testing for a partition ratio: 50%,
20%, and 30%, Then we minimize the misclassification error
on the validation set, followed by an evaluation of a classifier
on the test set. For the embedding learner, we fix A; = 0 with
no regularization and employ a grid search for the validation
set to estimate the optimal .z for Algorithm 2, where the grid is
set as {0.001,0.01,0.1, 1, 5,10, 15}. The average misclassification
errors of all methods are reported in Table 3.

As indicated in Table 3, the embedding learner based on LLE
performs among all the methads for p = 20, 50, 100, 300. In this
case, the amounts of improvement on its competitors two-stage
methods based on LLE, LAE, transfer embedding, Doc2Vec,
Word2Vec, and Bag-of-words are (0.407 — 0.188}/0.407 = 54%,
{0.329 — 0.188) /0.329 = 42.9%, (0.246 — 0.188)/0.246 = 24%,
(0,290 — 0.188),/0.290 = 35%, (0.257 — 0.188),/0.257 = 27%,
and (0,352 — 0.188)/0.352 = 47%. Moreover, the embedding

A simple demonstration for embedding learning is provided in Github
{hitps/ github.comy statmiben/embedding-learning).
O httpss wiww.lensorflow.ong’

learner outperforms its two-stage counterpart for all embedding
sizes p = 20, 50, 100, 300.

Tt is worth mentioning that the two-stage method based on
the Word2Vec-GoogleNews transfer embedding delivers higher
performance than its counterpart Word2Vec without using it
across all the cases. This suggests that unannotated data plays a
significant role, Overall, the embedding learner not only yields a
higher prediction accuracy for unstructured predictors but also
produces more compact and task-specific embeddings leading
to parsimonious function representations.

8. Conclusion and Summary

This article introduces an embedding learning framework
for unstructured data, which constructs a learning-specific
embedding from large external unannotated data. The proposed
method uses a concept of U-minimal sufficient learning-
adaptive embeddings and links a specific learning task to a class
of sufficient embeddings through a constraint defined by an
UUV-embedding loss. When applying the proposed embedding
learning framework to classification, we derive a graph embed-
ding classifier for unstructured data analysls. Numerically,
we design algorithms based on blockwise coordinate descent
and projected gradient descent for various implementations
including feed-forward neural networks. Theoretically, we
establish a learning theory to demonstrate that the proposed
embedding learner is advantageous to its two-stage counterpart
in terms of the learning accuracy. Moreover, we also show that
in linear regression the one-hot encoder is more preferable
among various embeddings in a two-stage method, yet its
dimension restriction hinders its prediction performance.
Although the advantage of the proposed embedding leaner over
its two-stage counterpart has been demonstrated empirically
and theoretically, further investigation may be necessary. In
particular, the issue of how to choose an optimal U-embedding
loss for a specific learning task deserves attention.
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Table 3. Test errors (standard errors in parentheses) of the embedding learner in (10) and the corresponding two-stage methods in (24) for deep SVM neural network
dlassification with a Rel Ll for the sentence polarity movie-review data, based on 50 random partitions.

Methed Embed-dim M=0 M=1 M=2 M=4
EL: SVM+LLE p =20 0.335(0.003) 0.306(0.005) 0.293(0.006) 0.341(0.008)
p =50 0.317(0.003) 0.270(0.004) 0.276(0.008) 0.219(0.006)
p =100 0.324(0.004) 0.266{0.005) 0.249(0.006) 0.331(0.004)
p = 300 0.20%0.003) 0.188{0.003) 0.215(0.004) 0.218(0.005)
EL: SVM+GoogleMews p =300 0.217(0.002) 0.216{0.002) 0.277(0.005) 0.226(0.005)
Two-stage: SWM+LLE p=20 0.505(0.003) 0.454(0.004) 0.439(0.018) 0.471(0015)
p =50 0.49%0.003) 047 7(0.004) 0.425(0.07) 0.451(0.017)
p =100 0.500{0.003) 0.466(0.008) 04706} 0.428(0.019)
p = 300 0.490{0.005) 0.450(0.012) 0.407(0.018) 0.416(0.017)
Two-stage: SVM+LAE p=20 0.503(0.001) 0.503(0.001) 0.449(0.005) 0.419(0.002)
p =50 0.502(0.001) 0.501(0.001) 0.376(0.001) 0.367(0.001)
p =100 0.504{0.001) 0.485(0.004) 0.353(0.001) 0.344(0.007)
p = 30( 0.504{0.007) 0.400(0.005) 0.329(0.001) 0.332(0.007)
Two-stage: 5VM-+GoogleMews (Socher et al. 2013) p = 300 0.265(0.013) 0.246{0.002) 0.2710002) 0.295(0.003)
Two-stage: SVM+DociVec (Le and Mikolov 2014) p=20 0.434(0.014) 0.356(0.005) 0.354(0.004) 0.365(0.004)
p =50 0.A412(0.017) 0.302(0.003) 0.331(0u003) 0.348(0.0035)
p =100 0.332(0.014) 0.290(0.004) 0.320(0.004) 0.353(0.004)
p = 300 0.310{0.009) 0.294(0.004) 0.343(0.005) 0.348(0.004)
Two-stage: SVM+Waord2Vec (Socher et al. 2013) p=20 049700100 0.338(0.004) 0.355(0.005) 0.367(0.005)
p =50 0.473(0.009) 0.304(0.005) 0.331(0u005) 0.338(0.005)
p =100 0420 0.008) 0.293(0.0:04) 0.316(0.004) 0.340(0.006)
p = 300 0.353(0.024) 0.257{0.005) 0.310(0.005) 0.344(0.004)
SVM4+Bag-of-words ,, . he I 5
SVMLLELN (M = 1) (Weinberger etal. 2009 p=|5] = 3799 0.352(0.004) 0.270(0.003) 0.386(0.003) 0.416(0.003)

MOTE: Here “EL"“ELM,"and “twao-stage” denate the embedding leamer, that without constraint, and the two-stage method. Sic embedding losses are considered, including
LLE, LAE, the transfer embedding utilizing GoogleNews, Doc2Ver (Le and Mikolov 2014), Word2¥er (Mikolov et al, 2013), and Bag-of-words (Weinberger et al. 2009). For
the neural network, the number of nodes per layer is 128 and the depth of the neural network is M = 0, 1, 2, 4. Note that the embedding value for GoogleNews is only
available. Moreover, the results for embedding learner with transfer embedding less on Doc2Vee (Le and Mikelov 2014) and Word2¥ee (Mikolov et al. 20713) are worse
thamn that on GoogleNews, and thus is omitted due to a space constraint. The best performance in each case is marked in bold.

Supplementary Materials

The supplementary materials provide proofs of theorems and Python codes
used in real data application.
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