
U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

Journal of Integrated Design and Process Science xx (2022) x–xx
DOI 10.3233/JID-220003
IOS Press

1

The vision of self-evolving computing1

systems2

Danny Weynsa,∗, Thomas Bäckb, Renè Vidalc, Xin Yaod and Ahmed Nabil Belbachire
3

aKatholieke Universiteit Leuven, Belgium and Linnaeus University, Sweden4

bLeiden University, The Netherlands and NORCE Norwegian Research Centre, Norway5

cJohns Hopkins University, USA and NORCE Norwegian Research Centre, Norway6

dUniversity of Birmingham, UK and Southern University of Science and Technology, China7

eNORCE Norwegian Research Centre, Norway8

Abstract. Computing systems are omnipresent; their sustainability has become crucial for our society. A key aspect of9

this sustainability is the ability of computing systems to cope with the continuous change they face, ranging from dynamic10

operating conditions, to changing goals, and technological progress. While we are able to engineer smart computing systems11

that autonomously deal with various types of changes, handling unanticipated changes requires system evolution, which12

remains in essence a human-centered process. This will eventually become unmanageable. To break through the status quo,13

we put forward an arguable opinion for the vision of self-evolving computing systems that are equipped with an evolutionary14

engine enabling them to evolve autonomously. Specifically, when a self-evolving computing system detects conditions outside15

its operational domain, such as an anomaly or a new goal, it activates an evolutionary engine that runs online experiments16

to determine how the system needs to evolve to deal with the changes, thereby evolving its architecture. During this process17

the engine can integrate new computing elements that are provided by computing warehouses. These computing elements18

provide specifications and procedures enabling their automatic integration. We motivate the need for self-evolving computing19

systems in light of the state of the art, outline a conceptual architecture of self-evolving computing systems, and illustrate the20

architecture for a future smart city mobility system that needs to evolve continuously with changing conditions. To conclude,21

we highlight key research challenges to realize the vision of self-evolving computing systems.
22

Keywords: Unanticipated change, sustainability, computing warehouses, self-adaptation, self-evolution23

1. Introduction23

Our society is going through a digitization process that penetrates virtually every aspect of our life,24

from health and industries, to transportation, public services, and entertainment. Consequently, we25

increasingly depend on the sustainability of computing systems. Yet, achieving this sustainability is26

challenging (Bernardo & Hillston, 2007; European-Commission, 2021; Lehman & Ramil, 2003) and27

spans manifold areas, from quality of service and software evolution to energy-awareness and software28

engineering processes. One key aspect to achieve sustainability of computing systems is managing the29

complexity that arises from the ever changing conditions these systems face. Such changes may or may30

not be anticipated when the system was built and include dynamics in the environment, new emerging31

goals,1 and the introduction of new technologies. We take this angle of change to sustainability of32

computing systems.33

∗Corresponding author: Danny Weyns, Katholieke Universiteit Leuven, Belgium and Linnaeus University, Sweden. Tel:
(+32)474-208251. E-mail: danny.weyns@kuleuven.be.

1We use goals and requirements interchangeably in this paper.

ISSN 1386-0291/$35.00 © 2022 – IOS Press. All rights reserved.

mailto:danny.weyns@kuleuven.be

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

2 D. Weyns et al. / The vision of self-evolving computing systems

Currently we can build smart computing systems that can deal with many tasks autonomously, adapt34

themselves or learn over time to deal with changes. Other tasks can be managed by system operators,35

for instance, perform predictive maintenance. However, current computing systems can only handle36

changes that were anticipated, that is, changes that occur within the operational domain for which the37

system has been built. Current smart computing systems cannot handle unanticipated changes, such as38

anomalies outside their operational domain, and the emerge of new goals or new technologies. Such39

changes require evolution of the computing system. Although significant progress has been made on40

automating the deployment and integration of new elements, software evolution remains in essence a41

human-driven activity.42

With the ever increasing complexity of computing systems and the continuous changes these sys-43

tems are subjected to, human-driven approaches will eventually become unmanageable (Andersson,44

Baresi, Ben como, de Lemos, Gorla, Inverardi, & Vogel, 2013; Baresi & Ghezzi, 2010; Bennett &45

Rajlich, 2000; Dearle, 2007; Reussner, Goedicke, Hasselbring, Vogel-Heuser, Keim, & Martin, 2019).46

The capacity to handle large amounts of data and the availability of efficient decision algorithms47

opens perspectives to major breakthroughs towards fully autonomous systems that operate in contin-48

uous changing environments (Det- Norske-Veritas, 2020; Weyns, Andersson, Caporuscio, Flammini,49

Kerren, & Löwe, 2022; Weyns, Bures, Calinescu, Craggs, Fitzgerald, Garlan, Nuseibeh, Pasquale,50

Rashid, Ruchkin, & Schmerl, 2021b). However, we currently lack fundamental knowledge to turn51

these long-standing challenges into reality.52

When comparing the capabilities of present-day computing systems with those of biological systems53

a few striking conclusions can be drawn. In contrast to computing systems, biological systems have54

a remarkable ability to deal with changes. For instance, insects have exceptionally fast reactions and55

can avoid dangerous situations or locate hidden food sources by swiftly adapting to their environment56

(Camazine, Deneubourg, Franks, Sneyd, Theraulas, & Bonabeau, 2003). They have also evolved57

dramatically, from one generation to the next, to accommodate changes over time in their habitat and58

the climate conditions.59

Inspired by the principles of biological systems, this paper puts forward an arguable opinion60

for the vision of self-evolving computing systems, i.e., computing systems that evolve themselves61

autonomously. Figure 1 illustrates how self-evolving computing systems differ from traditional comput-62

ing systems. A traditional computing system takes inputs from the environment and produces outputs63

in the environment, realizing the users’ goals (Jackson, 1997). To deal with changing conditions,64

such a system can be equipped with smart techniques, either internally (e.g., a learning algorithm) or65

externally via a feedback loop, enabling the system to self-adapt its configuration autonomously to66

deal with changes (Garlan, Cheng, Huang, Schmerl, & Steenkiste, 2004; Weyns, 2021). A traditional67

computing system is designed to work in an operational domain, i.e., well-defined conditions of the68

environment in which the system should achieve its goals. Humans may be involved to operate the69

system, for instance to start/stop the execution of batches of tasks or to perform predictive mainte-70

nance. Extending the operational domain, for instance to deal with new goals or new constraints, or to71

mitigate anomalies, requires the system to undergo an evolution step that typically relies on humans72

that produce new computing elements that are then deployed and integrated into the system, a process73

that is increasingly automated (Rodrguez et al., 2017).74

In contrast, a self-evolving computing system maintains a self-representation that includes runtime75

models of the computing system and its goals (self-awareness), and the environment in which the76

system operates (context-awareness). An evolutionary learning engine uses the self-representation to77

autonomously evolve the architecture of the computing system, in response to unanticipated changes78

that occur throughout the system’s lifetime, i.e., new goals or new constraints that appear, or anomalies79

identified during operation. To that end, the evolution engine runs experiments in a sandbox evolving80

the system model until it satisfies the new conditions. During this process, the engine can integrate new81

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 3

Fig. 1. From traditional computing systems to self-evolving computing systems.

computing elements from computing warehouses as needed. These auto-evolution-enabled computing82

elements provide specifications and procedures that enable an evolutionary engine to incorporate these83

elements autonomously. As shown in Figure 1, a self-evolving computing system takes the human out84

of the loop of the evolution process. Humans only produce new auto-evolution-enabled computing85

elements that are readily available for self-evolving computing systems via computing warehouses.86

Yet, humans may be involved to provide guidance to the system, for instance to set constraints on87

the behavior of the system or express preference of one configuration over another during evolution.88

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

4 D. Weyns et al. / The vision of self-evolving computing systems

Self-evolving computing systems focus on the evolution aspects of computing systems within the89

newly proposed paradigm of “lifelong computing” (Weyns, Bäck, Vidal, Yao, & Bel bachir, 2021a).90

Self-evolving computing systems also resemble similarities with the idea of “self-growing software”91

proposed by Tamai (2019) as the next paradigm shift in software engineering.92

The remainder of this paper starts with a discussion of a selection of key approaches to deal with93

change and points out why a novel foundation is required (Section 2). Then we introduce an illustra-94

tive example (Section 3). We outline a conceptual architecture for self-evolving computing systems95

(Section 4) and illustrate the architecture for the example. To conclude, we highlight key research96

challenges for realizing the vision of self-evolving computing systems and we suggest starting points97

to tackle them (Section 5).98

2. State of the Art99

Already in the early 2000s, IBM pointed to the manageability problems caused by the growing100

complexity of computing systems (IBM, 2003). In response, they launched the autonomic computing101

initiative that was centered on enabling computing systems to manage themselves based on high-level102

goals, similar to the autonomic nervous system of the human body. Autonomic computing primarily103

focuses on automating tasks of running computing systems that are traditionally done by operators.104

Hence, the target of autonomic computing is the operational domain of computing systems. Self-105

evolution on the other hand targets the autonomous evolution of computing systems, hence the target106

is a change of the operational domain. Self-evolution aims to enable computing systems dealing with107

unanticipated change by evolving autonomously.108

In this section, we summarize the state of the art in two key fields that tackle the problem of managing109

change of computing systems from two complementary points of view: smart systems and software110

evolution. Based on this analysis, we motivate the need for self-evolving systems.111

2.1. Smart Systems112

Tavcar & Horváth (2019) surveyed smart computing systems, with an emphasis on cyber-physical113

systems. The authors distinguish four levels of smartness mapping to increasingly challenging types114

of changes to be tackled by the systems, ranging from no changes to unknown changes. Smartness115

then refers to the capability level of computing systems to handle these types of changes through116

reasoning, learning, adapting, and evolving. Weyns et al. (2022) extended the notion of smart to117

“smarter” referring to both computing systems and their engineering processes that continuously118

adapt and evolve through a perpetual process that continuously improves their capabilities and utility119

to deal with the uncertainties and new data they face throughout their lifetime. Bures, Weyns, Schmerl,120

Tovar, Boden, Gabor, Gerostathopoulos, Gupta, Kang, Knauss, Patel, Rashid, Ruchkin, Sukkerd, &121

Tsigkanos (2017) emphasized that smartness of computing systems enable them to deal with dynamics122

and uncertainty in the environment, and external threats. The authors highlight that smartness of123

computing systems is primarily implemented through the software leveraging principles from self-124

adaptation. Musil, Musil, Weyns, Bures, Muccini, & Sharaf (2017) presented a set of architectural125

patterns to realize self-adaptation across the software stack of cyber-physical systems.126

A classic field of study on smartness is autonomous systems (or intelligent autonomous systems)127

(Paulovich, Oliveira, & Oliveira, 2018; Tzafestas, 2012). Autonomous systems mimic human (or128

animal) intelligence, in order to operate independently of direct human supervision. An important sub-129

field of autonomous systems is multi-agent systems (Wooldrige, 2009) that studies the operation and130

coordination of autonomous agents that aim at solving problems that go beyond the capabilities of single131

agents. Different authors have presented patterns that document problem-solution pairs for engineering132

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 5

multi-agent systems (Dastani & Testerink, 2016; Marks, Muller, Vogeli, Jung, Jazdi, & Weyrich, 2018;133

Schelfthout, Coninx, Helleboogh, Holvoet, Steegmans, & Weyns, 2002). Juziuk,Weyns, & Holvoet134

(2014) presented a systematic literature overview classifying patterns based on focus, granularity, level135

of abstraction, and source of inspiration. The field of human-robot teams (Musi & Hirche, 2016) studies136

collaboration of humans and robots exploiting their complementary skill sets. Another promising key137

field enabling the realization of smartness is digital twins (Tao, Zhang, Liu, & Nee, 2019). Digital twins138

are characterized by the seamless integration between the cyber and physical spaces. Digital twins139

have been successfully applied in product design, production, prognostics and health management,140

among other fields. Gentelligent systems (Denkena & Morke, 2017) integrate sensing components141

throughout the production supply chain to improve efficiency, flexibility, and product quality. Recently,142

the interest in autonomous systems has been expanding significantly with high-profile applications,143

such as smart robotics (Industry 4.0 driven by the Internet of Things) and smart transportation. For144

instance, Jazdi (2014) stressed the need to equip Industry 4.0 systems with smart actuators, sensors,145

and telecommunication technologies, providing these systems access to the higher-level processes146

and services. Weyns, Iftikhar, Hughes, & Matthys (2018) presented MARTAS that automates the147

management of Internet-of-Things leveraging statistical model checking at runtime to ensure the148

system goals under uncertainty. Yu & Xue (2016) referred to smartness of the electricity grid as149

the integration of information and communication technology with other advanced technologies that150

enable electric energy generation, transmission, distribution, and usage to be more efficient, effective,151

economical, and environmentally sustainable. Koutsoukos, Karsai, Laszka, Neema, Potteiger, Volgyesi,152

Vorobeychik, & Sztipanovits (2018) investigated smart transportation systems using a modeling and153

simulation environment. Smartness in this context relates to the ability of a system to deal with attacker-154

defender behavior, including vulnerability analysis to traffic signal tampering, resilient sensor selection155

for forecasting traffic flow, and resilient traffic signal control in the presence of denial-of-service156

attacks.157

Another classic field of smart systems is self-adaptation. Simultaneous with industrial initiatives,158

such as autonomic computing (Kephart & Chess, 2003) mentioned above, researchers studied the159

abilities of computing systems to handle change autonomously (Garlan et al., 2004; Oreizy, Gorlick,160

Taylor, Heimhigner, Johnson, Medvidovic, Quilici, Rosenblum, & Wolf, 1999). Self-adaptation is161

based on the principles of feedback computing (Kramer & Magee, 2007; Oreizy et al., 1999; Sale-162

hie & Tahvildari, 2009; Weyns, 2021). Over the past two decades, extensive efforts have been put163

in devising fundamental principles of self-adaptation as well as techniques and methods to engi-164

neer self-adaptive systems (Weyns, 2019). Whereas the initial focus was on automating operator165

tasks based on high-level goals (Garlan et al., 2004; Kephart & Chess, 2003), later research shifted166

towards taming uncertainties that computing systems face during operation and that are difficult to167

anticipate before deployment (Calinescu, Weyns, Gerasimou, Iftikhar, Habli, & Kelly, 2018; Cheng168

et al., 2009a; Moreno, Ca´mara, Garlan, & Schmerl, 2015). This view introduces a perspective that169

blends system engineering and system operation (Baresi & Ghezzi, 2010; Chen, Bahsoon, & Yao,170

2018a; Chen, Li, Bahsoon, & Yao, 2018c; Weyns, Bencomo, Calinescu, Camara, Ghezzi, Grassi,171

Grunske, Inverardi, Jezequel, Malek, Mirandola, Mori, & Tamburrelli, 2017). Central to any self-172

adaptive systems are runtime models (Blair, Bencomo, & France, 2009) that provide the system with173

self-awareness (self-representation and representation of goals) and context-awareness (representa-174

tion of the environment) (Chen, Bahsoon, & Yao, 2020; Elhabbash, Salama, Bahsoon, & Tino, 2019;175

Weyns, Malek, & Andersson, 2010). These models are updated at runtime tracking uncertainties (Cali-176

nescu, Mi randola, Perez-Palacin, & Weyns, 2020; Esfahani & Malek, 2013; Mahdavi-Hezavehi,177

Avgeriou, & Weyns, 2017;Weyns, Caporuscio, Vogel, & Kurti, 2015) and then used to analyze the178

situation and decide when and how to adapt the system to maintain its goals, or gracefully degrade179

if needed.180

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

6 D. Weyns et al. / The vision of self-evolving computing systems

2.2. Software Evolution181

Evolution is a natural part of the life cycle of software systems that traditionally occurs in incremental182

development in response to changes in the environment, purpose, or use of the software system (Reuss-183

ner et al., 2019). Buckley, Mens, Zenger, Rashid, & Kniesel (2005) presented a taxonomy for software184

evolution with four dimensions of system change: temporal properties (i.e., when do changes happen),185

objects of change (i.e., where in the system do we make changes), system properties (i.e., what is186

changed), and change support (i.e., how is the system changed). Earlier, Chapin, Hale, Kham, Ramil,187

& Tan (2001) identified two other core dimensions: motivations (i.e., why are the changes done) and188

roles (i.e., who is doing system changes). The ISO/IEC standard for software maintenance2 distinguish189

four types of software changes: corrective (bug fixing dealing with errors), adaptive (environment and190

requirement changes), perfective (optimizing or refactoring the system), and preventive modifications191

(preventing problems).192

During the past decades, the traditional view of software that evolves through periodic releases has193

been replaced by continuous evolution of software (Rodrguez et al., 2017). Software organizations194

today develop, release, and learn from software in rapid parallel cycles (typically from hours to a195

few weeks). This approach is commonly referred as continuous deployment (CD) (Järvinen, Huomo,196

Mikkonen, & Tyrväinen, 2014). CD is based on the principles of agile development (Dingsyr, Nerur,197

Balijepally, & Moe, 2012) and DevOps (Mishra & Otaiwi, 2020) that aim at increasing the deploy-198

ment speed and quality of systems. CD leverages on continuous integration (CI) (Meyer, 2014) that199

automates tasks such as compiling code, running tests, and building deployment packages. Among200

the benefits of CI/CD are rapid innovation, shorter time-to-market, increased customer satisfaction,201

continuous feedback, and improved developer productivity. Yet, an important concern of current prac-202

tice in software maintenance is (intentional or unintentional) technical debt, i.e., longer-term negative203

effects on systems that result from sub-optimal decisions (Li, Avgeriou, & Liang, 2015), in particular204

in the context of agile development. Furthermore, researchers have argued that the current level of205

automation needs to be enhanced (Rodrguez et al., 2017), and last but not least, to develop sustainable206

computing systems, we need sustainable software development processes (Andersson et al., 2013;207

Dick & Naumann, 2010; Georgiou, Rizou, & Spinellis, 2019; Naumann, Dick, Kern, & Johann, 2011;208

Weyns et al., 2022; Weyns & Iftikhar, 2022).209

With the increasing exposure of computing systems to change, the volumes of data they need to210

process, and the seamless integration of humans in the loop (Musil, Musil, Weyns, & Biffl, 2015; Selic,211

2020; Sztipanovits, Koutsoukos, Karsai, Kottenstette, Antsaklis, Gupta, Goodwine, Baras, & Wang,212

2012; Zeng, Yang, Lin, Ning, & Ma, 2020), computing systems face uncertainties that are difficult or213

even impossible to predict before deployment. Hence, engineers may not be able to obtain sufficient214

knowledge to make all design decisions before the system is deployed. This calls for postponing design215

decisions until after deployment when the required knowledge becomes available. The design decisions216

are then enacted through continuous adaptation and evolution (Baresi & Ghezzi, 2010; Weyns, 2021).217

To that end, a number of important building blocks have been studied. We highlight two: anomaly218

detection and lifelong learning.219

Anomaly detection (or outlier or novelty detection) aims at identifying data instances that signif-220

icantly deviate from the majority of data instances in a data set (Grubbs, 1969). Anomaly detection221

has been used in a variety of domains, e.g., intrusion detection, fault prevention, defect detection,222

and unexpected flow detection. A plethora of methods have been developed (Boukerche, Zheng, &223

Alfandi, 2020; Chen, Tino, Rodan, & Yao, 2014), including proximity-based approaches that rely on224

relations between nearby data points, projection techniques that convert data into a space with reduced225

2International Organization for Standardization. ISO/IEC 14764. 2014. URL: www.iso.org/standard/39064.html

www.iso.org/standard/39064.html

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 7

dimensionality to improve outlier detection, outlier detection for multi-dimensional data such as recur-226

sive binning and re-projection, windowing for online time series that incrementally builds and updates227

models with new data, learning model spaces for fault diagnosis, and deep learning anomaly detec-228

tion, such as deep neural network auto-encoders. Yet, dealing with highly complex data remains an229

open problem. Anomaly detection mechanisms enable a computing system to autonomously identify230

behavior at the boundaries or outside its operational domain, providing a basis building block for the231

realization of self-evolving systems.232

Lifelong learning (or continual learning) refers to the ability of a system to continually accommo-233

date new knowledge to learn new tasks that were not predefined (Thrun & Mitchell, 1995). Different234

approaches for lifelong learning have been developed relying on supervised, unsupervised, and rein-235

forcement learning (Chen & Liu, 2018), and recently lifelong learning based on neural networks236

has gaining increasing interest (Parisi, Kemker, Part, Kanan, & Wermter, 2019). A key challenge for237

lifelong learning is dealing with catastrophic forgetting that refers to the loss of previous learning238

while learning new information; this may lead to failures for systems operating in real-world environ-239

ments (Hasselmo, 2017). Different approaches have been proposed to deal with this problem, such240

as dynamic allocating new neurons or network layers to accommodate novel knowledge, and using241

complementary learning networks with experience replay, yet more research is needed apply these242

techniques to real-world systems (Parisi et al., 2019). Lifelong learning techniques provide another243

basic block for the realization of self-evolving computing systems.244

2.3. Why Self-Evolving Computing Systems?245

When we look at the current landscape of research, we can observe two principle lines of work.246

The first line studies the application of smart techniques enabling systems to deal with changes247

autonomously during operation. The second line studies the evolution of computing systems with248

an emphasizes on tools for automating the deployment and integration of computing elements. We249

advocate that a key underlying problem with these existing approaches is the lack of an integrated per-250

spective on handling change—anticipated and unanticipated—in an autonomous manner. Compared to251

traditional (or conventional) systems, smart systems are equipped with capabilities to handle a variety of252

changes autonomously. Yet, the target domain of smart systems is in essence their operational domain,253

that is, their capabilities are confined to what they have been built for. The aim of software evolution lays254

essentially in revising or extending the operational domain. While several steps in the process of soft-255

ware evolution have been automated in the past decades, the actual evolution of the software remains in256

essence a human-driven activity. Autonomous and self-adaptive systems have expanded the operational257

domain of computing systems substantially, enabling them to deal with changes during operation to258

enhance their efficiency and being most robust, yet the scope remains bounded to anticipated changes.259

Anomaly detection mechanisms allow identifying deviations from expected behaviors, and lifelong260

learning enables learning-based systems dealing with new tasks during operation. Yet, besides their261

current limitations for real-world problems, these techniques offer only basic blocks to realize a true262

integration of continuous adaptation and evolution aiming at mitigating the effects of uncertainty that263

spans both anticipated and unanticipated change. To tackle the challenges of continuous change, antic-264

ipated and unanticipated, a new integrated perspective for the engineering and operation of future265

computing systems is needed. Self-evolving computing systems aim to offer such a perspective.266

3. Future Smart City Mobility Scenario267

We illustrate the need for self-evolving computing systems with an example of a future smart268

city mobility scenario. A research study called “New autoMobility” (Grötker, 2015) highlighted how269

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

8 D. Weyns et al. / The vision of self-evolving computing systems

automated and networked vehicles and trains can be usefully integrated into a user-friendly, efficient270

and sustainable mobility system in the future. Such a system would consist of mobility hubs, car sharing271

and self-parking vehicles, and autonomous trains. Flexible, time-and-space-dependent mobility pricing272

will ensure more evenly distributed usage of mobility resources and prevent traffic gridlock. Vehicles273

will be able to warn each other (directly or indirectly) in dangerous situations creating a cooperative274

mixed traffic. Such intelligent, networked transport protects the environment and the climate and275

improves quality of life.276

Establishing automated mobility requires a phased introduction and continuous evolution of a mobil-277

ity platform to align with a variety of changes. This poses difficult often conflicting challenges, spanning278

business, technical, social, and legal aspects. For example, the introduction of automated traffic will279

happen only gradually, so initially automated and conventionally controlled vehicles will co-exist.280

Depending on local conditions, there may be a need to manage the level of pollution in areas with281

more intensive traffic of conventionally controlled vehicles. This may require the need for tracking282

the levels of pollution in these areas and take measures when needed. Such measures may range from283

temporally redirecting conventional vehicles in certain areas using smart traffic boards, up to increas-284

ing prices for polluting vehicles for instance to part in sensitive areas. However, with changing usage285

profiles, transitions to automated mobility, and novel technological advances, these provisions will286

need to evolve.287

Central to the functionality and safety of mobility will be the collection and processing of data288

and information from various sources. Managing this data requires a suitable framework that creates289

connectivity between vehicles, the infrastructure, and traffic management systems, ensuring safety290

while respecting the personal interests and privacy concerns of the users at any time. Tackling these291

challenges and balancing the trade-offs between the various needs will require an integrated computing292

system that is capable to operate, adapt, and evolve autonomously throughout its lifetime in a contin-293

uously changing environment. We illustrate how a self-evolving computing system could offer such a294

unique solution.295

4. Conceptual Architecture for Self-Evolving Computing Systems296

In this section, we present a conceptual architecture for self-evolving computing systems. To deal297

with the continuous changes a self-evolving computing system faces throughout its lifetime, we outline298

five complementary requirements for a self-evolving computing system. These requirements naturally299

target the ability of self-evolving systems to deal with anticipated change (1), to discover unanticipated300

changes and evolve autonomously (2-4), and to integrate humans in the loop when needed (5).301

(1) A self-evolving computing system should be able to handle vast amounts of data and realize its302

goals under changing but anticipated conditions;303

(2) A self-evolving computing system should be able to discover and integrate new computing304

elements autonomously;305

(3) A self-evolving computing system should be able to autonomously detect unanticipated condi-306

tions, i.e., learn conditions outside its operational domain, including anomalies, new goals and307

constraints;308

(4) A self-evolving computing system should be self-aware and context-aware enabling it to309

autonomously evolving its architecture to realise its goals;310

(5) Depending on the domain at hand, some activities of a self-evolving computing system may be311

supported by humans.312

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 9

Fig. 2. Conceptual architecture for self-evolving computing systems with the different building blocks.

Requirement (1) is a basic requirement for systems that need to achieve their goals while dealing with313

huge amounts of data and operating under uncertainty. Requirements (2) to (4) are key for enabling314

systems to evolve autonomously when encountering unanticipated changes. As for requirement (5),315

support for human guidance is particularly important: (i) in domains with critical goals where humans316

will have the ultimate control over the system by setting boundaries on the system behavior, ensuring317

the trustworthiness of the system, (ii) for systems that require human interaction to set high level goals318

or express preferences among possible options generated by the system (in contrast to performing319

standard operating activities).320

To achieve these requirements, we propose a conceptual architecture for self-evolving computing321

systems as shown in Figure 2. We explain the different building blocks and illustrate each of them with322

examples of the future mobility scenario. Starting points to realize the building blocks are explained323

in Section 5.324

Self-Adaptive Computing System. As a basis, a self-evolving computing system comprises an325

self-adaptive computing system that integrates regular computing elements and learning algorithms,326

enabling it to handle a vast amount of data and realize the goals of its users. Furthermore, the self-327

adaptive computing system is equipped with smart techniques enabling it to deal with changes within328

its operational domain, i.e., changing operation conditions and uncertainties that can be managed by329

adapting the running architectural configuration of the self-adaptive computing system, without the330

need for updates or the integration of new computing elements or learning algorithms. As such, a331

self-adaptive computing system realizes requirement (1). To account for unanticipated changes that332

requires evolution (see evolutionary learning engine below), the self-adaptive computing system should333

support automatic updates of its running architecture.334

Figure 3 illustrates a self-evolving computing system for the smart city mobility scenario. We focus335

here on the self-adaptive computing system (lower box left) that comprises the smart city area with a336

mobility hub that connects different modes of public transport, conventional cars and smart vehicles,337

pedestrians, and a variety of sensors (cameras, smart boards, parking sensors, etc.) that measure the den-338

sity of traffic, occupation of automated trains, usage of parking lots, movements of pedestrians, etc. The339

data is collected by a mobility tracking platform and stored and updated in a mobility data repository.340

The data is continuously processed by a learning service center that learns and predicts relevant sys-341

tem parameters, such as mobility distribution, traffic safety, etc. These parameters together with other342

data obtained from the Cloud (e.g., weather forecasts) are then used by the adaptation manager that343

continuously optimizes the different objectives of the mobility system and their trade-offs, using the344

mobility control platform. For instance, when a camera detects an increase of passengers of smart345

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

10 D. Weyns et al. / The vision of self-evolving computing systems

Fig. 3. Illustration of the conceptual architecture for a smart city mobility scenario

vehicles for a particular trajectory, the frequency of these transports may be increased dynamically346

and the ticket price may be adjusted temporally.347

Computing Warehouses. Self-evolving computing systems are supported by computing warehouses348

that offer new computing elements, realizing requirement (2). Computing warehouses leverage the349

principles of off-the-shelf components and services, open source software, and open data. Com-350

puting warehouses can be operated directly by producers of new auto-evolution-enabled computing351

elements or indirectly via a broker. We refer to the elements provided by computing warehouses352

as auto-evolution-enabled computing elements; examples are a module that offers improved or new353

functionality, a connector to connect with and use a new external service, a template of new learning354

algorithm, a repository of data, etc. It is important that self-evolving computing systems can incor-355

porate auto-evolution-enabled computing elements autonomously during operation. To that end, each356

auto-evolution-enabled computing element is equipped with a data sheet that specifies its functions,357

properties, usage requirements, etc., and a usage guide that specifies the procedures that need to be358

followed for using the element. These specifications require both a well-defined syntax and an ontology359

that defines the semantics of the properties and usage of the elements. Depending on the requirements,360

new auto-evolution-enabled computing elements may require certification before making them avail-361

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 11

able in a warehouse. All interactions with the computing warehouse happen via a warehouse manager.362

Clients can search the available elements via a catalog that lists the elements with their data sheets363

and usage guides; using a computing element may be subject to a contract.364

Figure 3 shows a few examples of new auto-evolution-enabled computing elements for the smart365

mobile city scenario (box right). The camera zoom module provides the software that is required to366

activate and use zoom lenses on cameras. The usage profile learning module offers new learning mod-367

els of users of a smart city mobility system, possibly derived from studies. The pollution sensor module368

offers the software to start using sensors that measure particular pollution parameters of the environment369

in the city.370

Unanticipated Change Detection. A key feature of self-evolving computing systems is their ability to371

detect unanticipated changes, i.e., changes that cannot be handled by the build-in learning and adapta-372

tion mechanisms of the self-adaptive computing system, realising requirement (3). Such unanticipated373

changes can be triggered either by an anomaly the self-adaptive computing system encounters, or374

by new goals that are added to the system. When encountering such an event, unanticipated change375

detection will trigger the evolutionary self-learning engine to start an evolution of the self-adaptive376

computing systems (see below).377

As an example, assume that anomaly detection (middle box left in Figure 3) discovers that378

the lenses of cameras are dirty resulting in poor quality images. To deal with this problem, a379

noise removal learning module is added to the computing warehouse that offers a new learning algo-380

rithm, for instance a convolutional neural network to handle noisy images. This module will then be381

used by the evolutionary learning engine for evolving the architecture configuration of the self-adaptive382

computing system (further explained below). As another example, consider the introduction of a new383

goal to reduce pollution in the smart city area caused by mobility. To deal with this new goal, an384

operator adds a new pollution reduction goal to the evolutionary learning engine via the dashboard.385

This will trigger the evolutionary learning engine to start an evolution of the self-adaptive computing386

system taking into account this new goal (further explained below).387

Evolutionary Self-learning Engine. At the heart of a self-evolving computing system is an388

evolutionary learning engine that autonomously evolves the self-adaptive computing system to handle389

any unanticipated changes that cannot be handled by the build-in learning and adaptation mecha-390

nisms, realizing requirement (4). When anticipated change detection discovers an anomaly or when391

a new goal is added to the system, the evolutionary learning engine starts to evolve its internal392

model of the self-adaptive computing system. This runtime model contains an up-to-date representa-393

tion of the architecture of the self-adaptive computing system along with its goals (self-awareness), and394

relevant parts of the environment (context-awareness). The evolution of the model is conducted by an395

evolutionary learning pipeline that evolves the architectural configuration of the self-adaptive comput-396

ing system to obtain its goals. During this process, the engine may integrate new auto-evolution-enabled397

computing elements provided by computing warehouses as needed. To evolve the system architecture,398

the engine runs experiments, executing different subsequent variants of the evolved model in a sand-399

box. Using suitable metrics for assessing the performance of the evolving architectural models of the400

self-adaptive computing system in each evolutionary step, the engine will optimize the self-adaptive401

computing system model, resulting in a novel architecture that mitigates the unanticipated change that402

triggered the evolution. During the experiments, the engine may exploit historical data, for instance to403

train a learning module, and experimental results may be stored for reuse later. Change enactment404

will then replace the running architecture of the self-adaptive computing system with the novel405

architecture.406

As an example, when discovering that the lenses of cameras are dirty (continuing the example407

above), the evolutionary learning engine (middle box in Figure 3) searches the computing warehouse408

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

12 D. Weyns et al. / The vision of self-evolving computing systems

for a solution. Based on the shared ontology, the engine identifies the new noise removal learning409

module. The evolutionary learning engine then runs online experiments in the sandbox, evolving the410

model of the current architecture of the self-adaptive computing system and integrating the new noise411

removal learning module. The engine will use the resolution and quality improvements of images412

as performance metrics. During this process, the engine may exploit historical data to accelerate the413

evolution process, and particular experimental results may be stored for later usage. Once the novel414

architecture is identified that satisfies the system goals, the current configuration will be evolved415

through change enactment.416

As another example, when the new pollution reduction goal is added to the system (continuing the417

other example above), the evolutionary learning engine will search in the catalog of the computing418

warehouse and find the (newly added) pollution sensor module. Based on the usage guidance provided419

by this module a set of new pollution sensors will be activated in the smart city area (possibly involving420

a field worker). The evolutionary self-learning pipeline will then evolve the architecture of the self-421

adaptive computing system by extending the mobility tracking platform with functionality to track422

air pollution and set the configurations of the sensors via the mobility control platform (both derived423

from the pollution sensor module). Furthermore, the new goal will be added to the adaptation manager.424

Finally, the learning module will be enhanced to take into account the data of the mobility data module425

produced by the pollution sensors. To configure the learning model, the engine may use historical426

data collected by the system. Once the new architecture is configured, it can be deployed via change427

enactment enabling the smart city mobility system to reduce the pollution by adjusting its settings, e.g.428

adapting conventional traffic via smart traffic boards.429

Evolution Guidance. Depending on the domain at hand, human experts may be involved to430

guide the evolution of a self-evolving computing system, realizing requirement (5). Evolution431

guidance can range from a basic dashboard that shows key performance indicators of a self-evolving432

computing system and offers “knobs” allowing operators to upload new computing elements, add433

new goals or define constraints on the behavior of the system to ensure its trustworthiness, up to434

full-fledged embodied AI that exploits intelligent user interfaces enabling operators to guide the435

evolution process of self-evolving computing systems interactively (Kephart, Dibia, Ellis, Srivas436

tava, Talamadupula, & Dholakia, 2019). New goals or constraints may refer to various concerns437

of users, such as performance, safety, privacy, energy consumption, environmental protection, or438

ethics. Evolution guidance may include the option for operators to provide feedback about discovered439

anomalies or give advice on architecture evolution at the evolutionary learning engine, among others.440

For instance, in the smart city mobility scenario, see Figure 3 (box at the top), evolution guidance441

enables software developers to add new auto-evolution-enabled modules to the computing warehouse,442

such as a new learning module for noise removal. Evolution guidance also offers an interactive dash-443

board enabling an operator to support the evolutionary learning engine with identifying new software444

architectures of the computing-learning system. For instance, the operator may suggest (possibly new)445

quantitative and qualitative criteria (goals) to guide a evolutionary pipeline in identifying new archi-446

tectural configurations. The feedback of the operator may be incorporated into the fitness function447

allowing the learning pipeline to distinguish between promising and poor architectural configurations448

when evolving the model of the self-adaptive computing system, enhancing its performance.449

5. Research Challenges Ahead450

To conclude, we summarize the novelty of self-evolving computing, highlight key challenges to451

realize the vision of self-evolving computing systems, and provide starting points to tackle them.452

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 13

Smart approaches have demonstrated their value for dealing with changes453

within the operational domain of computing system that are composed of regular computing454

elements. Self-evolving computing extends this to the operational domain of computing systems455

that integrate regular computing elements with learning algorithms, enabling these systems to deal456

with a vast amount of highly complex data. Currently, we rely on software evolution to deal with457

outside the operational domain, i.e., changes that were not anticipated when the system was built458

and deployed. The evolution of software systems is currently still a human-driven process that is459

supported by tools that automate the continuous integration and deployment of new computing460

elements. Lifelong learning provides the means to deal with new tasks during operation, yet, this461

evolution targets learning algorithms. Self-evolving computing on the other hand exploits computing462

warehouses, enabling self-evolving computing systems to evolve autonomously, thereby selecting463

and integrating new computing elements autonomously during operation based on the needs at hand.464

Optionally, humans can offer support to self-evolving computing systems, for instance, for setting465

goals on performance, safety, privacy, etc., and providing guidance to support the evolutionary466

learning process if needed.467

We motivated and described how self-evolving computing enables dealing with the lasting problem468

of how to engineer long running computing systems that can autonomously adapt and evolve to deal469

with ever changing conditions, anticipated and unanticipated. Yet, realizing the vision of self-evolving470

computing, raises fundamental challenges. We list six key achievements that are required to tackle471

these challenges:472

(1) A novel overarching modeling approach for the design of self-evolving computing systems. Con-473

trary to traditional software architecture design languages (Muccini & Vaidhyanathan, 2021),474

a new modeling approach is required that should provide first-class support for specifying het-475

erogenous computing systems that integrate computing and learning elements, as well as the476

different types of building blocks of self-evolving computing systems. This modeling approach477

will enable a designer to analyse the compliance of the model of a self-evolving computing478

system with its high-level goals.479

(2) The definition of standardized representations and interfaces of auto-evolution-enabled com-480

puting elements (regular and learning elements) that can be seamlessly integrated by481

self-evolving computing systems. Contrary to existing component-based modeling approaches,482

see e.g., (Bruneton, Coupaye, Leclercq, Quema, & Stefani, 2004), auto-evolution-enabled com-483

puting elements require two types of meta data: (i) meta data that enables self-evolving computing484

systems to characterize elements and select an element as needed, and (ii) meta data to incorpo-485

rate a selected element autonomously. The first type of meta data is similar to a “data sheet,” while486

the second type is similar to a “usage guide.” Enabling self-evolving computing systems to rea-487

son about and integrate auto-evolution-enabled computing elements require both a well-defined488

(standardized) syntax and a shared ontology.489

(3) Novel methods and algorithms for realizing self-adaptation of heterogeneous computing systems490

that need to deal with conflicting goals and operate under uncertainty and resource constraints.491

An interesting approach to tackle this challenge is the use of dynamic, preference-based, multi-492

objective, on-line optimization, leveraging state-of-the-art knee-point identification (Yu, Jin, &493

Olhofer, 2020), and preference-based (Palar, Yang, Shimoyama, Emmerich, & Bäck, 2018), and494

on-line optimization (Chen, Li, & Yao, 2018b). Here the Pareto-frontier becomes a moving target,495

while the objectives can change when an architecture evolution is applied by the self-evolving496

computing system.497

(4) A novel family of anomaly and novelty discovering methods for complex high-dimensional data498

relying on unsupervised learning. One approach to tackle this challenge is to model the data as a499

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

14 D. Weyns et al. / The vision of self-evolving computing systems

union of low-dimensional manifolds (You, Robinson, & Vidal, 2017). Anomalies are then data500

points that do not lie in any manifold, i.e., outliers, while novelties are data points that belong501

to a new manifold, e.g., a new class. The challenge here will be to identify nonlinear manifolds502

that change over time. Additionally, the solution should be able to deal with multi-modal on-503

line data streams, e.g., leveraging temporal convolutional autoencoders (Thill, Konen, Wang, &504

Bac̈k, 2021).505

(5) A novel evolutionary self-learning pipeline for evolving heterogeneous computing systems to506

deal with unanticipated changes (anomalies, novelties, new goals). Core to such a solution will507

be: up-to-date architectural models of the underlying heterogenous system with its goals and508

constraints, and the context in which the system operates. These models should account for the509

evolution of the system. Evolving the current software architecture requires suitable architectural510

variation operators that comply with the syntactical and semantical constraints of the evolving511

architecture. One approach to tackle this is using a (1,λ) algorithm (Bäck, Foussette, & Krause,512

2013) that selects the best “offspring” and iterates the evolution through simulation in a sandbox.513

New evaluation functions with guarantees will be required, e.g., leveraging statistical model514

checking of the candidate architectures, and (ii) preference-based, multi-objective optimization515

providing approximations of Pareto optimality.516

(6) Novel notations and mechanisms that enable system operators to add new goals and interact517

with the evolutionary self-learning pipeline. Changing goals is an important trigger for evolving518

computing systems. This requires a dashboard for humans to interact with the system and modify519

its goals. Unlike existing goal models (e.g., Cheng, Sawyer, Bencomo, & Whittle (2009b)), self-520

evolving computing systems require models that evolve dynamically. Goals may be provided521

with meta data that refers to elements of computing warehouses (e.g., a goal for a new modality522

of traffic may have meta data about sensors and software to track that traffic). The models should523

provide mechanisms that automatically translate the changes of the goals to a format that can524

act as a trigger to evolution. A self-evolving system may be equipped with mechanisms that525

enable the system to communicate the options for evolution and ask the human to advise on526

the selection if needed. The dashboard may supports this type of interaction. For instance, the527

system may show a subset of candidate architectural configurations along with a qualification528

of the options. The human may then select one of the options to continue the evolution process,529

leveraging for example de Winter, van Stein, & Bäck (2021).530

An additional open challenge is how to handle the need for dynamic resource management. While531

the warehouse may to some degree deal with resource provision and management, the acquisition of532

hardware and other resources that are needed to support self-evolution may require dedicated support.533

Addressing these challenges requires the combined expertise in a variety of areas: dynamic software534

architectures and scalable and trustworthy approaches for self-adaptation (to deal with the challenges535

of adaptation of heterogeneous computing systems), unsupervised learning and runtime goal models536

(to deal with the challenges of unanticipated change detection), self-awareness, dynamic learning537

architectures, and evolutionary learning mechanisms (to deal with the challenges of evolutionary538

learning), and software engineering (to deal with the challenges of computing warehouses and evolution539

guidance). Only the synergy between these specializations can adequately yield solutions to realize540

the vision of self-evolving computing.541

References542

Andersson, J., Baresi, L., Bencomo, N., de Lemos, R., Gorla, A., Inverardi, P., & Vogel, T. (2013). Software Engineering Processes for543

Self-Adaptive Systems. Springer, 51-75. https://doi.org/10.1007/978-3-642-35813-5 3544

https://doi.org/10.1007/978-3-642-35813-5_3

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 15

Bäck, T., Foussette, C., & Krause, P. (2013). Contemporary Evolution Strategies. Natural Computing Series, Springer.545

Baresi, L., & Ghezzi, C. (2010). The Disappearing Boundary between Development-Time and Run-Time. In Future of Software Engineering546

Research. ACM, 1722. https://doi.org/10.1145/1882362.1882367547

Bennett, K., & Rajlich, V. (2000). Software Maintenance and Evolution: A Roadmap. In Conference on The Future of Software Engineering548

(Limerick, Ireland) (ICSE ’00). Association for Computing Machinery, New York, NY, USA, 7387. https://doi.org/10.1145/336512.336534549

Bernardo, M., & Hillston, J. (Eds.). (2007). Formal Methods for Performance Evaluation, 7th International School on Formal Methods for550

the Design of Computer, Communication, and Software Systems, SFM 2007, Bertinoro, Italy, May 28-June 2, 2007, Advanced Lectures.551

Lecture Notes in Computer Science, Vol. 4486. Springer.552

Blair, G., Bencomo, N., & France, R.B. (2009). Models@ run.time. Computer, 42(10), 22-27. https://doi.org/10.1109/MC.2009.326553

Boukerche, A., Zheng, L., & Alfandi, O. (2020). Outlier Detection: Methods, Models, and Classification. ACM Comput Surv, 53, 3, Article554

55 (June 2020), pp. 37. https://doi.org/10.1145/3381028555

Bruneton, E., Coupaye, T., Leclercq, M., Quema, V., & Stefani, J.-B. (2004). An Open Component Model and Its Support in Java. In556

Component-Based Software Engineering. Springer, 7-22.557

Buckley, J., Mens, T., Zenger, M., Rashid, A., & Kniesel. G.r. (2005). Towards a Taxonomy of Software Change: Research Articles. Journal558

on Software Maintenance and Evolution, 17(5) (Sept. 2005), 309332.559

Bures, T., Weyns, D., Schmerl, B., Tovar, E., Boden, E., Gabor, T., Gerostathopoulos, I., Gupta, P., Kang, E., Knauss, A., Patel, P., Rashid, A.,560

Ruchkin, I., Sukkerd, R., & Tsigkanos, C. (2017). Software Engineering for Smart Cyber-Physical Systems: Challenges and Promising561

Solutions. SIGSOFT Software Engineering Notes, 42(2), 1924. https://doi.org/10.1145/3089649.3089656562

Calinescu, R., Mirandola, R., Perez-Palacin, D., & Weyns, D. (2020). Understanding Uncertainty in Self adaptive Systems. In IEEE Interna-563

tional Conference on Autonomic Computing and Self-Organizing Systems, 242-251. https://doi.org/10.1109/ACSOS49614.2020.00047564

Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., & Kelly, T. (2018). Engineering Trustworthy Self-Adaptive Software with565

Dynamic Assurance Cases. IEEE Transactions on Software Engineering, 44(11), 1039-1069. https://doi.org/10.1109/TSE.2017.2738640566

Camazine, S., Deneubourg, J.-L., Franks, N., Sneyd, J., Theraulas, G., & Bonabeau, E. (2003). Organization in Biological Systems. Princeton567

Studies in Complexity, USA.568

Chapin, N., Hale, J., Kham, K., Ramil, J., & Tan, W. (2001). Types of Software Evolution and Software Maintenance. Journal of Software569

Maintenance, 13(1) (2001), 330.570

Chen, H., Tino, P., Rodan, A., & Yao, X. (2014). Learning in the Model Space for Cognitive Fault Diagnosis. IEEE Transactions on Neural571

Networks and Learning Systems, 25(1), 124-136. https://doi.org/10.1109/TNNLS.2013.2256797572

Chen, R., Li, K. & Yao, X. (2018b). Dynamic Multiobjectives Optimization With a Changing Number of Objectives. IEEE Transactions on573

Evolutionary Computation, 22(1), 157-171. https://doi.org/10.1109/TEVC.2017.2669638574

Chen, T., Bahsoon, R., & Yao, X. (2018a). A Survey and Taxonomy of Self-Aware and Self-Adaptive Cloud Autoscaling Systems. ACM575

Comput Surv, 51(3), Article 61 (June 2018), pp. 40. https://doi.org/10.1145/3190507576

Chen, T., Bahsoon, R., & Yao, X. (2020). Synergizing Domain Expertise With Self-Awareness in Software Systems: A Patternized577

Architecture Guideline. Proc IEEE, 108(7) (2020), 1094-1126. https://doi.org/10.1109/JPROC.2020.2985293578

Chen, T., Li, K., Bahsoon, R., & Yao, X. (2018c). FEMOSAA: Feature-Guided and Knee-Driven Multi-Objective Optimization579

for Self-Adaptive Software. ACM Transactions on Software Engineering and Methodology, 27(2), Article 5 (2018), pp. 50.580

https://doi.org/10.1145/3204459581

Chen, Z., & Liu, B. (2018). Lifelong Machine Learning. Morgan & Claypool.582

Cheng, B., et al. (2009a). Software Engineering for Self-Adaptive Systems: A Research Roadmap. Springer, 1-26.583

https://doi.org/10.1007/978-3-642-02161-9 1584

Cheng, B., Sawyer, P., Bencomo, N., & Whittle, J. (2009b). A Goal-Based Modeling Approach to Develop Requirements of an Adaptive585

System with Environmental Uncertainty. In Model Driven Engineering Languages and Systems. Springer.586

Dastani, M., & Testerink, B. (2016). Design patterns for multi-agent programming. International Journal of Agent-Oriented Software587

Engineering, 5(2-3), 167-202.588

de Winter, R., van Stein, B., & Bäck, T. (2021). SAMO-COBRA: A Fast Surrogate Assisted Constrained Multi-objective Optimization589

Algorithm. In Evolutionary Multi-Criterion Optimization. Springer.590

Dearle, A. (2007). Software Deployment, Past, Present and Future. In 2007 Future of Software Engineering. IEEE Computer Society, USA,591

269284. https://doi.org/10.1109/FOSE.2007.20592

Denkena, B., & Morke, T. (2017). Cyber-Physical and Gentelligent Systems inManufacturing and Life Cycle. Academic Press.593

Det-Norske-Veritas. (2020). Technology Outlook 2030 - Safer, Smarter, Greener. (2020), 1-110. www.dnvgl.com594

Dick, M. & Naumann, S. (2010). Enhancing Software Engineering Processes towards Sustainable Software Product Design. In Integration595

of Environmental Information in Europe, Klaus Greve and Armin, B. Cremers (Eds.). Shaker Verlag, Aachen.596

Dingsyr, T., Nerur, S., Balijepally, V., & Moe, N. (2012). A decade of agile methodologies: Towards explaining agile software development.597

Journal of Systems and Software, 85(6) (2012), 1213-1221. https://doi.org/10.1016/j.jss.2012.02.033 Special Issue: Agile Development.598

Elhabbash, A., Salama, M., Bahsoon, R., & Tino, P. (2019). Self-Awareness in Software Engineering: A Systematic Literature Review. ACM599

Transactions on Autonomous and Adaptive Systems, 14(2), Article 5 (Oct. 2019), pp. 42. https://doi.org/10.1145/3347269600

Esfahani, N., & Malek, S. (2013). Uncertainty in Self-Adaptive Software Systems. Springer, 214-238. https://doi.org/10.1007/978-3-642-601

35813-5 9602

European-Commission. 8/2021. Advanced Computing. (8/2021). https://www.nsf.gov/funding/pgm summ.jsp?pims id=503306603

Garlan, D., Cheng, S., Huang, A., Schmerl, B., & Steenkiste, P. (2004). Rainbow: Architecture-Based Self-Adaptation with Reusable604

Infrastructure. Computer, 37(10) (Oct. 2004), 4654. https://doi.org/10.1109/MC.2004.175605

https://doi.org/10.1145/1882362.1882367
https://doi.org/10.1145/336512.336534
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1145/3381028
https://doi.org/10.1145/3089649.3089656
https://doi.org/10.1109/ACSOS49614.2020.00047
https://doi.org/10.1109/TSE.2017.2738640
https://doi.org/10.1109/TNNLS.2013.2256797
https://doi.org/10.1109/TEVC.2017.2669638
https://doi.org/10.1145/3190507
https://doi.org/10.1109/JPROC.2020.2985293
https://doi.org/10.1145/3204459
https://doi.org/10.1007/978-3-642-02161-9_1
https://doi.org/10.1109/FOSE.2007.20
www.dnvgl.com
https://doi.org/10.1016/j.jss.2012.02.033
https://doi.org/10.1145/3347269
https://doi.org/10.1007/978-3-642-35813-5_9
https://www.nsf.gov/funding/pgm%20summ.jsp?pims_id=503306
https://doi.org/10.1109/MC.2004.175

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

16 D. Weyns et al. / The vision of self-evolving computing systems

Georgiou, S., Rizou, S., & Spinellis, D. (2019). Software Development Lifecycle for Energy Efficiency: Techniques and Tools. ACM Comput606

Surv, 52(4), Article 81 (Aug. 2019), pp. 33. https://doi.org/10.1145/3337773607

Grötker, R. (2015). New autoMobility: The Future World of Automated Road Traffic. National Academy of Science and Engineering, acatech608

Germany (2015). https://elib.dlr.de/101368/2/acatech POSITION PAPER New autoMobility web.pdf609

Grubbs, F.E. (1969). Procedures for detecting outlying observations in samples. Technometrics, 11, 1.610

Hasselmo, M.E. (2017). Avoiding Catastrophic Forgetting. Trends in Cognitive Sciences, 21(6) (2017), 407-408.611

https://doi.org/10.1016/j.tics.2017.04.001612

IBM. (2003). An Architectural Blueprint for Autonomic Computing. (2003). citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011613

&rep=rep1&type=pdf614

Jackson, M. (1997). The Meaning of Requirements. Annals of Software Engineering. Springer 10480, 3(1) (1997), 5-21.615

https://doi.org/10.1023/A:1018990005598616

Järvinen, J., Huomo, T., Mikkonen, T., & Tyrväinen, P. (2014). From Agile Software Development toMercury Business. In Software Business.617

Towards Continuous Value Delivery. Springer.618

Jazdi, N. (2014). Cyber physical systems in the context of Industry 4.0. In IEEE International Conference on Automation, Quality and619

Testing, Robotics. 1-4. https://doi.org/10.1109/AQTR.2014.6857843620

Juziuk, J., Weyns, D., & Holvoet, T. (2014). Design Patterns for Multi-agent Systems: A Systematic Literature Review. In Agent-Oriented621

Software Engineering. Vol. 9783642544323. Springer, 77-97.622

Kephart, J., & Chess, D. (2003). The vision of autonomic computing. Computer, 36(1), 41-50.623

Kephart, J., Dibia, V., Ellis, J., Srivastava, B., Talamadupula, K., & Dholakia, M. (2019). An Embodied Cognitive Assistant for Visualizing624

and Analyzing Exoplanet Data. IEEE Internet Computing, 23(2) (2019), 31-39. https://doi.org/10.1109/MIC.2019.2906528625

Koutsoukos, X., Karsai, G., Laszka, A., Neema, H., Potteiger, B., Volgyesi, P., Vorobeychik, Y., & Sztipanovits, J. (2018). SURE: A Modeling626

and Simulation Integration Platform for Evaluation of Secure and Resilient CyberPhysical Systems. Proc. IEEE, 106(1) (2018), 93-112.627

https://doi.org/10.1109/JPROC.2017.2731741628

Kramer, J., & Magee, J. (2007). Self-Managed Systems: An Architectural Challenge. In Future of Software Engineering. IEEE, 259-268.629

https://doi.org/10.1109/FOSE.2007.19630

Lehman, M. & Ramil, J. (2003). Software evolutionBackground, theory, practice. Inform Process Lett, 88(1) (2003), 33-44.631

https://doi.org/10.1016/S0020-0190(03)00382-X To honour Professor, W.M. Turski’s Contribution to Computing Science on the Occasion632

of his 65th Birthday.633

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic mapping study on technical debt and its management. Journal of Systems and Software,634

101, 193-220. https://doi.org/10.1016/j.jss.2014.12.027635

Mahdavi-Hezavehi, S., Avgeriou, P., & Weyns, D. (2017). A Classification Framework of Uncertainty in Architecture-Based Self-Adaptive636

SystemsWithMultiple Quality Requirements. InManaging Trade-Offs in Adaptable Software Architectures, Mistrik, I., Ali, N., Kazman,637

R., Grundy, J., & B. Schmerl (Eds.). Morgan Kaufmann, 45-77. https://doi.org/10.1016/B978-0-12-802855-1.00003-4638

Marks, P., Muller, T., Vogeli, D., Jung, T., Jazdi, N., & Weyrich, M. (2018). Agent Design Patterns for Assistance Systems in639

Various Domains - a Survey. In IEEE International Conference on Automation Science and Engineering (CASE). 168-173.640

https://doi.org/10.1109/COASE.2018.8560391641

Meyer, M. (2014). Continuous Integration and Its Tools. IEEE Software, 31, 03 (may 2014), 14-16. https://doi.org/10.1109/MS.2014.58642

Mishra, A., & Otaiwi, Z. (2020). DevOps and software quality: A systematic mapping. Computer Science Review, 38 (2020), 100308.643

https://doi.org/10.1016/j.cosrev.2020.100308644

Moreno, G., Ca´mara, J., Garlan, D., & Schmerl, B. (2015). Proactive Self-Adaptation under Uncertainty: A ProbabilisticModel Checking645

Approach. In 10th Joint Meeting on Foundations of Software Engineering. ACM, 112. https://doi.org/10.1145/2786805.2786853646

Muccini, H. & Vaidhyanathan, K. (2021). Software Architecture for ML-based Systems: What Exists and What Lies Ahead. arXiv:2103.07950647

[cs.SE]648

Musil, A., Musil, J., Weyns, D., Bures, T., Muccini, H., & Sharaf, M. (2017). Patterns for Self-Adaptation in Cyber-Physical Systems.649

Springer, 331-368. https://doi.org/10.1007/978-3-319-56345-9 13650

Musil, J., Musil, A., Weyns, D., & Biffl, S. (2015). An Architecture Framework for Collective Intelligence Systems. In 12th Working651

IEEE/IFIP Conference on Software Architecture. 21-30. https://doi.org/10.1109/WICSA.2015.30652

Musi, S. & Hirche, S. (2016). Classification of human-robot team interaction paradigms. IFAC-PapersOnLine, 49(32), 42-47.653

https://doi.org/10.1016/j.ifacol.2016.12.187 Cyber-Physical & Human-Systems.654

Naumann, S., Dick, M., Kern, E., & Johann, T. (2011). The GREENSOFT Model: A reference model for green and sustainable software and655

its engineering. Sustainable Computing: Informatics and Systems, 1(4) (2011), 294-304. https://doi.org/10.1016/j.suscom.2011.06.004656

Oreizy, P., Gorlick, M.M., Taylor, R.N., Heimhigner, D., Johnson, G., Medvidovic, N., Quilici, A., Rosenblum, D.S., & Wolf, A.L. (1999).657

An architecture-based approach to self-adaptive software. IEEE Intelligent Systems and their Applications, 14(3) (1999), 54-62.658

Palar, P.S., Yang, K., Shimoyama, K., Emmerich, M., & Bäck, T. (2018). Multi-Objective Aerodynamic Design with User Preference Using659

Truncated Expected Hypervolume Improvement. In Genetic and Evolutionary Computation Conference (Kyoto, Japan). Association for660

Computing Machinery, New York, NY, USA, 13331340. https://doi.org/10.1145/3205455.3205497661

Parisi, G.I., Kemker, R., Part, J.L., Kanan, C., & Wermter, S. (2019). Continual lifelong learning with neural networks: A review. Neural662

Networks, 113, 54-71. https://doi.org/10.1016/j.neunet.2019.01.012663

Paulovich, F., De Oliveira, M., & Oliveira, O. (2018). A Future with Ubiquitous Sensing and Intelligent Systems. ACS Sensors, 3(8) (2018),664

1433-1438. https://doi.org/10.1021/acssensors.8b00276665

Reussner, R., Goedicke, M., Hasselbring, W., Vogel-Heuser, B., Keim, J., & Martin, L. (2019). Managed Software Evolution. Springer666

Nature.667

https://doi.org/10.1145/3337773
https://elib.dlr.de/101368/2/acatech%20POSITION%20PAPER%20New%20autoMobility%20web.pdf
https://doi.org/10.1016/j.tics.2017.04.001
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.150.1011&rep=rep1&type=pdf
https://doi.org/10.1023/A:1018990005598
https://doi.org/10.1109/AQTR.2014.6857843
https://doi.org/10.1109/MIC.2019.2906528
https://doi.org/10.1109/JPROC.2017.2731741
https://doi.org/10.1109/FOSE.2007.19
https://doi.org/10.1016/S0020-0190(03)00382-X
https://doi.org/10.1016/j.jss.2014.12.027
https://doi.org/10.1016/B978-0-12-802855-1.00003-4
https://doi.org/10.1109/COASE.2018.8560391
https://doi.org/10.1109/MS.2014.58
https://doi.org/10.1016/j.cosrev.2020.100308
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1007/978-3-319-56345-9_13
https://doi.org/10.1109/WICSA.2015.30
https://doi.org/10.1016/j.ifacol.2016.12.187
https://doi.org/10.1016/j.suscom.2011.06.004
https://doi.org/10.1145/3205455.3205497
https://doi.org/10.1016/j.neunet.2019.01.012
https://doi.org/10.1021/acssensors.8b00276

U
nc

or
re

ct
ed

 A
ut

ho
r P

ro
of

D. Weyns et al. / The vision of self-evolving computing systems 17

Rodrguez, P., et al. (2017). Continuous deployment of software intensive products and services: A systematic mapping study. Journal of668

Systems and Software, 123, 263-291. https://doi.org/10.1016/j.jss.2015.12.015669

Salehie, M. & Tahvildari, L. (2009). Self-Adaptive Software: Landscape and Research Challenges. ACM Trans Auton Adapt Syst, 4(2),670

Article 14 (May 2009), pp. 42. https://doi.org/10.1145/1516533.1516538671

Schelfthout, K., Coninx, T., Helleboogh, A., Holvoet, T., Steegmans, E., & Weyns, D. (2002). Agent implementation patterns. Workshop on672

Agent-Oriented Methodologies, 119-130.673

Selic, B. (2020). Controlling the Controllers: What Software People Can Learn From Control Theory. IEEE Softw, 37(6) (2020), 99-103.674

https://doi.org/10.1109/MS.2020.3006970675

Sztipanovits, J., Koutsoukos, X., Karsai, G., Kottenstette, N., Antsaklis, P., Gupta, V., Goodwine, B., Baras, J., & Wang, S. (2012). Toward676

a Science of CyberPhysical System Integration. Proc IEEE, 100(1), 29-44. https://doi.org/10.1109/JPROC.2011.2161529677

Tamai, T. (2019). Key Software Engineering Paradigms and Modeling Methods. Springer International Publishing, Cham, 349-374.678

https://doi.org/10.1007/978-3-030-00262-6 9679

Tao, F., Zhang, H., Liu, A., & Nee, A. (2019). Digital Twin in Industry: State-of-the-Art. IEEE Transactions on Industrial Informatics, 15(4)680

(2019), 2405-2415. https://doi.org/10.1109/TII.2018.2873186681

Tavcar, J. & Horváth, I. (2019). A Review of the Principles of Designing Smart Cyber-Physical Systems for Run-Time Adapta-682

tion: Learned Lessons and Open Issues. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 49(1) (2019), 145-158.683

https://doi.org/10.1109/TSMC.2018.2814539684

Thill, M., Konen, W., Wang, H., & Bäck, T. (2021). Temporal convolutional autoencoder for unsupervised anomaly detection in time series.685

Applied Soft Computing, 112, 107751. https://doi.org/10.1016/j.asoc.2021.107751686

Thrun, S. & Mitchell, T.M. (1995). Lifelong Robot Learning. In The Biology and Technology of Intelligent Autonomous Agents. Springer,687

165-196.688

Tzafestas, S.G. (2012). Advances in intelligent autonomous systems. Springer.689

Weyns, D. (2019). Software Engineering of Self-adaptive Systems. In Handbook of Software Engineering., Sungdeok Cha, Richard Taylor,690

N., & Kyo, C. Kang (Eds.). 399-443. https://doi.org/10.1007/978-3-030-00262-6691

Weyns, D. (2021). Introduction to Self-Adaptive Systems: A Contemporary Software Engineering Perspective. Wiley. ISBN 978-1-119-692

57494-1.693

Weyns, D., Andersson, J., Caporuscio, M., Flammini, F., Kerren, A., & Löwe, W. (2022). A Research Agenda for Smarter Cyber-Physical694

Systems. Journal of Integrated Design and Process Science (2022). https://doi.org/10.3233/JID-210010695

Weyns, D., Bäck, T., Vidal, R., Yao, X., & Belbachir, A.N. (2021a). Lifelong Computing. arXiv abs/2108.08802 (2021).696

Weyns, D., Bencomo, N., Calinescu, R., Camara, J., Ghezzi, C., Grassi, V., Grunske, L., Inverardi, P., Jezequel, J-M., Malek, S., Mirandola,697

R., Mori, M., & Tamburrelli, G. (2017). Perpetual Assurances for Self-Adaptive Systems. In Software Engineering for Self-Adaptive698

Systems III. Assurances, R. de Lemos, Garlan, D., Ghezzi, C., & H. Giese (Eds.). Springer International Publishing, Cham, 31-63.699

Weyns, D., Bures, T., Calinescu, R., Craggs, B., Fitzgerald, J., Garlan, D., Nuseibeh, B., Pasquale, L., Rashid, A., Ruchkin, I., & Schmerl,700

B. (2021b). Six Software Engineering Principles for Smarter Cyber-Physical Systems. In IEEE International Conference on Autonomic701

Computing and Self-Organizing Systems, ACSOS 2021, Companion Volume, Washington, DC, USA, September 27 - Oct. 1, 2021. IEEE,702

198-203. https://doi.org/10.1109/ACSOS-C52956.2021.00058703

Weyns, D., Caporuscio, M., Vogel, B., & Kurti, A. (2015). Design for Sustainability = Runtime Adaptation U Evolution. In 1st704

International Workshop on Sustainable Architecture: Global collaboration, Requirements, Analysis (Dubrovnik, Cavtat, Croatia).705

https://doi.org/10.1145/2797433.2797497706

Weyns, D. & Iftikhar, M.U. (2022). ActivFORMS: A Formally-Founded Model-Based Approach to Engineer Self-Adaptive Systems. ACM707

Transactions on Software Engineering and Methodology, 31(3) (2022).708

Weyns, D., Iftikhar, U., Hughes, D., & Matthys, N. (2018). Applying Architecture-Based Adaptation to Automate the Management of709

Internet-of-Things. In Software Architecture. Springer, 49-67.710

Weyns, D., Malek, S., & Andersson, J. (2010). FORMS: A Formal Reference Model for Self-Adaptation. In Proceedings of the 7th Inter-711

national Conference on Autonomic Computing (Washington, DC, USA) (ICAC’ 10). Association for Computing Machinery, New York,712

NY, USA, 205214. https://doi.org/10.1145/1809049.1809078713

Wooldrige, M. (2009). An Introduction to MultiAgent Systems. Wiley. ISBN 978-0-470-51946-2.714

You, C., Robinson, D., & Vidal, R. (2017). Provable Self-Representation Based Outlier Detection in a Union of Subspaces. arXiv:1704.03925715

[cs.CV]716

Yu, G., Jin, Y., & Olhofer, M. (2020). Benchmark Problems and Performance Indicators for Search of Knee Points in Multiobjective717

Optimization. IEEE Transactions on Cybernetics, 50(8), 3531-3544. https://doi.org/10.1109/TCYB.2019.2894664718

Yu, X. & Xue, Y. (2016). Smart Grids: A CyberPhysical Systems Perspective. Proc. IEEE, 104(5), 1058-1070.719

https://doi.org/10.1109/JPROC.2015.2503119720

Zeng, J., Yang, L., Lin, M., Ning, H., & Ma, J. (2020). A survey: Cyber-physical-social systems and their system-level design methodology.721

Future Generation Computer Systems, 105, 1028-1042. https://doi.org/10.1016/j.future.2016.06.034722

https://doi.org/10.1016/j.jss.2015.12.015
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1109/MS.2020.3006970
https://doi.org/10.1109/JPROC.2011.2161529
https://doi.org/10.1007/978-3-030-00262-6_9
https://doi.org/10.1109/TII.2018.2873186
https://doi.org/10.1109/TSMC.2018.2814539
https://doi.org/10.1016/j.asoc.2021.107751
https://doi.org/10.1007/978-3-030-00262-6
https://doi.org/10.3233/JID-210010
https://doi.org/10.1109/ACSOS-C52956.2021.00058
https://doi.org/10.1145/2797433.2797497
https://doi.org/10.1145/1809049.1809078
https://doi.org/10.1109/TCYB.2019.2894664
https://doi.org/10.1109/JPROC.2015.2503119
https://doi.org/10.1016/j.future.2016.06.034

