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ABSTRACT

This article introduces a causal discoverymethod to learn nonlinear relationships in a directed acyclic graph
with correlatedGaussian errors due to confounding. First, wederivemodel identifiability under the sublinear
growth assumption. Then, we propose a novel method, named the Deconfounded Functional Structure
Estimation (DeFuSE), consisting of a deconfounding adjustment to remove the confounding effects and
a sequential procedure to estimate the causal order of variables. We implement DeFuSE via feedforward
neural networks for scalable computation. Moreover, we establish the consistency of DeFuSE under an
assumption called the strong causal minimality. In simulations, DeFuSE compares favorably against state-
of-the-art competitors that ignore confounding or nonlinearity. Finally, we demonstrate the utility and
effectiveness of the proposed approachwith an application to gene regulatory network analysis. The Python
implementation is available at https://github.com/chunlinli/defuse. Supplementary materials for this article
are available online.
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1. Introduction

Causal relationships are fundamental to understanding the
mechanisms of complex systems and the consequences of
actions in natural and social sciences. Causal discovery, namely
to learn a Directed Acyclic Graph (DAG) representing causal
relationships, arises in many applications. In gene network anal-
ysis, scientists explore gene-to-gene regulatory relationships to
unravel the genetic underpinnings of a disease (Sachs et al.
2005). In such a situation, latent confounders such as environ-
mental or lifestyle factors could introduce spurious associations
or mask causal relationships in observed gene expression levels,
making causal discovery more challenging. Currently, causal
discovery fromobservational data is an important research topic
as randomized experiments are often unethical, expensive, or
infeasible. In this article, we concentrate on the discovery of
causal relationships in the presence of latent confounders.

Linear causal discovery without confounders has been exten-
sively studied (Spirtes, Glymour, and Scheines 2000; Chick-
ering 2002; Tsamardinos, Brown, and Aliferis 2006; Shimizu
et al. 2006; de Campos 2006; Jaakkola et al. 2010; de Campos
and Ji 2011; Zheng et al. 2018; Gu, Fu, and Zhou 2019; Yuan
et al. 2019; Li, Shen, and Pan 2020). However, in practice,
many causal relations are nonlinear, raising concerns about
using a linear model (Voorman, Shojaie, and Witten 2014).
For nonlinear causal models without confounders, three major
approaches include (a) nonlinear independent component anal-
ysis (Zhang and Hyvärinen 2009; Monti, Zhang, and Hyvärinen
2020), (b) combinatorial search for the causal order (Mooij et al.
2009; Bühlmann, Peters, and Ernest 2014), and (c) continuous
constrained optimization for causal structure learning (Zheng
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et al. 2020). The first estimates the functional relations through
the mutual independence of errors. The second determines the
causal order based on a certain criterion. For example, the
Causal Additive Model (CAM) (Bühlmann, Peters, and Ernest
2014) assumes the nonlinear functions are of additive form and
estimates the causal order that maximizes the likelihood. The
third approach directly optimizes an objective function subject
to a smooth constraint characterizing acyclicity. Themost repre-
sentative example is NOTEARS (Zheng et al. 2020). The reader
may consult Peters, Janzing, and Scholkopf (2017) andGlymour,
Zhang, and Spirtes (2019) for excellent surveys of nonlinear
causal discovery.

In the presence of latent confounders, several methods are

available for linear causal discovery. As extensions of the PC

algorithm, FCI (Spirtes, Glymour, and Scheines 2000) and its

variant RFCI (Colombo et al. 2012) address latent confounders

by producing a Partial Ancestral Graph (PAG) instead of a

completed partially DAG (CPDAG). Another approach (Frot,

Nandy, and Maathuis 2019; Shah et al. 2020) assumes the con-

founding is pervasive (Chandrasekaran, Parrilo, and Willsky

2012; Wang and Blei 2019) and recovers the CPDAG in two

steps. For example, LRpS-GES (Frot, Nandy, andMaathuis 2019)

uses the low-rank plus sparse estimator (Chandrasekaran, Par-

rilo, and Willsky 2012) to remove confounding, followed by

the GES algorithm (Chickering 2002) to perform causal struc-

ture estimation. Besides, the instrumental variable estimation

is a well-known approach but requires the availability of valid

instruments (Chen et al. 2018; Li, Shen, and Pan 2021).
Despite the foregoing progress, nonlinear causal discovery

with confounders remains largely unexplored. In a bivariate

© 2023 American Statistical Association
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case, the work of Janzing et al. (2009) estimates the confounding
effect by minimizing the L2-distance between data points and a
curve evaluated at the estimated values of the confounder. For
a multivariate case, it remains unclear whether nonlinearity can
help causal discovery with confounding, although third-order
differentiability suffices for the identifiability of nonlinear causal
discovery without confounders (Peters et al. 2014). Moreover,
major computational and theoretical challenges arise when we
confront the curse of dimensionality in learning a nonpara-
metric DAG. During the review process, a preprint by Agrawal
et al. (2021) proposes a two-step procedure for nonlinear causal
discovery in the presence of pervasive confounders. However,
for consistent estimation, their method requires that the sample
size grows slower than the quadratic graph size, n ≪ p2, which
may be restrictive, especially for nonparametric estimation.

This article contributes to the following areas. First, we derive
a new condition, called the sublinear growth assumption, for
model identifiability in the presence of latent confounders. Sec-
ond, we propose a novel approach for causal discovery, called
the Deconfounded Functional Structure Estimation (DeFuSE),
comprising a deconfounding adjustment and an iterative proce-
dure to reconstruct the topological order of the variables. Third,
we implement DeFuSE through feedforward neural networks
without assuming additive functional relationships while allow-
ing efficient computation for a reasonable graph size p, say p =
100. This is in contrast to traditional nonparametric methods
that suffer from inefficiency in high dimensions, such as tensor-
product B-splines (Hastie, Tibshirani, and Friedman 2009).
Fourth, we develop a novel theory for DeFuSE, establishing
its consistency for discovering the underlying DAG structure.
DeFuSE requires an assumption for consistent causal discovery,
called the strong causal minimality, which is an analogy of the
strong faithfulness (Uhler et al. 2013) and the beta-min condi-
tion (Meinshausen and Bühlmann 2006). A central message of
this article is that nonlinearity plays an important role in causal
discovery, permitting the separation of the nonlinear causal
effects from linear confounding effects.

The rest of the article is structured as follows. Section 2
introduces the DAG model with hidden confounders and the
proposedmethodDeFuSE. Section 3 implements DeFuSE based
on feedforward neural networks for scalable computation. Sec-
tion 4 provides a theoretical guarantee of DeFuSE for consistent
discovery. Section 5 presents some numerical examples and
compares DeFuSE with CAM, NOTEARS, RFCI, and LRpS-
GES, followed by a discussion in Section 6. The Appendix con-
tains additional theoretical results and implementation details,
and the supplementary materials contain the technical proofs.

2. Directed Acyclic Graph with Confounders

Consider a random vector Y = (Y1, . . . ,Yp) generated from a
nonlinear structural equation model with additive confounders
and noises,

Yj = fj
(
Ypa(j)

)
+ ηj + ej, j ∈ V = {1, . . . , p}, (1)

where fj maps the subvector Ypa(j) = (Yk)k∈pa(j) to a real
number, pa(j) ⊆ V \ {j} is an index subset, η = (η1, . . . , ηp) ∼
Np(0,�η) is a vector of hidden confounders and is independent

of random errors e = (e1, . . . , ep) ∼ Np(0, diag(σ
2
1 , . . . , σ

2
p )),

�η is an unknown covariancematrix, and diag(σ 2
1 , . . . , σ

2
p ) is an

unknown diagonalmatrix. Then (1) is associated with a directed
graph G = (V ,E) such that E = {k → j : k ∈ pa(j), j ∈ V}. In
this situation, pa(j) denotes the set of parents of j. Throughout
this article, we assume that G is a DAG in that no directed
path j → · · · → j exists in G. As a result, (1) generalizes
the nonlinear DAG without unmeasured confounders (Hoyer
et al. 2008; Peters et al. 2014) and the linear DAG (Peters and
Bühlmann 2014).

In (1), we assume the causal minimality to ensure that the
effect of each parent is nonvanishing. In other words, we require
pa(j) = arg(fj); j = 1, . . . , p, where arg(fj) denotes the
minimal argument set B ⊆ pa(j) such that the value of fj only
depends on YB = (Yk)k∈B. In particular, if fj is a constant
function, we have pa(j) = arg(fj) = ∅. When η ≡ 0
(no confounder), this definition agrees with the usual causal
minimality condition (Pearl 2009), requiring that the probability
distribution ofY is notMarkov to any proper subgraph ofG. The
causal minimality, as a form of causal faithfulness (Spirtes, Gly-
mour, and Scheines 2000), ensures that the problem of nonlinear
causal discovery is well-defined.

Equivalently, we rewrite (1) by letting εj = ηj + ej,

Yj = fj
(
Ypa(j)

)
+ εj, j ∈ V = {1, . . . , p}, (2)

where ε = (ε1, . . . , εp) ∼ N(0,�) and � = �η +
diag(σ 2

1 , . . . , σ
2
p ). Whereas (1) has a clear causal interpretation,

(2) is simpler for the subsequent discussion. Our goal is to
discover the causal relations between variables Y1, . . . ,Yp by
identifying {fj}1≤j≤p and {pa(j)}1≤j≤p. One major challenge is
that the error εjmay be correlatedwithYpa(j) due to unmeasured
confounders.

2.1. Model Identifiability

This section establishes the identifiability conditions for (2).
First, we introduce the concept of topological depth for a DAG
G = (V ,E) with nodes V = {1, . . . , p} and directed edges
E ⊆ V×V . A node j is a root if it has no parent, that is, pa(j) = ∅.
If there exists a directed path k → · · · → j, then node k is an
ancestor of j and j is a descendant of k. The topological depth dj of
node j ∈ V is the maximal length of a directed path from a root
to j. Clearly, a root node has depth zero, and we have 0 ≤ dj ≤
dmax ≤ p − 1 for j ∈ V , where dmax is the length of the longest
directed path in G. Let V(d) = {j : dj < d} be the set of nodes
with topological depth less than d, where 1 ≤ d ≤ dmax + 1.
Then ∅ ≡ V(0) ⊆ V(1) ⊆ · · · ⊆ V(dmax + 1) = V and V(dj)
contains all the ancestors (and hence all the parents) of Yj but
contains no descendant of Yj. See Figure 1 for an illustration.

Next, we present a new condition for {fj}1≤j≤p and
{pa(j)}1≤j≤p in (2) to be identifiable. For continuous function
f : Rm → R, f is of sublinear growth if lim‖x‖→∞ f (x)/‖x‖ = 0,
where ‖ · ‖ is the Euclidean norm.

Condition 1. Assume that {fj}1≤j≤p are of sublinear growth.

For example, Condition 1 is satisfied if {fj}1≤j≤p are contin-
uous and bounded. This sublinear growth assumption imposes
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Figure 1. Topological depth: d1 = d3 = 0 (nodes 1 and 3 are root nodes), d2 = 1,
d4 = 2. Here V(1) = {1, 3}, V(2) = {1, 2, 3}, and V(3) = V = {1, 2, 3, 4}.

restrictions on the nonlinearity of {fj}1≤j≤p, in contrast to the
third-order differentiability condition for DAGs without con-
founders (Hoyer et al. 2008; Peters et al. 2014).

Theorem 1 (Identifiability). Assume Condition 1 is satisfied.

(A) The sets V(1) ⊆ · · · ⊆ V(dmax) are uniquely identifiable
for almost every positive definite � with respect to the
Lebesgue measure, where the set of such� is denoted as� .
Moreover, for � ∈ � , if dj = d, then Yj − E

(
Yj | YV(d)

)
is

normally distributed with mean zero and constant variance
var

(
Yj | YV(d)

)
; if dj > d, then Yj − E

(
Yj | YV(d)

)
is not

normally distributed; j = 1, . . . , p.
(B) Given V(1) ⊆ · · · ⊆ V(dmax), we have {fj}1≤j≤p and

{pa(j)}1≤j≤p are well-defined and identifiable from the dis-
tribution of Y .

By Theorem 1, model (2) is generically identifiable under
Condition 1. Different from Frot, Nandy, and Maathuis (2019),
Theorem 1 does not require pervasive confounding. The sublin-
ear growth assumption (Condition 1) allows us to separate the
linear confounding effect from nonlinear causal relationships.

2.2. DeFuSE

This section proposes the causal discovery method Decon-
founded Functional Structure Estimation (DeFuSE). We com-
mence with least squares regressions of {Yj}j/∈V(d) on YV(d),

Yj = E(Yj | YV(d))︸ ︷︷ ︸
(i)

+Yj − E(Yj | YV(d))︸ ︷︷ ︸
(ii)

,

where (i) is the regression function and (ii) is the residual of the
regression. By Theorem 1, (ii) is normally distributed if and only
if dj = d, suggesting that normality tests (e.g., the Anderson-
Darling test (Anderson and Darling 1952)) for {Yj − E(Yj |
YV(d))}j/∈V(d) can be used to identifyV(d+1). Further, if dj = d,
then (i) becomes

E(Yj | YV(d)) = fj(Ypa(j)) + E(εj | YV(d)),

where E(εj | YV(d)) is the bias arising from hidden confounding.
Theorem 2 allows us to estimate {fj}j∈V(d+1) and {pa(j)}j∈V(d+1)

by regressions with deconfounding adjustment.

Theorem 2. In (2), if dj = d, then

E(Yj | YV(d)) = fj(Ypa(j)) +
〈
ξV(d),βj

〉
, (3)

where ξV(d) ≡ (Yk − E(Yk | YV(dk)))k∈V(d), βj is a parame-
ter vector, 〈·, ·〉 is the Euclidean inner product, and we define〈
ξV(d),βj

〉
≡ 0 whenever V(d) = ∅.

Now, we develop an algorithm that iteratively estimates
V(d + 1), ξV(d+1), {fj}j∈V(d+1), and {pa(j)}j∈V(d+1), given V(d)
and ξV(d) as input. To proceed, suppose an independent sample

{(Y(i)
1 , . . . ,Y

(i)
p )}1≤i≤n from model (2) is given. Let ξ̂

(i)
V(d) =

(Y
(i)
k − Ŷ

(i)
k )k∈V(d) be the estimated residual vector for the ith

observation, where Ŷ
(i)
k = f̂k

(
Y

(i)
V(dk)

)
+

〈̂
ξ

(i)
V(dk)

, β̂j

〉
for k ∈

V(d). Based on (3), we regress each variable in {Yj}j/∈V(d) on(
YV(d), ξV(d)

)
,

(̂fj, β̂j) = argmin
{(fj,βj):fj∈Fj}

n∑

i=1

(
Y

(i)
j − fj

(
Y

(i)
V(d)

)
−

〈̂
ξ

(i)
V(d),βj

〉)2

s.t. |arg(fj)| ≤ κj,

(4)

where |arg(fj)| is the effective input dimension of fj, κj ≥ 0 is an
integer-valued hyperparameter and is estimated via a standalone
validation set (see Section A.3), and Fj is a function space
consisting of sublinear growth continuous functions. Then we

perform normality tests for {(̂ξ (1)
j , . . . , ξ̂

(n)
j )}j/∈V(d), and estimate

V(d + 1) by including V(d) and all the indices failing to reject
the tests. Finally, we estimate {p̂a(j)}j∈V(d+1) by p̂a(j) = arg(̂fj).

We summarize the procedure in Algorithm 1, where a bold-
face letter denotes a data vector/matrix of sample size n.

Algorithm 1: DeFuSE

Input: An n × p data matrix Y = (Y1, . . . ,Yp);
Parameters: significance level α for normality test;

hyperparameters {κj}1≤j≤p;
1 Let V(0) ← ∅ and d ← 0;
2 while V(d) �= V do

3 Regress {Y j}j/∈V(d) on (YV(d), ξ̂V(d)) based on (4);

4 Update {̂ξ j ← Y j − Ŷ j}j/∈V(d);

5 Let V(d + 1) ← V(d) ∪ {j /∈ V(d) :

ξ̂ j fails to reject the normality test};
6 Let {p̂a(j) ← arg(̂fj)}j∈V(d+1) and d ← d + 1;

7 end

Output: {̂fj}1≤j≤p and {p̂a(j)}1≤j≤p;

Remark 1 (Normality test and the choice of α). For implementa-
tion, we use the Anderson-Darling test (Anderson and Darling
1952) to examine the null hypotheses

H
(j,d)
0 : Yj − E(Yj | YV(d)) is normal; j /∈ V(d), 0 ≤ d ≤ dmax.

Other tests or metrics, such as the Wasserstein distance, can
also be used. Moreover, the normality test can be combined
with a goodness of fit measure to further improve perfor-
mance. The significance level 0 < α < 1 is a hyper-
parameter similar to that in the PC algorithm (Kalisch and
Bühlman 2007). To choose α, denoting by T the set of true

null hypotheses, then P
(
someH

(j,d)
0 ∈ T is rejected

)
≤

∑
H

(j,d)
0 ∈T P

(
H

(j,d)
0 is rejected

)
≈ |T |α. For 1 ≤ d ≤ dmax + 1,
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Figure 2. Display of the directed acyclic graph in Example 1.

identifying V(d) requires p − |V(d − 1)| tests, among which
|V(d)| − |V(d− 1)| null hypotheses are true and p− |V(d)| are
not. Thus, |T | =

∑dmax+1
d=1 (|V(d)|−|V(d−1)|) = p, suggesting

an empirical rule α = o(1/p) so that |T |α → 0.

Finally, Example 1 illustrates the importance of deconfound-
ing for causal discovery.

Example 1. Consider a special case of (1) with three variables,

Y1 = e1 + η, Y2 = e2 + η, Y3 = cos(Y1) + e3 + η, (5)

where e1, e2, e3, η ∼ N(0, 1) independently; see Figure 2. As a
special case of (3), we have E(Y3 | Y1,Y2) = cos(Y1) + E(η |
Y1,Y2) = cos(Y1)+Y1/3+Y2/3, where d3 = 1, V(1) = {1, 2},
ξV(1) = (ξ1, ξ2) = (e1 + η, e2 + η), and ξV(2) = ξ3 = e3 +
(η − e1 − e2)/3. The presence of Y2/3 is due to the confounder
η. If we have regressed Y3 on Y1 and Y2 to identify the parent
variables of Y3, then the regression would yield a true discovery
Y1 → Y3 and a false discovery Y2 → Y3. Consequently, direct
regression of Yj on YV(dj) without any adjustment renders false
discovery of functional causal relations.

3. DeFuSE via Neural Networks

Solving (4) is challenging for a large-scale problem due to fit-
ting nonparametric functions. Existing nonparametric methods
such as tensor-product splines and kernels are not scalable in
a growing sample size and dimension. For example, tensor-
product B-splines least squares regression suffers from expo-
nential growth of time and space complexity with increasing
dimensions. To overcome this difficulty, we solve (4) via a
Feedforward Neural Network (FNN) together with stochastic
gradient descent for scalable computation.

Specifically, for dj ≥ d, we approximate fj
(
YV(d)

)
+

〈
ξV(d),βj

〉

by an FNN,

gj
(
YV(d), ξV(d)

)
= f Lj ◦ · · · ◦ f 1j

(
YV(d)

)
+

〈
ξV(d),βj

〉
, f lj (·)

= σ l
(
W l(·) + bl

)
; l = 1, . . . , L, (6)

whereW l ∈ R
hl×hl−1 is the weight matrix of links from the (l −

1)th to the lth layer, bl ∈ R
hl is the bias vector in the lth layer,

hl is the number of neurons in the lth layer with hl = h; l =
1, . . . , L − 1, and hL = 1, L is the number of layers, and σ l(·) is
an activation function. For l = 1, . . . , L− 1, we use the Rectifier
Linear Unit (ReLU) activation σ l(z) = max(0, z).

To solve (4), consider a FNN parameter vector θj =
((W l

j , b
l
j)1≤l≤L,βj) which belongs to a parameter space �d. We

impose constraints
∑

k∈V(d) min(‖W1
k‖/τ , 1) ≤ κj on the kth

columnW1
k of the weight matrixW1 at the first layer to enforce

the constraint |arg(fj)| ≤ κj in (4), where min(| · |/τ , 1) is to
approximate I(· �= 0) as τ → 0+ (Shen, Pan, and Zhu 2012). As
such, if W1

k = 0 then gj
(
YV(d), ξV(d)

)
does not depend on Yk.

Finally, we regularize the FNN by an L2-norm constraint ‖θj‖ ≤
s on the model parameters θj for numerical consideration. This
leads to the following regression for estimating (fj,βj),

min
{θj:‖θj‖≤s}

n∑

i=1

(
Y

(i)
j − fj

(
Y

(i)
V(d)

)
−

〈̂
ξ

(i)
V(d),βj

〉)2
,

s.t.
∑

k∈V(d)

min(‖W1
k‖/τ , 1) ≤ κj,

∑

k∈V(d)

min(|βj,k|/τ , 1) ≤ ςj,

(7)

where τ > 0, 0 ≤ κj ≤ |V(d)|, 0 ≤ ςj ≤ |V(d)|, and s ≥ 0 are
hyperparameters. See Section A.3 for more details on network
training and hyperparameter tuning.

Remark 2. Algorithm 1 requires O(dmax(p − 1)) normality
tests and regressions (4). Each regression (4), solved by (7) with
stochastic gradient descent, requires O(Nepochn dim(θ)) opera-
tions, where Nepoch is the number of epochs in training and one
epoch means that each sample in training has an opportunity to
update model parameters.

4. Learning Theory

This section develops a novel theory to quantify the finite-
sample error of DeFuSE. In what follows, c1-c6 are positive
constants and ◦ decorates the truth. Let Gj be the function space

of regression functions gj(·, ⋆) = fj(·) +
〈
⋆,β◦

j

〉
, and denote

the true regression function by g◦
j (·, ⋆) = f ◦j (·) +

〈
⋆,β◦

j

〉
. By

definition, pa◦(j) = arg(f ◦j ).

Condition 2. There exists an approximating function g∗
j (·, ⋆) =

f ∗j (·)+
〈
⋆,β◦

j

〉
∈ Gj such that ‖g∗

j −g◦
j ‖L2 = ‖f ∗j − f ◦j ‖L2 ≤ c3ǫn;

j = 1, . . . , p, where ‖·‖L2 is the L2-normwith respect tomeasure
P. Moreover, assume {f ◦j }1≤j≤p are continuous and ‖f ◦j ‖∞ ≤ c1,

where ‖ · ‖∞ is the sup-norm.
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To measure the signal strength, we define the degree of non-
linear separation as

Dmin = min
1≤j≤p

inf

{
‖gj − g◦j ‖2L2

|pa◦(j) \ arg(fj)|
:

gj ∈ Gj, arg(fj) �= pa◦(j),

‖βj‖0 ≤ ς◦, |arg(fj)| ≤ |pa◦(j)|

}
.

Condition 3 (Strong causal minimality). Assume Dmin ≥
c4max

(
4ǫ2n, n

−1 log n, n−1 log p
)
, where c4 ≥ 1.

The strong causal minimality (Condition 3) requires that the
signal strengths of parent variables are sufficiently strong so
that the corresponding causal function is distinguishable from
those supported on nonparent variables. It is a strong version
of the causal minimality for nonlinear causal discovery from
a finite sample, similar to the strong faithfulness (Uhler et al.
2013) for linear causal discovery and the beta-min condition
(Meinshausen and Bühlmann 2006) for high-dimensional vari-
able selection.

Theorem 3 (Error bounds for DeFuSE). Assume Conditions 1–3,
Conditions A1–A2 in Section A.2 are met and � ∈ � .

(A) The DAG recovery error is P(Ĝ �= G◦) ≤ c6 exp(−c5nǫ
2
n −

log n) + πα(G◦), when the hyperparameters κj = |pa◦(j)|
and ‖β◦

j ‖0 ≤ ςj ≤ ς◦; 1 ≤ j ≤ p, where πα(G◦) is the

normality test error given the true model. Consequently,
P(Ĝ �= G◦) → 0 provided that πα(G◦) → 0, as n → ∞.

(B) The regression estimation error is max1≤j≤p ‖̂gj − g◦
j ‖L2 =

Op(ǫn). Suppose f
◦
j satisfies ‖f ◦j ‖∞ ≤ C and has bounded

support; 1 ≤ j ≤ p. Then the causal function estimation
error is max1≤j≤p ‖̂fj − f ◦j ‖L2 = Op(ǫn) provided that

‖̂fj‖∞ ≤ C′ for C′ ≥ C.

Typically, we have πα(G◦) → 0 when α = o(1/p) and the
dimension p does not grow too fast. Moreover, Theorem 3 indi-
cates that hyperparameter κj is critical to consistent discovery,
while ςj is less important provided that ςj ≥ ‖β◦

j ‖0 and is not

too large; see also Section A.3.
Next, we apply Theorem 3 to the implementation via FNNs

in (7). Before proceeding, we define Crj , the space of functions

with r-continuous derivatives over the domain R
|pa◦(j)|. For any

function fj ∈ Crj , the C
r
j -norm of fj is defined as

‖fj‖Cr
j
=

∑

α:|α|<r

‖∂αfj‖∞ +
∑

α:|α|=⌊r⌋
sup
x1 �=x2

|∂αf (x1) − ∂αf (x2)|
‖x1 − x2‖r−⌊r⌋

∞
,

where ∂α = ∂α1 · · · ∂α|pa(j)| with α ∈ N
|pa(j)| and |α| =∑|pa(j)|

k=1 αk; j = 1, . . . , p. In what follows, C1–C3 are positive
constants that may depend on (κ◦, r).

Condition 4. Assume f ◦j ∈
{
fj ∈ Crj : ‖fj‖Cr

j
≤ C1

}
, where r does

not depend on (p, n).

Theorem 4 (Consistency of FNN-DeFuSE). Under Conditions 3–
4, and A2 in Section A.2, DeFuSE implemented by FNNs in
(7) consistently recovers all causal relations defined in (2) with

ǫ2n = C3(n
−r/(r+κ◦+ς◦)(log n)3 + n−1(κ◦ + ς◦) log p) in The-

orem 3, provided that the width of the FNN h = C2ǫ
−κ◦/r
n

and its depth L = C2 log(1/ǫn), the hyperparameters s =

C2ǫ
−(κ◦+ς◦)/r
n log(1/ǫn), κj = |pa◦(j)|, ‖β◦

j ‖0 ≤ ςj ≤ ς◦;

j = 1, . . . , p. Here, the FNN function space Gj = {gj = gj(·; θ) :
θ ∈ �j} is associated with the FNN parameter space

�j =
{
θ = ((Wl , bl)1≤l≤L,βj) : max

1≤l≤L
hl ≤ h, ‖θ‖ ≤ s

}
; j = 1, . . . , p.

It is worth noting that the rate ǫ2n ≍ n−r/(r+κ◦+ς◦)(log n)3 +
n−1(κ◦+ς◦) log p for FNN relies on the approximation result of
Schmidt-Hieber (2019) as well as the choice of L, h, and s. This
rate agrees with Farrell, Liang, andMisra (2021) up to logarithm
terms; however, it is slower than n−r/(r+(κ◦+ς◦)/2) in view of
Stone (1982) for nonparametric regression over [0, 1]κ◦+ς◦

, sug-
gesting that itmay be suboptimal. Thismay be due to the approx-
imation, namely the use of non-differentiable ReLU FNNs to
approximate smooth functions.

5. Numerical Examples

5.1. Simulations

This section examines the operating characteristics of DeFuSE
and compares DeFuSE with CAM (Bühlmann, Peters, and
Ernest 2014), NOTEARS (FNN version) (Zheng et al. 2020),
LRpS-GES (Frot, Nandy, and Maathuis 2019), and RFCI
(Colombo et al. 2012). We implement DeFuSE in Python. For
competitors, we use R packages forCAM(CAM), RFCI (pcalg),
and LRpS-GES (lrpsadmm and pcalg), and use a Python
program for NOTEARS (notears).

In simulations, we consider two types of DAGs with hidden
confounders. Define an adjacency matrix U = (Ujk)p×p of a
DAG as Ujk = 1 if j ∈ pa(k) and 0 otherwise.

Random DAG. Consider a sparse graph where the edges are
added independently with equal probability. In particular, an
adjacency matrixU ∈ {0, 1}p×p is randomly generated: P(Ujk =
1) = s if j < k and P(Ujk = 1) = 0 otherwise, where s
controls the degree of sparseness of the DAG. In our simulation,
we choose s = 1/p.

Hub DAG. Consider a sparse graph with a hub node. Let U ∈
{0, 1}p×p, where U1k = 1 and Ujk = 0 otherwise. In this case,
node 1 has a dense neighborhood, but the whole DAG remains
sparse.

Simulated data. GivenU , we generate a random sample of size
n from

Yj = α0Yk1Yk2 +
∑

k∈pa(j)

αj,kfj,k(Yk + ωj,k) + εj; j = 1, . . . , p, (8)

where the function fj,k is randomly sampled from {x �→ x2, x �→
cos(x)}, the coefficients αj,k ∼ Uniform([−3,−2] ∪ [2, 3]),
ωj,k ∼ Uniform([−1, 1]), and

{
α0 = 0, |pa(j)| = 1,

α0 = 1, k1, k2 are randomly sampled from pa(j), |pa(j)| > 1.

For error terms, let ε ∼ N(0,�) with �jj = 2 for 1 ≤ j ≤
p, �2k−1,2k = �2k,2k−1 = 1 for 1 ≤ k ≤ ⌊p/2⌋, and �jj′ =
0 otherwise. Of note, (8) violates Condition 1 as the functions
(y1, y2) �→ α0y1y2 and fj,k may not be of sublinear growth.
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Table 1. Averaged False Positive Rate (FPR), False Discovery Rate (FDR), True Positive Rate (TPR), Structural Hamming Distance (SHD), and their standard deviations in
parenthesis, for five methods based on 50 replications.

Graph Random Hub
(p, n) Method FPR FDR TPR SHD FPR FDR TPR SHD

(30,500) DeFuSE 0.00(.00) 0.12(0.06) 0.93(0.04) 2.6(1.2) 0.00(0.00) 0.06(0.06) 0.87(0.10) 5.3(4.6)
DeFuSE* 0.00(0.00) 0.13(0.11) 0.93(0.07) 1.7(1.4) 0.00(0.00) 0.07(0.10) 0.91(0.16) 4.2(5.6)
CAM 0.03(0.00) 0.52(0.02) 1.0(0.02) 14.2(1.0) 0.09(1.0) 0.69(0.05) 0.53(0.07) 48.2(6.9)
NOTEARS 0.28(0.07) 0.91(0.02) 0.80(0.13) 120.2(31.6) 0.19(0.02) 0.84(0.05) 0.52(0.17) 94.3(12.8)
RFCI 0.07(0.01) 0.89(0.03) 0.29(0.11) 26.8(1.2) 0.22(0.02) 0.95(0.01) 0.04(0.01) 74.4(3.7)
LRpS-GES 0.07(0.01) 0.91(0.03) 0.21(0.07) 31.9(1.7) 0.08(0.01) 0.92(0.01) 0.06(0.01) 44.5(1.4)

(100,500) DeFuSE 0.00(0.00) 0.03(0.03) 0.92(0.03) 4.0(1.7) 0.00(0.00) 0.05(0.03) 0.72(0.24) 31.4(23.7)
DeFuSE* 0.00(0.00) 0.16(0.06) 0.85(0.06) 10.6(3.0) 0.00(0.00) 0.10(0.18) 0.71(0.27) 32.9(26.2)
CAM 0.01(0.00) 0.61(0.01) 1.0(0.01) 57.4(2.5) 0.05(0.01) 0.94(0.01) 0.16(0.03) 306.3(13.0)
NOTEARS 0.04(0.02) 0.93(0.04) 0.18(0.15) 130.6(24.8) 0.18(0.02) 0.96(0.01) 0.03(0.05) 992.6(65.4)
RFCI 0.02(0.00) 0.95(0.02) 0.15(0.06) 83.5(1.1) 0.07(0.01) 0.99(0.01) 0.01(0.00) 268.6(6.7)
LRpS-GES 0.02(0.00) 0.96(0.01) 0.10(0.04) 83.3(2.0) – – – –

NOTE: A smaller value of FPR, FDR, and SHD indicates higher accuracy, whereas a larger value of TPR means higher accuracy. For DeFuSE*, the data are standardized. For
hub DAG, when p = 100 and n = 500, LRpS-GES fails to deliver the computational results after 96 hr.

Metrics. For evaluation, we consider four graph metrics: the
False Discovery Rate (FDR), the False Positive Rate (FPR), the
True Positive Rate (TPR), and the Structural Hamming distance
(SHD). To compute the metrics, let TP, RE, and FP be the
numbers of identified edges with correct directions, those with
wrong directions, and estimated edges not in the skeleton of
the true graph. Moreover, denote by PE the total number of
estimated edges, TN the number of correctly identified non-
edges, and FN the number ofmissing edges compared to the true
skeleton. Then

FDR = (RE + FP)/PE, FPR = (RE + FP)/(FP + TN),

TPR = TP/(TP + FN), SHD = FP + FN + RE.

Note that LRpS-GES outputs a completed partially DAG
(CPDAG) and RFCI outputs a partial ancestral graph (PAG).
Both PAG and CPDAGmay contain undirected edges, in which
case they are evaluated favorably by assuming the correct direc-
tions for undirected edges whenever possible, similar to Zheng
et al. (2020).

As suggested in Table 1, DeFuSE performs the best across all
the situations in terms of FPR, FDR,TPR, and SHD.As expected,
CAM and NOTEARS cannot treat unobserved confounders,
whereas RFCI and LRpS-GES cannot deal with nonlinear causal
relationships. It is worth noting thatDeFuSE* takes standardized
data as input and achieves comparable performance to DeFuSE,
indicating that DeFuSE is insensitive to the degree of varsorta-
bility (Reisach, Seiler, andWeichwald 2021). Moreover, DeFuSE
seems robust in the absence of Condition 1; see also TheoremA1
in Appendix and discussions there. Overall, nonlinearity helps
identify causal relations, allowing for a separation of nonlinear
causal effects from linear confounding effects.

Sensitivity to normality test significance level α. In the above
experiments, we use the Anderson-Darling test (Anderson and
Darling 1952) with α = 0.025 as the default choice. Now, we
assess the algorithmic sensitivity to different choices of α ∈
{0.1, 0.05, 0.025, 0.01}.

As suggested in Table 2, the overall performance of DeFuSE
seems insensitive to the choice of α, although the default choice
α = 0.025 may be sub-optimal. Based on our limited numerical
experience, we suggestα = o(1/p) as an empirical rule to reduce
the tuning cost of α; see also Remark 1.

Table 2. Sensitivity analysis: Averaged False Positive Rate (FPR), False Discovery
Rate (FDR), True Positive Rate (TPR), Structural Hamming Distance (SHD), and their
standard deviations in parenthesis, for different choices of α based on 50 replica-
tions.

Graph α FPR FDR TPR SHD

Random 0.100 0.00(0.00) 0.12(0.08) 0.95(0.05) 2.4(1.7)
0.050 0.00(0.00) 0.13(0.07) 0.96(0.04) 2.4(1.5)
0.025 0.00(0.00) 0.12(0.06) 0.93(0.04) 2.6(1.2)
0.010 0.00(0.00) 0.13(0.07) 0.92(0.07) 3.0(1.6)

Hub 0.100 0.00(0.00) 0.08(0.04) 0.91(0.04) 5.0(2.5)
0.050 0.00(0.00) 0.05(0.04) 0.95(0.03) 3.0(2.0)
0.025 0.00(0.00) 0.06(0.06) 0.87(0.10) 5.3(4.6)
0.010 0.00(0.00) 0.03(0.02) 0.97(0.02) 1.8(1.5)

NOTE: A smaller value of FPR, FDR, and SHD indicates higher accuracy, whereas a
larger value of TPR means higher accuracy. Here, p = 30 and n = 500.

5.2. Real Data Analysis

This section applies DeFuSE to reconstruct gene regulatory
networks for the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) data. In particular, we construct two gene net-
works respectively for Alzheimer’s Disease (AD) and healthy
subjects to highlight some gene–gene interactions differen-
tiating patients with AD/cognitive impairments and healthy
individuals.

The ADNI dataset (http://adni.loni.usc.edu/) includes gene
expressions, whole-genome sequencing, and phenotypic data.
After cleaning and merging, we obtain a sample of 712 subjects
in four groups, Alzheimer’s Disease (AD), Early Mild Cognitive
Impairment (EMCI), Late Mild Cognitive Impairment (LMCI),
and Cognitive Normal (CN). For our purpose, we treat 247 CN
individuals as controls while the remaining 465 individuals as
cases (AD-MCI). Previous studies suggest that the amyloid pre-
cursor protein, the presenilin proteins, and the tau protein may
involve in AD (O’brien and Wong 2011; Kelleher III and Shen
2017; Palmqvist et al. 2020), so we focus on the metabolic path-
ways of these proteins. Specifically, we extract the reference path-
ways in https://genome.jp/pathway/map05010 from the KEGG
database (Kanehisa and Goto 2000), including p = 20 genes in
the data.

For data analysis, we first regress the gene expression levels on
five covariates, Gender, Handedness, Education level, Age, and
Intracranial volume, then use the residuals as gene expressions
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Figure 3. Reconstructed directed acyclic graphs for (a) AD-MCI and (b) CN groups.

Table 3. The AIC values for quadratic and linear models fitted for each non-root gene, as defined in (9).

Group AD-MCI CN
Gene name APH1A PPP3R1 MAPT GSK3B COX7C NDUFS4 ATP2A2 COX7C

Quadratic 0.717 0.656 0.528 0.620 0.356 0.606 0.572 0.304
Linear 0.701 0.732 0.567 0.695 0.395 0.657 0.656 0.349

NOTE: A smaller AIC value indicates better model fitting.

in the subsequent analysis. We normalize all gene expression
levels and use the same FNN structure for fitting as in the sim-
ulation study. The normality test is conducted at a significance
level α = 0.05.

As displayed in Figure 3, the reconstructed DAGs exhibit
some common and distinctive characteristics for the AD-
MCI and CN groups. In the AD-MCI group, (a) directed
edges GRIN1 → MAPT and PSEN1 → GSK3B agree
with the reference pathways of the tau protein; (b) genes
{APH1A, PSENEN, NCSTN, PPP3R1, APBB1, APP} have
more directed connections, corresponding to the amyloid
precursor protein. So do genes {PSEN1, GSK3B} for the
presenilin proteins. By comparison, the genes participating
in the amyloid precursor protein and tau protein metabolism
have fewer connections in the CN group (O’brien and Wong
2011; Palmqvist et al. 2020). This observation seems consistent
with previous studies that both genes may be involved in AD.
Moreover, there are six and two non-root genes, respectively for
the AD-MCI and CN groups.

Formodel diagnostics, we check the nonlinearity assumption
on the gene expression levels. To this end, we compare a linear
and a quadratic regression model for each non-root gene in the
AD-MCI and CN groups in terms of their AIC values (Akaike
1992). These models are fitted on the estimated parents of
DeFuSE, and the quadratic model includes additional quadratic
terms (Y2

k )k∈p̂a(j) as covariates. For a linear or a quadratic model
m for a non-root variable Yj, the AIC value is defined as

AIC(m̂) = (nσ̂ 2
FNN)−1

n∑

i=1

(Y
(i)
j − Ŷ

(i)
j )2 + 2n−1 dim(m̂), (9)

where m̂ and σ̂ 2
FNN are the fitted model and the error variance

estimated by FNN, Ŷ
(i)
j is the fitted values of Y

(i)
j , and dim(m̂)

denotes the number of parameters in model m̂. As suggested in
Table 3, the quadratic model generally fits better than the corre-
sponding linear model, as measured by AIC, suggesting that the
nonlinearity assumption is approximately satisfied. Finally, the

correlation plots of
(
Y

(i)
j − f̂j(Y

(i)
p̂a(j))

)
j∈V ; i = 1, . . . , n in Figure 4

exhibit the presence of (linear) hidden confounding as evident
from the fact that many genes have multiple connections to
other genes, indicating nonzero off-diagonals of �. This obser-
vation seems plausible due to the absence of some genes in the
analysis.

6. Discussion

This article proposes a novel method for learning functional
causal relations with additive confounders. For modeling, we
establish identifiability under a sublinear growth condition on
the functional relationships. On this basis, we propose a novel
method called DeFuSE and implement it with feedforward
neural networks for scalability. Theoretically, we show that the
proposed method consistently reconstructs all nonlinear causal
relations.

One central message is that nonlinearity permits the separa-
tion of the nonlinear causal relationships from the confounding
effects in model (1) with observational data only. As nonlinear
causal discovery with hidden confounding remains understud-
ied, we hope the work could inspire further research in this
direction.
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Figure 4. Undirected graph displaying the estimated residual correlations of ε̂ =
(
Yj − f̂j(Yp̂a(j))

)
j∈V , where a connection between two genes indicates the absolute value

of residual correlation exceeds 0.15. Edge connections from one gene to other multiple genes suggest the presence of confounders or nonzero off-diagonal elements of
the covariance matrix�.

Appendix

A.1. Additional Results on Identifiability

If� ∈ � , the sublinear growth condition (Condition 1) is sufficient for

identifying both {fj}1≤j≤p and {pa(j)}1≤j≤p in (1).When this condition

is not satisfied, it is still possible to establish identifiability under an

alternative assumption. Now, we consider model (2) with additive

functions,

Yj =
∑

k∈pa(j)

fj,k(Yk) + εj, j ∈ V = {1, . . . , p}, (A1)

where {fj,k} are nonlinear and ε ∼ N(0,�). Theorem A1 establishes

the identifiability of {pa(j)}1≤j≤p in (A1), without the sublinear growth

condition.

Theorem A1. In (A1), assume that Yj − E
(
Yj | YV(d)

)
is not normally

distributed for dj > d; 0 ≤ d ≤ dmax. For any univariate function f , we

define its equivalence class

[f ] = {̃f : f̃ (z) = f (z) + γ z, γ ∈ R}.

If

[fj,k] �=
∑

j′∈V(dj)

γj′ [fj′,k] for all γj′ ∈ R; j′ ∈ V(dj), j ∈ V = {1, . . . , p},

then {pa(j)}1≤j≤p are uniquely identifiable.

The assumption that Yj − E
(
Yj | YV(d)

)
is not normal for dj >

d imposes constraints on the compositions of nonlinear functions,

which is automatically satisfied by sublinear growth functions when

� ∈ � (Theorem 1). As suggested by the simulations in Section 5,

DeFuSE continues to perform well in recovering the DAG even when

Condition 1 and the additive function model (A1) are both violated.

A.2. Regularity Conditions

We impose the following regularity conditions to establish the consis-

tency of DeFuSE.

Metric entropy. We define the bracketing L2-metric

entropy as a complexity measure of function spaces Gj ={
gj : gj(·, ⋆) = fj (·) +

〈
⋆,βj

〉}
; j = 1, . . . , p, where · and ⋆ represent

a |V(dj)|-dimensional vector, respectively. The bracketing L2-

metric entropy of Gj is the logarithm of the smallest u-bracket

cardinality, H(u,Gj) = log(min{m : S(u,m)}), where a u-bracket

S(u,m) = {g−1 , g+1 , . . . , g−m , g+m} ⊆ L2(P) is a set of functions such

that (i) max1≤k≤m ‖g−
k

− g+
k

‖L2 ≤ u and (ii) for any g ∈ Gj there

exists g−
k

≤ g ≤ g+
k
almost surely.

Condition A1. For some positive ǫn < 1/2,

max
1≤j≤p

max
{A:|A|≤|pa◦(j)|}

∫ √
2ǫn

ǫ2n/256
H1/2(u/c1,Gj(A))du ≤ c2

√
nǫ2n,

where Gj(A) =
{
gj ∈ Fj : A = arg(fj), ‖gj − g◦j ‖2 ≤ 2ǫn

}
is the 2ǫn-

neighborhood of g◦j on the index set of effective arguments A.

In view of Condition A1, the error rate ǫn is determined by solving

the integral equation in ǫn. Such a condition has been used to quantify

the convergence rate of sieve estimates (Wong and Shen 1995; van de

Geer 2000). The entropy results are available for many function classes,

such as the FNN in Theorem 4.

Sparsity and confounding. Next, we impose a regularity condition

on sparsity and confounding structures, requiring the true support of

g◦j , the maximum depth dmax, and the error variance not to increase

with the sample and graph sizes (n, p).

Condition A2. Assume κ◦ = max1≤j≤p |pa◦(j)|, ς◦ =
max1≤j≤p ‖β◦

j ‖0, dmax = max1≤j≤p dj, and c− ≤ λmin(�) ≤
λmax(�) ≤ c+ are independent of (p, n), where λmin(�) and

λmax(�) are the smallest and largest eigenvalues of � ∈ � .

A.3. Implementation Details

The code is open-sourced at https://github.com/chunlinli/defuse.
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Training and hyperparameter tuning for DeFuSE. Training and

tuning a neural network requires intensive computation. Following the

conventional practice of deep learning, we split the original sample into

training and validation sets with a partition ratio 9:1, and use on-the-

fly evaluation over the validation set for tuning during the training

process.

To tune hyperparameters κj, ςj in (7), we adopt a greedy strategy

combined with an asynchronous-synchronous training technique since

it is unnecessary to identify the exact value of ςj, see, Theorem 3.

We first optimize (7) in βj with θj = 0, subject to the sparsity

constraint
∑

k∈V(d) min(|βj,k|/τ , 1) ≤ ςj, followed by selecting ςj ∈
{0, 1, . . . , |V(d)|} that minimizes the mean squared error on the vali-

dation set. Throughout, we fix τ = 0.05 as a signal-noise threshold.

This stage intends to perform a sparsity-constrained linear regression,

so it is very efficient in computing. Next, given the selected variable set

B = {k : |βjk| ≥ τ } in (7), we estimate (θj,βj,B) with βj,Bc = 0 by

minimizing

min
θj

n∑

i=1

(
Y

(i)
j − fj

(
Y

(i)
V(d)

)
−

〈̂
ξ
(i)
V(d)

,βj,B
〉)2

,

s.t.
∑

k∈V(d)

min(‖W1
k‖/τ , 1) ≤ κj.

To leverage the automatic differentiation in modern deep learning

libraries, we consider its regularized version with κj replaced by a

hyperparameter λj > 0:

min
θj

n∑

i=1

(
Y

(i)
j − fj

(
Y

(i)
V(d)

)
−

〈̂
ξ
(i)
V(d)

,βj,B
〉)2

+ λj

∑

k∈V(d)

min(‖W1
k‖/τ , 1).

where λj > 0 controls the degree of regularization. Then, after the

regularized optimization is completed, we tune κj ∈ {0, 1, . . . , |V(d)|}
using the top κj variables (sorted by weight ‖W1

k
‖) among all variables

and masking the rest.

In our experiments, we use an adaptive regularization approach

for λj > 0 during training, similar to adaptive learning rate

scheduling. Specifically, we consider three candidate values λj ∈
{0.0001, 0.001, 0.05}. The training process starts with λj = 0.0001

and gradually increases λ to achieve better validation performance by

inducing more sparsity. Based on our limited experience, this adaptive

regularization strategy is effective and can be combinedwith other deep

learning techniques such as early stopping.

For network structure, we use an FNNwith one hidden layer and 50

hiddenneurons. For optimization, we use theAdamoptimizer (Kingma

and Ba 2014) with a learning rate 0.1 and various numbers of epochs

{250, 500, . . . , 4000} in our experiments. Then we choose the best-

performing model.

Other methods. The R packages CAM, pcalg, and lrpsadmm

are available at https://github.com/cran/CAM, https://github.com/cran/

pcalg, and https://github.com/benjaminfrot/lrpsadmm, respectively. The

Python programnotears is available at https://github.com/xunzheng/

notears. We use their default settings for CAM, NPTEARS, LRpS-GES,

and RFCI.

Supplementary Materials

The supplementary materials provide technical proofs of theorems.
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