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ABSTRACT

This article introduces a causal discovery method to learn nonlinear relationships in a directed acyclic graph
with correlated Gaussian errors due to confounding. First, we derive model identifiability under the sublinear
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growth assumption. Then, we propose a novel method, named the Deconfounded Functional Structure

Estimation (DeFuSE), consisting of a deconfounding adjustment to remove the confounding effects and
a sequential procedure to estimate the causal order of variables. We implement DeFuSE via feedforward
neural networks for scalable computation. Moreover, we establish the consistency of DeFuSE under an
assumption called the strong causal minimality. In simulations, DeFuSE compares favorably against state-
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of-the-art competitors that ignore confounding or nonlinearity. Finally, we demonstrate the utility and
effectiveness of the proposed approach with an application to gene regulatory network analysis. The Python
implementation is available at https.//github.com/chunlinli/ defuse. Supplementary materials for this article

are available online.

1. Introduction

Causal relationships are fundamental to understanding the
mechanisms of complex systems and the consequences of
actions in natural and social sciences. Causal discovery, namely
to learn a Directed Acyclic Graph (DAG) representing causal
relationships, arises in many applications. In gene network anal-
ysis, scientists explore gene-to-gene regulatory relationships to
unravel the genetic underpinnings of a disease (Sachs et al.
2005). In such a situation, latent confounders such as environ-
mental or lifestyle factors could introduce spurious associations
or mask causal relationships in observed gene expression levels,
making causal discovery more challenging. Currently, causal
discovery from observational data is an important research topic
as randomized experiments are often unethical, expensive, or
infeasible. In this article, we concentrate on the discovery of
causal relationships in the presence of latent confounders.
Linear causal discovery without confounders has been exten-
sively studied (Spirtes, Glymour, and Scheines 2000; Chick-
ering 2002; Tsamardinos, Brown, and Aliferis 2006; Shimizu
et al. 2006; de Campos 2006; Jaakkola et al. 2010; de Campos
and Ji 2011; Zheng et al. 2018; Gu, Fu, and Zhou 2019; Yuan
et al. 2019; Li, Shen, and Pan 2020). However, in practice,
many causal relations are nonlinear, raising concerns about
using a linear model (Voorman, Shojaie, and Witten 2014).
For nonlinear causal models without confounders, three major
approaches include (a) nonlinear independent component anal-
ysis (Zhang and Hyvérinen 2009; Monti, Zhang, and Hyvérinen
2020), (b) combinatorial search for the causal order (Mooij et al.
2009; Biihlmann, Peters, and Ernest 2014), and (c) continuous
constrained optimization for causal structure learning (Zheng

et al. 2020). The first estimates the functional relations through
the mutual independence of errors. The second determines the
causal order based on a certain criterion. For example, the
Causal Additive Model (CAM) (Bithlmann, Peters, and Ernest
2014) assumes the nonlinear functions are of additive form and
estimates the causal order that maximizes the likelihood. The
third approach directly optimizes an objective function subject
to a smooth constraint characterizing acyclicity. The most repre-
sentative example is NOTEARS (Zheng et al. 2020). The reader
may consult Peters, Janzing, and Scholkopf (2017) and Glymour,
Zhang, and Spirtes (2019) for excellent surveys of nonlinear
causal discovery.

In the presence of latent confounders, several methods are
available for linear causal discovery. As extensions of the PC
algorithm, FCI (Spirtes, Glymour, and Scheines 2000) and its
variant RFCI (Colombo et al. 2012) address latent confounders
by producing a Partial Ancestral Graph (PAG) instead of a
completed partially DAG (CPDAG). Another approach (Frot,
Nandy, and Maathuis 2019; Shah et al. 2020) assumes the con-
founding is pervasive (Chandrasekaran, Parrilo, and Willsky
2012; Wang and Blei 2019) and recovers the CPDAG in two
steps. For example, LRpS-GES (Frot, Nandy, and Maathuis 2019)
uses the low-rank plus sparse estimator (Chandrasekaran, Par-
rilo, and Willsky 2012) to remove confounding, followed by
the GES algorithm (Chickering 2002) to perform causal struc-
ture estimation. Besides, the instrumental variable estimation
is a well-known approach but requires the availability of valid
instruments (Chen et al. 2018; Li, Shen, and Pan 2021).

Despite the foregoing progress, nonlinear causal discovery
with confounders remains largely unexplored. In a bivariate
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case, the work of Janzing et al. (2009) estimates the confounding
effect by minimizing the L,-distance between data points and a
curve evaluated at the estimated values of the confounder. For
a multivariate case, it remains unclear whether nonlinearity can
help causal discovery with confounding, although third-order
differentiability suffices for the identifiability of nonlinear causal
discovery without confounders (Peters et al. 2014). Moreover,
major computational and theoretical challenges arise when we
confront the curse of dimensionality in learning a nonpara-
metric DAG. During the review process, a preprint by Agrawal
etal. (2021) proposes a two-step procedure for nonlinear causal
discovery in the presence of pervasive confounders. However,
for consistent estimation, their method requires that the sample
size grows slower than the quadratic graph size, n < p?, which
may be restrictive, especially for nonparametric estimation.

This article contributes to the following areas. First, we derive
a new condition, called the sublinear growth assumption, for
model identifiability in the presence of latent confounders. Sec-
ond, we propose a novel approach for causal discovery, called
the Deconfounded Functional Structure Estimation (DeFuSE),
comprising a deconfounding adjustment and an iterative proce-
dure to reconstruct the topological order of the variables. Third,
we implement DeFuSE through feedforward neural networks
without assuming additive functional relationships while allow-
ing efficient computation for a reasonable graph size p, say p =
100. This is in contrast to traditional nonparametric methods
that suffer from inefficiency in high dimensions, such as tensor-
product B-splines (Hastie, Tibshirani, and Friedman 2009).
Fourth, we develop a novel theory for DeFuSE, establishing
its consistency for discovering the underlying DAG structure.
DeFuSE requires an assumption for consistent causal discovery,
called the strong causal minimality, which is an analogy of the
strong faithfulness (Uhler et al. 2013) and the beta-min condi-
tion (Meinshausen and Bithlmann 2006). A central message of
this article is that nonlinearity plays an important role in causal
discovery, permitting the separation of the nonlinear causal
effects from linear confounding effects.

The rest of the article is structured as follows. Section 2
introduces the DAG model with hidden confounders and the
proposed method DeFuSE. Section 3 implements DeFuSE based
on feedforward neural networks for scalable computation. Sec-
tion 4 provides a theoretical guarantee of DeFuSE for consistent
discovery. Section 5 presents some numerical examples and
compares DeFuSE with CAM, NOTEARS, RFCI, and LRpS-
GES, followed by a discussion in Section 6. The Appendix con-
tains additional theoretical results and implementation details,
and the supplementary materials contain the technical proofs.

2. Directed Acyclic Graph with Confounders

Consider a random vector Y = (Y1,...,Y,) generated from a
nonlinear structural equation model with additive confounders
and noises,

Y]:f](YPA(]))+ﬂ]+€], jE V:{ls-”’p}’ (1)

where f; maps the subvector Ypyj) = (Yk)kera( to a real
number, PA(j) € V '\ {j} is an index subset, n = (11,...,1p) ~
Ny (0, Xy) is a vector of hidden confounders and is independent

of random errors e = (er,...,¢y) ~ Np(0,diag(c7, ..., 07)),
%, is an unknown covariance matrix, and diag(olz, R opz) isan
unknown diagonal matrix. Then (1) is associated with a directed
graph G = (V,E) such that E = {k — j: k € pA(j), j € V}.In
this situation, PA(j) denotes the set of parents of j. Throughout
this article, we assume that G is a DAG in that no directed
pathj — ... — jexists in G. As a result, (1) generalizes
the nonlinear DAG without unmeasured confounders (Hoyer
et al. 2008; Peters et al. 2014) and the linear DAG (Peters and
Biithlmann 2014).

In (1), we assume the causal minimality to ensure that the
effect of each parent is nonvanishing. In other words, we require
PA(j) = ARG(f); j = 1,...,p, where ARG(f;) denotes the
minimal argument set B C PA(j) such that the value of f; only
depends on Yp = (Yi)kep. In particular, if f; is a constant
function, we have PA(j) = ARG(f) = ¥. When n = 0
(no confounder), this definition agrees with the usual causal
minimality condition (Pearl 2009), requiring that the probability
distribution of Y is not Markov to any proper subgraph of G. The
causal minimality, as a form of causal faithfulness (Spirtes, Gly-
mour, and Scheines 2000), ensures that the problem of nonlinear
causal discovery is well-defined.

Equivalently, we rewrite (1) by letting &; = n; + ¢;,

Yi=f (Yoa)) + 6 j€V=AL....p} @)
where ¢ = (e1,...,6) ~ N(0,%) and ¥ = X, +
diag(o?, ... ,apz). Whereas (1) has a clear causal interpretation,

(2) is simpler for the subsequent discussion. Our goal is to
discover the causal relations between variables Y1,...,Y, by
identifying {fj}1<j<p and {PA(j)}1<j<p. One major challenge is
that the error ¢; may be correlated with Y5, (j) due to unmeasured
confounders.

2.1. Model Identifiability

This section establishes the identifiability conditions for (2).
First, we introduce the concept of topological depth for a DAG
G = (V,E) with nodes V. = {1,...,p} and directed edges
E C VxV.Anodejisarootifit has no parent, that is, PA(j) = ¢.
If there exists a directed path k — --- — j, then node k is an
ancestor of j and j is a descendant of k. The topological depth d; of
node j € V is the maximal length of a directed path from a root
to j. Clearly, a root node has depth zero, and we have 0 < d; <
dmax < p — 1forj € V, where dpay is the length of the longest
directed path in G. Let V(d) = {j : dj < d} be the set of nodes
with topological depth less than d, where 1 < d < dpax + 1.
Then ¥ = V(0) € V(1) € --- € V(dmax + 1) = Vand V(d))
contains all the ancestors (and hence all the parents) of Y; but
contains no descendant of Y;. See Figure 1 for an illustration.

Next, we present a new condition for {fi}i<j<p and
{PA(j)}1<j<p in (2) to be identifiable. For continuous function
f:R™ — R, fis of sublinear growth if lim x| o0 f (x) /|| x]l = 0,
where || - || is the Euclidean norm.

Condition 1. Assume that {f;}1<j<, are of sublinear growth.

For example, Condition 1 is satisfied if {f;}1<j<, are contin-
uous and bounded. This sublinear growth assumption imposes



Figure 1. Topological depth: di = d3 = 0 (nodes 1 and 3 are root nodes), d; = 1,
dg = 2.Here V(1) = {1,3},V(2) = {1,2,3},and V(3) = V = {1,2,3,4}.

restrictions on the nonlinearity of {f;}1<j<p, in contrast to the
third-order differentiability condition for DAGs without con-
founders (Hoyer et al. 2008; Peters et al. 2014).

Theorem 1 (Identifiability). Assume Condition 1 is satisfied.

(A) The sets V(1) € --- € V(dmax) are uniquely identifiable
for almost every positive definite ¥ with respect to the
Lebesgue measure, where the set of such ¥ is denoted as W.
Moreover, for ¥ € W, if dj = d, then Y;—E (Y] | YV(d)) is
normally distributed with mean zero and constant variance
var (Y] | YV(d)); ifd; > d, then Y; — E(Y] | YV(d)) is not
normally distributed; j = 1,.. ., p.

(B) Given V(1) C C  V(dmax), we have {f;}1<j<p and
{PA(j)}1<j<p are well-defined and identifiable from the dis-
tribution of Y.

By Theorem 1, model (2) is generically identifiable under
Condition 1. Different from Frot, Nandy, and Maathuis (2019),
Theorem 1 does not require pervasive confounding. The sublin-
ear growth assumption (Condition 1) allows us to separate the
linear confounding effect from nonlinear causal relationships.

2.2. DeFuSE

This section proposes the causal discovery method Decon-
founded Functional Structure Estimation (DeFuSE). We com-
mence with least squares regressions of {Yj}j¢v(d) on Yy(q),

Y; =E(; | Yy@) +Y; — EY; | Yy@)),
(i) (ii)
where (i) is the regression function and (ii) is the residual of the
regression. By Theorem 1, (ii) is normally distributed if and only
if dj = d, suggesting that normality tests (e.g., the Anderson-
Darling test (Anderson and Darling 1952)) for {Y; — E(Y; |

Yv(d))}j¢v(d) can be used to identify V/(d+1). Further, if d; = d,
then (i) becomes

E(Y; | Yv@) = fi(Yea) + EC&j | Yva))s

where E(¢j | Yy (g)) is the bias arising from hidden confounding.
Theorem 2 allows us to estimate {fj}jev(4+1) and {PA(}) }jev(d+1)
by regressions with deconfounding adjustment.

Theorem 2. In (2), if dj = d, then

E(Yj | Yv@a) = fi(Yea)) + (Eviay Bi) (3)
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where §y@g) = (Y — E(Yk | Yv(ay)kevd), Bj is a parame-
ter vector, (-, -) is the Euclidean inner product, and we define
(&v(a)» Bj) = 0 whenever V(d) = ¢.

Now, we develop an algorithm that iteratively estimates

V(d+ 1), &via+1)s filjeva+1), and {PA()}jev(d+1), given V(d)
and £y g as input. To proceed, suppose an independent sample

{(Y‘(i),..;,'Y}gi))}lgiS,, from model (2) is given. Let A‘(/izd) =
(Y,E’) — Y;EI))keV(d) be the estimated residual vector for the ith
observation, where Y,E’) = fk(Ygz dk)) + S‘(;zdk);ﬂj) for k €
V(d). Based on (3), we regress each variable in {Yj}j¢v(4) on
(YV(d), §V(d)),

n
7N . () ¢y D o2
(fj» Bj) = argmin Z<Y] _ﬁ(YV(d))_ sV(d)’ﬂ]>)
((h:BfieFi} =1

s.t.  |ARG(f)] < «j,

(4)

where [ARG(f))| is the effective input dimension of fj, k; > O isan
integer-valued hyperparameter and is estimated via a standalone
validation set (see Section A.3), and Fj is a function space
consisting of sublinear growth continuous functions. Then we
perform normality tests for {(%(1), .. ,é;(”))}j¢ v(d)» and estimate
V(d + 1) by including V(d) and all the indices failing to reject
the tests. Finally, we estimate {PA(j)}jev(d+1) by PA(j) = ARG(f)).

We summarize the procedure in Algorithm 1, where a bold-
face letter denotes a data vector/matrix of sample size n.

Algorithm 1: DeFuSE
Input: An n x p datamatrix Y = (Y1,...,Y,);
Parameters: significance level o for normality test;
hyperparameters {k;}1<j<ps
1 Let V(0) < @ and d < 0;
2 while V(d) # V do R
3 | Regress {Ij}jng(d) OTL(YV(d)@V(d)) based on (4);
4 Update {'S] <~ Yj — Yj}j¢V(d);
5 | Let Vd+1) < V(@) U{j¢ V(d):
’E\j fails to reject the normality test};
6 | Let {PA(j) « ARG@)}jev(dH) andd < d+1;
7 end
Output: {E}lfjfp and {PA(j)}1<j<p;

Remark 1 (Normality test and the choice of ). For implementa-
tion, we use the Anderson-Darling test (Anderson and Darling
1952) to examine the null hypotheses

HIY Y, — B(Y) | Yya) is normal; j ¢ V(d), 0 < d < diax.

Other tests or metrics, such as the Wasserstein distance, can
also be used. Moreover, the normality test can be combined
with a goodness of fit measure to further improve perfor-
mance. The significance level 0 < « < 1 is a hyper-
parameter similar to that in the PC algorithm (Kalisch and
Bithlman 2007). To choose «, denoting by 7 the set of true

null hypotheses, then P(some H(()j’d) e Tis rejected) <
jd) . .
Z,Hg,d)e,r P(’Hg ) is re;ected) ~ |T|la.Forl <d < dmax + 1,
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Figure 2. Display of the directed acyclic graph in Example 1.

identifying V(d) requires p — |V(d — 1)| tests, among which
|V(d)| — |V(d — 1)| null hypotheses are true and p — |V (d)| are
not. Thus, |7| = Z‘:‘{‘H(IV(d)I —|V(d—1)|) = p, suggesting
an empirical rule @ = o(1/p) so that |T|a — 0.

Finally, Example 1 illustrates the importance of deconfound-
ing for causal discovery.

Example 1. Consider a special case of (1) with three variables,

Yi=e+n Yr=e+n Ys=cos(Y1)+e+n, (5

where e}, e3,e3,7 ~ N(0,1) independently; see Figure 2. As a
special case of (3), we have E(Y3 | Y1,Y,) = cos(Y1) + E(n |
Y1,Ys) = cos(Yy) + Y1 /3+Y2/3, whereds = 1, V(1) = {1,2},
Evay = L&) = (et +nea+m),and &y = &3 = e3 +
(n — e1 — e2)/3. The presence of Y, /3 is due to the confounder
n. If we have regressed Y3 on Y] and Y to identify the parent
variables of Y3, then the regression would yield a true discovery
Y1 — Y3 and a false discovery Y, — Y3. Consequently, direct
regression of Yj on Yy (g4, without any adjustment renders false
discovery of functional causal relations.

3. DeFuSE via Neural Networks

Solving (4) is challenging for a large-scale problem due to fit-
ting nonparametric functions. Existing nonparametric methods
such as tensor-product splines and kernels are not scalable in
a growing sample size and dimension. For example, tensor-
product B-splines least squares regression suffers from expo-
nential growth of time and space complexity with increasing
dimensions. To overcome this difficulty, we solve (4) via a
Feedforward Neural Network (FNN) together with stochastic
gradient descent for scalable computation.

Specifically, for d; > d, we approximate f; (YV(d)) + <§V(d), /Bj)
by an FNN,

& (Yvaréva) = oo ff (Yv@) + (v Bi) O
=o' (WO +V)i1=1.L @

where W! € R*Mi-1 s the weight matrix of links from the (I —
1)th to the Ith layer, b € R™ is the bias vector in the Ith layer,
h; is the number of neurons in the Ith layer with iy = h; | =
1,...,L —1,and by, = 1, L is the number of layers, and al(-) is
an activation function. For l = 1, ..., L — 1, we use the Rectifier
Linear Unit (ReLU) activation o (z) = max(0, z).

cos(y1) + %(yl +y2)

To solve (4), consider a FNN parameter vector 0; =
((W}, bjl-)lglgb B;) which belongs to a parameter space ®4. We
impose constraints ZkeV(d) min(]| W,i [/7,1) < «j on the kth
column W} of the weight matrix W' at the first layer to enforce
the constraint [ARG(f;)| < k;j in (4), where min(| - |/7,1) is to
approximate I(- # 0) as T — 0T (Shen, Pan, and Zhu 2012). As
such, if Wll = 0 then g; (YV(d)) SV(d)) does not depend on Yj.
Finally, we regularize the FNN by an L,-norm constraint ||6;]| <
s on the model parameters 6; for numerical consideration. This
leads to the following regression for estimating (f;, B;),

n

. . . 2
; @ (0 D
min (Y. —filY — (& ,,3‘),
(6516;1<s) ; j ]( V(d)) V(d) J)
s.t. > min(|Will/7,1) <&, )
keV(d)
> min(|Bixl/T, 1) < j,
keVv(d)

where 7 > 0,0 < x; < |V(d)],0 < gj < |V(d)|,and s > 0 are
hyperparameters. See Section A.3 for more details on network
training and hyperparameter tuning.

Remark 2. Algorithm 1 requires O(dmax(p — 1)) normality
tests and regressions (4). Each regression (4), solved by (7) with
stochastic gradient descent, requires O(Nepochr dim(6))) opera-
tions, where Nepoch is the number of epochs in training and one
epoch means that each sample in training has an opportunity to
update model parameters.

4. Learning Theory

This section develops a novel theory to quantify the finite-
sample error of DeFuSE. In what follows, c;-cs are positive
constants and © decorates the truth. Let Qj be the function space

of regression functions gj(-,x) = fi(-) + <*, ,8].0), and denote
the true regression function by g]?’(-,*) = ]30(~) + <*, /3]9>. By
definition, pA°(j) = ARG();-O).

Condition 2. There exists an approximating function gj*(-, *x) =

£ O+ (x B7) € G such that g7 — g7, = Iff ~f7 1, < cséns
j=1,...,p,where ||-||1, is the L,-norm with respect to measure
P. Moreover, assume {fjo}lsjsp are continuous and |[]}° loo < c15
where || - ||oo is the sup-norm.



To measure the signal strength, we define the degree of non-
linear separation as

Dmin = min in:

llgj —gfll%z g € G ARG(fj) # PA°(j),
1<j=<p '

[A° () \ ARG(DT  Bill0 < <, 1aRG(H)] < pA° ()]

Condition 3 (Strong causal minimality). Assume Dpi, >
cs max (4€2,n" ' logn,n~'logp), where ¢4 > 1.

The strong causal minimality (Condition 3) requires that the
signal strengths of parent variables are sufficiently strong so
that the corresponding causal function is distinguishable from
those supported on nonparent variables. It is a strong version
of the causal minimality for nonlinear causal discovery from
a finite sample, similar to the strong faithfulness (Uhler et al.
2013) for linear causal discovery and the beta-min condition
(Meinshausen and Bithlmann 2006) for high-dimensional vari-
able selection.

Theorem 3 (Error bounds for DeFuSE). Assume Conditions 1-3,
Conditions A1-A2 in Section A.2 are met and X € W.

(A) The DAG recovery error is P(a # G°) < ¢ exp(—csneﬁ —
logn) + 74(G®), when the hyperparameters k; = [pPA°(j)|
and Bl = 6j < 6% 1 < j < p, where 7,(G°) is the
normality test error given the true model. Consequently,
P(a # G°) — 0 provided that 7, (G®) — 0, as n — oo.

(B) The regression estimation error is max <j<p I[gj — &l =
Op(€y). Suppose fj" satisfies |L)§-°||OO < C and has bounded
support; 1 < j < p. Then the causal function estimation
error is max<j<p [fi — ]‘}°||L2 = Op(e,) provided that

illoo < C' for C' > C.

Typically, we have 7, (G°) — 0 when @ = o(1/p) and the
dimension p does not grow too fast. Moreover, Theorem 3 indi-
cates that hyperparameter «; is critical to consistent discovery,
while g; is less important provided that ¢; > 187 1lo and is not
too large; see also Section A.3.

Next, we apply Theorem 3 to the implementation via FNNs

in (7). Before proceeding, we define Cj’, the space of functions

with r-continuous derivatives over the domain RI*A°()I. For any
function f; € er, the er—norm of f; is defined as

Wflley = D 18%llea+ Y

. 10%f (x1) — 3% (x2)|

o] <r a:le|=[r] ¥17%2 llx1 — lelgm
where 9% = 9% ...9%m0l with & € NPAOI and || =
Ll:i’)l ar; j = 1,...,p. In what follows, C;-Cs are positive

constants that may depend on (k°, ).

Condition 4. AssumefjO € {Jﬁ € Cj' : ||]§'||c]r < Cl},whererdoes
not depend on (p, n).

Theorem 4 (Consistency of FNN-DeFuSE). Under Conditions 3-
4, and A2 in Section A.2, DeFuSE implemented by FNNs in
(7) consistently recovers all causal relations defined in (2) with
€2 = C3(n™"/ U+ logn)> + n1(k° + ¢°) logp) in The-
orem 3, provided that the width of the FNN & = C¢, K
and its depth L = C,log(1/€,), the hyperparameters s =

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION e 5

Caer M og(1/€n), 15 = eAG), BP0 < 5 < €%
j=1,...,p. Here, the FNN function space G; = {gj = gj(:;0) :
6 € ©;} is associated with the FNN parameter space

("_‘)] = {6 = ((Wl’hl)ISZSL’/Sj) : max h[ <h |0] < 5}; j=1...,p.
1<I<L

It is worth noting that the rate €2 < n~"/+<"+¢%) (log n)3 4
n~1(k°+¢°) log p for FNN relies on the approximation result of
Schmidt-Hieber (2019) as well as the choice of L, h, and s. This
rate agrees with Farrell, Liang, and Misra (2021) up to logarithm
terms; however, it is slower than #n~"/0+&°+5)/2) in view of
Stone (1982) for nonparametric regression over [0, 1]¢ “+e°, sug-
gesting that it may be suboptimal. This may be due to the approx-
imation, namely the use of non-differentiable ReLU FNNs to
approximate smooth functions.

5. Numerical Examples
5.1. Simulations

This section examines the operating characteristics of DeFuSE
and compares DeFuSE with CAM (Biithlmann, Peters, and
Ernest 2014), NOTEARS (FNN version) (Zheng et al. 2020),
LRpS-GES (Frot, Nandy, and Maathuis 2019), and RFCI
(Colombo et al. 2012). We implement DeFuSE in Python. For
competitors, we use R packages for CAM (CAM), RECI (pcalg),
and LRpS-GES (1rpsadmm and pcalg), and use a Python
program for NOTEARS (notears).

In simulations, we consider two types of DAGs with hidden
confounders. Define an adjacency matrix U = (Ujp)pxp of a
DAG as U, = 1ifj € pa(k) and 0 otherwise.

Random DAG. Consider a sparse graph where the edges are
added independently with equal probability. In particular, an
adjacency matrix U € {0, 1}7*? is randomly generated: P(Uj =
1) = sifj < kand P(Ux = 1) = 0 otherwise, where s
controls the degree of sparseness of the DAG. In our simulation,
we choose s = 1/p.

Hub DAG. Consider a sparse graph with a hub node. Let U €
{0,1}P*P, where Ujx = 1and Uj = 0 otherwise. In this case,
node 1 has a dense neighborhood, but the whole DAG remains
sparse.

Simulated data.  Given U, we generate a random sample of size
n from
Yj = ag Yy, Y, + Z aj,kﬁ,k(yk + wj,k) +es j=1L...,p, (8)

kera(j)

where the function fjx is randomly sampled from {x > x?,x >

cos(x)}, the coefficients o ~ Uniform([-3,—2] U [2,3]),
wj ~ Uniform([—1,1]), and

[PA()| =1,

ag =0,
{ao = 1, ki, kp are randomly sampled from PA(j), [PA(j)| > 1.

For error terms, let ¢ ~ N(0,X) with ¥ = 2for1 < j <
D> Tok—12k = Zokok—1 = lfor1 < k < |p/2],and Zjy =
0 otherwise. Of note, (8) violates Condition 1 as the functions
(y1,y2) = agy1y2 and f;x may not be of sublinear growth.
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Table 1. Averaged False Positive Rate (FPR), False Discovery Rate (FDR), True Positive Rate (TPR), Structural Hamming Distance (SHD), and their standard deviations in

parenthesis, for five methods based on 50 replications.

Graph Random Hub

(p.n) Method FPR FDR TPR SHD FPR FDR TPR SHD

(30,500) DeFuSE 0.00(.00) 0.12(0.06) 0.93(0.04) 26(1.2) 0.00(0.00) 0.06(0.06) 0.87(0.10) 5.3(4.6)
DeFuSE* 0.00(0.00) 0.13(0.11) 0.93(0.07) 1.7(1.4) 0.00(0.00) 0.07(0.10) 0.91(0.16) 4.2(5.6)
CAM 0.03(0.00) 0.52(0.02) 1.0(0.02) 14.2(1.0) 0.09(1.0) 0.69(0.05) 0.53(0.07) 48.2(6.9)
NOTEARS 0.28(0.07) 0.91(0.02) 0.80(0.13) 120.2(31.6) 0.19(0.02) 0.84(0.05) 0.52(0.17) 94.3(12.8)
RFCI 0.07(0.01) 0.89(0.03) 0.29(0.11) 26.8(1.2) 0.22(0.02) 0.95(0.01) 0.04(0.01) 744(3.7)
LRpS-GES 0.07(0.01) 0.91(0.03) 0.21(0.07) 31.9(1.7) 0.08(0.01) 0.92(0.01) 0.06(0.01) 44501.4)

(100,500) DeFuSE 0.00(0.00) 0.03(0.03) 0.92(0.03) 4001.7) 0.00(0.00) 0.05(0.03) 0.72(0.24) 31.4(23.7)
DeFuSE* 0.00(0.00) 0.16(0.06) 0.85(0.06) 10.6(3.0) 0.00(0.00) 0.10(0.18) 0.71(0.27) 32.9(26.2)
CAM 0.01(0.00) 0.61(0.01) 1.0(0.01) 57.4(2.5) 0.05(0.01) 0.94(0.01) 0.16(0.03) 306.3(13.0)
NOTEARS 0.04(0.02) 0.93(0.04) 0.18(0.15) 130.6(24.8) 0.18(0.02) 0.96(0.01) 0.03(0.05) 992.6(65.4)
RFCI 0.02(0.00) 0.95(0.02) 0.15(0.06) 83.5(1.1) 0.07(0.01) 0.99(0.01) 0.01(0.00) 268.6(6.7)
LRpS-GES 0.02(0.00) 0.96(0.01) 0.10(0.04) 83.3(2.0) B - . -

NOTE: A smaller value of FPR, FDR, and SHD indicates higher accuracy, whereas a larger value of TPR means higher accuracy. For DeFuSE*, the data are standardized. For
hub DAG, when p = 100 and n = 500, LRpS-GES fails to deliver the computational results after 96 hr.

Metrics.  For evaluation, we consider four graph metrics: the
False Discovery Rate (FDR), the False Positive Rate (FPR), the
True Positive Rate (TPR), and the Structural Hamming distance
(SHD). To compute the metrics, let TP, RE, and FP be the
numbers of identified edges with correct directions, those with
wrong directions, and estimated edges not in the skeleton of
the true graph. Moreover, denote by PE the total number of
estimated edges, TN the number of correctly identified non-
edges, and FN the number of missing edges compared to the true
skeleton. Then

FDR = (RE + FP)/PE, FPR = (RE + FP)/(FP + TN),
TPR = TP/(TP + FN), SHD = FP + FN + RE.

Note that LRpS-GES outputs a completed partially DAG
(CPDAG) and RFCI outputs a partial ancestral graph (PAG).
Both PAG and CPDAG may contain undirected edges, in which
case they are evaluated favorably by assuming the correct direc-
tions for undirected edges whenever possible, similar to Zheng
et al. (2020).

As suggested in Table 1, DeFuSE performs the best across all
the situations in terms of FPR, FDR, TPR, and SHD. As expected,
CAM and NOTEARS cannot treat unobserved confounders,
whereas RFCI and LRpS-GES cannot deal with nonlinear causal
relationships. It is worth noting that DeFuSE* takes standardized
data as input and achieves comparable performance to DeFuSE,
indicating that DeFuSE is insensitive to the degree of varsorta-
bility (Reisach, Seiler, and Weichwald 2021). Moreover, DeFuSE
seems robust in the absence of Condition 1; see also Theorem A1l
in Appendix and discussions there. Overall, nonlinearity helps
identify causal relations, allowing for a separation of nonlinear
causal effects from linear confounding effects.

Sensitivity to normality test significance level a. In the above
experiments, we use the Anderson-Darling test (Anderson and
Darling 1952) with @ = 0.025 as the default choice. Now, we
assess the algorithmic sensitivity to different choices of @ €
{0.1,0.05,0.025,0.01}.

As suggested in Table 2, the overall performance of DeFuSE
seems insensitive to the choice of «, although the default choice
o = 0.025 may be sub-optimal. Based on our limited numerical
experience, we suggest o = o(1/p) as an empirical rule to reduce
the tuning cost of o; see also Remark 1.

Table 2. Sensitivity analysis: Averaged False Positive Rate (FPR), False Discovery
Rate (FDR), True Positive Rate (TPR), Structural Hamming Distance (SHD), and their
standard deviations in parenthesis, for different choices of « based on 50 replica-
tions.

Graph o FPR FDR TPR SHD

Random 0100  0.00(0.00) 0.12(0.08)  0.95(0.05)  2.4(1.7)
0050  0.00(0.00) 0.13(0.07)  096(0.04)  2.4(1.5)
0025  000(0.00) 0.12(0.06) 093(0.04)  2.6(1.2)
0010  000(0.00) 0.13(0.07)  092(0.07)  3.0(1.6)

Hub 0.100  0.00(0.00) 0.08(0.04) 091(0.04)  5.0(2.5)
0050  0.00(0.00) 0.05(0.04) 095(0.03)  3.0(2.0)
0025  000(0.00) 0.06(0.06) 0.87(0.10)  5.3(4.6)
0010  000(0.00) 0.03(0.02) 097(0.02)  1.8(1.5)

NOTE: A smaller value of FPR, FDR, and SHD indicates higher accuracy, whereas a
larger value of TPR means higher accuracy. Here, p = 30 and n = 500.

5.2. Real Data Analysis

This section applies DeFuSE to reconstruct gene regulatory
networks for the Alzheimer’s Disease Neuroimaging Initia-
tive (ADNI) data. In particular, we construct two gene net-
works respectively for Alzheimer’s Disease (AD) and healthy
subjects to highlight some gene-gene interactions differen-
tiating patients with AD/cognitive impairments and healthy
individuals.

The ADNI dataset (http://adni.loni.usc.edu/) includes gene
expressions, whole-genome sequencing, and phenotypic data.
After cleaning and merging, we obtain a sample of 712 subjects
in four groups, Alzheimer’s Disease (AD), Early Mild Cognitive
Impairment (EMCI), Late Mild Cognitive Impairment (LMCI),
and Cognitive Normal (CN). For our purpose, we treat 247 CN
individuals as controls while the remaining 465 individuals as
cases (AD-MCI). Previous studies suggest that the amyloid pre-
cursor protein, the presenilin proteins, and the tau protein may
involve in AD (O’brien and Wong 2011; Kelleher III and Shen
2017; Palmqpvist et al. 2020), so we focus on the metabolic path-
ways of these proteins. Specifically, we extract the reference path-
ways in https://genome.jp/pathway/map05010 from the KEGG
database (Kanehisa and Goto 2000), including p = 20 genes in
the data.

For data analysis, we first regress the gene expression levels on
five covariates, Gender, Handedness, Education level, Age, and
Intracranial volume, then use the residuals as gene expressions
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Figure 3. Reconstructed directed acyclic graphs for (a) AD-MCl and (b) CN groups.
Table 3. The AIC values for quadratic and linear models fitted for each non-root gene, as defined in (9).
Group AD-MCI CN
Gene name APH1A PPP3R1 MAPT GSK3B COX7C NDUFS4 ATP2A2 COX7C
Quadratic 0.717 0.656 0.528 0.620 0.356 0.606 0.572 0.304
Linear 0.701 0.732 0.567 0.695 0.395 0.657 0.656 0.349

NOTE: A smaller AIC value indicates better model fitting.

in the subsequent analysis. We normalize all gene expression
levels and use the same FNN structure for fitting as in the sim-
ulation study. The normality test is conducted at a significance
level « = 0.05.

As displayed in Figure 3, the reconstructed DAGs exhibit
some common and distinctive characteristics for the AD-
MCI and CN groups. In the AD-MCI group, (a) directed
edges GRIN1 — MAPT and PSEN1 — GSK3B agree
with the reference pathways of the tau protein; (b) genes
{APHI1A, PSENEN, NCSTN, PPP3R1, APBB1, APP} have
more directed connections, corresponding to the amyloid
precursor protein. So do genes {PSEN1, GSK3B} for the
presenilin proteins. By comparison, the genes participating
in the amyloid precursor protein and tau protein metabolism
have fewer connections in the CN group (O’brien and Wong
2011; Palmgqvist et al. 2020). This observation seems consistent
with previous studies that both genes may be involved in AD.
Moreover, there are six and two non-root genes, respectively for
the AD-MCI and CN groups.

For model diagnostics, we check the nonlinearity assumption
on the gene expression levels. To this end, we compare a linear
and a quadratic regression model for each non-root gene in the
AD-MCI and CN groups in terms of their AIC values (Akaike
1992). These models are fitted on the estimated parents of
DeFuSE, and the quadratic model includes additional quadratic
terms (Y,f) kea(j) as covariates. For a linear or a quadratic model
m for a non-root variable Yj, the AIC value is defined as

n
AIC() = (i)™ D (Y = ¥{")2 + 207" dim(m), (9)

i=1

where m and G are the fitted model and the error variance
estimated by FNN, /l;j(’) is the fitted values of Yj(l), and dim(m)
denotes the number of parameters in model . As suggested in
Table 3, the quadratic model generally fits better than the corre-
sponding linear model, as measured by AIC, suggesting that the
nonlinearity assumption is approximately satisfied. Finally, the
correlation plots of (Yj(l) —E(Y}%)(j)))jev; i=1,...,ninFigure4
exhibit the presence of (linear) hidden confounding as evident
from the fact that many genes have multiple connections to
other genes, indicating nonzero oft-diagonals of X. This obser-
vation seems plausible due to the absence of some genes in the
analysis.

6. Discussion

This article proposes a novel method for learning functional
causal relations with additive confounders. For modeling, we
establish identifiability under a sublinear growth condition on
the functional relationships. On this basis, we propose a novel
method called DeFuSE and implement it with feedforward
neural networks for scalability. Theoretically, we show that the
proposed method consistently reconstructs all nonlinear causal
relations.

One central message is that nonlinearity permits the separa-
tion of the nonlinear causal relationships from the confounding
effects in model (1) with observational data only. As nonlinear
causal discovery with hidden confounding remains understud-
ied, we hope the work could inspire further research in this
direction.
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v where a connection between two genes indicates the absolute value

of residual correlation exceeds 0.15. Edge connections from one gene to other multiple genes suggest the presence of confounders or nonzero off-diagonal elements of

the covariance matrix .

Appendix
A.1. Additional Results on Identifiability

If ¥ € W, the sublinear growth condition (Condition 1) is sufficient for
identifying both {f;}1 <j<p and {PA(j) }1 <j<p in (1). When this condition
is not satisfied, it is still possible to establish identifiability under an
alternative assumption. Now, we consider model (2) with additive
functions,

Yi= Y fu(Yp+g, jeV={L...p} (A1)
kePra(j)

where {]?,k} are nonlinear and ¢ ~ N(0, X). Theorem A1l establishes
the identifiability of {Pa(j) }1 <j<p in (A1), without the sublinear growth
condition.

Theorem Al. In (Al), assume that Y; — E (Y] | YV(d)) is not normally

distributed for d; > d; 0 < d < dmax. For any univariate function f, we
]

define its equivalence class

fl=(:f@ =f@ +yzy R}

If

ikl # Z vilfykl forallyy e Rsj € V(dj,je V={L....p}
j’eV(dj)

then {Pa(j)}1 <j<p are uniquely identifiable.

The assumption that Y; — E (Y] | YV(d)) is not normal for d; >
d imposes constraints on the compositions of nonlinear functions,
which is automatically satisfied by sublinear growth functions when
¥ € W (Theorem 1). As suggested by the simulations in Section 5,
DeFuSE continues to perform well in recovering the DAG even when
Condition 1 and the additive function model (A1) are both violated.

A.2. Regularity Conditions

We impose the following regularity conditions to establish the consis-
tency of DeFuSE.

Metric  entropy. We  define the bracketing Lp-metric
entropy as a complexity measure of function spaces §; =
{gj :gj(-,*) =]? ) +<*,,Bj)};j = 1,...,p, where - and « represent
a |V(dj)|-dimensional vector, respectively. The bracketing L;-
metric entropy of G; is the logarithm of the smallest u-bracket
cardinality, H(u, gj) = log(min{m : S(u,m)}), where a u-bracket
S(u,m) = {gl_,gi",...,g;,g,",;} C Ly(P) is a set of functions such
that (i) max; << gy — & llL, <

exists g <g < g;_ almost surely.

u and (i) for any g € Gj there
Condition Al. For some positive €, < 1/2,

ﬁen
max  max / H'2(u/c1,G(A)du < ca/nel,
I<j=<p {A:|A|=|pa° (I} Je2 /256

where Gj(A) = {gj € F;j: A = arc(f), llg —gfllz < 26n] is the 2¢,-
neighborhood of gj° on the index set of effective arguments A.

In view of Condition A1, the error rate €, is determined by solving
the integral equation in €,. Such a condition has been used to quantify
the convergence rate of sieve estimates (Wong and Shen 1995; van de
Geer 2000). The entropy results are available for many function classes,
such as the FNN in Theorem 4.

Sparsity and confounding. Next, we impose a regularity condition
on sparsity and confounding structures, requiring the true support of
g7, the maximum depth dmax, and the error variance not to increase

with the sample and graph sizes (1, p).

o

Condition A2. Assume «° = maxi<j<p[PA°(D], ¢
maxi<j<p 167 llo, dmax = maxi<j<pdj, and ¢ < Amin(¥)
Amax(X) < ¢4 are independent of (p,n), where Amin(X) and

Amax(X) are the smallest and largest eigenvalues of £ € W.

IA

A.3. Implementation Details

The code is open-sourced at https://github.com/chunlinli/defuse.



Training and hyperparameter tuning for DeFuSE. Training and
tuning a neural network requires intensive computation. Following the
conventional practice of deep learning, we split the original sample into
training and validation sets with a partition ratio 9:1, and use on-the-
fly evaluation over the validation set for tuning during the training
process.

To tune hyperparameters k;, gj in (7), we adopt a greedy strategy
combined with an asynchronous-synchronous training technique since
it is unnecessary to identify the exact value of Sj» see, Theorem 3.
We first optimize (7) in B; with 6; = 0, subject to the sparsity
constraint ) v(d) min(| ﬂj,k| /D = 6 followed by selecting Gj €
{0,1,...,]V(d)|} that minimizes the mean squared error on the vali-
dation set. Throughout, we fix T = 0.05 as a signal-noise threshold.
This stage intends to perform a sparsity-constrained linear regression,
so it is very efficient in computing. Next, given the selected variable set
B = {k: |Bikl = t}in (7), we estimate (6}, 8jg) with Bjpc = 0 by
minimizing

~ i i i 2
(" = 5(ita) — B Bis))

i=1

min
b

s.t. > min(|Wil/T,1) < «j.
keV(d)

To leverage the automatic differentiation in modern deep learning
libraries, we consider its regularized version with «; replaced by a
hyperparameter A; > 0:

n
. . ; 2
min Z (Yj(l) _fj(Yg)(d)) - E\;Zd)’ﬁj)B»

9.
/ i=1

+25 Y min(|W/z, D).
keV(d)

where A; > 0 controls the degree of regularization. Then, after the
regularized optimization is completed, we tune k; € {0,1,...,|V(d)[}
using the top «; variables (sorted by weight || Wli |) among all variables
and masking the rest.

In our experiments, we use an adaptive regularization approach
for Aj > 0 during training, similar to adaptive learning rate
scheduling. Specifically, we consider three candidate values A; €
{0.0001,0.001,0.05}. The training process starts with 4; = 0.0001
and gradually increases X to achieve better validation performance by
inducing more sparsity. Based on our limited experience, this adaptive
regularization strategy is effective and can be combined with other deep
learning techniques such as early stopping.

For network structure, we use an FNN with one hidden layer and 50
hidden neurons. For optimization, we use the Adam optimizer (Kingma
and Ba 2014) with a learning rate 0.1 and various numbers of epochs
{250, 500, . ..,4000} in our experiments. Then we choose the best-
performing model.

Other methods. The R packages CAM, pcalg, and lrpsadmm
are available at https://github.com/cran/CAM, https://github.com/cran/
pealg, and https://github.com/benjaminfrot/Irpsadmm, respectively. The
Python program notears is available at https://github.com/xunzheng/
notears. We use their default settings for CAM, NPTEARS, LRpS-GES,
and RFCL

Supplementary Materials

The supplementary materials provide technical proofs of theorems.

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION 9

Acknowledgments

The authors would like to thank the editor, the associate editor, and the
anonymous referee for their helpful comments and suggestions.

Funding

The research is supported in part by NSF grant DMS-1952539, NIH
grants RO1GM113250, ROIGM126002, R01AG065636, R01AG074858,
RO1AG069895, U01AG073079.

ORCID

Chunlin Li @ https://orcid.org/0000-0003-2989-8785
Xiaotong Shen  https://orcid.org/0000-0003-1300-1451
Wei Pan (& https://orcid.org/0000-0002-1159-0582

References

Agrawal, R., Squires, C., Prasad, N., and Uhler, C. (2021), “The DeCAM-
Founder: Non-linear Causal Discovery in the Presence of Hidden Vari-
ables,” arXiv preprint arXiv:2102.07921. [2]

Akaike, H. (1992), “Information Theory and an Extension of the Maximum
Likelihood Principle,” in Breakthroughs in Statistics, eds. S. Kotz and N.
L. Johnson, pp. 610-624, New York: Springer. [7]

Anderson, T, and Darling, D. (1952), “Asymptotic Theory of Certain
“Goodness of Fit” Criteria based on Stochastic Processes,” The Annals
of Mathematical Statistics, 23, 193-212. [3,6]

Biithlmann, P, Peters, J., and Ernest, J. (2014), “CAM: Causal Additive
Models, High-Dimensional Order Search and Penalized Regression,”
The Annals of Statistics, 42, 2526-2556. [1,5]

Chandrasekaran, V., Parrilo, P. A., and Willsky, A. S. (2012), “Latent Variable
Graphical Model Selection via Convex Optimization,” The Annals of
Statistics, 40, 1935-1967. [1]

Chen, C.,Ren, M., Zhang, M., and Zhang, D. (2018), “A Two-Stage Penalized
Least Squares Method for Constructing Large Systems of Structural
Equations,” Journal of Machine Learning Research, 19, 40-73. [1]

Chickering, D. M. (2002), “Optimal Structure Identification with Greedy
Search,” Journal of Machine Learning Research, 3, 507-554. [1]

Colombo, D., Maathuis, M. H., Kalisch, M., and Richardson, T. S. (2012),
“Learning High-Dimensional Directed Acyclic Graphs with Latent and
Selection Variables,” The Annals of Statistics, 40, 294-321. [1,5]

de Campos, C. P, and Ji, Q. (2011), “Efficient Structure Learning of Bayesian
Networks using Constraints,” Journal of Machine Learning Research, 12,
663-689. [1]

de Campos, L. M. (2006), “A Scoring Function for Learning Bayesian
Networks based on Mutual Information and Conditional Independence
Tests,” Journal of Machine Learning Research, 7,2149-2187. [1]

Farrell, M. H., Liang, T., and Misra, S. (2021), “Deep Neural Networks for
Estimation and Inference,” Econometrica, 89, 181-213. [5]

Frot, B., Nandy, P., and Maathuis, M. H. (2019), “Robust Causal Structure
Learning with Some Hidden Variables,” Journal of the Royal Statistical
Society, Series B, 81, 459-487. [1,3,5]

Glymour, C., Zhang, K., and Spirtes, P. (2019), “Review of Causal Discovery
Methods based on Graphical Models,” Frontiers in Genetics, 10. [1]

Gu,J., Fu, E, and Zhou, Q. (2019), “Penalized Estimation of Directed Acyclic
Graphs from Discrete Data,” Statistics and Computing, 29, 161-176. [1]

Hastie, T., Tibshirani, R., and Friedman, J. (2009), The Elements of Statistical
Learning: Data Mining, Inference, and Prediction, New York: Springer. [2]

Hoyer, P. O,, Janzing, D., Mooij, ., Peters, J., and Schoélkopf, B. (2008),
“Nonlinear Causal Discovery with Additive Noise Models,” in Proceed-
ings of the 21st International Conference on Neural Information Processing
Systems, pp. 689-696. [2,3]

Jaakkola, T., Sontag, D., Globerson, A., and Meila, M. (2010), “Learning
Bayesian Network Structure using LP Relaxations,” in International Con-
ference on Artificial Intelligence and Statistics, pp. 358-365. PMLR. [1]



10 (&) C.LI,X.SHEN, AND W. PAN

Janzing, D., Peters, J., Mooij, J., and Schélkopf, B. (2009), “Identifying Con-
founders using Additive Noise Models,” in Conference on Uncertainty in
Artificial Intelligence, pp. 249-257. [2]

Kalisch, M., and Bithlman, P. (2007), “Estimating High-Dimensional
Directed Acyclic Graphs with the PC-Algorithm,” Journal of Machine
Learning Research, 8. 3]

Kanehisa, M., and Goto, S. (2000), “KEGG: Kyoto Encyclopedia of Genes
and Genomes,” Nucleic Acids Research, 28, 27-30. [6]

Kelleher III, R. J., and Shen, J. (2017), “Presenilin-1 Mutations and
Alzheimer’s Disease,” Proceedings of the National Academy of Sciences,
114, 629-631. [6]

Kingma, D. P,, and Ba, J. (2014), “Adam: A Method for Stochastic Optimiza-
tion,” arXiv preprint arXiv:1412.6980. [9]

Li, C., Shen, X., and Pan, W. (2020), “Likelihood Ratio Tests for a Large
Directed Acyclic Graph,” Journal of the American Statistical Association,
115, 1304-1319. [1]

Li, C, Shen, X., and Pan, W. (2021), “Inference for a Large Directed
Acyclic Graph with Unspecified Interventions,” arXiv preprint
arXiv:2110.03805. [1]

Meinshausen, N., and Bithlmann, P. (2006), “High-Dimensional Graphs
and Variable Selection with the Lasso,” The Annals of Statistics, 34, 1436
1462. [2,5]

Monti, R. P, Zhang, K., and Hyvirinen, A. (2020), “Causal Discovery with
General Non-linear Relationships using Non-linear ICA,” in Conference
on Uncertainty in Artificial Intelligence, pp. 186-195. PMLR. [1]

Mooij, J., Janzing, D., Peters, J., and Scholkopf, B. (2009), “Regression by
Dependence Minimization and its Application to Causal Inference in
Additive Noise Models,” in International Conference on Machine Learn-
ing, pp. 745-752. [1]

O’brien, R. J., and Wong, P. C. (2011), “Amyloid Precursor Protein Process-
ing and Alzheimer’s Disease,” Annual Review of Neuroscience, 34, 185—
204. [6,7]

Palmgqvist, S., Janelidze, S., Quiroz, Y., Zetterberg, H., Lopera, E, Stomrud,
E., Su, Y, Chen, Y, Serrano, G., Leuzy, A., et al. (2020), “Discriminative
Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other
Neurodegenerative Disorders,” JAMA, 324, 772-781. [6,7]

Pearl, J. (2009), Causality, Cambridge: Cambridge University Press. [2]

Peters, J., and Bithlmann, P. (2014), “Identifiability of Gaussian Structural
Equation Models with Equal Error Variances,” Biometrika, 101, 219-228.
(2]

Peters, J., Janzing, D., and Scholkopf, B. (2017), Elements of Causal Inference,
Cambridge, MA: MIT Press. [1]

Peters, ]., Mooij, J. M., Janzing, D., and Scholkopf, B. (2014), “Causal
Discovery with Continuous Additive Noise Models,” Journal of Machine
Learning Research, 15, 2009-2053. [2,3]

Reisach, A., Seiler, C., and Weichwald, S. (2021), “Beware of the Simulated
DAG! Causal Discovery Benchmarks may be Easy to Game,” in Advances
in Neural Information Processing Systems (Vol. 34), pp. 27772-27784. [6]

Sachs, K., Perez, O., Peer, D., Lauffenburger, D. A., and Nolan, G. P.
(2005), “Causal Protein-Signaling Networks Derived from Multiparam-
eter Single-Cell Data,” Science, 308, 523-529. [1]

Schmidt-Hieber, J. (2019), “Deep ReLU Network Approximation of Func-
tions on a Manifold,” arXiv preprint arXiv:1908.00695. [5]

Shah, R. D,, Frot, B., Thanei, G.-A., and Meinshausen, N. (2020), “Right
Singular Vector Projection Graphs: Fast High Dimensional Covariance
Matrix Estimation under Latent Confounding,” Journal of the Royal
Statistical Society, Series B, 82, 361-389. [1]

Shen, X., Pan, W,, and Zhu, Y. (2012), “Likelihood-based Selection and
Sharp Parameter Estimation,” Journal of the American Statistical Asso-
ciation, 107, 223-232. [4]

Shimizu, S., Hoyer, P. O., Hyvirinen, A., and Kerminen, A. (2006), “A Linear
non-Gaussian Acyclic Model for Causal Discovery,” Journal of Machine
Learning Research, 7, 2003-2030. [1]

Spirtes, P., Glymour, C., and Scheines, R. (2000), Causation, Prediction, and
Search, Cambridge, MA: MIT Press. [1,2]

Stone, C. J. (1982), “Optimal Global Rates of Convergence for Nonparamet-
ric Regression,” The Annals of Statistics, 10, 1040-1053. [5]

Tsamardinos, I., Brown, L. E., and Aliferis, C. E. (2006), “The max-min Hill-
Climbing Bayesian Network Structure Learning Algorithm,” Machine
Learning, 65, 31-78. [1]

Uhler, C., Raskutti, G., Bithlmann, P, and Yu, B. (2013), “Geometry of the
Faithfulness Assumption in Causal Inference,” The Annals of Statistics,
41, 436-463. [2,5]

van de Geer, S. A. (2000), Empirical Processes in M-Estimation (Vol. 6),
Cambridge: Cambridge University Press. 8]

Voorman, A., Shojaie, A., and Witten, D. (2014), “Graph Estimation with
Joint Additive Models,” Biometrika, 101, 85-101. [1]

Wang, Y., and Blei, D. M. (2019), “The Blessings of Multiple Causes,” Journal
of the American Statistical Association, 114, 1574-1596. [1]

Wong, W. H., and Shen, X. (1995), “Probability Inequalities for Likelihood
Ratios and Convergence Rates of Sieve MLES,” The Annals of Statistics,
23,339-362. [8]

Yuan, Y., Shen, X., Pan, W,, and Wang, Z. (2019), “Constrained Likelihood
for Reconstructing a Directed Acyclic Gaussian Graph,” Biometrika, 106,
109-125. [1]

Zhang, K., and Hyvirinen, A. (2009), “On the Identifiability of the Post-
nonlinear Causal Model,” in Conference on Uncertainty in Artificial Intel-
ligence, pp. 647-655. [1]

Zheng, X., Aragam, B., Ravikumar, P, and Xing, E. P. (2018), “DAGs
with NO TEARS: Continuous Optimization for Structure Learning,” in
Proceedings of the 32nd International Conference on Neural Information
Processing Systems, pp. 9492-9503. [1]

Zheng, X., Dan, C., Aragam, B., Ravikumar, P, and Xing, E. (2020),
“Learning Sparse Nonparametric DAGs,” in International Confer-
ence on Artificial Intelligence and Statistics, pp. 3414-3425, PMLR.
[1,5,6]



	Abstract
	1.  Introduction
	2.  Directed Acyclic Graph with Confounders
	2.1.  Model Identifiability
	2.2.  DeFuSE

	3.  DeFuSE via Neural Networks
	4.  Learning Theory
	5.  Numerical Examples
	5.1.  Simulations
	Random DAG
	Hub DAG
	Simulated data
	Metrics
	Sensitivity to normality test significance level 

	5.2.  Real Data Analysis

	6.  Discussion
	 Appendix
	A.1.  Additional Results on Identifiability
	A.2.  Regularity Conditions
	Metric entropy
	Sparsity and confounding

	A.3.  Implementation Details
	Training and hyperparameter tuning for DeFuSE
	Other methods


	Supplementary Materials
	Acknowledgments
	Funding
	ORCID
	References


