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Abstract. The permissionless clock synchronization problem asks how
it is possible for a population of parties to maintain a system-wide syn-
chronized clock, while their participation rate fluctuates—possibly very
widely—over time. The underlying assumption is that parties experience
the passage of time with roughly the same speed, but however they may
disengage and engage with the protocol following arbitrary (and even
chosen adversarially) participation patterns. This (classical) problem has
received renewed attention due to the advent of blockchain protocols, and
recently it has been solved in the setting of proof of stake, i.e., when par-
ties are assumed to have access to a trusted PKI setup [Badertscher et
al., Eurocrypt ’21].

In this work, we present the first proof-of-work (PoW)-based per-
missionless clock synchronization protocol. Our construction assumes a
public setup (e.g., a CRS) and relies on an honest majority of computa-
tional power that, for the first time, is described in a fine-grain timing
model that does not utilize a global clock that exports the current time
to all parties. As a secondary result of independent interest, our proto-
col gives rise to the first PoW-based ledger consensus protocol that does
not rely on an external clock for the time-stamping of transactions and
adjustment of the PoW difficulty.

1 Introduction

In the classical clock synchronization problem, thoroughly studied over the past
four decades by the distributed computing community—non-exhaustively, [1,8,
16,18–20,25,26]—, a set of processors, each one possessing a timer that is within
a bounded rate of drift from “nominal time” (the real time—called Newtonian
time in [8]), should realize logical clocks that are within a distance Skew ∈ N

of each other and within a linear envelope of nominal time. The typical threat
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model involves a subset of parties who deviate arbitrarily either from correct
protocol execution or in terms of their clock speed and may as a result prevent
synchronization from happening. A clock synchronization protocol has parties
exchanging messages to suitably adjust their clocks so that the synchronization
condition is achieved.

Up until the work of [3] all prior work in clock synchronization assumed
that the number of parties are known during the protocol execution (and avail-
able, unless they are assumed adversarial1). This standard assumption in Byzan-
tine fault tolerance protocols was challenged first with the advent of the Bitcoin
blockchain and related “permissionless” protocols. As exemplified in [11,12], the
Bitcoin blockchain operates in a setting where the number of active parties may be
unknown and continuously fluctuating throughout the protocol execution. While
such results paved the way to rethink the problem of consensus in this setting (cf.
[15,24]), near perfectly synchronized clocks remained a central assumption in all
previous security analyses of blockchain protocols (cf. [4,10–12,22]).

In the setting where participation is dynamic and fluctuating over time, the
adversary can introduce and remove honest parties at will without notifying
the existing participants. As a result, existing clock synchronization algorithms
(e.g., [1,20,25]) do not directly translate to such permissionless setting because
they fundamentally rely on the fact that the parties are aware of the number of
parties as well as of the number of tolerated corruptions/faults—i.e., they are
able to count— and a different protocol design technique is needed.

The main challenge in this transient participation setting shifts from correct-
ing the bounded-rate drift occurring between the ever connected honest parties
over time to the task of bringing up to sync freshly joining parties who start with-
out any information about nominal time, while accommodating for the fact that
a (possibly large) number of honest parties is no longer active. In [3], assum-
ing a so-called private-state setup [15] (specifically, a PKI), a protocol called
“Ouroboros Chronos” is presented that can synthesize a notion of global time
using a continuous flow of clock measurements that are provided by parties who
only transiently participate in the protocol and their local clocks are assumed to
be correct up to a bound. The level of participation fluctuates broadly with the
only requirements that (i) it does not become negligible, and (ii) honest majority
is preserved in terms of stake (all parties have a number of coins associated to
their public keys that amount to their individual stake). Given this, their result
leaves open the question of only utilizing a public(-state) setup.

To our knowledge, the only known result with a public setup in the per-
missionless setting, again from [3], is that parties may use a Nakamoto-style
longest chain blockchain without difficulty adjustment and use the block index
to define a concept of global time. The obvious downside of this idea is that the
protocol execution speeds up and slows down as participation fluctuates and,
most importantly, it will be entirely insecure when there is a steady increase (or

1 We note that the problem of joining parties in the context of clock synchronization
was considered, but only conditionally on the new party agreed upon and approved
by a sufficient number of participants; see [16].
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decrease) of participants, making the construction essentially only suitable for a
static model where the number of parties (i.e., the computational power invested
in the system for proof of work) remains fixed.

This motivates the current work, where the following open question is being
tackled:

Is it possible for a dynamically changing population of peers to synchronize
their clocks utilizing only a public setup and assuming PoW?

One apparent difficulty in answering this question is that using a blockchain
protocol to derive consistency for clock adjustments runs into the complication
that the blockchain protocol itself utilizes a clock to adjust the PoW difficulty
at regular intervals. Indeed, the Bitcoin blockchain [21] relies fundamentally on
a global clock being available to all parties.2 It follows that this observation
suggests also a secondary open question that will be tackled as well:

Is there a blockchain protocol in the PoW setting that has no dependency
on a publicly accessible global clock?

1.1 Overview of Our Results

The clock synchronization problem asks parties to report clocks that satisfy two
properties (cf. [8]) (i) bounded skew: the parties maintain logical clocks whose
difference is upper bounded, and (ii) linear envelope synchronization: the logical
clock reported by a party is always within a linear envelope of the nominal
time. Note that we are interested in a formulation of this problem in a very
general setting where some parties are adversarial and hence deviate from the
protocol arbitrarily, while honest parties may come and go following arbitrary
participation patterns. Given this setting we formulate the desideratum of a
synchronized clock only with respect to a class of parties we call alert, which are
honest parties that have also been online for a sufficiently long time to catch up
with all protocol messages. More formally, the clock synchronization problem is
stated as follows.

Definition 1 (Clock Synchronization). There exist constants Skew ∈ N,
shiftLB, shiftUB ∈ (0, 1) such that honest parties’ logical clocks satisfy the follow-
ing two properties:

– Bounded skews. Let r1, r2 be the reported logical clocks of two alert parties
at any nominal time r. Then |r1 − r2| ≤ Skew.

2 The protocol implements such clock by having nodes querying other nodes in the
network and possibly seeking user input—it has no way of deriving a clock from the
protocol operation itself. See [12] for more details.
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– Linear envelope synchronization. Each alert party’s logical clock stays
in a (U,L)-linear envelope3 with respect to the nominal time r, where U =
1/(1 − shiftUB) and L = 1/(1 + shiftLB).

Solving the clock synchronization problem asks for a protocol that within a
certain threat model achieves the two properties. This brings us to our first main
result.

A Model for Permissionless Clock Synchronization in the PoW Setting. Our
model (Sect. 2) simultaneously facilitates (i) the dynamic participation of par-
ties, (ii) imperfect local clocks, and (iii) resource bounding by restricting parties’
queries to a random oracle (cf. [13]). Specifically, we extend the previous model
of the global imperfect clock of [3] to the PoW setting by introducing a ran-
dom oracle functionality that apportions random oracle queries per unit of time
between the honest parties and the adversary in a manner consistent with an
honest majority assumption in terms of computational power. The concept of
time provided by the imperfect local clock functionality of [3] enables parties
to advance their local clocks and experience time at roughly the same speed (a
maximum drift of Φclock is allowed). Note that the environment is allowed to
introduce new parties and remove old parties at will, something that results in
them being de-registered from the clock functionality; when this happens the
clock functionality is not responsible for keeping them up to speed with the rest
of the honest parties. In this way, parties can be seen as entirely transiently
engaging with the protocol—each individual party may only engage for a small
fraction of the total execution time as adaptively decided by the environment.
Armed with our model, we then present our second main result.

A New Protocol for Permissionless Clock Synchronization in the PoW Model.
We describe our new PoW-based clock synchronization protocol Timekeeper in
Sect. 3. The construction is based on three key ingredients: (i) A mechanism
that repurposes the concept of 2-for-1 PoWs introduced in [10] and subsequently
used to achieve various properties such as fairness in [23] and high throughput
in [5], to the setting of time-keeping by employing it to enable the collection of
“timing beacons” from the active parties in a rolling window process; (ii) a PoW-
based longest-chain type of blockchain that enables parties at regular intervals to
reach consensus about the timing beacons that are shared and extract a suitable
correction to their local clocks taking into account the arrivals of the beacons;
and (iii) a novel target-recalculation function that can be thought of as the
reverse of the one used in Bitcoin, that uses protocol recorded timestamps as
a means to define the length of an epoch, and then uses the number of blocks
produced in that period of time to adjust the PoW difficulty accordingly.

Putting these elements together, our clock synchronization protocol instructs
parties when their local clock passes some specific moment (which happens peri-
odically with respect to the interval length) to execute an adjustment on their

3 A function f : R → R is within a (U, L)-linear envelope if and only if it holds that
L · x ≤ f(x) ≤ U · x, for all x.
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local clock based on the median value of the beacon timestamps and their cor-
responding arrival time. Moreover, towards the goal of letting newly joining
parties become synchronized with the protocol time, we present a joining proce-
dure which requires the fresh parties to passively listen to the protocol execution
for a while and then synchronize with other honest participants.

Based on the ledger consensus function offered by our protocol it is easy to
derive also the following result.

A New PoW-Based Blockchain Protocol Without a Global Clock. Given that our
protocol is a Nakamoto-style “most-difficult chain” type of protocol that facli-
tates clock synchronization, it is easy to transform it to a full-fledged blockchain
protocol that admits transactions as in Bitcoin script or Ethereum smart con-
tracts. The resulting blockchain has the novel property that it does not depend
on accessing a globally available clock. Instead, parties utilize their local clocks
which may be drifting or be out of sync, but thanks to the synchronization (sub-
)protocol that is offered by our construction they can adjust their local clocks
periodically. This eliminates time as an attack vector in the context of PoW-
based blockchain protocols and demonstrates that it is possible to achieve ledger
consensus using merely local clocks in a fully dynamic setting where parties may
come and go adaptively per the adversary’s instructions.

Security Analysis. We present the full security analysis of Timekeeper in Sect. 4.
As a high-level overview, we proceed to adapt the analytical toolset from [11,12]
to the imperfect-local-clock model. Notably, we modify the concept of target
recalculation epoch boundaries (from “point” to “zone”) and the concept of iso-
lated successes (which addresses the question of under what circumstances can a
hash success guarantee the increase of accumulated difficulty). As an intermedi-
ate step, we study several predicates aiming at providing the “good” properties
of an execution starting from the onset and until a given nominal round.

Our inductive-style proof works in the following manner. We prove that if at
the onset, the PoW difficulty is appropriately set and the steady block-generation
rate lasts during the whole clock synchronization interval, parties can maintain
good skews after they enter the next interval and the shift value they compute
to adjust their clocks is properly bounded. In addition, if good skews and cer-
tain time adjustment calculations are maintained during a target recalculation
epoch, the block production rate will be properly controlled in the next epoch.
To sum up, this guarantees that “good” properties can be achieved during the
whole execution given a “safe” start and a bounded change in the number of
parties (which can nevertheless still be exponential). We also provide an analysis
of the joining procedure showing that joining parties starting with no a-priori
knowledge of global time, can listen in and bootstrap their logical clock, turning
themselves into alert parties being capable of fully engaging with the protocol.
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In summary, Timekeeper solves the clock synchronization problem as defined
above as follows.

Theorem (Theorem 3, informal). Let Φclock be the maximum drift allowed
on parties’ local clocks and Δ the maximum (and unknown) message transmis-
sion delay. Then Timekeeper solves the clock synchronization problem assuming
bounded dynamic participation and an honest majority in terms of random oracle
queries, with parameter values

Skew = 2Φ, shiftLB = 3Φ/R, shiftUB = 2Φ/R,

where Φ = Δ + Φclock and R ∈ N
+ is a parameter chosen sufficiently large

w.r.t.the security parameter and reflects the time required for an honest party to
become alert.

Organization of the Paper. The rest of the paper is organized as follows. In Sect. 2
we present our model, relevant definitions and building blocks. We describe our
Timekeeper protocol in Sect. 3 and present the full analysis in Sect. 4. Detailed
description of protocols, functionalities, and proofs can be found in the full ver-
sion of the paper [14].

2 Model and Building Blocks

In this paper we adapt the timing and networking model of [3] to the setting of
proof of work, obviating the requirement for a PKI as a setup assumption. In
more detail, in the model there is an upper bound Δ in message transmission
(cf. [4,9,12,22]), and parties do not have access to a global clock, but instead
rely on their local clocks, whose drift is assumed to be upper-bounded by Φclock.
What complicates matters is that the model supports dynamic participation
where parties may join and leave during the protocol execution without warning
(it is worth noting here that this is where the difficulty of our setting is derived
from: indeed if all honest parties were online throughout then it would be trivial
to implement a logical clock by incrementing a counter). For succinctness, we
choose to express primitives and building blocks (see below) in our execution
model utilizing the ideal functionality language of [7], but we do not pursue a
composability analysis for our security properties, which are expressed in a game
based manner as in [10,22].

2.1 Imperfect Local Clocks

As in [3], and as mentioned above, in this paper we remove the assumption that
parties have access to a global clock, as in [4,10–12,22], and instead assume
imperfect local clocks. In a nutshell, every honest party maintains a local clock
variable by communicating with an imperfect local clock functionality FILClock.
In contrast to the global-setup clock functionality in [17], where parties learn
the exact global time and thus strong synchrony is guaranteed, parties regis-
tered with FILClock will only receive “ticks” from the functionality to indicate
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that they should update their own clocks. In addition, FILClock issues “imper-
fect” ticks, i.e., the adversary is allowed to set a bounded drift to each party
by manipulating its corresponding status variable in FILClock. FILClock can be
viewed as a variant from [3]’s with adaptations to provide a more natural clock
model with real-word resources and in the proof-of-work setting.

For a detailed description of the functionality, see [14]. Here we just elaborate
on the “imperfect” aspect of the clock and on the adversarial manipulation of
clock drifts. Specifically, we allow the adversary to set some drifts to parties’
local clocks, which will accelerate or stall their progress; such values are globally
bounded by Φclock. This assumption allows local clocks to proceed at “roughly”
the same speed.

Further, the adversary A can adaptively manipulate the drift of honest par-
ties’ clocks by sending clock-forward and clock-backward messages to
the functionality4 after they conclude the current round. If A issues clock-
forward for party P, it will enter a new local round before FILClock updates
the nominal time, and this can be repeated as long as P’s drift is not Φclock

rounds larger than other honest parties. On the other hand, if A issues clock-
backward, it will set P’s budget to a negative value, thus preventing FILClock

from updating dP at the end of the nominal round (dP is the functionality vari-
able that captures whether the party P has made its move for the clock tick).
I.e., P will still be in the same logical round during these two nominal rounds.
Again, this process can be repeated by A as long as the drift on P is not Φclock

rounds smaller than others. As a consequence, the targeted party’s local clock
may remain static for several nominal rounds.

2.2 Other Core Functionalities

Common Reference String. We model a public-state setup by the CRS function-
ality FD

CRS. The functionality is parameterized with some distribution D with
sufficiently high entropy. Once FD

CRS receives (Retrieve, sid) from either the
adversary A or a party P for the first time, it generates a string d ← D as the
common reference string. In addition, FD

CRS will immediately send a message
(Retrieved, sid) to functionality W(FRO) (described next) to indicate that
W(FRO) should start to limit the adversarial RO queries. For all subsequent
activations, FD

CRS simply returns d to the requester.

(Wrapped) Random Oracle. By convention, we model parties’ calls to the hash
function used to generated proofs of work as assuming access to a random oracle;
this is captured by the functionality FRO. Notice that with regards to bounding
access to real-world resources, functionality FRO as defined fails to limit the
adversary on making a certain number of queries per round. Hence, we adopt

4 As such, our clock functionality is a more natural model of the real world compared
to [3]’s, as it allows A to manipulate the clock in both directions, backward, and
forward; in [3], only forward manipulation is allowed. Nonetheless, this does not
result in a more powerful adversary.
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a functionality wrapper [4,13] W(FRO) that wraps the corresponding resource
to capture such restrictions. We highlight that our wrapper W(FRO) improves
on previous wrappers in two aspects, in order to provide a more natural model
of the real world: (1) We capture the pre-mining stage by letting the adversary
query the RO with no restrictions (albeit polynomially bounded) before the
CRS is released; (2) The wrapper limits adversarial access per nominal round
by bounding the total number of queries that A can make. The second aspect
allows us to dispose the “flat” computational model and define the computational
power in terms of the number of RO queries per round, which makes it possible
to further refine the notion of a “respecting environment” (see below) that is
suited for imperfect local clocks.

Diffusion. We adopt the peer-to-peer communication functionality FΔ
Diffuse (cf.

[3]), which guarantees that an honestly sent message will be delivered to all
the protocol participants within Δ rounds. Moreover, for those adversarially
generated messages, FΔ

Diffuse forces them to be delivered to all the honest parties
within Δ rounds after they are learnt by at least one honest participant. This
captures the natural behavior of honest parties that they will forward all the
messages that they have not yet seen to their peers.

We refer to [14] for a detailed description of the above functionalities.

2.3 Dynamic Participation

The notion of a “respecting environment” was introduced in [11] to model the
varying number of participants in a protocol execution. In [2,3], the notion of
dynamic participation was introduced aiming at describing the protocol execu-
tion in a more realistic fashion. Here we present a further refined classification
of possible types of honest parties. See Table 1.

Table 1. A classification of protocol participants.

Resource Basic types of honest parties

Resource unavailable Resource available

Random oracle FRO stalled operational

Network FΔ
Diffuse offline online

Clock FILClock time-unaware time-aware

Synchronized state desynchronized synchronized
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Consider an honest party P at a given point of the protocol execution. We
say P is operational if P is registered with the random oracle FRO; otherwise, we
say it is stalled. We say P is online if P is registered with the network; offline
otherwise. We say P is time-aware if P is registered with the imperfect clock
functionality FILClock, and time-unaware otherwise.

Further, we say P is synchronized if P has been participating in the proto-
col for sufficiently long time and achieves a “synchronized state” as well as a
“synchronized clock.” “Synchronized clock” means P holds a chain that shares a
common prefix (cf. [10]) with other synchronized parties; “synchronized clock”
refers to that P maintains a local clock with time close to other synchronized
parties. Otherwise, P is desynchronized. Additionally, P is aware of whether it
is synchronized or not, and maintains a local variable isSync serving as an
indicator for other actions.

Based on the above classification, we now define the notion of alert parties:

alert
def= operational ∧ online ∧ time-aware ∧ synchronized.

In short, alert parties are those who have access to all the resources and are
synchronized; this requires them to join the protocol execution passively for
some period of time. They constitute the core set of parties that carry out the
protocol.

In addition, we define active parties to include all parties that are alert,
adversarial, and time-unaware.

active
def= alert ∨ adversarial ∨ time-unaware.

Respecting Environment in Terms of Computational Power. Next, we provide
the following generalization of “respecting environment” to relate it to compu-
tational power as opposed to number of parties. Our assumption is that during
the whole protocol execution, the honest computational power is higher than
the adversarial one (cf. the “honest majority” condition in [10] and follow-ups).
The computational power is captured by counting the number of RO (hash)
queries that parties make in each round. Further, we restrict the environment to
fluctuate the number of such queries in a certain limited fashion.

Definition 2. For γ ∈ R
+ we call the sequence (hr)r∈[0,B), where B ∈ N, (γ, s)-

respecting if for any set S ⊆ [0, B) of at most s consecutive integers, maxr∈S hr ≤
γ · minr∈S hr.

We say that environment Zis (γ, s)-respecting if for all A and coins for Z
and A the sequence of honest hash queries (hr) is (γ, s)-respecting.

Note that the notion of respecting environment here is different from the
“flat” model adopted in [4,10–12]. In a flat model, honest parties are assumed to
have the same computational power, hence the total number of RO queries is a



190 J. Garay et al.

direct 1-to-1 map from the number of parties. The new respecting environment
allows some subset of the honest parties to query the RO multiple times or stay
stalled during a nominal round and hence it adapts to the “imperfect local clock”
model used in this paper.

3 The Clock Synchronization Protocol with Public Setup

In this section we present the general approach and the various core building
blocks of the new clock synchronization protocol—Timekeeper. For a complete
description, refer to [14]. At a high level, Timekeeper is a Nakamoto-style PoW-
based blockchain protocol together with time synchronization functionalities.
Readers can think of it as a Bitcoin protocol with the following modifications:

– It replaces Bitcoin’s original clock maintenance solution5 with a new clock
synchronization scheme, which requires parties to use 2-for-1 PoWs [10] to
mine and emit clock synchronization beacons and include them in an upcom-
ing block. Furthermore, protocol participants will periodically adjust their
local clock values based on the beacons collected in the blockchain and their
(local) receiving time.

– Events are triggered by counting the number of local rounds (which is different
from the convention that events in PoW-based blockchains are triggered by
the arrival of blocks). In other words, the protocol has a clock synchronization
interval of length R and a target recalculation epoch of length M that are
defined in terms of the number of rounds; in addition, M is a multiple of R.
Both of these values are hardcoded in the protocol. More precisely, parties
will call the synchronization procedure (see Sect. 3.3) when their local clock
enters round 〈itvl, itvl · R〉 (this represents the last round in interval itvl;
see below for details on the round structure); and for target in the next epoch
they will call the target recalculation function (details see Sect. 3.4) when their
local clock enters 〈itvl, itvl ·R〉, where (itvl mod (M/R)) = 0 (i.e., at the
boundary of every (M/R) synchronization intervals).

See Fig. 1 for an illustration of the protocol execution.
Next, we present the basic components that are employed in Timekeeper.

3.1 Timekeeper Timestamps

As opposed to the conventional approach where blocks’ timestamps are integer
values, timestamps (both blocks’ and beacon values) in Timekeeper are rep-
resented by a pair of values interval number and round number 〈itvl, r〉 ∈
〈N+,N+〉. Note that (ideally) one synchronization interval would last for R

5 In Bitcoin’s original implementation, miners will adjust their time based on three
different sources: (1) their local system clock; (2) the median of clock values from
peers; (3) the human operator (if the first two disagrees).
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Fig. 1. An illustration of the clock synchronization protocol execution with one target
recalculation epoch consisting of four clock synchronization intervals.

rounds (i.e., rounds ((i − 1) · R, i · R] would belong to the i-th interval). How-
ever, in Timekeeper we let the lower bound be 0, which means that times-
tamps with a somewhat small round number are still valid. Specifically, a
timestamp 〈itvl, r〉 is considered valid if and only if it satisfies the predicate
validTimestamp(itvl, r) � r ≤ itvl ·R. We note that this new treatment allows
for some small distortion at the end of each interval—i.e., the round number of
a few blocks at the beginning of the next interval may be smaller than the last
block of the previous interval (we call these “retorted” timestamps); see Fig. 2.

Fig. 2. An illustration of a segment of the blockchain with synchronization interval
length R = 100. Blocks can have timestamp values equal to blocks in the previous
interval.

Consider a chain of blocks in Timekeeper. Their timestamps should increase
monotonically in terms of their interval number, and the round number in a
single interval should also increase monotonically. More specifically, given two
timestamps 〈itvli, ri〉, 〈itvlj , rj〉 of two blocks Bi,Bj respectively, if Bi is an
ancestor block of Bj , they should satisfy the following predicate:

validTimestampOrder(〈itvli, ri〉, 〈itvlj , rj〉)

�
{
validTimestamp(itvli, ri) ∧ validTimestamp(itvli, ri)

∧ [(itvli ≤ itvlj) ∨ (itvli = itvlj ∧ ri < rj)]

}

Furthermore, we will overload the notation of comparison operators
based on the valid order of timestamps. E.g., “=” will denote that two
timestamps are identical, and 〈itvl1, r1〉 < 〈itvl2, r2〉 if and only if
validTimestampOrder(〈itvl1, r1〉, 〈itvl2, r2〉) holds. Other operators >,≤,≥, �=
are defined similarly.
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We also redefine “+,−” to describe the timestamp that is k ∈ N rounds before
(resp., after) 〈itvl, r〉. Regarding addition, 〈itvl, r〉 + k = 〈max{itvl, �(r +
k)/R
}, r + k〉. Intuitively, the additive operation simply adds k to r, and
only increments itvl when it is going to become invalid. For subtraction,
〈itvl, r〉 − k = 〈max{1, �(r − k)/R
},max{1, r − k}〉. In other words, regard-
ing the subtraction operation, we only apply the operation on round, and the
interval number is derived from the round after calculation. It does not output
timestamps that are not “normally” belong to an interval. In case we do the
subtraction operation for k ≥ r, it will return 〈1, 1〉.

Timekeeper’s new approach to timestamps raises questions regarding the
“trimming” of blockchains by counting the number of rounds. Recall that in [10]
the notation C�k represents the chain that results from removing the k right-
most blocks. In this paper, we overload this notation to denote the chain that
results from removing blocks with timestamps in the last k rounds with respect
to the current time. Specifically, for C = B1B2 . . . Bn and local time 〈itvl, r〉,
C�k = B1B2 . . . Bm is the longest chain such that ∀B ∈ C�k,Timestamp(B) <
〈itvl, r〉 − k. In other words, Bm+1 is the first block (if it exists) such that
Timestamp(Bm+1) ≥ 〈itvl, r〉 − k holds.

3.2 2-for-1 Proofs of Work and Synchronization Beacons

2-for-1 PoW is a technique that allows protocols to utilize a single random oracle
H(·) to compose two separate PoW sub-procedures involving two distinct and
independent random oracles H0(·),H1(·). It was first proposed in [10] in order to
achieve a better/optimal corruption threshold (from one-third to one-half) for
the solution of the traditional consensus problem using a blockchain.

We refer to [10] for more details, and here we present a simple implementation
with the clock synchronization application in mind. In order to do the 2-for-1
mining, a party P prepares a composite input w that is a concatenation of
two inputs w0, w1 of two different sub-procedures S0, S1, respectively. I.e., w =
w0 ‖w1. After selecting a nonce ctr, querying the random oracle with ctr ‖w and
getting result u, P checks if u < T which implies success in sub-procedure S0; P
also checks if [u]R < T (where [u]R denotes the reverse of a bitstring u) which
indicates success in sub-procedure S1. After successfully generating a PoW for
S0 (resp., S1), in order to let parties others check validity, the proof will include
the nonce and the entire composite input ctr ‖ w. Note that sub-procedure S0

(resp., S1) only cares about its corresponding part w0 (resp., w1), and treat the
other part as dummy information.

The 2-for-1 PoW technique has several advantages when compared with the
straightforward approach that would simply utilize two different random ora-
cles. The most prominent advantage is that it prevents the adversary A from
concentrating its computational power on one RO and thus gain advantage in
the corresponding sub-procedure.
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Synchronization Beacons. In addition to the conventional blocks constituting
the blockchain, protocol participants in Timekeeper also produce another type
of “tiny” blocks using 2-for-1 PoWs. We call these blocks clock synchronization
beacons (“beacons” for short) since they are used to report parties’ local time
and synchronize their clocks.

In more detail, one clock synchronization beacon SB is a tuple with the fol-
lowing structure.

SB � 〈〈itvl, r〉,P, ηitvl, ctr, blockLabel〉,

where 〈itvl, r〉 is the local time SB reports; P denotes the identity of its miner;
ηitvl is some fresh randomness in the current interval; ctr represents the nonce of
the PoW and blockLabel is the associated block input. Note that SB must record
the identity of its miner because there might be multiple beacons, mined by
different parties, reporting the same timestamp as well as nonce value; otherwise,
it would be impossible for the parties to distinguish such beacons. Worse still,
other participants would not be able to distinguish the same beacon SB when they
receive SB multiple times. Regarding ηitvl, it is a string associated with interval
itvl for the purpose of preventing the adversary A from mining beacons with
future timestamps. In other words, protocol participants (including A) can only
learn ηitvl after they have (almost) finished interval itvl − 1. We present the
structure of intervals in detail and how we compute ηitvl in Sect. 3.3 and treat
it as a communal bitstring here. We note that parties can learn ηitvl from their
local chain, and indeed SB does not need to include ηitvl (P can prune those
beacons that are invalid with ηitvl in their local view). We keep ηitvl in the
description for convenience.

Regarding the structure of a blockchain block B, we adopt the similar struc-
ture as inin [11] (with the dummy information in the 2-for-1 PoWs):

B � 〈h, st, 〈itvl, r〉, ctr, txLabel〉,

where h is the reference to the previous block, st the Merkle root of the block
content, 〈itvl, r〉 its timestamp, ctr the nonce of PoW, and txLabel the binded
beacon input.

We are now ready to describe how the parties in Timekeeper do the 2-for-1
PoW mining. The composite input prepared in Timekeeper is different from the
trivial instance above, in that the term 〈itvl, r〉 appears in both blocks and bea-
cons. Hence, simply concatenating two inputs introduces redundant information
in the PoW. When a party P is ready to perform the mining procedure, P binds
the nonce, the blocks’ input and beacon input together as

〈ctr, h, st, 〈itvl, r〉,P, ηC
ep〉

and hand them over to random oracle FRO. Let u denote the result from FRO. If
u < T (i.e., the block query succeeds), P finds a new block B = 〈h, st, 〈itvl, r〉,
ctr, txLabel〉 where txLabel := 〈P, ηC

ep〉; if [u]R < T (the beacon query succeeds),
P gets a new beacon SB = 〈〈itvl, r〉,P, ctr, blockLabel〉, where blockLabel :=



194 J. Garay et al.

〈h, st〉. Note that for the sake of presentation, we reorder the content of blocks
and beacons so that they are inconsistent with the input to the PoW.

After receiving the result from FRO, P checks if it was able to successfully
generate a new block. In addition, P checks if he successfully produces a bea-
con but only when P’s local clock stays in the beacon mining and inclusion
phase. Namely, P reports a timestamp that satisfies a certain criterion (details
in Sect. 3.3).

3.3 Clock Synchronization Intervals and the Synchronization
Procedure

As mentioned earlier, Timekeeper participants will periodically adjust their local
clock. We call the time interval between two adjustment points6 a clock syn-
chronization interval (or “interval” for short). Ideally, one interval will last for
R rounds. The actual number of local rounds that parties observe may differ
according to the shift computed in the previous interval (we will show later that
the shift computed in every interval is well-bounded). When party P’s local clock
gets to the last round of an interval, it will call the synchronization procedure
(see below), which adjusts its local clock and gets the fresh randomness to run
the next interval.

Interval Structure. Timekeeper divides one interval into three phases: (1) view
convergence, (2) beacon mining and inclusion and (3) beacon-set convergence.
The phase parties stay in depends on their local clocks. Furthermore, parties
will keep track of the (local) arriving time of a synchronization beacon as long
as it is online. In this section we describe these three phases as well as the
bookkeeping function and explain the design intention behind them.

View Convergence. When a party P’s local clock reports a time 〈itvl, r〉 such
that r < (itvl − 1) · R + K, P is in the view convergence phase. Note that this
also includes rounds with potentially retorted timestamps. In this phase, if P is
alert, it will try to mine the next block with the 2-for-1 PoW technique (i.e., the
input information that P forwards to the FRO functionality does not need to be
changed); nonetheless, P will not check if he successfully mines a beacon after P
acquires the output. This is because all the beacons obtained in this phase are
invalid in that they report an undesirable timestamp.

The general motivation for introducing the view convergence phase and let-
ting parties wait for some period of time at the beginning of an interval is that we
would like parties to start mining beacons with a consistent view of the previous
interval. Since K is larger than the common prefix parameter (we will quantify
K in later, in Sect. 4.2), at the end of the view convergence phase of interval
itvl+1, alert parties will have a common view of interval itvl. In other words,
they will agree on all the blocks in interval itvl, and the adversary A will not
6 The first interval in particular lies between the beginning of the execution and the

first time parties adjust their clock.
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be able to apply any changes to these blocks. Hence, alert parties agree on the
number of blocks in the previous interval, which decides the mining difficulty
within the current interval. (This will used in our new target recalculation func-
tion, presented in Sect. 3.4.) Parties will mine beacons with the same difficulty,
and this simplifies the protocol description as well as its analysis. Furthermore,
alert parties will compute the same fresh randomness as

ηitvl+1 � G(ηitvl ‖ (itvl + 1) ‖ v), (1)

where v is the concatenation of all block hashes in interval itvl. Note that we
adopt a different hash function G(·) (as opposed to H(·)) to compute the next
fresh randomness that is not used in the 2-for-1 PoW, which does not consume
any queries to random oracle FRO.

Recall that by assumption the adversary A has full knowledge of the network,
and hence it can learn all honest blocks from the previous interval immediately
and manipulate the chain at will for up to a number of rounds bounded by
the common prefix parameter, allowing A to mine the synchronization beacons
before the alert parties start to mine. We call this period where A starts ahead
of time the pre-mining stage. Nonetheless, we will show later that there will be
at least one block generated by an alert party near the end of interval itvl,
which prevents the adversary from pre-mining for too long a time.

Beacon Mining and Inclusion. When a party P’s local clock is in rounds 〈itvl, r〉
satisfying (itvl − 1) · R + K ≤ r ≤ itvl · R − K, P is in the beacon mining and
inclusion phase. Next, we define the predicate Isync(itvl) to extract the set of
timestamps in this phase. Formally,

Isync(itvl) � {(itvl − 1) · R + K, . . . , itvl · R − K}. (2)

For convenience, we slightly overload this predicate. When the input is a times-
tamp, Isync(〈itvl, r〉) outputs whether 〈itvl, r〉 stays in a beacon mining and
inclusion phase. I.e., Isync(〈itvl, r〉) = true if r ∈ Isync(itvl), and false other-
wise.

After entering this phase, P will use a 2-for-1 PoW to mine both blocks and
clock synchronization beacons. During interval itvl, the output will be a bea-
con which indicates its local time and value SB � 〈〈itvl, r〉,P, ctr, blockLabel〉.
Regarding the mining difficulty, Timekeeper will set the same target value for
blocks and beacons7. In other words, the expected number of blocks and of
beacons in this phase are equal.

After a beacon is successfully generated, it will be diffused into the network
via F sync

Diffuse. P will include a beacon SB into the pending block content if SB is
valid w.r.t. the current interval. Next, we describe how they check the validity of
a beacon is checked. The format of a beacon SB with respect to interval itvl is
correct if and only if it reports a timestamp 〈itvl, r〉 such that r ∈ Isync(itvl).

7 We will adopt the same target for simplicity. Indeed, maintaining a constant ratio
between the difficulty level of blocks and that of beacons will work.
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We say a beacon SB is valid w.r.t.chain C if and only if its format is correct
and the hash value of SB (after concatenating with the fresh randomness in C)
is smaller than the corresponding mining target. P will try to include all the
(valid) beacons mined in the current interval itvl with timestamps earlier than
the current local time but which have not yet been included in the blockchain.
Specifically, at round 〈itvl, r〉, all valid beacons recording timestamp 〈itvl, u〉
with u ≤ r will get into P’s pending block content.

When P’s local clock goes past the last round of beacon mining and inclusion
phase, it stops checking the beacon hash output and it no longer includes beacons
in the next block. Beacons that are generated and diffused right at the end of
this phase get dropped.

Beacon-Set Convergence. The third and last phase—beacon-set convergence—
consists of the last K rounds in an interval. In other words, a party P is in this
phase when P reports a timestamp 〈itvl, r〉 with r > itvl · R − K. During this
phase, P behaves similar to the first phase. I.e., it will not check for the 2-for-1
PoW result to see if the beacon generation succeeds.

Parties have to wait for at least K rounds to ensure that they share a con-
sistent view of the set of beacons included in the current interval (except with
some negligible probability). This phase cannot be omitted since only when par-
ties agree on the same beacon set can the synchronization procedure maintain
the protocol’s security properties (Sect. 4).

Beacon Arrival Booking. In order to adjust its clock, P also needs the local
receiving time of all beacons that have been included in the chain. Hence, P will
maintain a local registry that records the beacons it receives as well as their
arrival time. More specifically, this local beacon ledger is an array of synchro-
nization beacons. For each beacon SB, a pair (a,flag) ∈ 〈N+,N+〉 × {final, temp}
is assigned to it. Consider a round 〈itvl, r〉 when P receives a beacon SB with
Timestamp(SB) = 〈itvl′, r′〉.
– If itvl′ ≤ itvl, which means the beacon SB is generated in the current or

previous interval8. P will drop SB if it is not valid w.r.t. its localchain; other-
wise, P will assign (〈itvl, r〉, final) to SB. This means that all the information
gathering regarding this beacon has been finalized and it is ready to be used.

– If itvl′ > itvl, the beacon is generated in the future. P will assign (〈itvl, r〉,
temp) to SB, which indicates that modifications on the receiving time may be
applied in the future. Note that parties may not know the fresh randomness in
future intervals (for example, if they are newly joint parties and have not yet
synchronized with the blockchain or they are alert but receive forthcoming
beacons). Hence they cannot check the validity of beacons with temp flag.
Nevertheless, invalid beacons would be excluded from the registry after P
learns the upcoming fresh randomness.

8 Beacons generated in previous intervals are stale in that P has already passed the
synchronization point associated with these beacons, and they will never be used in
the future. We list them for completeness.
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If P receives multiple beacon messages with the same creator and time reported,
P will adopt the first one it receives as its arrival time.

The Synchronization Procedure. At the end of an interval (i.e., when the
local time reports r = itvl ·R), parties will use the beacons information to com-
pute a value shift that indicates how much the logical clock should be adjusted.
(See [14] for the complete specification.)

Adjusting the Local Clock. When a party P’s local clock reaches round
〈itvl, itvl · R〉 and P has finished the round’s regular mining procedure, P
will adjust its local clock based on the beacons recorded on chain and their
local receiving time. More specifically, P will extract all the beacons from the
beacon mining and inclusion phase, and compute the differences between their
timestamp and local receiving time Timestamp(SB) − arrivalTime(SB). Since the
timestamp of SB and its arrival time share the same interval index, we only need
to compute the difference between their round numbers. Subsequently, all the
beacons will be ordered based on this difference and a shift will be computed by
selecting the median difference therein. Formally,

shiftPitvl � med{Timestamp(SB) − arrivalTime(SB) | SB ∈ SP
itvl}. (3)

In case there are two median beacons SB1, SB2, parties will adjust shiftPitvl �
�(Timestamp(SB1) − arrivalTime(SB1) + Timestamp(SB2) − arrivalTime(SB2))/2
.
Afterwards, P will update its local clock to 〈itvl + 1, r + shift〉. Later we show
that this update strategy in the synchronization procedure allows parties’ clocks
to remain in a narrow interval and do not deviate too much from the nominal
time.

Note that parties will enter local round 〈itvl, r〉 where r = itvl · R only
once. If they enter some time 〈itvl′, r〉 in the future, we will get itvl′ > itvl
and they will never revert back.

Mining with Backward-Set Clocks. After the adjustment at the end of intervals,
and shift is added to P’s local clock, it may set its local time to values 〈itvl, r〉
such that r ≤ (itvl−1) ·R (i.e., the retortion effect that was mentioned earlier).
Nonetheless, P can continue to mine blocks with this timestamp and its local
clock will eventually proceed to a time value of regular format (i.e., r > (itvl−
1) · R).

We compare this treatment with the similar scenario in a PoS blockchain [3].
In [3], setting local clocks backward is never a problem since parties can keep
silent during this period. Due to the nature of PoS-based blockchains, parties do
not need to do anything if they are not assigned the leader slot. In our context,
however, adopting the same ‘silence’ policy contradicts the basic nature of PoW-
based blockchains as parties will forfeit the chance to extend their local chain.
In other words, there is no point for an activate party to not make RO queries.
This is taken care of by Timekeeper’s timestamping scheme.



198 J. Garay et al.

Updating the Beacon Arrival Time Registry. Notice that the beacon information
stored in a party P’s arrival time registry is closely related to which interval P
stays in; after P enters the next interval, it needs to update the beacon bookkeep-
ing. P will apply a shift computation for all beacons with flag temp. Furthermore,
for those beacons that report a timestamp with interval equal to the incoming
one, their flag will be set to final. In more detail, at the end of interval itvl, for
all eligible SB in the beacon registry, their associated pair (〈itvlSB, rSB〉, temp)
will be updated to (〈itvlSB, rSB + shift〉, final) if itvlSB = itvl+1. Note that for
those beacons whose flags are set to final, P will removed all invalid ones from
the registry after the update.

3.4 The Target Recalculation Function

If the mining target is not set appropriately (“appropriately” means that the
block generation rate according to the current hashing power and target is some-
what steady; see [11]), PoW-based blockchain protocols fail to maintain any of
the security properties in a permissionless environment. In Bitcoin, the target
is adjusted after receiving the last block of the current epoch (and an epoch
consists of 2016 blocks). Based on the time elapsed to mine these blocks, a new
target is set based on the previous target value and the variation is proportional
to the time elapsed. Note that Bitcoin’s target recalculation function is not the
only way to adjust the difficulty level. A large number of other recalculation
functions have been proposed in alternate blockchains (e.g., Ethereum, Bitcoin
Cash, Litecoin), with their security asserted by either theoretical analysis or
empirical data.

In Timekeeper, we propose a new target recalculation function that is suitable
for the new setting. Intuitively, our function is a reversed version of Bitcoin’s
original function, namely, protocol participants wait for some fixed number of
rounds M (in their local view) to update the difficulty level. We call such M
number of rounds a target recalculation epoch. Moreover, Timekeeper sets M as
a multiple of R, which makes the target recalculation epoch consist of several
clock synchronization intervals, and the start and end point of an epoch coincide
with the start and end of different synchronization intervals. Recall that in the
Timekeeper timestamp scheme introduced in Sect. 3.1, the first term in 〈itvl, r〉
does not directly reflect which target recalculation epoch it is in. For simplicity,
we introduce function TargetRecalcEpoch that maps the protocol timestamp to
the target recalculation epoch it belongs to:

TargetRecalcEpoch(〈itvl, r〉) � �itvl/(M/R)
.
In addition, we introduce a function EpochBlocks which extracts all the blocks
in chain C that belong to target recalculation epoch ep. Formally, given ep ≥ 1,

EpochBlocks(C, ep) � {B : B ∈ C ∧ TargetRecalcEpoch(Timestamp(B)) = ep}.

Also for convenience, we let EpochBlockCount be a function that returns the
number of blocks in chain C that belong to epoch ep. We also extend the input
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domain of epoch numbers to 0 and let it output Λepoch (the ideal number of
blocks) to capture the fact that the target at the beginning of an execution is
set appropriately and hence maintains the ideal block generation rate. Formally,

EpochBlockCount(C, ep) �
{

|EpochBlocks(C, ep)| if ep ≥ 1
Λepoch if ep = 0

(4)

Going back to the algorithm, for the first epoch (ep = 1) parties will adopt
the target value of the genesis block (T0). I.e., T1 = T0. Regarding other epochs
(ep > 1), parties will figure out how many blocks are produced in the previous
epoch, and set the next target based on the previous one. This variation is
proportional to the ratio of expected number of blocks Λepoch and the actual
number. I.e., for epoch ep + 1,

Tep+1 � Λepoch

Λ
· Tep, ep ∈ N

+, (5)

where Λ is the number of blocks in epoch ep—in other words, the size of
EpochBlocks(C, ep).

In order to prevent the “raising difficulty attack” [6], the maximal target
variation in a single recalculation step still needs to be bounded (we denote this
bound by τ). Specifically, if Λ > τ · Λepoch, Tep+1 will be set as Tep/τ ; on the
other hand, if Λ < Λepoch/τ , Tep+1 will be set as τ · Tep.

Remark 1. We observe that, compared to the Bitcoin case, the adversary A in
Timekeeper is in a much worse position to carry out the raising difficulty attack.
This is because in Bitcoin, in order to significantly raise the difficulty in the
next epoch, A only needs to mine 2016 blocks with close timestamps; in the case
of Timekeeper, however, the adversary has to mine τ · Λepoch blocks (with fake
timestamps) in order to raise the same level of difficulty. The number of blocks
that A needs to prepare is τ times larger than that in Bitcoin (assuming both
protocols share the same number of expected blocks in an epoch).

3.5 Newly Joining Parties

Recall that Timekeeper runs in a permissionless environment where parties can
join and leave at will. As such, it is essential that newly joining parties can learn
the protocol time to become alert and participate in the core mining process.
More specifically, after the joining procedure, newly joining party P’s local clock
should report a time in a sufficiently narrow interval with all other alert parties,
at which point P can claim also being alert.

Based on the fine-grained classification of types of parties in our dynamic
participation model (Sect. 2.3), newly joining parties can be classified into two
types: (1) parties that are temporarily de-registered from FRO, and (2) parties
that start with bootstrapping from the genesis block, or parties that temporarily
lose the network connection (i.e., de-registered from FΔ

Diffuse), or parties that are
temporarily de-registered from FILClock.
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For parties that are stalled for a while, since they do not miss any clock tick
or other necessary information from the network, they can easily re-join by sim-
ulating clock adjustments locally (details see [14]). For the rest of newly joining
parties, they will be classified as de-synchronized (note that parties are aware of
their synchronization status), and will run the joining procedure JoinProc, which
we now describe.

Procedure JoinProc. In order to synchronize its clock, a newly joining party
P needs to “listen” to the protocol for sufficiently long time. We describe the
joining process below, which is similar to that in [3]. The main difference is that
we adopt the heaviest-chain selection rule in order to adapt to the PoW context.
The complete specification of this protocol is presented in [14], and the default
parameters values are summarized in Table 2.

– Phase A (state reset). When all resources are available to P, after resetting
all its local variables, P invokes the main round procedure triggering the join
procedure.

– Phase B (chain convergence, with parameter toff). In the second acti-
vation upon a maintain-ledger command, the party will jump to phase
B and stay in phase B for toff rounds. During this phase, the party applies
the heaviest-chain selection rule maxvalid to filter its incoming chains. The
motivation behind Phase B is to let P build a chain that shares a sufficiently
long common prefix with all alert parties. Note that since P has not yet learnt
the protocol time, it cannot filter out chains that should be put aside in the
futureChains. Hence, the chain held by P may still contain a long suffix built
entirely by the adversary. However, it can be guaranteed that this adversarial
fork can happen for up to k rounds ahead. Thus, the beacons recorded before
the fork can be used to compute the adjustment and their local arrival times
will be reliable.

– Phase C (beacon gathering, with parameter tgather). Once a party P
has finished Phase B, it continues with Phase C, the beacon-gathering phase.
During this phase, P continues to collect and filter chains as in Phase B. In
addition, P now processes and bookkeeps the beacons received from F sync

Diffuse.
At a high level, this phases’ length parameter tgather guarantees that: (1)
enough beacons are recorded to compute a reliable time shift; (2) enough
time has elapsed so that the blockchain reaches agreement on the set of (valid)
beacons to use. At the end of Phase C, P is able to reliably judge valid arrival
times.

Table 2. Parameters of the joining procedure and their corresponding phases.

Parameter Default Phase

toff 2K B

tgather 5R/2 C

tpre 3K D
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– Phase D (shift computation, with parameter tpre). Since party P has
now built a blockchain sharing a common prefix with any alert party, and
has bookkeeped synchronization beacons for a sufficiently long time, P starts
from the earliest interval i∗ such that (1) the arrival times of all beacons
included in blocks within the beacon mining and inclusion phase of interval i∗

have been locally bookkeeped, and (2) all of these beacons arrived sufficiently
later than the start of Phase C (parameterized by tpre rounds). Based on this
information, P computes the shift value as alert parties do at the boundary
of synchronization interval i∗. P concludes Phase D when the adjusted time
is a valid timestamp in interval i∗ + 1 (in other words, r does not exceed
(i∗ + 1)R); otherwise, P updates the local arrival time of beacons with flag
temp and repeats the above process with interval i∗ + 1. We note that if
Phase D involves the computation w.r.t. multiple intervals, the local time
may temporarily be set as an invalid timestamp. Nevertheless, eventually
after P has passed (2K + 5R/2) (local) rounds, P will end up with a valid
timestamp that with overwhelming probability is close enough to those of all
alert parties.

4 Protocol Analysis

Our ultimate goal is to show that, at any point of the protocol’s execution,
the timestamps reported by all alert protocol participants of Timekeeper will
satisfy the properties defined in Definition 1. We start off with some additional
definitions and preliminary results.

4.1 Notation, Definitions and Preliminary Propositions

We note that several of the analytical tools proposed in [11,12] do not directly
apply in the environment (with FILClock) where Timekeeper runs in. Therefore,
we first extend and enhance these tools to adapt them to this new environment.

Our probability space is over all executions of length at most some polyno-
mial in κ and λ; we use Pr to denote the probability measure of this space.
Furthermore, let E be a random variable taking values on this space and with a
distribution induced by the random coins of all entities (adversary, environment,
parties) and the random oracle.

For the sake of convenience, we define a nominal time that coincides with
the internal variable time in FILClock. Recall that time aims at recording how
many times the functionality sends clock ticks to all registered honest parties.

Definition 3 (Nominal Time). Given an execution of Timekeeper, any prefix
of the execution can be mapped deterministically to an integer r, which we call
nominal time, as follows: r is the value of variable time in the clock functionality
at the final step of the execution prefix which is obtained by parsing the prefix
from the genesis block and keeping track of the honest party set registered with
the clock functionality (bootstrapped with the set of inaugural alert parties). (In
case no honest party exists in the execution, r is undefined).
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Note that we adopt r to denote the nominal time, which is different from the
protocol timestamp 〈itvl, r〉.

If at a nominal round r exactly h parties query the oracle with target T , the
probability of at least one of them will succeed is

f(T, h) = 1 − (1 − pT )h ≤ pTh, where p = 1/2κ.

During nominal round r, alert parties might be querying the random oracle for
various targets. We denote by Tmin

r and Tmax
r the minimum and maximum of

those targets. Moreover, the initial target T0 implies in our model an initial esti-
mate of the number of honest RO queries h0; specifically, h0 = 2κΛepoch/(T0M),
i.e., the number of parties it takes to produce Λepoch blocks of difficulty 1/T0 in
time M. For convenience, we denote f0 = f(T0, h0) and simply refer to it as f .
Also note that the ideal number of blocks Λepoch = Mf , so in the analysis we
will use Mf to represent Λepoch.

“Good” Properties. Next, we present some definitions which will allow us to
introduce a few (“good”) properties, serving as an intermediate step towards
proving the desired clock properties.

Let us consider the boundary of two target recalculation epochs. Recall that
Bitcoin’s target recalculation algorithm defines epoch in terms of the number of
blocks (m blocks forms an epoch). Thus, a block with block height a multiple
of m is the last block of an epoch. While it might be manipulated, its times-
tamp naturally becomes the proof that miners have adjusted their difficulty and
entered the next epoch (known as the target recalculation point [11]). In con-
trast, Timekeeper adopts a new target recalculation function (see Sect. 3.4) that
divides the epoch based on the parties’ local view. While we can still define
a target recalculation point based on one party’s local view, parties can never
agree on a point where they enter the next epoch based on nominal time.

In order to circumvent the above obstacle, we extend the notion of target
recalculation point to target recalculation zone. See Fig. 3 for an illustration.
Intuitively, a “target recalculation zone” w.r.t. epoch ep is a sequence of consec-
utive nominal rounds such that during these nominal rounds, at least one alert
party crosses its own target recalculation point w.r.t. epoch ep. For convenience,
we assume a “safe” start—i.e., the first epoch also has a target recalculation
zone, and it naturally satisfies all good properties we will later define.

Fig. 3. An illustration of the target recalculation zone Zep = {t, . . . , t + 6 }.
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Definition 4.
– Nominal time r is good if f/2γ2 ≤ phrT

min
r and phrT

max
r ≤ (1 + δ)γ2f .

– Round 〈itvl, r〉 is a target-recalculation point w.r.t. epoch ep if (r = itvl ·
R) ∧ [itvl mod (M/R) = 0].

– A sequence of consecutive nominal rounds Zep = {r} is a target recalculation
zone w.r.t. target recalculation epoch ep if during Zep some subset of syn-
chronized parties are in the logical round that is a target recalculation point
w.r.t. ep − 1.

– A target-recalculation zone Zep is good if for all hr, r ∈ Zep the target Tep

satisfies f/2γ ≤ phrTep ≤ (1 + δ)γf .
– A chain is good if all its target-recalculation zones are good.
– A chain is stale if for some nominal time u it does not contain an honest

block computed after nominal time u − � − 2Δ − 2Φ.
– The blocklength of an epoch ep on a chain C is the number of blocks in C

with timestamp 〈itvl, ·〉 such that TargetRecalcEpoch(〈itvl, r〉) = ep.

We would like to prove that, at a certain nominal round r of the protocol
execution, alert parties enjoy good properties on their local chains and reported
timestamps. Towards this goal, we extract all chains that either belong to alert
parties at r or have accumulated sufficient difficulty and thus might be adopted
in the future. We denote this chain set by Sr:

Sr �

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

C ∈ Er

∣∣∣∣∣∣∣∣∣

“C belongs to an alert party” or
“∃C′ ∈ Er that belongs to an alert party and
either (diff(C) > diff(C′)) or (diff(C) = diff(C′)
and head(C) was computed no later than head(C′))′′

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

Next, we define a series of useful predicates with respect to the potential chain
set Sr and parties’ local clocks at nominal round r. Note that Φ is a constant
that is the ideal maximal skew of all alert clocks, and Φ = Δ + Φclock where Δ
is the network delay and Φclock is the maximal clock drift that A can set (see
Sect. 2.1).

Definition 5. For a nominal round r, let:

– GoodChains(r) � “For all u ≤ r, every chain in Su is good.”
– GoodRound(r) � “All rounds u ≤ r are good.”
– NoStaleChains(r) � “For all u ≤ r, there are no stale chains in Su.”
– CommonPrefix(r) � “For all u ≤ r and C, C′ ∈ Sr, head(C∩C′) was created

after nominal round u − � − 2Δ − 2Φ.”
– BlockLength(r) � “For all u < r and C ∈ Su, the blocklength Λ of any

epoch ep in C satisfies 1
2(1+δ)γ2 · mf ≤ Λ ≤ 2(1 + δ)γ2 · mf

– GoodBeacons(r) � “For all u < r and the beacon set Sitvl bookkeeped
during any interval itvl, more than half of beacons within Sitvl are generated
by honest parties”.
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– GoodShift(r) � “For all u < r, and the alert party Pi that adjusts its local
clock at round u, Pi computes shifti that −2Φ ≤ shifti ≤ Φ”.

– GoodSkew(r) � “For all alert parties in nominal time r, their local time in
this round differs by at most Φ if they are in the same interval or differs by
at most 2Φ if they are in different intervals.” Formally,

GoodSkew(r) :⇔
(

∀P1,P2 ∈ Palert[r] :

∣∣∣∣∣ |r1 − r2| ≤ Φ if itvl1 = itvl2

|r1 − r2| ≤ 2Φ if itvl1 �= itvl2

)

where 〈itvl1, r1〉 and 〈itvl2, r2〉 are the timestamps that P1 and P2 reports
during r9.

Random Variables and (Δ,Φ)-Isolated Success. Next, for the purpose of esti-
mating the difficulty acquired by honest parties during a sequence of rounds, we
define the following random variables w.r.t. nominal round r.

– Dr: the sum of the difficulties of all blocks computed by alert parties at
nominal round r.

– Yr: the maximum difficulty among all blocks computed by alert parties at
nominal round r.

– Qr: equal to Yr when Du = 0 for all r < u < r + Δ + Φ and 0 otherwise.

We call a nominal round r such that Dr > 0 successful and one wherein Qr >
0 isolated successful. An isolated successful round guarantees the irreversible
progress of the honest parites.

We highlight that, under the imperfect local clock model FILClock, the notion
of an “isolated successful round” needs to be re-considered as parties’ local clocks
may span some consecutive rounds. Assuming a Φ-drift is maintained during the
sequence of rounds we are interested in, an irreversible contribution to the chain
happens when the (nominal) distance between such success and the following
success is at least Φ + Δ rounds. This is because the block producer may have
a local clock that is already Φ rounds behind other alert parties, and it takes Δ
rounds to diffuse the block. This cancels out other parties’ successes for up to
Φ + Δ rounds. As a result, we call such event a (Δ,Φ)-isolated successful, which
is the for the new formulation of Qr (cf. [12]). Note that this (Δ,Φ)-isolated
successful round is meaningful only when the protocol is able to maintain a
Φ-bounded skew during the sequence of rounds we are considering.

Recall that the total number of hash queries alert parties (resp., the adver-
sary) can make during nominal round r is denoted by hr (resp., tr). For a
sequence of rounds S we write n(S) =

∑
r∈S nr and similarly, t(S),D(S), Q(S).

Regarding the adversary A, while A may query the random oracle for an
arbitrarily low target and obtain blocks with arbitrarily high difficulty, we wish
to upper-bound the difficulty it can accrue during a set of J queries. Consider
a set of consecutive adversarial queries J and associate it with the target of

9 If P passes multiple local rounds in nominal round r, we require that all of these
timestamps should satisfy the predicate.
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the first query (this target is denoted by T (J)). We define A(J) and B(J) to
be equal to the sum of the difficulties of all blocks computed by the adversary
during queries in J for target at least T (J)/τ and T (J), respectively.

Let Er−1 fix the execution just before (nominal) round r. In particular, a value
Er−1 of Er−1 determines the adversarial strategy and so determines the targets
against which every party will query the oracle at round r and the number of
parties hr and tr, but it does not determine Dr or Qr. For an adversarial query
j we will write Ej−1 for the execution just before this query.

Blockchain Properties. We use blockchain properties as formulated in [10,11]
as an intermediate step towards proving the clock properties and achieve our
blockchain synchronizer. Next, we briefly describe these properties: common pre-
fix, chain growth, chain quality and existential chain quality.

Notably, we consider common prefix in terms of number of rounds. I.e., honest
parties will agree on a settled part of the blockchain with timestamps at most
a given number of rounds before their local time.10 Let C�k denote the chain
resulting from removing all rightmost blocks with timestamp larger than r − k,
where r is the current (local) time. We can now define common prefix as follows.

– Common Prefix (with parameter k ∈ N). For any two alert parties P1,P2

holding chains C1, C2 at rounds r1, r2, with r1 ≤ r2, it holds that C�k
1 � C2.

Regarding chain growth, the lemma below provides a lower bound on the
irreversible progress of achieved by the honest parties regardless of any adver-
sarial behavior. This lemma has appeared in previous analyses under varying
settings, evolving from the synchronous network and static environment [10],
to a dynamic environment [11], and further to a bounded-delay network set-
ting [12]. The next lemma extends the chain growth property to a Δ-bounded
network delay, Φ-bounded clock drift and dynamic environment.

Lemma 1 (Chain Growth). Suppose that at nominal round u of an execution
E an honest party diffuses a chain of difficulty d. Then, by (nominal) round v,
every honest party has received a chain of difficulty at least d + Q(S), where
S = [u + Δ + Φ, v − Δ − Φ].

4.2 Protocol Parameters and Their Conditions

We summarize all Timekeeper parameters in Table 3 in Appendix A. It is worth
noting that ε is a small constant regarding the quality of concentration of random
variables (it will appear in the typical executions in Sect. 4.3). We introduce a
parameter λ—which is related to the properties of the protocol—to simplify

10 While most of the previous work considers common prefix in terms of number of
blocks, we note that these two definitions are equivalent. This is due to the fact
that if the protocol guarantees security, then the block generation rate is somewhat
steady (cf. [11]) and thus the number of blocks generated during a period of time
can be inferred from its length and the highest mining speed.
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several expressions. Protocol parameter λ and the RO output length κ are the
security parameters of Timekeeper.

In order to get desired convergence and perform meaningful analysis, we
consider a sufficiently long consecutive sequence of at least

� =
4(1 + 3ε)

ε2f [1 − (1 + δ)γ2f ]Δ+Φ+1
· max{Δ + Φ, τ} · γ3 · λ (6)

consecutive rounds.
We are now ready to discuss the conditions that protocol parameters should

satisfy. We first quantify the length of a clock synchronization interval R, the
length of a target recalculation interval M and the length of the convergence
phase K. Specifically, we let one target recalculation epoch consists of 4 clock
synchronization intervals, i.e., M = 4R; we set K = �+2Δ+4Φ (this will coincide
with our common prefix parameter and thus provide some desired properties).

Next, we will require that � (defined in Eq. (6)) is appropriately small com-
pared to the length of an epoch and of an interval (note that M = 4R).

� + 2Δ + 7Φ ≤ εM/(4γ) = εR/γ. (C1)

Further, we require that the advantage of the honest parties is large enough to
absorb the errors introduced by ε (from the concentration of random variables)
and [1 − (1 + δ)γ2f ]Δ+Φ (from the network delay and clock skews).

[1 − (1 + δ)γ2f ]Δ+Φ ≥ 1 − ε and ε ≤ δ/12 ≤ 1/12. (C2)

4.3 Typical Executions

We define the notion of typical executions following [11,12]. The idea here is that
given a certain execution E, we compare the actual progress and the expected
progress that parties will make under the success probabilities. If the difference
and variance are reasonably small, and no bad events (see Definition 6) about
the underlying hash function happen, we declare E typical.

Definition 6. An insertion occurs when, given a chain C with two consecutive
blocks B and B′, a block B∗ created after B′ is such that B,B∗,B′ form three
consecutive blocks of a valid chain. A copy occurs if the same block exists in
two different positions. A prediction occurs when a block extends one with later
creation time.

Note that in addition (compared to [11,12]), in Definition 7(a) we require
that the difficulty of all blocks the alert parties can acquire during consecutive
rounds S (i.e., D(S)) is well lower-bounded. This is because D(S) also captures
the beacon production process, where there is no loss incurred by the bounded-
delay network as well as by skewed local clocks. Hence, a reasonably better
lower-bound on D(S) helps us get better results when arguing for the good
properties of generated beacons by alert parties (Lemma 7).
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Definition 7 (Typical Execution). An execution E is typical if the following
hold.

(a) For any set S of at least � consecutive good rounds,

(1 − ε)[1 − (1 + δ)γ2f ]Δph(S) < Q(S) ≤ D(S) < (1 + ε)ph(S)
and D(S) > (1 − ε)ph(S).

(b) For any set J of consecutive adversarial queries and α(J) = 2(1
ε + 1

3 )λ/T (J),

A(J) < p|J | + max{εp|J |, τα(J)} and B(J) < p|J | + max{εp|J |, α(J)}.

(c) No insertions, no copies, and no predictions occurred in E.

In the next lemma, we establish the quantitative relation between honest
and adversarial hashing power during consecutive rounds with length at least
�, as well as the relationship between the total difficulty acquired by all parties
(D(S) + A(J)) and their hashing power.

Lemma 2. Consider a typical execution in a (γ, s)-respecting environment. Let
S = {r : u ≤ r ≤ v} be a set of at least � consecutive good rounds and J the set
of adversarial queries in U = {r : u − Δ − Φ ≤ r ≤ v + Δ + Φ}. We have

(a) (1 + ε)p|J | ≤ Q(S) ≤ D(U) < (1 + 5ε)Q(S).
(b) T (J)A(J) < εM/4(1 + δ) or A(J) < (1 + ε)p|J |; τT (J)B(J) < εM/4(1 + δ)

or B(J) < (1 + ε)p|J |.
(c) If w is a good round such that |w − r| ≤ s for any r ∈ S, then Q(S) >

(1 − ε)[1 − (1 + δ)γ2f ]Δ|S|pnw/γ. If in addition T (J) ≥ Tmin
w , then A(J) <

(1 − δ + 3ε)Q(S).
(d) If w is a good round such that |w − r| ≤ s for any r ∈ S and T (J) ≥

Tmin
w , then D(S) + A(J ′) < (1 + ε)p(h(S) + |J ′|) where J ′ denotes the set of

adversarial queries in S.

We conclude that almost all executions (that are polynomially bounded by
κ and λ) are typical.

Theorem 1. Assuming the ITM system (Z, C) runs for L steps, the probability
of the event “E is not typical” is bounded by O(L2)(e−λ + 2−κ).

4.4 Proof Roadmap

In the remainder of this section we present an overview of the analysis. Note
that the predicates in Definition 5 are proved in an inductive way over the space
of typical executions in a (γ, s)-respecting environment.

First, we focus on the steady block generation rate. For a warm-up, we argue
that an adversarial fork cannot happen too long ago and then extract the com-
mon prefix parameter. Equipped with this knowledge, we show that if good
skews and certain time adjustment calculations are maintained during a target
recalculation epoch, the block production rate will be properly controlled in the
next epoch.
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Lemma 3. GoodRound(r − 1) =⇒ NoStaleChains(r).

Lemma 4. GoodRound(r −1)∧GoodSkew(r −1) =⇒ CommonPrefix(r).

Lemma 5. GoodRound(r − 1) ∧GoodChains(r − 1) ∧GoodSkew(r − 1) ∧
GoodShift(r − 1) =⇒ BlockLength(r).

Lemma 6. GoodRound(r − 1) =⇒ GoodChains(r).

Corollary 1. GoodRound(r − 1) =⇒ GoodRound(r).

Next, we move to the properties w.r.t. clocks. We argue that if at the onset,
the PoW difficult is appropriately set and the steady block generating rate lasts
during the whole clock synchronization interval, the beacon set used by parties
to update their clock will be identical and the majority of these beacons will
be produced and emitted by alert parties. For synchronized parties, this good
beacon set implies that the differences between alert parties’ local clocks are still
narrow after they enter the next interval and that the shift value they computed
is well-bounded. Furthermore, regarding newly joining parties, we also provide
an analysis of the joining procedure showing that joining parties starting with
no a-priori knowledge of the global time, they can listen in and bootstrap their
logical clock and become alert parties. The above two aspects imply that a
bounded skew is maintained over the whole execution.

Lemma 7. GoodRound(r − 1) =⇒ GoodBeacons(r).

Lemma 8. GoodSkew(r − 1) =⇒ GoodShift(r)

Lemma 9. GoodSkew(r − 1) ∧ GoodBeacons(r − 1) =⇒ GoodSkew(r).

To sum up, a “safe” start and a (γ, s)-respecting environment guarantee that
good properties can be achieved during the whole execution.

Theorem 2. For a typical execution in a (γ,M + 2(� + 2Δ + 7Φ))-respecting
environment, if Condition C1 and Condition C2 are satisfied, then all predicates
in Definition 5 hold.

Finally, we work out the related parameters (in Theorem 3) and conclude
that Timekeeper solves the clock synchronization problem.

Theorem 3. Consider an execution of Timekeeper in a (γ,M + 2(� + 2Δ +
7Φ))-respecting environment. If Conditions (C1) and (C2) are satisfied, then the
protocol achieves clock synchronization (Definition 1) with parameter values

Skew = 2Φ, shiftLB = 3Φ/R, shiftUB = 2Φ/R,

except with probability negligibly small in κ and λ.
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A Glossary

Table 3. Main parameters of Timekeeper.

Parameter Description

hr The number of honest RO queries in (nominal) round r.

tr The number of RO queries by A in (nominal) round r.

δ Advantage of honest parties (tr < (1 − δ)hr for all r).

f The probability at least one honest RO query out of n0 computes a
block for target T0.

R The length of a clock synchronization interval in number of rounds.

M The length of a target recalculation epoch in number of rounds.

K The length of convergence phase in a clock synchronization interval
in number of rounds.

Δ Network delay in rounds.

Φclock The upper bound of the drift that A can set.

Φ The upper bound of the difference between honest parties’ local
clocks. We require that Φ = Φclock + Δ.

κ Security parameter; length of the hash function output.

(γ, s) Respecting environment parameter.

ε Quality of concentration of random variables.

λ Related to the properties of the protocol
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