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Abstract—Vast volumes of scientific data cannot be stored
and transferred efficiently because of limited I/O bandwidth,
network bandwidth, and storage capacity. Error-bounded lossy
compression can be an effective method for resolving these big
data issues, since not only can it significantly reduce the data
size but it can also control the data distortion based on user-
defined error bounds. In practice, many scientific applications
have specific data fidelity requirements across different value
ranges/intervals of the dataset for the lossy compression, in
order to guarantee that the reconstructed data are valid for
post hoc analysis. Existing state-of-the-art error-bounded lossy
compressors, however, do not support multi-range based error-
bounds in the lossy compression, leaving a critical gap that
hampers their effective use in practice. In this work, we address
this issue by proposing a multi-range based error-bounded lossy
compressor based on the state-of-the-art SZ lossy compressor.
Our approach allows users to set different error bounds in
different value ranges for a compressoin task. We evaluate our
approach on several real-world datasets and show that it can
obtain a higher visual quality or data fidelity on reconstructed
data with the same or even higher compression ratios achieved
by SZ.

[. INTRODUCTION

Error-bounded lossy compressors [1-7] are a promising
solution to reducing scientific data volumes while also address-
ing user data fidelity requirements. For example, SZ [2, 8],
ZFP [1], and MGARD [9] allow users to set an absolute
error bound (i.e., a threshold) when performing lossy com-
pression such that the difference between the original data
and reconstructed data is bounded by that threshold. Climate
scientists have verified that the reconstructed data generated
by error-bounded lossy compressors are acceptable for post
hoc analysis [10-12].

Existing error-bounded lossy compressors have a significant
limitation: none are able to set specific error bounds in
different value ranges. According to environmental scientists,
for example, different values in a dataset may have different
significance to the post hoc analysis, such that they may wish
to set different error bounds for different value ranges in the
dataset. Specifically, in order to trace a hurricane’s moving
trajectory over the sea, only the data points whose water
surface values are greater than a threshold (e.g., 1 meter) are
interesting for particular environmental science analyses. Cos-
mological simulations [13] present another typical example,

in which scientists often have a specific quantity of interest
(e.g., dark matter halo cell information) for their post hoc
analysis. According to the dark matter halo analysis algorithm,
the construction of dark matter halos is primarily determined
by the data value in a specific value range: [81, 83]. In order
to preserve the features (e.g., count and location) of the dark
matter halos, the values in this range should have higher
precision than the values in other ranges,

We present here a novel compressor based on the SZ error-
bounded lossy compression framework,! which allows users
to set different error bounds in various value ranges, such that
the reconstructed data can meet users’ required quality better
than the traditional global error-bounded lossy compression.

We summarize our contributions as follows.

o We propose a multi-range error-bounded lossy compres-
sion method based on the classic SZ error-bounded lossy
compression model, which, to the best of our knowledge,
is the first such attempt.

« We optimize the compression quality and performance by
investigating three different situations where the predic-
tion values are located compared with their raw values
during the quantization stage.

o Our experiments demonstrate that our method can obtain
a better visual quality or data fidelity in the lossy-
reconstructed data for different applications, with the
same compression ratios compared with the global error-
bounded compressor. We also show that our method
exhibits good scalability in compression time compared
with the parallel file system’s I/O cost.

The rest of the paper is organized as follows. In Section II
we discuss related work. In Section III we propose several
algorithms to preserve the user-required prerequisites, and
optimize compression quality and performance for different
cases. In Section IV we present our evaluation results. In
Section V we summarize our findings and conclude with a
vision of future work.

'"We adopt the SZ compression framework as it provides leading error-
bounded lossy compression quality as verified by several studies of different
scientific datasets [2,8, 14, 15].
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Fig. 1: Stages of multi-range error-bounded lossy compression: (1) The framework follows the procedure of SZ; (2) Multiple error bounds are handled
in the quantization stage. Our method uses the same quantization array to accommodate different error bounds and therefore does not introduce overheads in
the quantization stage but only changes the distribution of quantization values.

II. RELATED WORK

Data compressors can be split into two classes: lossless
compression [16—19] and lossy compression [1,2,8,20,21].
The former introduces no data loss during compression,
but it suffers from low compression ratios (generally
~2:1 [22,23]). The latter can achieve very high compression
ratios [1,2, 8, 15], but potential data loss may distort analysis
results. To address this issue, researchers have studied error-
bounded lossy compressors for scientific data.

To satisfy user demands on a specific quality of interest,
researchers have recently studied how to respect specific met-
rics. Existing compressors such as SZ [2, 8, 15], ZFP [1,24],
and MGARD [9] support absolute error bounds. Other error-
bounding approaches have also been exploited to adapt to
diverse user requirements. For instance, SZ supports pointwise
relative error bound [25] while Digit Rounding [26], Bit
Grooming [21], zfp [1], and FPZIP [20] support a kind of
precision mode that allows users to specify the number of bits
to be truncated in the end of the mantissa, in order to control
the data distortion at different levels.

However, none of the existing error-bounded lossy com-
pressors allow users to treat different values differently and
hence impose a significant impediment to the practical usage
of such compressors. We observed that users often have
different precision demands for different value ranges, which
are determined by their diverse post hoc analysis purposes and
quantities/features of interest.

III. MULTI-RANGE ERROR-BOUNDED LOSSY
COMPRESSION FRAMEWORK

We introduce a multi-range error-bounded lossy compres-
sion framework as shown in Fig. 1. In the following text, we
first introduce the compression model and then describe our
approach to allow different error bounds to coexist in the same
compression run.
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A. Prediction-based Lossy Compression Stages

As is shown in Fig. 1, the compression framework is com-
posed of four key stages: prediction, quantization, Huffman
encoding, and lossless compression. Given a set of raw data,
the predictor scans the whole dataset (either pointwise [2, 8] or
blockwise [15]) to predict the data values. In a 1D dataset, the
prediction method is simply a first-order Lorenzo predictor [8].
In a 2D or 3D dataset, the predictor adopts a hybrid data
prediction method combining the first-order Lorenzo predictor
and a linear-regression-based predictor [15].

In the second stage, the traditional method uses a linear
quantization algorithm to convert the distance between the
predicted value and original value to an integer value (called
the quantization code) for each data point. In spite of the
simplicity it brings to correct predicted values, the linear
quantization does not allow for different error bounds because
different error bounds will change the distance represented
by each quantization code and cause confusion when decom-
pressing the data. Therefore, we design a new quantization
algorithm that compiles multiple value ranges with various
error bounds into the same quantization array.

A customized Huffman encoder is then applied to compress
the integer quantization codes, followed by a lossless dictio-
nary coding (using Zstd [16] by default). We summarize all the
notations in Table I in order to help understand the following
text.

B. Preserving Multi-Range Error Bounds

The multi-range error-bounded model is defined by an array
of triplets, each containing the low, high, and error bound.
Fig. 2 illustrates our fundamental idea using a simplified
diagram with relatively large error bounds. In this example,
the user specifies different error bounds for four value ranges:
[—100,0), [0,14), [14,38), and [38,238); the error bounds
are 10, 1, 3, and 50, respectively. The idea is to use different
quantization bins in different ranges. In Fig. 2, each square
denotes a quantization bin in its corresponding value range.
Our algorithm will identify in which range the original data
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and predicted value fall (they may be in two different ranges).
The quantization method will then differ in different situations.
In the decompression stage, the only available information are
the predicted value, the quantization code, and the definitions
of ranges. In contrast to the linear quantization method, our
solution can reconstruct the data of different error bounds
using the same quantization array.

Data Value

238
1ap —
o]

Range 0

Range 1 Range 2 Range 3

Fig. 2: Multi-range error-bounded model. This example shows a few error
bounds in each range (illustrated by the colored boxes) for simplicity of
description; in practice, each range may contain hundreds or thousands of
error bounds.

TABLE I: Notations For Multi-Error-Bounded Compression

Notation Description

d; original data value at position ¢

Di predicted value of d;

d; reconstructed data value after decompression
r(x) the value range of data point x (d;)

e(x) specified error bound based on a value range (z=r(d;))
I(x) length of some value range (z = r(d;))
low(r(x)) lower boundary of value range r(z)
high(r(x)) | higher boundary of value range r(x)

q quantization index (a.k.a., quantization code)
qs shifted quantization number

We briefly describe how our algorithm handles different
situations, using the notation of TABLE I. For each data point,
there are three situations to deal with.

Situation 1: If the original value d; and its predicted value
p; fall in the same range (i.e., 7(d;) = r(p;)), the quantization
problem falls back to the traditional linear-scale quantiza-
tion [8]. Specifically, we can use the following formulas to
compute the logic quantization code and decompressed data.

()]

q = round( 72;1{;(5;)) )

di = pi + 2e(r(ds)) - q 2

Situations 2 and 3: These correspond to the situation where
the original d; and its predicted value p; fall in different ranges
(i.e., 7(d;) # r(¢;)). In the following text, we describe only
the situation where 7(d;) > r(g;) (i.e., lines 7~11 in the
algorithm); the other situation is similar.
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The fundamental idea to handle this situation is to adjust
the quantization policy to use various bin lengths (or intervals)
in different value ranges. The formula for reconstructing the
decompressed value is given below (we assume the raw data
is greater than the predicted value, without loss of generality):

di —low(r(di))—e(r(d;))
2e(r(d)) ) (3)
(4)

d; = low(r(d;)) + e(r(d;)) + 2e(r(d;)) - g

The core idea of decompression is to execute the similar
operations in the compression stage reversely to get the decom-
pressed data from a predicted data value and the corresponding
quantization bins. We first calculate the number of quantization
bins for each value range. We then decompress each data point
based on the multivalue-range quantization.

Note that in the real implementation, we need to also
consider several edge cases. For instance, when the original
data are near the high or low bound of a range, the quantization
value in this final range might be equal to quantRangeli],
causing the decompressed value to be in the next range. In
this case, we shift the quantization by 1 in the compression
stage to ensure the decompressed data and original data are in
the same range.

qr = round(

IV. EVALUATION

In this section, we evaluate our multi-range error-bounded
compression quality using two real-world simulations, and
compare the compression quality and performance with SZ.
SZ is a global constant error-bounded lossy compressor and
has been verified as one of the best error-bounded lossy
compressors in most cases.

A. Evaluation of Multi-Range Error-Bounded Compression
based on Visual Quality

We evaluate our approach on QMCPACK [27] and Mi-
randa [28] datasets, as presented in Table II.

TABLE II: Basic dataset information

Science

electronic  structure
of atoms, molecules,
and solids
hydrodynamics code
for large turbulence
simulations

Dimensions
33120%69*69

Dataset # Fields
QMCPACK 1

Miranda 256%384*384

Figures 3 and 4 show the substantial advantage of our
multi-range error-bounded compression over the traditional
constant error-bounded compression, using two datasets (QM-
CPACK and Miranda). Specifically, the multi-range error-
bounded compression preserves higher visual quality for the
value ranges of interest, while achieving the same or even
higher overall compression ratios by reducing precision on
uninteresting values. For instance, in the QMCPACK dataset,
more than 90% of the data points gather around O, but they
are smooth and easy to predict based on neighbor data points;
however, the data points with values in the range of [—8, —5]
are the sparse and interesting values that are harder to predict
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Fig . 3: QMCPACK data: (A) The basic method sets one error bound for the
global range. We can see obvious artifacts in the blue area. (B) Applying our
multi-range algorithm, we focus on the interesting range [-8,-5), and give it
a tighter error bound of 0.15 while leaving other ranges with a higher error
bound of 1. We can see fewer artifacts, while the compression ratio is kept
the same as the global range method. Compared to the original data shown
in (C), we can see the data in the interesting range has better visualization
result.

accurately with a large error bound. They are more important
and the distortion of their values are easier to observe in
the visualization graphs. Our method grants a tighter error
bound and thus a higher precision in this specific range while
allowing more distortion in uninteresting ranges. This is the
key reason that our solution can obtain higher visual quality
and lower root mean squared error (RMSE) in the interesting
range. A detailed comparison between the two algorithms is
shown in Table III and Table IV.

TABLE III: QMCPACK RMSE & PSNR Comparison

Method Range eb RMSE | PSNR

[-17, -8] 0.232 43.067
Global Range | [-8, -5] 0.4 0.233 43.041
CR=210 [-5, 17] 0.051 56.159

[-17,-8] | 1.0 0.538 35.747
Multi-Ranges | [-8, -5] 0.15 | 0.086 51.623
CR=210 [-5, 17] 1.0 0.089 51.354

B. Evaluation of Compression Time and Scalability for Multi-
Range Error-Bounded Compression

To evaluate the compression time and scalability, we run a
series of tests in parallel on thousands of CPU cores on the
LCRC Bebop cluster at Argonne National Laboratory [29].
The Bebop cluster has two partitions: KNL and BDW, corre-
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TABLE IV: Miranda density RMSE & PSNR Comparison

Method Range eb RMSE | PSNR
[0.5, 1.4] 0.012 44.804
Global Range | [1.4, 2] 0.07 | 0.036 34.801
CR=206 [2, 3.5] 0.015 42.379
[0.5,1.4] | 0.1 0.013 43.5813
Multi-Ranges [14, 2] 0.05 | 0.027 37.193
CR=207 [2, 3.5] 0.1 0.018 40.682

0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350
(A)CR=206;Global Range and single error (C) Original data
bound: [0.5, 3.5) eb=0.07; 1mnno|
RMSE[1.4,2]=0.036, PSNR=34.801 0000 : Higher Precision

in this range

| interesting
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I
|
|
|
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eb=0.1; [1.4 2) eb=0.05; [2, 2.8)eb=0.1;
RMSE[1.4,2]=0.027, PSNR=37.193
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(D) Data Distribution

Fig. 4: Miranda density slice No. 120. Comparing (B) with (A), we can see
that not only can our multi-range method preserve a high precision at a value
range of interest with high compression ratio, but it also prevents the blue
regions from getting distorted.

sponding to two different sets of hardwares/nodes, as shown
in TABLE V.

TABLE V: Machine Specifications

Partition | # Nodes | CPU Cores/node | Memory

bdwall 664 Intel 36 128GB DDR4
Xeon ES5-
2695v4

knlall 348 Intel Xeon | 64 96GB DDR4
Phi 7230

We used up to 224 nodes on the KNL partition and 70
nodes on BNL partition for our scalability evaluation. The
two partitions have quite different CPUs and thus the run
time on a single core are incomparable; however, their I/O
throughput are similar as they share the same I/O nodes. The
main difference between the two partitions is their CPU speed
per core (KNL partition is significantly slower than BDW
partition). The I/O time can be significantly influenced by
other users’ tasks and therefore we record the average run
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time over 5 runs on both partitions.

We used the QMCPACK [27] dataset for these perfor-
mance/scalability tests. We choose this dataset because it is
more than 600MB per file and it is also stored in binary
form so that the HDF5 plugins and other complicated data
structure handling parts would not influence the performance
evaluation. In other words, we can accurately record the time
for each step of our algorithm in the MPI program. To be
consistent with the previous quality tests, we set the multi-
range error-bound requirement as follows: the data points in
the range of [—8, —5) has much higher precision than the data
points in other value ranges. According to the visualization
results presented in the previous section, we observe that no
data distortion can be viewed by the naked eye as long as a
relatively low error bound of 0.15 is used. Considering the
potential impact of the lossy compression to user’s analysis,
we set a very low error bound (1E-5) for the range of interest:
[—8,—5). That is, the compressor applies the error bound of
1E-5 for the value range [—8, —5), while the error bound needs
be less than 0.15 in the other ranges. Preserving this condition,
we perform the experiments on Bebop with different numbers
of cores (each core has 600MB of raw data to compress). The
results of BDW and KNL partitions are shown in Figure 5.

Based on these results, we observe that the (de)compression
time does not increase with the number of cores, which shows
that both our algorithm and SZ have very good scalability. The
key reason that our algorithm and SZ scale well is that the
lossy compression adopted in practice follows an embarrassing
parallel mode: that is, there is no communication among the
execution ranks/cores. The key reason our algorithm exhibits
lower compression/decompression times than SZ is that our
designed multi-range error-bounded compression allows us to
set higher error bounds for non-interesting ranges, leading to
higher compression ratios.

Based on the bar graphs in Figure 5, we can clearly see
that writing times take increasing portions with the number
of cores. Specifically, ‘Write Zip’ and *Write DP’ refer to
‘writing compressed data to PFS’ and ‘writing decompressed
data to PFS’, respectively. Obviously, the I/O cost has much
worse scalability than our lossy compression/decompression,
especially because of the limited number of I/0 nodes used by
the system. This will be true in any system as there is always
a limited number of I/O nodes (thus an upper bound in I/O
throughput), which may easily cause a serious I/O bottleneck
when a large number of cores are used concurrently.

V. CONCLUSION AND FUTURE WORK

We propose a novel error-bounded lossy compression
method that allows users to set different error bounds in
various value ranges, such that the overall lossy compression
quality can meet data fidelity requirements more accurately.
To the best of our knowledge, this is the first attempt to
develop such a compressor. Our evaluation using real-world
simulations revealed the following key findings.

¢ Our multi-range solution can significantly enhance visual

quality on the interesting data ranges with similar or
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even higher compression ratios when compared with
traditional methods.

o Our quantitative results showed that our solution achieves
better RMSE and PSNR in the user-defined ranges, and
the improvement is global rather than local.

o Experiments up to 3500+ cores showed that the multi-
range error-bounded lossy compressor exhibits good scal-
ability in two different partitions, especially when com-
pared with the parallel file system’s I/O cost, which
increases considerally with scale.

In the future, we will investigate the partition strategy and
multi-region strategy to see if more customizable prerequisites
can be satisfied. We will also investigate if automatic methods
can be used to determine the ranges and error bounds for users
based on the facts of data.
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