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Abstract—Vast volumes of scientific data cannot be stored
and transferred efficiently because of limited I/O bandwidth,
network bandwidth, and storage capacity. Error-bounded lossy
compression can be an effective method for resolving these big
data issues, since not only can it significantly reduce the data
size but it can also control the data distortion based on user-
defined error bounds. In practice, many scientific applications
have specific data fidelity requirements across different value
ranges/intervals of the dataset for the lossy compression, in
order to guarantee that the reconstructed data are valid for
post hoc analysis. Existing state-of-the-art error-bounded lossy
compressors, however, do not support multi-range based error-
bounds in the lossy compression, leaving a critical gap that
hampers their effective use in practice. In this work, we address
this issue by proposing a multi-range based error-bounded lossy
compressor based on the state-of-the-art SZ lossy compressor.
Our approach allows users to set different error bounds in
different value ranges for a compressoin task. We evaluate our
approach on several real-world datasets and show that it can
obtain a higher visual quality or data fidelity on reconstructed
data with the same or even higher compression ratios achieved
by SZ.

I. INTRODUCTION

Error-bounded lossy compressors [1–7] are a promising

solution to reducing scientific data volumes while also address-

ing user data fidelity requirements. For example, SZ [2, 8],

ZFP [1], and MGARD [9] allow users to set an absolute

error bound (i.e., a threshold) when performing lossy com-

pression such that the difference between the original data

and reconstructed data is bounded by that threshold. Climate

scientists have verified that the reconstructed data generated

by error-bounded lossy compressors are acceptable for post

hoc analysis [10–12].

Existing error-bounded lossy compressors have a significant

limitation: none are able to set specific error bounds in

different value ranges. According to environmental scientists,

for example, different values in a dataset may have different

significance to the post hoc analysis, such that they may wish

to set different error bounds for different value ranges in the

dataset. Specifically, in order to trace a hurricane’s moving

trajectory over the sea, only the data points whose water

surface values are greater than a threshold (e.g., 1 meter) are

interesting for particular environmental science analyses. Cos-

mological simulations [13] present another typical example,

in which scientists often have a specific quantity of interest

(e.g., dark matter halo cell information) for their post hoc

analysis. According to the dark matter halo analysis algorithm,

the construction of dark matter halos is primarily determined

by the data value in a specific value range: [81, 83]. In order

to preserve the features (e.g., count and location) of the dark

matter halos, the values in this range should have higher

precision than the values in other ranges,

We present here a novel compressor based on the SZ error-

bounded lossy compression framework,1 which allows users

to set different error bounds in various value ranges, such that

the reconstructed data can meet users’ required quality better

than the traditional global error-bounded lossy compression.

We summarize our contributions as follows.

• We propose a multi-range error-bounded lossy compres-

sion method based on the classic SZ error-bounded lossy

compression model, which, to the best of our knowledge,

is the first such attempt.

• We optimize the compression quality and performance by

investigating three different situations where the predic-

tion values are located compared with their raw values

during the quantization stage.

• Our experiments demonstrate that our method can obtain

a better visual quality or data fidelity in the lossy-

reconstructed data for different applications, with the

same compression ratios compared with the global error-

bounded compressor. We also show that our method

exhibits good scalability in compression time compared

with the parallel file system’s I/O cost.

The rest of the paper is organized as follows. In Section II

we discuss related work. In Section III we propose several

algorithms to preserve the user-required prerequisites, and

optimize compression quality and performance for different

cases. In Section IV we present our evaluation results. In

Section V we summarize our findings and conclude with a

vision of future work.

1We adopt the SZ compression framework as it provides leading error-
bounded lossy compression quality as verified by several studies of different
scientific datasets [2, 8, 14, 15].
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Fig. 1: Stages of multi-range error-bounded lossy compression: (1) The framework follows the procedure of SZ; (2) Multiple error bounds are handled
in the quantization stage. Our method uses the same quantization array to accommodate different error bounds and therefore does not introduce overheads in
the quantization stage but only changes the distribution of quantization values.

II. RELATED WORK

Data compressors can be split into two classes: lossless

compression [16–19] and lossy compression [1, 2, 8, 20, 21].

The former introduces no data loss during compression,

but it suffers from low compression ratios (generally

∼2:1 [22, 23]). The latter can achieve very high compression

ratios [1, 2, 8, 15], but potential data loss may distort analysis

results. To address this issue, researchers have studied error-

bounded lossy compressors for scientific data.

To satisfy user demands on a specific quality of interest,

researchers have recently studied how to respect specific met-

rics. Existing compressors such as SZ [2, 8, 15], ZFP [1, 24],

and MGARD [9] support absolute error bounds. Other error-

bounding approaches have also been exploited to adapt to

diverse user requirements. For instance, SZ supports pointwise

relative error bound [25] while Digit Rounding [26], Bit

Grooming [21], zfp [1], and FPZIP [20] support a kind of

precision mode that allows users to specify the number of bits

to be truncated in the end of the mantissa, in order to control

the data distortion at different levels.

However, none of the existing error-bounded lossy com-

pressors allow users to treat different values differently and

hence impose a significant impediment to the practical usage

of such compressors. We observed that users often have

different precision demands for different value ranges, which

are determined by their diverse post hoc analysis purposes and

quantities/features of interest.

III. MULTI-RANGE ERROR-BOUNDED LOSSY

COMPRESSION FRAMEWORK

We introduce a multi-range error-bounded lossy compres-

sion framework as shown in Fig. 1. In the following text, we

first introduce the compression model and then describe our

approach to allow different error bounds to coexist in the same

compression run.

A. Prediction-based Lossy Compression Stages

As is shown in Fig. 1, the compression framework is com-

posed of four key stages: prediction, quantization, Huffman

encoding, and lossless compression. Given a set of raw data,

the predictor scans the whole dataset (either pointwise [2, 8] or

blockwise [15]) to predict the data values. In a 1D dataset, the

prediction method is simply a first-order Lorenzo predictor [8].

In a 2D or 3D dataset, the predictor adopts a hybrid data

prediction method combining the first-order Lorenzo predictor

and a linear-regression-based predictor [15].

In the second stage, the traditional method uses a linear

quantization algorithm to convert the distance between the

predicted value and original value to an integer value (called

the quantization code) for each data point. In spite of the

simplicity it brings to correct predicted values, the linear

quantization does not allow for different error bounds because

different error bounds will change the distance represented

by each quantization code and cause confusion when decom-

pressing the data. Therefore, we design a new quantization

algorithm that compiles multiple value ranges with various

error bounds into the same quantization array.

A customized Huffman encoder is then applied to compress

the integer quantization codes, followed by a lossless dictio-

nary coding (using Zstd [16] by default). We summarize all the

notations in Table I in order to help understand the following

text.

B. Preserving Multi-Range Error Bounds

The multi-range error-bounded model is defined by an array

of triplets, each containing the low, high, and error bound.

Fig. 2 illustrates our fundamental idea using a simplified

diagram with relatively large error bounds. In this example,

the user specifies different error bounds for four value ranges:

[−100, 0), [0, 14), [14, 38), and [38, 238); the error bounds

are 10, 1, 3, and 50, respectively. The idea is to use different

quantization bins in different ranges. In Fig. 2, each square

denotes a quantization bin in its corresponding value range.

Our algorithm will identify in which range the original data
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and predicted value fall (they may be in two different ranges).

The quantization method will then differ in different situations.

In the decompression stage, the only available information are

the predicted value, the quantization code, and the definitions

of ranges. In contrast to the linear quantization method, our

solution can reconstruct the data of different error bounds

using the same quantization array.

Fig. 2: Multi-range error-bounded model. This example shows a few error
bounds in each range (illustrated by the colored boxes) for simplicity of
description; in practice, each range may contain hundreds or thousands of
error bounds.

TABLE I: Notations For Multi-Error-Bounded Compression

Notation Description

di original data value at position i

pi predicted value of di

d̂i reconstructed data value after decompression

r(x) the value range of data point x (di)

e(x) specified error bound based on a value range (x=r(di))
l(x) length of some value range (x = r(di))
low(r(x)) lower boundary of value range r(x)
high(r(x)) higher boundary of value range r(x)
q quantization index (a.k.a., quantization code)

qs shifted quantization number

We briefly describe how our algorithm handles different

situations, using the notation of TABLE I. For each data point,

there are three situations to deal with.

Situation 1: If the original value di and its predicted value

pi fall in the same range (i.e., r(di) = r(pi)), the quantization

problem falls back to the traditional linear-scale quantiza-

tion [8]. Specifically, we can use the following formulas to

compute the logic quantization code and decompressed data.

q = round( di−pi

2e(r(di))
) (1)

d̂i = pi + 2e(r(di)) · q (2)

Situations 2 and 3: These correspond to the situation where

the original di and its predicted value pi fall in different ranges

(i.e., r(di) �= r(qi)). In the following text, we describe only

the situation where r(di) > r(qi) (i.e., lines 7∼11 in the

algorithm); the other situation is similar.

The fundamental idea to handle this situation is to adjust

the quantization policy to use various bin lengths (or intervals)

in different value ranges. The formula for reconstructing the

decompressed value is given below (we assume the raw data

is greater than the predicted value, without loss of generality):

qt = round(di−low(r(di))−e(r(di))
2e(r(di))

) (3)

d̂i = low(r(di)) + e(r(di)) + 2e(r(di)) · qt. (4)

The core idea of decompression is to execute the similar

operations in the compression stage reversely to get the decom-

pressed data from a predicted data value and the corresponding

quantization bins. We first calculate the number of quantization

bins for each value range. We then decompress each data point

based on the multivalue-range quantization.

Note that in the real implementation, we need to also

consider several edge cases. For instance, when the original

data are near the high or low bound of a range, the quantization

value in this final range might be equal to quantRange[i],
causing the decompressed value to be in the next range. In

this case, we shift the quantization by 1 in the compression

stage to ensure the decompressed data and original data are in

the same range.

IV. EVALUATION

In this section, we evaluate our multi-range error-bounded

compression quality using two real-world simulations, and

compare the compression quality and performance with SZ.

SZ is a global constant error-bounded lossy compressor and

has been verified as one of the best error-bounded lossy

compressors in most cases.

A. Evaluation of Multi-Range Error-Bounded Compression

based on Visual Quality

We evaluate our approach on QMCPACK [27] and Mi-

randa [28] datasets, as presented in Table II.

TABLE II: Basic dataset information

Dataset # Fields Dimensions Science

QMCPACK 1 33120*69*69 electronic structure
of atoms, molecules,
and solids

Miranda 7 256*384*384 hydrodynamics code
for large turbulence
simulations

Figures 3 and 4 show the substantial advantage of our

multi-range error-bounded compression over the traditional

constant error-bounded compression, using two datasets (QM-

CPACK and Miranda). Specifically, the multi-range error-

bounded compression preserves higher visual quality for the

value ranges of interest, while achieving the same or even

higher overall compression ratios by reducing precision on

uninteresting values. For instance, in the QMCPACK dataset,

more than 90% of the data points gather around 0, but they

are smooth and easy to predict based on neighbor data points;

however, the data points with values in the range of [−8,−5]
are the sparse and interesting values that are harder to predict
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(B)Multi-Ranges; CR=210; [-17, -8) 
eb=1;[-8, -5) eb=0.15; [-5, 17) eb=1; 

RMSE[-8,-5]=0.086, PSNR=51.35

(A)Global Range; CR=210; 
[-17, 17] eb=0.4; 

RMSE[-8,-5]=0.233, PSNR=43.04

Artifacts

Fewer Artifacts

(C)Original Data

(D)Data Distribution

Interesting
Range

Although the majority 
data gather around 0, 
the interesting data 

are sparse

Higher Precision 
in this range

Fig. 3: QMCPACK data: (A) The basic method sets one error bound for the
global range. We can see obvious artifacts in the blue area. (B) Applying our
multi-range algorithm, we focus on the interesting range [-8,-5), and give it
a tighter error bound of 0.15 while leaving other ranges with a higher error
bound of 1. We can see fewer artifacts, while the compression ratio is kept
the same as the global range method. Compared to the original data shown
in (C), we can see the data in the interesting range has better visualization
result.

accurately with a large error bound. They are more important

and the distortion of their values are easier to observe in

the visualization graphs. Our method grants a tighter error

bound and thus a higher precision in this specific range while

allowing more distortion in uninteresting ranges. This is the

key reason that our solution can obtain higher visual quality

and lower root mean squared error (RMSE) in the interesting

range. A detailed comparison between the two algorithms is

shown in Table III and Table IV.

TABLE III: QMCPACK RMSE & PSNR Comparison

Method Range eb RMSE PSNR

[-17, -8] 0.232 43.067
Global Range [-8, -5] 0.4 0.233 43.041
CR=210 [-5, 17] 0.051 56.159

[-17, -8] 1.0 0.538 35.747
Multi-Ranges [-8, -5] 0.15 0.086 51.623
CR=210 [-5, 17] 1.0 0.089 51.354

B. Evaluation of Compression Time and Scalability for Multi-

Range Error-Bounded Compression

To evaluate the compression time and scalability, we run a

series of tests in parallel on thousands of CPU cores on the

LCRC Bebop cluster at Argonne National Laboratory [29].

The Bebop cluster has two partitions: KNL and BDW, corre-

TABLE IV: Miranda density RMSE & PSNR Comparison

Method Range eb RMSE PSNR

[0.5, 1.4] 0.012 44.804
Global Range [1.4, 2] 0.07 0.036 34.801
CR=206 [2, 3.5] 0.015 42.379

[0.5, 1.4] 0.1 0.013 43.5813
Multi-Ranges [1.4, 2] 0.05 0.027 37.193
CR=207 [2, 3.5] 0.1 0.018 40.682

(C) Original data(A)CR=206;Global Range and single error 
bound: [0.5, 3.5) eb=0.07; 

RMSE[1.4,2]=0.036, PSNR=34.801

(B)CR=207; Multi-Ranges: [0.5, 1.4) 
eb=0.1; [1.4 2) eb=0.05; [2, 2.8)eb=0.1; 

RMSE[1.4,2]=0.027, PSNR=37.193

Artifacts

Fewer Artifacts

(D) Data Distribution

Interesting
Range

Higher Precision 
in this rangeImprove: Use a tighter error bound for the 

interesting range and thus a higher precision.

Fig. 4: Miranda density slice No. 120. Comparing (B) with (A), we can see
that not only can our multi-range method preserve a high precision at a value
range of interest with high compression ratio, but it also prevents the blue
regions from getting distorted.

sponding to two different sets of hardwares/nodes, as shown

in TABLE V.

TABLE V: Machine Specifications

Partition # Nodes CPU Cores/node Memory

bdwall 664 Intel
Xeon E5-
2695v4

36 128GB DDR4

knlall 348 Intel Xeon
Phi 7230

64 96GB DDR4

We used up to 224 nodes on the KNL partition and 70

nodes on BNL partition for our scalability evaluation. The

two partitions have quite different CPUs and thus the run

time on a single core are incomparable; however, their I/O

throughput are similar as they share the same I/O nodes. The

main difference between the two partitions is their CPU speed

per core (KNL partition is significantly slower than BDW

partition). The I/O time can be significantly influenced by

other users’ tasks and therefore we record the average run
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time over 5 runs on both partitions.

We used the QMCPACK [27] dataset for these perfor-

mance/scalability tests. We choose this dataset because it is

more than 600MB per file and it is also stored in binary

form so that the HDF5 plugins and other complicated data

structure handling parts would not influence the performance

evaluation. In other words, we can accurately record the time

for each step of our algorithm in the MPI program. To be

consistent with the previous quality tests, we set the multi-

range error-bound requirement as follows: the data points in

the range of [−8,−5) has much higher precision than the data

points in other value ranges. According to the visualization

results presented in the previous section, we observe that no

data distortion can be viewed by the naked eye as long as a

relatively low error bound of 0.15 is used. Considering the

potential impact of the lossy compression to user’s analysis,

we set a very low error bound (1E-5) for the range of interest:

[−8,−5). That is, the compressor applies the error bound of

1E-5 for the value range [−8,−5), while the error bound needs

be less than 0.15 in the other ranges. Preserving this condition,

we perform the experiments on Bebop with different numbers

of cores (each core has 600MB of raw data to compress). The

results of BDW and KNL partitions are shown in Figure 5.

Based on these results, we observe that the (de)compression

time does not increase with the number of cores, which shows

that both our algorithm and SZ have very good scalability. The

key reason that our algorithm and SZ scale well is that the

lossy compression adopted in practice follows an embarrassing

parallel mode: that is, there is no communication among the

execution ranks/cores. The key reason our algorithm exhibits

lower compression/decompression times than SZ is that our

designed multi-range error-bounded compression allows us to

set higher error bounds for non-interesting ranges, leading to

higher compression ratios.

Based on the bar graphs in Figure 5, we can clearly see

that writing times take increasing portions with the number

of cores. Specifically, ‘Write Zip’ and ’Write DP’ refer to

‘writing compressed data to PFS’ and ‘writing decompressed

data to PFS’, respectively. Obviously, the I/O cost has much

worse scalability than our lossy compression/decompression,

especially because of the limited number of I/O nodes used by

the system. This will be true in any system as there is always

a limited number of I/O nodes (thus an upper bound in I/O

throughput), which may easily cause a serious I/O bottleneck

when a large number of cores are used concurrently.

V. CONCLUSION AND FUTURE WORK

We propose a novel error-bounded lossy compression

method that allows users to set different error bounds in

various value ranges, such that the overall lossy compression

quality can meet data fidelity requirements more accurately.

To the best of our knowledge, this is the first attempt to

develop such a compressor. Our evaluation using real-world

simulations revealed the following key findings.

• Our multi-range solution can significantly enhance visual

quality on the interesting data ranges with similar or

even higher compression ratios when compared with

traditional methods.

• Our quantitative results showed that our solution achieves

better RMSE and PSNR in the user-defined ranges, and

the improvement is global rather than local.

• Experiments up to 3500+ cores showed that the multi-

range error-bounded lossy compressor exhibits good scal-

ability in two different partitions, especially when com-

pared with the parallel file system’s I/O cost, which

increases considerally with scale.

In the future, we will investigate the partition strategy and

multi-region strategy to see if more customizable prerequisites

can be satisfied. We will also investigate if automatic methods

can be used to determine the ranges and error bounds for users

based on the facts of data.
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