2021 IEEE International Conference on Big Data (Big Data) | 978-1-6654-3902-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/BigData52589.2021.9671954

2021 IEEE International Conference on Big Data (Big Data)

Improving Lossy Compression for SZ by Exploring
the Best-Fit Lossless Compression Techniques

Jinyang Liu, T Sihuan Li," Sheng Di,* Xin Liang,* Kai Zhao," Dingwen Tao,} Zizhong Chen," Franck Cappello*¥
*Argonne National Laboratory, IL, USA
t University of California, Riverside, CA, USA
 Missouri University of Science and Technology, Rolla, MO, USA
§Washington State University, Pullman, WA, USA
YUniversity of Illinois at Urbana-Champaign, IL, USA
jliu447 @ucr.edu, sli049@ucr.edu, sdil @anl.gov, xliang@mst.edu, kzhao016@ucr.edu,
dingwen.tao@wsu.edu, chen@cs.ucr.edu, cappello@mcs.anl.gov

Abstract—In the past decades, various lossy compressors have
been studied broadly due to the ever-increasing volume of data
being produced by today’s scientific applications. SZ has been
one of the best error-bounded lossy compressors ever raised, and
it has a flexible framework that includes four adjustable steps:
prediction, quantization, variable-length encoding, and lossless
compression. In this paper, we improve the lossy compression
performances of the SZ compression model by exploring different
existing lossless compression techniques using the Squash data
compression benchmark. Specifically, we first characterize the
bytes outputted by the first three steps in SZ, then we investigate
the best lossless compressor with different datasets and different
error bounds. We perform our exploration by testing 8 widely
used lossless compressors under different configurations together
with SZ over five well-known scientific simulation datasets. Our
experiments show that adopting the best-fit lossless compressor
selected based on our analysis can improve the overall com-
pression speed by up to 40% compared to the previous lossless
compression technique used in SZ with the comparable quality
of reconstructed data.

I. INTRODUCTION

Vast volumes of data are being produced by today’s scien-
tific simulations on supercomputers, introducing a big chal-
lenge to the data storage not only because of limited storage
space but also limited I/O bandwidth of the parallel file
system (PFS). The Hardware/Hybrid Accelerated Cosmology
Code (HACC) [1], for instance, may produce 60 PB of data
to store with up to 3.5 trillion particles to simulate in one
simulation. HACC researchers rely on decimation to store data
(storing snapshots selectively in the simulation), inevitably
losing valuable information for post-analysis. Error-controlled
lossy compression techniques have been considered a better
solution than the simple decimation method for reducing the
data size significantly while guaranteeing that the distortion of
compression data is acceptable by users [2]-[5].

According to recent studies, SZ [6]-[8] has been one of the
best error-controlled lossy compressors on multiple simulation
datasets across different scientific domains. SZ adopts a flexi-
ble prediction-based compression model, which includes four
adjustable steps: (1) data prediction, (2) error quantization,
(3) variable-length encoding, and (4) lossless compression.

978-1-6654-3902-2/21/$31.00 ©2021 IEEE 2986

The initial design of SZ [6], adopts three types of 1D data
prediction methods in Step 1 and a 2-bit code to approximate
each floating-point value by the best-fit prediction method in
Step 2. We further improved the compression quality by devel-
oping a multidimensional one-layer prediction method [7], [8]
in Step 1 and a linear-scaling quantization method in Step
2. For two-electron integral datasets in quantum chemistry
simulation, we customized an effective predictor called Pastri
[9] by leveraging the scaled pattern of the dataset to improve
the prediction accuracy in Step 1 and developing a lightweight
variable-length coding algorithm in Step 3. There are several
recent researches which present new derivations of SZ. For
example, SZauto [10] introduces second-order predictors into
SZ and SZinterp [11] leverages dynamic spline interpolation
predictors. However, how to improve the last step, lossless
compression, is still a left question in SZ.

In this work, we further improve the lossy compression
quality based on the SZ compression model, by exploring
the best-fit lossless compression technique. Specifically, our
contribution is threefold:

o We characterize the bytes output generated by the first
three steps in SZ’s compression pipeline.

« Based on a well-known lossless compression benchmark,
Squash [12], we analyze different aspects of the lossy
compression qualities, for SZ combined with different
lossless compression techniques.

« We summarize several takeaways based on our per-
formance characterization. Our experiments show that
the overall best-fit lossless compressor for SZ is zstd
[13], which can significantly improve the compres-
sion/decompression speed with only negligible compres-
sion ratio loss compared to the previous lossless compres-
sion technique. Specifically, the compression performance
of SZ can be improved by up to 40% in most of
cases. by using zstd compared with the previous lossless
compressor Zlib.

The rest of the paper is organized as follows. In Section
II, we briefly review the SZ compression model. In Section

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore. Restrictions apply.

III, we introduce some state-of-the-art lossless compressors as
well as their pros and cons. In Section IV, we present the
evaluation results using different lossless compressors in the
SZ compression model, over multiple real-world simulation
datasets. We discuss the related work in Section V. In Section
VI, we briefly summarize our conclusions and discuss future
work.

II. SZ Lossy COMPRESSION MODEL

SZ [6], [7] is the state-of-the-art error-bounded lossy com-
pressor for significantly reducing the data size of extreme-scale
scientific simulations. SZ compression contains four critical
steps: (1) value prediction on each data point for the sake
of decorrelation, (2) linear-scaling quantization surrounding
the predicted value with equal-sized bins, (3) variable-length
encoding used to encode the integer indices of the bins,
and (4) lossless compression technique to further shrink the
data size. In Step 1, SZ performs a single-dimensional or
multidimensional prediction for each data point based on its
neighbor data points (the dimension of the prediction depends
on the dimension of the dataset). A set of consecutive bins
with each twice the error bound in length are constructed in
Step 2; and the index of the bin containing the real value
of the data point, called the located bin, are encoded by
a customized Huffman encoding in Step 3. Steps 1 and 3
are both lossless procedures, which means that these two
steps will not introduce data loss during their corresponding
decompression steps. Step 4 adopts some lossless compressor
such as Gzip [14] or Zstd [13]. In this paper, we explore many
lossless compressors by characterizing their impact on the
lossy compression quality, and we select the best-fit lossless
compressor for SZ.

ITI. STATE-OF-THE-ART LOSSLESS COMPRESSORS

After considering numerous existing lossless compressors,
we selected 8 of them, then ran Squash [12] with the combina-
tion of SZ and each based on a relatively small set of data. We
investigated them thoroughly with more datasets and various
error bounds for selecting the best-fit one. In the following,
we briefly describe the widely used lossless compressors; more
details can be found in [15].

1. briefiz [16]: A lightweight implementation of the Lempel-
Ziv (LZ) compression algorithm. It focuses on fast compres-
sion rate with comparable compression ratio.

2. compress [17]: A fast compressor based on the Lempel-
Ziv-Welch (LZW) algorithm. It is the de facto file compression
standard in the UNIX community.

3. deflate: One of the methods in zlib [18] that uses
LZ77 and Huffman coding. Its data format is portable across
platforms, and it never expands the data as do some of the
LZW algorithms, which may double or triple the data size in
worst cases. Zlib has been an important component of software
platforms such as Linux, MAC OS X, and iOS and even
gaming platforms such as PlayStation and Xbox.

4. fari [19]: An arithmetic compressor with extremely high
compression/decompression speeds.

2987

5. gipfeli [20], [21]: A high-speed compression library based
on LZ77 and an improved entropy coding instead of relatively
slow Huffman or arithmetic coding. gipfeli achieves 3X the
compression speed of deflate or zlib.

6. Izfse [22]: An LZ style compression algorithm using
finite-state entropy coding. It has a compression ratio similar
to that of deflate or zlib but has better compression and
decompression speed. [zfse has been open sourced by Apple,
and it is in the compression library beginning with i0OS 9 and
OSX 10.11 EI Capitan.

7. zling [23]: An implementation of order-1 ROLZ (reduced
offset LZ) and Huffman coding.

8. zstd [13]: A fast lossless compression using finite-state
entropy coding by Facebook.

IV. EXPLORING BEST LOSSLESS COMPRESSOR FOR SZ

In this section, we investigate compression quality of mul-
tiple different lossless compressors and identify the best-fit
one(s) for SZ. Our experiments are based on the latest public
stable version of SZ, which is SZ2.1 [3], [8] (shorted as SZ
in the following text).

A. Characterization of bytes output from SZ’s first three steps

Different byte inputs may have different compressors per-
form differently, thus we first investigate the characteristics
of the input of the lossless compressors (i.e., the output
of the former three steps of SZ), by analyzing its entropy,
cumulative distribution function (CDF), and autocorrelation.
These measurements are calculated based on the output gen-
erated by SZ’s first three steps, which is an array of bytes
(unsigned characters) valuing from O to 255. The entropy
is used to measure the randomness of the numbers. Higher
entropy implies higher randomness, which usually means the
data is harder to compress. The CDF shows the distribution of
the numbers. Generally, the data with a sharper CDF increase
means their distribution is more clustered and thus it should be
easier to compress. The autocorrelation coefficient (its value
always ranges in [0,1]) indicates the correlation between the
array and the array with some lag when the array is treated as
time series. A higher autocorrelation value generally implies
that the data is easier to compress.

We present the characterization results in Figure 1 (one
representative field for each dataset because of space limi-
tations). The representative field selected here has the closest
compression ratio to the overall compression ratio on all fields
in the dataset. Specifically, the selected representative fields
for HACC, ATM, Hurricane, NYX and SCALE-LETKF are
vx, FLDSC, QICEf48, baryon_density and QC respectively.
Entropy is plotted by setting the error bound of SZ to [1E-
2, 1E-4]. The CDF and autocorrelation are shown only with
error bound 1E-3 because of space limitations. The evaluation
results of lossless compressors based on the bytes outputted by
SZ’s first three steps are presented in Figure 2. We summarize
two valuable findings as follows.

o Some datasets such as SCALE-LETKF, ATM and Hur-
ricane should have some potential to be further com-

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore. Restrictions apply.

HACC
- ATM
o Hurricane
T NYX
SL

1E-3
error bounds

1E-4

(a) Entropy

probability

o
S

HACC

- ATM
Hurricane
NYX
SL

250

e
v

0.00

50 100 150 200

byte to unsigned int value

(b) Cumulative Distribution Function (CDF)

300

1.

HACC

- ATM
Hurricane
NYX
SL

o
-}

o
el =

o
'S

correlation coefficient

e
i

o
=]

10 20 30

delay in time

40 50

(¢) Auto-Correlation

Fig. 1. Characterization of the output by SZ’s former 3 steps

pressed by using lossless compressors, compared with
other datasets such as HACC or NYX. All results in
Figure 1 consistently imply that SCALE-LETKF, ATM
and Hurricane are easier to compress than HACC and
NYX. This is also verified by results in Figure 2.

We can see that the entropy of the bytes outputted by SZ’s
first three steps is relatively low, especially with high error
bounds such as 1E-2. This inspires developers to explore
a better variable-length encoding (Step 3) in SZ such that
the output bytes could already be compressed well after
the first three steps.

B. Lossless compressor selection

The Squash benchmark [12] consists of 43 different com-
pression algorithms. Since comparing all the algorithms is
not feasible, we first select several good candidates with
quick experiments then perform comprehensive experiments
to select the best-fit one from among the good candidates. To
select the good candidate lossless compressors, we run all 43
compressors on the output of SZ’s first three steps on HACC
data and select the ones that are ranked in the top 25 for both
compression ratio and compression rate. These two factors
are critical to a fast and efficient lossy compression. The

2988

12

E3 HACC
@l AT™M
3 Hurricane

10

3 NYX
I sL

compratio

o N M O @

‘\\wo,b
< » & F
g ¥ &7

lossless compressors

Fig. 2. Lossless compressor compression ratio on the bytes outputted by SZ’s
first 3 steps on the representative field for each dataset with error bound 1E-3

selection yields 9 good candidates: brieflz, compress, deflate,
fari, gipfeli, lzfse, Izvn, zling, and zstd. The compressor [zvn
was subsequently removed from the candidate list because it
cannot work for large input sizes based on our experiments.

The following experiments were all executed based on
five scientific datasets: HACC, ATM, Hurricane, NYX and
SCALE-LETKF (short for SL). The input of all the 8 selected
lossless compressors is the output of SZ’s former three steps.
We adopt the default compression levels for all the lossless
compressors. Table I presents the fundamental information
about the datasets. The data type for all data is single precision
floating point number.

TABLE I
DATASET INFORMATION

#Fields Dimensions Total Size (GB)
HACC 6 1D: 280,953,867 6.3
ATM 77 2D: 1800 X 3600 1.9
Hurricane 13 3D: 100 X 500 X 500 1.2
NYX 6 3D: 512 X 512 X 512 3
SL 6 3D: 98 X 1200 X 1200 32

C. Lossless compressor performance

1) Compression ratio: Based on Figure 3, we can observe
that under the error bound of 1E-2, the compressor fari has
the best overall compression ratio, followed by zling, deflate,
and zstd. Their compression ratios decrease with decreasing
error bounds from 1E-2 to 1E-4.

2) Compression rate: Based on Figure 4, we notice that
the compressor zstd has the best compression rate, followed
by gipfeli, brieflz, and deflate. In absolute terms, zstd is 50%
~ 300% faster than Deflate.

3) Decompression rate: Based on Figure 5, we can see that
zstd has the best decompression rate except for SL data under
error bound 1E-2, followed by deflate, Izfse, and gipfeli.

D. Improvement to SZ

The preceding evaluation focuses on the individual perfor-
mance of the lossless compressors. In this section, we investi-
gate the overall improvement for the whole compression of SZ

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore. Restrictions apply.

16 B HACC B HACC B HACC N
E ATM =] 1.4{{m=m atm
14| @3 Hurricane 30 [Hurricane| [Hurricane|
= NYX 2.5 B NYX 1.2f==3 nrx
12 s g [N I su
k! o 21.0
® 10 ®20 B
sy 1s 508
£ . gt o6
4 1o 04
2 0.5 0.2l
M N A YT e s s e O 2 R N AN
g g Fe gy vV g L&Y NP SN e S e
< ISR 2 S < ISEE 2 S < ISEE 2 S
O O O
< < <
(a) error bound = 1E-2 (b) error bound = 1E-3 (c¢) error bound = 1E-4
Fig. 3. Lossless compression ratios with varied error bounds of SZ
700 = 300 500
= racc = race = e
soof= 2502 .o 2002 e
= = v = = wx = =
EV; 500 3 sL g 200 3 sL % 3 sL
Z 400 z Z 300
2 2150 2
© 300 o £ 200
gzoo g 100 g
S o “ 100
100 H 50
M T I S R M I IR S R T I R S R
A A B A A B A A A
< SR Z S < K ¢ S < SEEZ S
ISR § % § %
e & &

(a) error bound = 1E-2

Fig. 4. Lossless

(b) error bound = 1E-3

(¢c) error bound = 1E-4

compression rate with varied error bounds of SZ

(a) error bound = 1E-2

Fig. 5.

by using different lossless compressors. The relationship of the
compression performance between lossless compressors and
SZ is as follows. If the compression ratio, compression rate,
and decompression rate of SZ’s first three steps are denoted as
ro, Co, and dg respectively, and the corresponding metrics of
the lossless compressors are r1, ¢; and dy respectively, then
we can derive the overall compression ratio, compression rate,
and decompression rate of SZ as follows.

(b) error bound = 1E-3

900 2500
[HACC
800 = ATM
E 700 E 2000 g ::)r(n:ane
© 500 2
© ©
5 400 51000
£ 300 £
] @
$ 200 g 500
100
T s T S e e T S e TE o ¢ e R
< J S < L @ S
ISR ISR
& I3

(c) error bound = 1E-4

Decompression rate with varied error bounds of SZ

based on the performances of SZ’s first three steps and the
performances of lossless compressors without integrating the
lossless compressors in SZ physically. In our experiments, we
run SZ’s first three steps on different datasets and measure
ro, Co, and dy. Then, we treat the output by SZ’s first three
steps as the input to the 8 lossless compressors, in order to
measure the lossless compressors’ 1, ¢1, and d;. The overall
compression performance is calculated by Equation (1). The
compression ratio 7y, compression rate cg, and decompression

r=Tor (1a) rate dy of the first three steps of SZ are listed in Table II. The
e = _co4ro (1b) overall improvement to SZ without a lossless compressor is
ToC1 + Co listed in Table III to Table VII for the five datasets. If the value

_ dodyro (1c) in the table is negative, it means performance degradation
rodi + do in percentage. Observing the tables, we see that although

With Equation (1), we can evaluate the overall performances

2989

fari and zling have the best compression ratios, they incur
too much computation overheads on SZ in terms of both

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore. Restrictions apply.

TABLE II
PERFORMANCE OF SZ’S FIRST 3 STEPS WITH DIFFERENT ERROR BOUNDS
(COMPRESSION AND DECOMPRESSION RATE MEASURED IN MB/S)

TABLE IV
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS
COMPRESSORS ON ATM DATA

1E-2 1E3 1E4 1E2 1E-3 TE-4
To co do ro co do [co do T c d T c d T c d
HACC | 1572 | 181 | 324 | 884 | 173 | 193 | 506 | 163 | 127 brieliz 505 | 2 | 8 | 8 [<12 | <12 | 11 | <19 | -11
Famare | 1617 To8 400 [1208 | 167 | 308 T o | 19| aoy] | omwress [3% [8 [7T |98 [W A0 | 919
urricane . . .
NYX | 1490 | 201 | 370 | 1123 | 174 | 269 | 7.29 | 139 | 169 defgfite ggg _'282 _'328 g‘l‘ :;2 _'457 §3 ;; 578
SL 20.08 | 191 | 446 | 15.00 | 168 | 368 | 14.82 | 142 | 283 an
gipfeli 419 -6 -9 86 -11 | -12 | 20 -9 -6
1zfse 623 | -13 -4 126 | -18 -5 28 | -22 -6
TABLE III zling 584 | <25 | 26 | 121 | 42 | 43 | 31 | -56 | -52
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS zstd 630 | -4 2 | 129 | 7 4 | 28 | -8 4
COMPRESSORS ON HACC DATA
1E-2 1E-3 1E-4 TABLE V
r c d r c d r c d OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS
brieflz 73 -13] 12 | -1 -25 | -11 -1 -34 -9 COMPRESSORS ON HURRICANE DATA
compress | 83 15 -10 | -3 | 31 | -14 | -2 | 42| -17
deflate | 101 | -14 | 5 | 12 | 25 | -7 | 0 | -32 | 4 1E-2 1E-3 1E-4
fari 112 | 29 | 47 | 12 | -51 | 60 | 2 | -66 | 67 ‘ r el dr | c [d]|r]c| d
gpfell | 79 -0 9 [8 -2 %6 [0 7 | 2 briecflz_| 198 | -10 | -10 | 32 | -18 | -12 | 3 | 21 | -10
1zfse 100 -19 -5 11 31 3 0 40) compress 175 -12 -9 24 -19 -14 -3 -24 -15
Zling 100 | 45 | 38 | 14 | -71 | 52 | -1 | -82 | 38 deflate | 241 | -9 | -3 |52 | -17] -6 | 19 [-19 | -6
zstd 101 9 -4 12 12 2 0 -6 1 fari 252 =27 -47 54 -37 -58 18 -45 -61
gipfeli 189 -7 -7 40 | -10 -7 14 -6 -3
lzfse 239 | -16 -5 51 | -22 -6 18 | -26 -6
compression rate and decompression rate. The zstd and deflate ZZIST(% ;ﬁg _372 _332 gi ig 5‘? ig _676 524

have similar compression ratios and are much faster than
fari and zling. Comparing zstd with deflate, we observe that
they have very close compression ratios but zstd is always
faster than deflate. Moreover, the gap of compression rate (or
decompression rate) between zstd and deflate increases as the
error bound decreases, as highlighted in the table. We therefore
set zstd as our default lossless compressors in SZ because of
its comparable performance in compression ratio and much
higher compression rate on all datasets.

In addition, we present two other interesting findings.

1. We found if the former 3 steps have better compression
ratios on dataset A than B, then the lossless compressor
will have better compression ratios on A than B as well.
Specifically, SL, ATM, Hurricane, NYX, HACC are ordered
by increasing difficulties for lossless/lossy compression.

2. For the 5 lossless compressors (deflate, fari, 1zfse, zling,
zstd) with top compression ratios and the 5 datasets, if
compressor A has a better compression ratio than compressor
B has on dataset D1, it will have a no worse compression ratio
than B on dataset D2. This tells us that it is not necessary to
select a lossless compressor dynamically for different datasets.

V. RELATED WORK

Error-bounded lossy compressors have been studied for
years. In general, such compressors are designed based on
either a transform-based compression model or a prediction-
based compression model. ZFP [24] is a typical example
designed in terms of the transform-based model. It splits the
whole data into non-overlapped blocks with an edge size of 4,
performs a data transform for each block, and then extracts the
most important bits from the transformed data by an embedded
coding. FPZIP [25], for example, adopts the Lorenzo [26]
predictor to predict each data point in a dataset based on its

2990

neighboring data values and then shrinks the data size by
truncating the insignificant mantissa bits for the difference
between the original value and predicted value. MGARD
[27] is another example of error-bounded lossy compressor
which has a hierarchical structure of data prediction. SZ [6]-
[8] involves four critical steps, which mainly predict each
data point by the Lorenzo [26] predictor and perform a
linear-scaling quantization method and a customized Huffman
encoding algorithm to reduce the data based on user-set error
bound. In our research, we focus on the SZ compression
framwork because of its loosely coupled design. For example,
the prediction method could be customized by users based
on specific datasets, and the Huffman encoding could also be
replaced by other variable-length encoding algorithms based
on specific data features. Several new derivations from SZ
are SZauto [10] which includes second-order predictors, and
SZinterp [11] leveraging dynamic spline interpolations. In this
paper, we explore the best-fit lossless compression techniques
for the SZ compression model in terms of different scientific
datasets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluate 8 widely used lossless compres-
sors on the bytes generated by SZ’s first three steps on five
scientific datasets, in order to investigate the best lossless com-
pressor for SZ. We present the following findings that are very
helpful in improving SZ’s overall performance with respect to
compression ratio, compression rate, and decompression rate.

o The best-fit lossless compressor is zstd for all the datasets
in different error bounds: it has similar compression ratios

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore. Restrictions apply.

TABLE VI
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS
COMPRESSORS ON NY X DATA

1E-2 1E-3 1E-4
T c d T c d T c d
brieflz 154 1 -10 | -9 | 31 | -17 | -11 -6 | 24| 9
compress | 23 -2 -11 | -8 | -20 | -14 | -12 | -29 | -15
deflate 190 | -11 | 4 | 50 | -17 | -3 7 22 | -5
fari 195 | -31 | -50 | 49 | -41 | -57 5 -51 | -63
gipfeli 159 | -5 -6 | 42 | -7 -6 5 -6 -3
lzfse 188 | -18 | -5 | 49 | 24 | 4 6 29 | -5
zling 197 | -40 | -34 | 50 | -59 | -48 6 =72 | -55
zstd 188 | -3 2 [50| -5 -3 7 -5 -2

TABLE VII
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS
COMPRESSORS ON SL DATA

1E-2 1E-3 1E-4

T c d I c d T c d

brieflz 1186 | -3 -6 148 | -10 | -13 | 24 | -13 | -11
compress | 209 -6 -7 9 | -12 | -11 | 30 | -15 | -11
deflate 1416 | -4 -1 [198 | -12 | 4 | 49 | -13 | -6
fari 1503 | -19 | -37 | 212 | -25 | -47 | 51 | -29 | -51
gipfeli 768 2 -5 141 -9 | -10 | 31 -8 -5
lzfse 1408 | -13 | 4 199 | -19 | 6 | 49 | -18 | -5
zling 1432 | -8 | -12 | 215 | -35 | -34 | 57 | 49 | 43
zstd 1399 | -1 -2 [200 | -8 4 | 51| -7 -4

to those of zlib but improves the overall compression rate
by up to 40% on HACC data under error bound of 1E-4.

o Characterization of the bytes outputted by SZ’s first three
steps shows that the bytes are not fully compressed on
the third step of SZ.

We plan to the explore more effective encoding or com-
pression techniques for SZ’s third step, because the current
last step can improve the compression significantly in some
cases, meaning that the third step has much potential for
improvement. We will also investigate more scientific datasets
to check whether zstd is always the best lossless compressor.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations — the Office of Science and
the National Nuclear Security Administration, responsible for
the planning and preparation of a capable exascale ecosystem,
including software, applications, hardware, advanced system
engineering and early testbed platforms, to support the nation’s
exascale computing imperative. The material was supported by
the U.S. Department of Energy (DOE), Office of Science and
DOE Advanced Scientific Computing Research (ASCR) of-
fice, under contract DE-AC02-06CH11357, and supported by
the National Science Foundation under Grant OAC-2003709,
OAC-2003624/2042084, SHF-1617488, and OAC-2104023.
We acknowledge the computing resources provided on Bebop,
which is operated by the Laboratory Computing Resource
Center at Argonne National Laboratory.

2991

(1]

[2]

[3]

[4]

[5]

(6]

[7]

[8]

[9]

[10]

[11]

[27]

REFERENCES

S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., “Hacc: extreme
scaling and performance across diverse architectures,” Communications
of the ACM, vol. 60, no. 1, pp. 97-104, 2016.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Exploration of pattern-
matching techniques for lossy compression on cosmology simulation
data sets,” in DRBSD2017, 2017, pp. 43-54.

, “In-depth exploration of single-snapshot lossy compression tech-
niques for N-body simulations,” in 2017 IEEE International Conference
on Big Data. 1EEE, 2017, pp. 486-493.

, “In-depth exploration of single-snapshot lossy compression tech-
niques for n-body simulations,” in 2017 IEEE International Conference
on Big Data (Big Data), 2017, pp. 486—493.

D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Improving
performance of iterative methods by lossy checkponting,” in Proceedings
of the 27th International Symposium on High-Performance Parallel
and Distributed Computing, ser. HPDC *18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 52-65.

S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing
Symposium (IEEE IPDPS). 1EEE, 2016, pp. 730-739.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in IEEE International Parallel and
Distributed Processing Symposium (IEEE IPDPS). 1EEE, 2017, pp.
1129-1139.

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. 1EEE, 2018.

A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, and F. Cappello,
“Pastri: Error-bounded lossy compression for two-electron integrals
in quantum chemistry,” in IEEE International Conference on Cluster
Computing (IEEE Cluster), 2018, pp. 1-11.

K. Zhao et al., “Significantly improving lossy compression for HPC
datasets with second-order prediction and parameter optimization,” in
Proceedings of the 29th International Symposium on High-Performance
Parallel and Distributed Computing, ser. HPDC 20, 2020, pp. 89-100.
K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,
“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference
on Data Engineering (ICDE). 1EEE, 2021, pp. 1643-1654.

Squash Compression Benchmark, https://quixdb.github.io/squash-
benchmark/, online.

Zstd, https://github.com/facebook/zstd/releases, online.

L. P. Deutsch, “Gzip file format specification version 4.3,” 1996.

M. Mahoney, “Data compression explained,” mattmahoney. net, updated
May, vol. 7, p. 1, 2012.

brieflz, https://github.com/jibsen/brieflz, online.

compress, https://github.com/vapier/ncompress, online.

deflate, http://www.zlib.net/, online.

fari, https://github.com/davidcatt/FastARI, online.

gipfeli code, https://github.com/google/gipfeli, online.

R. Lenhardt and J. Alakuijala, “Gipfeli — high speed compression
algorithm,” in Data Compression Conference (DCC), 2012. 1EEE,
2012, pp. 109-118.

1zfse, https://github.com/lzfse/lzfse, online.

zling, https://github.com/richox/libzling, online.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-
actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674-2683, 2014.

P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 1245-1250, 2006.

L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core
compression and decompression of large n-dimensional scalar fields,”
in Computer Graphics Forum, vol. 22, no. 3. Wiley Online Library,
2003, pp. 343-348.

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5-6, pp.
65-76, 2018.

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore. Restrictions apply.

