
2021 IEEE International Conference on Big Data (Big Data)

978-1-6654-3902-2/21/$31.00 ©2021 IEEE 2986

Improving Lossy Compression for SZ by Exploring

the Best-Fit Lossless Compression Techniques

Jinyang Liu, † Sihuan Li,† Sheng Di,∗ Xin Liang,‡ Kai Zhao,† Dingwen Tao,§ Zizhong Chen,† Franck Cappello∗¶

∗Argonne National Laboratory, IL, USA
† University of California, Riverside, CA, USA

‡ Missouri University of Science and Technology, Rolla, MO, USA
§Washington State University, Pullman, WA, USA

¶University of Illinois at Urbana-Champaign, IL, USA

jliu447@ucr.edu, sli049@ucr.edu, sdi1@anl.gov, xliang@mst.edu, kzhao016@ucr.edu,

dingwen.tao@wsu.edu, chen@cs.ucr.edu, cappello@mcs.anl.gov

Abstract—In the past decades, various lossy compressors have
been studied broadly due to the ever-increasing volume of data
being produced by today’s scientific applications. SZ has been
one of the best error-bounded lossy compressors ever raised, and
it has a flexible framework that includes four adjustable steps:
prediction, quantization, variable-length encoding, and lossless
compression. In this paper, we improve the lossy compression
performances of the SZ compression model by exploring different
existing lossless compression techniques using the Squash data
compression benchmark. Specifically, we first characterize the
bytes outputted by the first three steps in SZ, then we investigate
the best lossless compressor with different datasets and different
error bounds. We perform our exploration by testing 8 widely
used lossless compressors under different configurations together
with SZ over five well-known scientific simulation datasets. Our
experiments show that adopting the best-fit lossless compressor
selected based on our analysis can improve the overall com-
pression speed by up to 40% compared to the previous lossless
compression technique used in SZ with the comparable quality
of reconstructed data.

I. INTRODUCTION

Vast volumes of data are being produced by today’s scien-

tific simulations on supercomputers, introducing a big chal-

lenge to the data storage not only because of limited storage

space but also limited I/O bandwidth of the parallel file

system (PFS). The Hardware/Hybrid Accelerated Cosmology

Code (HACC) [1], for instance, may produce 60 PB of data

to store with up to 3.5 trillion particles to simulate in one

simulation. HACC researchers rely on decimation to store data

(storing snapshots selectively in the simulation), inevitably

losing valuable information for post-analysis. Error-controlled

lossy compression techniques have been considered a better

solution than the simple decimation method for reducing the

data size significantly while guaranteeing that the distortion of

compression data is acceptable by users [2]–[5].

According to recent studies, SZ [6]–[8] has been one of the

best error-controlled lossy compressors on multiple simulation

datasets across different scientific domains. SZ adopts a flexi-

ble prediction-based compression model, which includes four

adjustable steps: (1) data prediction, (2) error quantization,

(3) variable-length encoding, and (4) lossless compression.

The initial design of SZ [6], adopts three types of 1D data

prediction methods in Step 1 and a 2-bit code to approximate

each floating-point value by the best-fit prediction method in

Step 2. We further improved the compression quality by devel-

oping a multidimensional one-layer prediction method [7], [8]

in Step 1 and a linear-scaling quantization method in Step

2. For two-electron integral datasets in quantum chemistry

simulation, we customized an effective predictor called Pastri

[9] by leveraging the scaled pattern of the dataset to improve

the prediction accuracy in Step 1 and developing a lightweight

variable-length coding algorithm in Step 3. There are several

recent researches which present new derivations of SZ. For

example, SZauto [10] introduces second-order predictors into

SZ and SZinterp [11] leverages dynamic spline interpolation

predictors. However, how to improve the last step, lossless

compression, is still a left question in SZ.

In this work, we further improve the lossy compression

quality based on the SZ compression model, by exploring

the best-fit lossless compression technique. Specifically, our

contribution is threefold:

• We characterize the bytes output generated by the first

three steps in SZ’s compression pipeline.

• Based on a well-known lossless compression benchmark,

Squash [12], we analyze different aspects of the lossy

compression qualities, for SZ combined with different

lossless compression techniques.

• We summarize several takeaways based on our per-

formance characterization. Our experiments show that

the overall best-fit lossless compressor for SZ is zstd

[13], which can significantly improve the compres-

sion/decompression speed with only negligible compres-

sion ratio loss compared to the previous lossless compres-

sion technique. Specifically, the compression performance

of SZ can be improved by up to 40% in most of

cases. by using zstd compared with the previous lossless

compressor Zlib.

The rest of the paper is organized as follows. In Section

II, we briefly review the SZ compression model. In Section

1

2
0
2
1
 I

E
E

E
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 B

ig
 D

at
a 

(B
ig

 D
at

a)
 | 

9
7
8
-1

-6
6
5
4
-3

9
0
2
-2

/2
1
/$

3
1
.0

0
 ©

2
0
2
1
 I

E
E

E
 | 

D
O

I:
 1

0
.1

1
0
9
/B

ig
D

at
a5

2
5
8
9
.2

0
2
1
.9

6
7
1
9
5
4

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore.  Restrictions apply. 



2987

III, we introduce some state-of-the-art lossless compressors as

well as their pros and cons. In Section IV, we present the

evaluation results using different lossless compressors in the

SZ compression model, over multiple real-world simulation

datasets. We discuss the related work in Section V. In Section

VI, we briefly summarize our conclusions and discuss future

work.

II. SZ LOSSY COMPRESSION MODEL

SZ [6], [7] is the state-of-the-art error-bounded lossy com-

pressor for significantly reducing the data size of extreme-scale

scientific simulations. SZ compression contains four critical

steps: (1) value prediction on each data point for the sake

of decorrelation, (2) linear-scaling quantization surrounding

the predicted value with equal-sized bins, (3) variable-length

encoding used to encode the integer indices of the bins,

and (4) lossless compression technique to further shrink the

data size. In Step 1, SZ performs a single-dimensional or

multidimensional prediction for each data point based on its

neighbor data points (the dimension of the prediction depends

on the dimension of the dataset). A set of consecutive bins

with each twice the error bound in length are constructed in

Step 2; and the index of the bin containing the real value

of the data point, called the located bin, are encoded by

a customized Huffman encoding in Step 3. Steps 1 and 3

are both lossless procedures, which means that these two

steps will not introduce data loss during their corresponding

decompression steps. Step 4 adopts some lossless compressor

such as Gzip [14] or Zstd [13]. In this paper, we explore many

lossless compressors by characterizing their impact on the

lossy compression quality, and we select the best-fit lossless

compressor for SZ.

III. STATE-OF-THE-ART LOSSLESS COMPRESSORS

After considering numerous existing lossless compressors,

we selected 8 of them, then ran Squash [12] with the combina-

tion of SZ and each based on a relatively small set of data. We

investigated them thoroughly with more datasets and various

error bounds for selecting the best-fit one. In the following,

we briefly describe the widely used lossless compressors; more

details can be found in [15].

1. brieflz [16]: A lightweight implementation of the Lempel-

Ziv (LZ) compression algorithm. It focuses on fast compres-

sion rate with comparable compression ratio.

2. compress [17]: A fast compressor based on the Lempel-

Ziv-Welch (LZW) algorithm. It is the de facto file compression

standard in the UNIX community.

3. deflate: One of the methods in zlib [18] that uses

LZ77 and Huffman coding. Its data format is portable across

platforms, and it never expands the data as do some of the

LZW algorithms, which may double or triple the data size in

worst cases. Zlib has been an important component of software

platforms such as Linux, MAC OS X, and iOS and even

gaming platforms such as PlayStation and Xbox.

4. fari [19]: An arithmetic compressor with extremely high

compression/decompression speeds.

5. gipfeli [20], [21]: A high-speed compression library based

on LZ77 and an improved entropy coding instead of relatively

slow Huffman or arithmetic coding. gipfeli achieves 3X the

compression speed of deflate or zlib.

6. lzfse [22]: An LZ style compression algorithm using

finite-state entropy coding. It has a compression ratio similar

to that of deflate or zlib but has better compression and

decompression speed. lzfse has been open sourced by Apple,

and it is in the compression library beginning with iOS 9 and

OSX 10.11 El Capitan.

7. zling [23]: An implementation of order-1 ROLZ (reduced

offset LZ) and Huffman coding.

8. zstd [13]: A fast lossless compression using finite-state

entropy coding by Facebook.

IV. EXPLORING BEST LOSSLESS COMPRESSOR FOR SZ

In this section, we investigate compression quality of mul-

tiple different lossless compressors and identify the best-fit

one(s) for SZ. Our experiments are based on the latest public

stable version of SZ, which is SZ2.1 [3], [8] (shorted as SZ

in the following text).

A. Characterization of bytes output from SZ’s first three steps

Different byte inputs may have different compressors per-

form differently, thus we first investigate the characteristics

of the input of the lossless compressors (i.e., the output

of the former three steps of SZ), by analyzing its entropy,

cumulative distribution function (CDF), and autocorrelation.

These measurements are calculated based on the output gen-

erated by SZ’s first three steps, which is an array of bytes

(unsigned characters) valuing from 0 to 255. The entropy

is used to measure the randomness of the numbers. Higher

entropy implies higher randomness, which usually means the

data is harder to compress. The CDF shows the distribution of

the numbers. Generally, the data with a sharper CDF increase

means their distribution is more clustered and thus it should be

easier to compress. The autocorrelation coefficient (its value

always ranges in [0,1]) indicates the correlation between the

array and the array with some lag when the array is treated as

time series. A higher autocorrelation value generally implies

that the data is easier to compress.

We present the characterization results in Figure 1 (one

representative field for each dataset because of space limi-

tations). The representative field selected here has the closest

compression ratio to the overall compression ratio on all fields

in the dataset. Specifically, the selected representative fields

for HACC, ATM, Hurricane, NYX and SCALE-LETKF are

vx, FLDSC, QICEf48, baryon density and QC respectively.

Entropy is plotted by setting the error bound of SZ to [1E-

2, 1E-4]. The CDF and autocorrelation are shown only with

error bound 1E-3 because of space limitations. The evaluation

results of lossless compressors based on the bytes outputted by

SZ’s first three steps are presented in Figure 2. We summarize

two valuable findings as follows.

• Some datasets such as SCALE-LETKF, ATM and Hur-

ricane should have some potential to be further com-

2

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore.  Restrictions apply. 



2988

���� ���� ����

������������

�

�

�

�

�

�

�

�
�
��
�
�
�

����

���

���������

���

��

(a) Entropy

� �� ��� ��� ��� ��� ���

��������������������������

���

���

���

���

���

���

���

�
��

�
�
�
��
��
�

����

���

���������

���

��

(b) Cumulative Distribution Function (CDF)

� �� �� �� �� ��

�������������

���

���

���

���

���

���

�
�
�
��

��
�
��
�
��
�
�
��
��
��
�
�

����

���

���������

���

��

(c) Auto-Correlation

Fig. 1. Characterization of the output by SZ’s former 3 steps

pressed by using lossless compressors, compared with

other datasets such as HACC or NYX. All results in

Figure 1 consistently imply that SCALE-LETKF, ATM

and Hurricane are easier to compress than HACC and

NYX. This is also verified by results in Figure 2.

• We can see that the entropy of the bytes outputted by SZ’s

first three steps is relatively low, especially with high error

bounds such as 1E-2. This inspires developers to explore

a better variable-length encoding (Step 3) in SZ such that

the output bytes could already be compressed well after

the first three steps.

B. Lossless compressor selection

The Squash benchmark [12] consists of 43 different com-

pression algorithms. Since comparing all the algorithms is

not feasible, we first select several good candidates with

quick experiments then perform comprehensive experiments

to select the best-fit one from among the good candidates. To

select the good candidate lossless compressors, we run all 43

compressors on the output of SZ’s first three steps on HACC

data and select the ones that are ranked in the top 25 for both

compression ratio and compression rate. These two factors

are critical to a fast and efficient lossy compression. The

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

��������������������

�

�

�

�

�

��

��

�
�
�
�
��
��
�

����

���

���������

���

��

Fig. 2. Lossless compressor compression ratio on the bytes outputted by SZ’s
first 3 steps on the representative field for each dataset with error bound 1E-3

selection yields 9 good candidates: brieflz, compress, deflate,

fari, gipfeli, lzfse, lzvn, zling, and zstd. The compressor lzvn

was subsequently removed from the candidate list because it

cannot work for large input sizes based on our experiments.

The following experiments were all executed based on

five scientific datasets: HACC, ATM, Hurricane, NYX and

SCALE-LETKF (short for SL). The input of all the 8 selected

lossless compressors is the output of SZ’s former three steps.

We adopt the default compression levels for all the lossless

compressors. Table I presents the fundamental information

about the datasets. The data type for all data is single precision

floating point number.

TABLE I
DATASET INFORMATION

#Fields Dimensions Total Size (GB)

HACC 6 1D: 280,953,867 6.3

ATM 77 2D: 1800 X 3600 1.9

Hurricane 13 3D: 100 X 500 X 500 1.2

NYX 6 3D: 512 X 512 X 512 3

SL 6 3D: 98 X 1200 X 1200 3.2

C. Lossless compressor performance

1) Compression ratio: Based on Figure 3, we can observe

that under the error bound of 1E-2, the compressor fari has

the best overall compression ratio, followed by zling, deflate,

and zstd. Their compression ratios decrease with decreasing

error bounds from 1E-2 to 1E-4.

2) Compression rate: Based on Figure 4, we notice that

the compressor zstd has the best compression rate, followed

by gipfeli, brieflz, and deflate. In absolute terms, zstd is 50%

∼ 300% faster than Deflate.

3) Decompression rate: Based on Figure 5, we can see that

zstd has the best decompression rate except for SL data under

error bound 1E-2, followed by deflate, lzfse, and gipfeli.

D. Improvement to SZ

The preceding evaluation focuses on the individual perfor-

mance of the lossless compressors. In this section, we investi-

gate the overall improvement for the whole compression of SZ

3

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore.  Restrictions apply. 



2989

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

�

�

�

�

�

��

��

��

��

��

�
�
�
��
��
�

����

���

���������

���

��

(a) error bound = 1E-2

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

���

���

���

���

���

���

���

���

�
�
�
��
��
�

����

���

���������

���

��

(b) error bound = 1E-3

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

���

���

���

���

���

���

���

���

���

�
�
�
��
��
�

����

���

���������

���

��

(c) error bound = 1E-4

Fig. 3. Lossless compression ratios with varied error bounds of SZ

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

�

���

���

���

���

���

���

���

�
�
�
��
��

��
�
�
��
�

����

���

���������

���

��

(a) error bound = 1E-2

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

�

��

���

���

���

���

���

�
�
�
��
��

��
�
�
��
�

����

���

���������

���

��

(b) error bound = 1E-3

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

�

���

���

���

���

���

�
�
�
��
��

��
�
�
��
�

����

���

���������

���

��

(c) error bound = 1E-4

Fig. 4. Lossless compression rate with varied error bounds of SZ

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

�

���

���

���

���

����

����

����

����

����

�
�
�
�
�
��
��

��
�
�
��
�

����

���

���������

���

��

(a) error bound = 1E-2

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

�

���

���

���

���

���

���

���

���

���

�
�
�
�
�
��
��

��
�
�
��
�

����

���

���������

���

��

(b) error bound = 1E-3

��
��
���

��
�
��
��
�

��
���
�� ��
��

��
��
��
�

��
��
�

��
��
�

��
��

�

���

����

����

����

����
�
�
�
�
�
��
��

��
�
�
��
�

����

���

���������

���

��

(c) error bound = 1E-4

Fig. 5. Decompression rate with varied error bounds of SZ

by using different lossless compressors. The relationship of the

compression performance between lossless compressors and

SZ is as follows. If the compression ratio, compression rate,

and decompression rate of SZ’s first three steps are denoted as

r0, c0, and d0 respectively, and the corresponding metrics of

the lossless compressors are r1, c1 and d1 respectively, then

we can derive the overall compression ratio, compression rate,

and decompression rate of SZ as follows.

r = r0r1 (1a)

c =
c0c1r0

r0c1 + c0
(1b)

d =
d0d1r0

r0d1 + d0
(1c)

With Equation (1), we can evaluate the overall performances

based on the performances of SZ’s first three steps and the

performances of lossless compressors without integrating the

lossless compressors in SZ physically. In our experiments, we

run SZ’s first three steps on different datasets and measure

r0, c0, and d0. Then, we treat the output by SZ’s first three

steps as the input to the 8 lossless compressors, in order to

measure the lossless compressors’ r1, c1, and d1. The overall

compression performance is calculated by Equation (1). The

compression ratio r0, compression rate c0, and decompression

rate d0 of the first three steps of SZ are listed in Table II. The

overall improvement to SZ without a lossless compressor is

listed in Table III to Table VII for the five datasets. If the value

in the table is negative, it means performance degradation

in percentage. Observing the tables, we see that although

fari and zling have the best compression ratios, they incur

too much computation overheads on SZ in terms of both

4

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore.  Restrictions apply. 



2990

TABLE II
PERFORMANCE OF SZ’S FIRST 3 STEPS WITH DIFFERENT ERROR BOUNDS

(COMPRESSION AND DECOMPRESSION RATE MEASURED IN MB/S)

1E-2 1E-3 1E-4
r0 c0 d0 r0 c0 d0 r0 c0 d0

HACC 15.72 181 324 8.84 173 193 5.06 163 127

ATM 19.82 200 419 16.31 162 338 11.66 143 249

Hurricane 16.17 198 400 12.18 167 305 8.71 139 203

NYX 14.90 201 370 11.23 174 269 7.29 139 169

SL 20.08 191 446 15.00 168 368 14.82 142 283

TABLE III
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS

COMPRESSORS ON HACC DATA

1E-2 1E-3 1E-4
r c d r c d r c d

brieflz 73 -13 -12 -1 -25 -11 -1 -34 -9

compress 83 -15 -10 -3 -31 -14 -2 -42 -17

deflate 101 -14 -5 12 -25 -7 0 -32 -4

fari 112 -29 -47 12 -51 -60 -2 -66 -67

gipfeli 79 -10 -9 8 -12 -6 0 -7 -2

lzfse 100 -19 -5 11 -31 -3 0 -40 -2

zling 109 -45 -38 14 -71 -52 -1 -82 -58

zstd 101 -9 -4 12 -12 -2 0 -6 -1

compression rate and decompression rate. The zstd and deflate

have similar compression ratios and are much faster than

fari and zling. Comparing zstd with deflate, we observe that

they have very close compression ratios but zstd is always

faster than deflate. Moreover, the gap of compression rate (or

decompression rate) between zstd and deflate increases as the

error bound decreases, as highlighted in the table. We therefore

set zstd as our default lossless compressors in SZ because of

its comparable performance in compression ratio and much

higher compression rate on all datasets.

In addition, we present two other interesting findings.

1. We found if the former 3 steps have better compression

ratios on dataset A than B, then the lossless compressor

will have better compression ratios on A than B as well.

Specifically, SL, ATM, Hurricane, NYX, HACC are ordered

by increasing difficulties for lossless/lossy compression.

2. For the 5 lossless compressors (deflate, fari, lzfse, zling,

zstd) with top compression ratios and the 5 datasets, if

compressor A has a better compression ratio than compressor

B has on dataset D1, it will have a no worse compression ratio

than B on dataset D2. This tells us that it is not necessary to

select a lossless compressor dynamically for different datasets.

V. RELATED WORK

Error-bounded lossy compressors have been studied for

years. In general, such compressors are designed based on

either a transform-based compression model or a prediction-

based compression model. ZFP [24] is a typical example

designed in terms of the transform-based model. It splits the

whole data into non-overlapped blocks with an edge size of 4,

performs a data transform for each block, and then extracts the

most important bits from the transformed data by an embedded

coding. FPZIP [25], for example, adopts the Lorenzo [26]

predictor to predict each data point in a dataset based on its

TABLE IV
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS

COMPRESSORS ON ATM DATA

1E-2 1E-3 1E-4
r c d r c d r c d

brieflz 505 -2 -8 83 -12 -12 11 -19 -11

compress 556 -8 -7 98 -14 -10 9 -19 -14

deflate 624 -8 -2 124 -14 -5 29 -17 -7

fari 660 -22 -38 131 -26 -47 30 -38 -58

gipfeli 419 -6 -9 86 -11 -12 20 -9 -6

lzfse 623 -13 -4 126 -18 -5 28 -22 -6

zling 584 -25 -26 121 -42 -43 31 -56 -52

zstd 630 -4 -2 129 -7 -4 28 -8 -4

TABLE V
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS

COMPRESSORS ON HURRICANE DATA

1E-2 1E-3 1E-4
r c d r c d r c d

brieflz 198 -10 -10 32 -18 -12 3 -21 -10

compress 175 -12 -9 24 -19 -14 -3 -24 -15

deflate 241 -9 -3 52 -17 -6 19 -19 -6

fari 252 -27 -47 54 -37 -58 18 -45 -61

gipfeli 189 -7 -7 40 -10 -7 14 -6 -3

lzfse 239 -16 -5 51 -22 -6 18 -26 -6

zling 244 -32 -32 53 -55 -50 19 -66 -54

zstd 238 -7 -3 51 -10 -4 18 -7 -2

neighboring data values and then shrinks the data size by

truncating the insignificant mantissa bits for the difference

between the original value and predicted value. MGARD

[27] is another example of error-bounded lossy compressor

which has a hierarchical structure of data prediction. SZ [6]–

[8] involves four critical steps, which mainly predict each

data point by the Lorenzo [26] predictor and perform a

linear-scaling quantization method and a customized Huffman

encoding algorithm to reduce the data based on user-set error

bound. In our research, we focus on the SZ compression

framwork because of its loosely coupled design. For example,

the prediction method could be customized by users based

on specific datasets, and the Huffman encoding could also be

replaced by other variable-length encoding algorithms based

on specific data features. Several new derivations from SZ

are SZauto [10] which includes second-order predictors, and

SZinterp [11] leveraging dynamic spline interpolations. In this

paper, we explore the best-fit lossless compression techniques

for the SZ compression model in terms of different scientific

datasets.

VI. CONCLUSION AND FUTURE WORK

In this paper, we evaluate 8 widely used lossless compres-

sors on the bytes generated by SZ’s first three steps on five

scientific datasets, in order to investigate the best lossless com-

pressor for SZ. We present the following findings that are very

helpful in improving SZ’s overall performance with respect to

compression ratio, compression rate, and decompression rate.

• The best-fit lossless compressor is zstd for all the datasets

in different error bounds: it has similar compression ratios

5

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore.  Restrictions apply. 



2991

TABLE VI
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS

COMPRESSORS ON NYX DATA

1E-2 1E-3 1E-4
r c d r c d r c d

brieflz 154 -10 -9 31 -17 -11 -6 -24 -9

compress 23 -12 -11 -8 -20 -14 -12 -29 -15

deflate 190 -11 -4 50 -17 -3 7 -22 -5

fari 195 -31 -50 49 -41 -57 5 -51 -63

gipfeli 159 -5 -6 42 -7 -6 5 -6 -3

lzfse 188 -18 -5 49 -24 -4 6 -29 -5

zling 197 -40 -34 50 -59 -48 6 -72 -55

zstd 188 -3 -2 50 -5 -3 7 -5 -2

TABLE VII
OVERALL IMPROVEMENT PERCENTAGE TO SZ WITH DIFFERENT LOSSLESS

COMPRESSORS ON SL DATA

1E-2 1E-3 1E-4
r c d r c d r c d

brieflz 1186 -3 -6 148 -10 -13 24 -13 -11

compress 209 -6 -7 90 -12 -11 30 -15 -11

deflate 1416 -4 -1 198 -12 -4 49 -13 -6

fari 1503 -19 -37 212 -25 -47 51 -29 -51

gipfeli 768 -2 -5 141 -9 -10 31 -8 -5

lzfse 1408 -13 -4 199 -19 -6 49 -18 -5

zling 1432 -8 -12 215 -35 -34 57 -49 -43

zstd 1399 -1 -2 200 -8 -4 51 -7 -4

to those of zlib but improves the overall compression rate

by up to 40% on HACC data under error bound of 1E-4.

• Characterization of the bytes outputted by SZ’s first three

steps shows that the bytes are not fully compressed on

the third step of SZ.

We plan to the explore more effective encoding or com-

pression techniques for SZ’s third step, because the current

last step can improve the compression significantly in some

cases, meaning that the third step has much potential for

improvement. We will also investigate more scientific datasets

to check whether zstd is always the best lossless compressor.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing

Project (ECP), Project Number: 17-SC-20-SC, a collaborative

effort of two DOE organizations – the Office of Science and

the National Nuclear Security Administration, responsible for

the planning and preparation of a capable exascale ecosystem,

including software, applications, hardware, advanced system

engineering and early testbed platforms, to support the nation’s

exascale computing imperative. The material was supported by

the U.S. Department of Energy (DOE), Office of Science and

DOE Advanced Scientific Computing Research (ASCR) of-

fice, under contract DE-AC02-06CH11357, and supported by

the National Science Foundation under Grant OAC-2003709,

OAC-2003624/2042084, SHF-1617488, and OAC-2104023.

We acknowledge the computing resources provided on Bebop,

which is operated by the Laboratory Computing Resource

Center at Argonne National Laboratory.

REFERENCES

[1] S. Habib, V. Morozov, N. Frontiere, H. Finkel, A. Pope, K. Heitmann,
K. Kumaran, V. Vishwanath, T. Peterka, J. Insley et al., “Hacc: extreme
scaling and performance across diverse architectures,” Communications

of the ACM, vol. 60, no. 1, pp. 97–104, 2016.
[2] D. Tao, S. Di, Z. Chen, and F. Cappello, “Exploration of pattern-

matching techniques for lossy compression on cosmology simulation
data sets,” in DRBSD2017, 2017, pp. 43–54.

[3] ——, “In-depth exploration of single-snapshot lossy compression tech-
niques for N-body simulations,” in 2017 IEEE International Conference

on Big Data. IEEE, 2017, pp. 486–493.
[4] ——, “In-depth exploration of single-snapshot lossy compression tech-

niques for n-body simulations,” in 2017 IEEE International Conference

on Big Data (Big Data), 2017, pp. 486–493.
[5] D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Improving

performance of iterative methods by lossy checkponting,” in Proceedings

of the 27th International Symposium on High-Performance Parallel

and Distributed Computing, ser. HPDC ’18. New York, NY, USA:
Association for Computing Machinery, 2018, p. 52–65.

[6] S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in IEEE International Parallel and Distributed Processing

Symposium (IEEE IPDPS). IEEE, 2016, pp. 730–739.
[7] D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy

compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in IEEE International Parallel and

Distributed Processing Symposium (IEEE IPDPS). IEEE, 2017, pp.
1129–1139.

[8] X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference

on Big Data. IEEE, 2018.
[9] A. M. Gok, S. Di, Y. Alexeev, D. Tao, V. Mironov, and F. Cappello,

“Pastri: Error-bounded lossy compression for two-electron integrals
in quantum chemistry,” in IEEE International Conference on Cluster

Computing (IEEE Cluster), 2018, pp. 1–11.
[10] K. Zhao et al., “Significantly improving lossy compression for HPC

datasets with second-order prediction and parameter optimization,” in
Proceedings of the 29th International Symposium on High-Performance

Parallel and Distributed Computing, ser. HPDC ’20, 2020, pp. 89–100.
[11] K. Zhao, S. Di, M. Dmitriev, T.-L. D. Tonellot, Z. Chen, and F. Cappello,

“Optimizing error-bounded lossy compression for scientific data by dy-
namic spline interpolation,” in 2021 IEEE 37th International Conference

on Data Engineering (ICDE). IEEE, 2021, pp. 1643–1654.
[12] Squash Compression Benchmark, https://quixdb.github.io/squash-

benchmark/, online.
[13] Zstd, https://github.com/facebook/zstd/releases, online.
[14] L. P. Deutsch, “Gzip file format specification version 4.3,” 1996.
[15] M. Mahoney, “Data compression explained,” mattmahoney. net, updated

May, vol. 7, p. 1, 2012.
[16] brieflz, https://github.com/jibsen/brieflz, online.
[17] compress, https://github.com/vapier/ncompress, online.
[18] deflate, http://www.zlib.net/, online.
[19] fari, https://github.com/davidcatt/FastARI, online.
[20] gipfeli code, https://github.com/google/gipfeli, online.
[21] R. Lenhardt and J. Alakuijala, “Gipfeli – high speed compression

algorithm,” in Data Compression Conference (DCC), 2012. IEEE,
2012, pp. 109–118.

[22] lzfse, https://github.com/lzfse/lzfse, online.
[23] zling, https://github.com/richox/libzling, online.
[24] P. Lindstrom, “Fixed-rate compressed floating-point arrays,” IEEE trans-

actions on visualization and computer graphics, vol. 20, no. 12, pp.
2674–2683, 2014.

[25] P. Lindstrom and M. Isenburg, “Fast and efficient compression of
floating-point data,” IEEE Transactions on Visualization and Computer

Graphics, vol. 12, no. 5, pp. 1245–1250, 2006.
[26] L. Ibarria, P. Lindstrom, J. Rossignac, and A. Szymczak, “Out-of-core

compression and decompression of large n-dimensional scalar fields,”
in Computer Graphics Forum, vol. 22, no. 3. Wiley Online Library,
2003, pp. 343–348.

[27] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5-6, pp.
65–76, 2018.

6

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:18:33 UTC from IEEE Xplore.  Restrictions apply. 


