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Abstract—Molecular dynamics (MD) has been widely used
in today’s scientific research across multiple domains includ-
ing materials science, biochemistry, biophysics, and structural
biology. MD simulations can produce extremely large amounts
of data in that each simulation could involve a large number
of atoms (up to trillions) for a large number of timesteps (up
to hundreds of millions). In this paper, we perform an in-
depth analysis of a number of MD simulation datasets and then
develop an efficient error-bounded lossy compressor that can
significantly improve the compression ratios. The contributions
are fourfold. (1) We characterize a number of MD datasets
and summarize two commonly-used execution models. (2) We
develop an adaptive error-bounded lossy compression framework
(called MDZ), which can optimize the compression for both
execution models adaptively by taking advantage of their specific
characteristics. (3) We compare our solution with six other state-
of-the-art related works by using three MD simulation packages
each with multiple configurations. Experiments show that our
solution has up to 233% higher compression ratios than the
second-best lossy compressor in most cases. (4) We demonstrate
that MDZ is fully capable of handing particle data beyond MD
simulations.

I. INTRODUCTION

Molecular dynamics simulations have become one of the
most commonly-used methods to study the physical move-
ments of atoms and molecules. For instance, MD simula-
tions are often used to refine 3D structures of proteins and
macro-molecules in terms of experimental constraints in X-
ray crystallography or nuclear magnetic resonance (NMR)
spectroscopy. In physics, MD simulations can be used to study
the dynamics of atomic-level phenomena, such as thin-film
growth and ion implantation (the atomic-scale details of which
are very difficult to observe directly) or to investigate physical
properties of nanoscale devices. In biophysics and structural
biology, MD simulations are often applied to examine the
motions of macromolecules (e.g., proteins and nucleic acids),
for interpreting the results of some biophysical experiments
and modeling interactions between molecules.

Generally speaking, scientific data can be categorized into
three distinct types, including particle data (e.g., locations
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of atoms), structured mesh (regular multidimensional grid
in space), and unstructured mesh (irregular mesh such as
triangular grid). MD simulation is one of the most signifi-
cant/typical particle-based research in the community. As the
computational scales at which MD simulations are carried out
rapidly increases [1], so does the volume of data generated
during the simulations. For example, an atomistic model of the
SGLT membrane protein may consist of 240 million frames
each with 90k particles, producing a total of ~260 TB of raw
trajectory data over a 480 ns simulation[2]. The most recent
MD simulations [1] are able to simulate 20 trillion particles
in a long trajectory, generating 10 PB of data if there are
hundreds of frames to store.

The explosive growth of data volume has brought major
challenges to the storage systems designed for saving and
managing scientific datasets [3], [4], [5]. For scientific applica-
tions, the vast amount of data are generally stored in the form
of files [6], for the purpose of convenient post hoc analysis,
management, and transfer. How to efficiently store and transfer
the large amount of data becomes a serious concern. In fact,
for today’s supercomputers, a research project generally is
allocated only dozens of terabytes of storage space (e.g., 50
TB by default on ORNL Summit [7]) or a few hundreds of
terabytes upon requests. Obviously, efficiently reducing the
volume of generated data can substantially lower the burden
on storage, management and transfer.

Lossy compression has been considered by many re-
searchers as a promising solution to the aforementioned data
problems [8], [9], [10], [11], [12], [13]. In this paper, we aim
at designing an efficient error-bounded lossy compressor for
MD datasets, which presents a series of challenges. (1) In
MD simulations, each snapshot may contain a large number
of particles, so that only a limited number of snapshots can
be held in memory and the compression should be done in
batches. Therefore, compressors that rely on the time series
patterns [14], [15], [16] will have sub-optimal performance,
and a practical and effective compressor for MD data should
involve both efficient time-based compression and efficient
snapshot-based compression. (2) It is very challenging to de-
velop an efficient snapshot-based compression method because
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the adjacent data values in a snapshot may not be smooth
(shown in Section V-B), while existing state-of-the-art lossy
compressors substantially depend on the high smoothness
of the data in space. (3) Unlike some existing compressors
[16] optimized for cosmological N-body simulations, MD
compressors could not exploit velocities to help compress
position data in most cases, because MD particle often quickly
vibrate around their equilibrium positions and velocities are
only predictive of future positions for a few femtoseconds in
the future (a fraction of a typical vibrational period).

With all the above challenges in mind, we propose a novel
error-bounded lossy compressor that is particularly efficient for
MD simulations. The key contributions are listed as follows:

o« We carefully characterize a number of different MD
simulation datasets and exploit some of the key patterns
identified in the MD data to significantly improve com-
pression ratios.

o We design an adaptive error-bounded lossy compressor
for MD datasets which fully leverages the specific char-
acteristics in both spatial and temporal dimensions.

o We evaluate our solution with six state-of-the-art related
works. Experiments show that MDZ can always lead
to the best compression quality in various execution
patterns. In absolute terms, our solution obtains up to
233% higher compression ratios than does the second
best error-bounded lossy compressor.

o« We integrate our solution into the MD package
LAMMPS. Evaluation shows our solution has negligi-
ble time overhead in real-world MD simulations under
different scales and settings.

o« We discuss the generalizability of our solution and
demonstrate MDZ has the best compression quality on
datasets beyond MD simulations.

The rest of the paper is organized as follows. In Section II,
we discuss the related work. In Section III, we describe the
research background. In Section IV, we formulate the research
problem. In Section V, we present an in-depth characterization
of several MD simulation datasets, which motivates our design
and optimization. In Section VI, we describe in details our
developed MD data compressor - MDZ. In Section VII, we
present and discuss the evaluation results. We conclude the
paper in Section VIIIL.

II. RELATED WORK

The compression of MD datasets is critical to the cost-
effective data processing of MD simulations.

In general, compression techniques can be divided into
two categories - lossless compression and lossy compression.
Lossless compressors have been deployed in many fields. For
example, Google Brotli [17] and Facebook Zstandard [18] are
widely used in industrial data management systems. Gorilla
[19] and AMMMO [20] bring lossless methods to time series
databases. However, lossless compressors suffer from very low
compression ratios in the scientific domain, as demonstrated
in Section VII-B. The reason is that scientific datasets are
mainly composed of floating-point numbers each of which has
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very random ending mantissa bits so that it is very hard for
lossless compressors to catch the repeated patterns during the
encoding.

Lossy compression, unlike lossless compression, can reach
a higher compression ratio with some information loss. Lossy
compression has been adopted in some database systems. For
example, ModelarDB [21], [22] is a time series management
system with lossy compression built-in. It has three com-
pression algorithms, including the PMC-mean [23], the linear
Swing model [24], and the lossless method in Gorilla [19].
ModelarDB uses a window-based approach to find the best
algorithm for each data segment. SummaryStore [25] is an
approximate time-series store which merges the old data when
the space limit is reached. Besides time series databases, there
are also some lossy compression studies [26], [27], [28], [29]
for GPS trajectory data systems.

Lossy compressors in database systems are not suitable
for MD datasets for the following reasons. First, time series
databases such as ModelarDB use simple data estimation
methods and they do not have quantization or entropy cod-
ing process, thus they suffer from low compression ratios
on MD datasets (demonstrated in Section VII-C). Second,
GPS trajectory compressors are not suitable for MD datasets
either because MD data is much more unconstrained than the
GPS data (note that GPS devices follow direct lines while
MD particles move rather randomly). Third, many database
systems such as SummaryStore do not have an error-bounded
design such that they cannot guarantee the quality of the
decompressed data would satisfy the users’ requirements.

Even general lossy compressors for scientific applications
such as ZFP [30] and SZ-Interp [31] exhibit sub-optimal
results on MD datasets [16], because they are designed and
optimized for three-dimensional data. While MD datasets are
two-dimensional and are split into batches for compression.

Due to the above limitations, researchers are investigat-
ing lossy compressors that are specifically designed for MD
datasets. HRTC [2] adopts a piecewise linear representation of
trajectories, followed by an error-controlled quantization and a
variable length integer representation. Li et al. [16] improved
the compression ratio by employing velocity fields to assist
the prediction of spatial coordinates. Note that, as mentioned
in Section I, this strategy may not be efficiently applied to
MD datasets. PMC [32] utilizes information on atomic bonds
in a molecule to predict atomic positions in each frame. This
method, however, is not suitable for simulations with non-
bonded interactions, where connectivity between neighboring
atoms can dynamically change during the simulation.

III. RESEARCH BACKGROUND

Two key sets of background concepts — MD simulation
and error-bounded lossy compression — are important to the
development of our novel error-bounded lossy compressor for
MD simulation datasets.

A. MD Simulations

MD is a type of N-body simulations which is widely used
to explore the behavior of materials at the nanoscale. As illus-
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trated in Figure 1, a single MD simulation generally involves
many time steps, in each of which the new position and
velocity of each particle are predicted based on sophisticated
calculations of interatomic forces. Force calculation typically
consumes the overwhelming majority of the computing time.
After adjusting atomic positions based on the calculated forces
(shown as the highlighted arrow), boundary conditions are
applied and coordinates or physical quantities of interest care
calculated and written out.
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= =
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Move time and
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Fig. 1. Illustration of classic MD simulation

Get forces: ‘

A typical MD output is dominated by the storage of
coordinate information along the trajectory. Each particle’s
position is composed of three axes (X, y, z). This is why most
of the existing lossy trajectory compressors [2], [32], [33],
[34] focus on the positions rather than velocities. As such, in
the following, the targets for compression are the particles’
positions (X, y, z) alone.

B. SZ Error-bounded Lossy Compression Framework

Our proposed compression technique builds upon the SZ
lossy error-bounded compression framework [35], [31], [36],
[37]. The SZ framework supports customized prediction stage,
allowing us to exploit MD application-specific characteristics
and patterns in order to improve the compression quality.

SZ proceeds by four critical steps, as illustrated in Figure 2:
(1) data prediction, (2) linear-scale quantization, (3) entropy
coding (i.e., Huffman coding), and (4) lossless compression
(e.g., Zstd [18]). In most applications, tuning the first step
is crucial to achieve high compression quality on specific
applications, as higher prediction accuracy would yield better
distribution of quantization bins and thus higher compression
ratio under the Huffman coding.

Compressed

data
Byte stream

Lossless
ompression

Linear-scale
quantization

Point-wise data
prediction

Entropy
encoding

- — =

Fig. 2. Illustration of SZ compression framework

IV. PROBLEM FORMULATION

In this section, we formulate the research problem by classi-
fying the input and output of error-bounded lossy compressors
in the context of MD simulation datasets.

The research problem can be formulated as follows. Sup-
pose an MD simulation dataset (denoted by D) is composed
of M snapshots each containing N particles. Atomic positions
(represented as three axes values {Xx, y, z}) need to be stored
to disks during the simulation.

In general, compression time should be negligible compared
with the time to execute hundreds to thousands of timesteps. In
most MD simulations, the stiffness of the equations of motion
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entails very short timesteps on the order of femtoseconds,
which is a small fraction of the vibration period of the
fastest modes in the system. Hence, by construction, very little
structural changes occur between neighboring timesteps. As
transitions that change the topology are typically thermally-
activated, simulation data need to be saved only occasionally
(i.e., thousands to tens of thousands of timesteps). For applica-
tions to estimate systems with fast relaxation processes, e.g., to
estimate the viscosity of liquids, or the vibrational properties
of solids, a higher frequency might be required (e.g., hundreds
of timesteps).

Accordingly, our research target can be summarized as max-
imizing the compression ratio while keeping the compression
and decompression speed fast enough for the MD simulations,
and processing the M snapshots in batches instead of com-
pressing the entire dataset D at once.

Based on the above problem definition, traditional pure
trajectory compression methods [16], [2], [34] are not suitable,
since they need to collect a large number of snapshots for
the compression, and decompressing any one snapshots needs
to decompress all its preceding snapshots as well. Moreover,
single-snapshot based compression [38], [8] is not an ideal
solution either, in that it will suffer from low compression
ratios because of the non-smooth nature of the spatial particle
data. To address these issues, we propose MDZ which makes
full use of the characteristics of MD datasets in both spatial
and temporal dimensions to significantly improve compression
ratios.

V. INVESTIGATION OF MD DATASETS

In this section, we identify key characteristics and patterns
from a number of MD datasets. Specifically, we first analyze
the spatial patterns present in MD datasets and then investigate
their temporal features.

A. MD Simulations Used in Our Work

Table I summarizes the eight MD simulation datasets that
are considered in the following. For Copper and Helium
datasets, we include two broad execution modes, noted A
and B. In the mode A simulations, each snapshot involves
a relatively large number of atoms (generally more than 100K
atoms). These are typical of conventional large-scale MD
simulations. In mode B, each simulation involves a large
number of timesteps and a relatively small number of atoms
(such as 1k atoms). This mode is more typical of long-
timescale simulations, e.g., using methods such as Parallel
Trajectory Splicing [39].

The eight datasets can be described as follows.

o Copper (Mode A&B): The data comes from the study
of the influence of strong electric fields on copper in
the context of particle accelerators. The mode A sample
contains 1077290 atoms and the mode B sample has 3137
atoms. The time evolution was obtained by molecular
dynamics method using the LAMMPS code [40] in
the canonical ensemble at a temperature of 800K. The
simulation was run on up to 30 nodes (1024 cores) of
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TABLE 1
MD SIMULATION DATASET IN OUR STUDY
Application State Code Snapshots Atoms
Copper-A Solid LAMMPS 83 1077290
Copper-B Solid LAMMPS 5423 3137
Helium-A Plasma | LAMMPS 2338 106711
Helium-B Plasma EXAALT 7852 1037
ADK Protein | CHARMM 4187 3341
IFABP Protein | CHARMM 500 12445
Pt Solid LAMMPS 300 2371092
LJ Liquid | LAMMPS 50 6912000

the Grizzly [41] supercomputer at Los Alamos National

Laboratory (LANL).

e Helium (Mode A): This dataset contains simulations
of the growth of helium bubbles embedded in a body-
centred cubic tungsten matrix. The simulation cell con-
tains 106711 atoms. Helium atoms are gradually inserted
in the bubble as the simulation proceed, mimicking the
agglomeration of helium atoms incoming from the plasma
into the first wall of a fusion reactor. The simulations
were carried out with the Parallel Replica Dynamics
method [42] using the LAMMPS code [40]. Simulations
were carried out on up to 1000 nodes of the Trinity
supercomputer [43] at LANL.

o Helium (Mode B): This dataset contains simulations of
small vacancy/helium clusters in a body-centred cubic
tungsten matrix. The simulation cells contain 1037 atoms.
Long-time simulations were carried out with the Parallel
Trajectory Splicing methods [39] to investigate the mo-
bility of these defects formed by helium atoms incoming
through the plasma in contact with the first wall of fusion
reactors [44]. These simulations were carried out on up
to 2000 nodes of the Trinity supercomputer at LANL.

o ADK: This dataset is from the simulation of adenylate
kinase (ADK) which is the critical enzyme controlling
the energy balance in cells. According to Seyler[45],
ADK was simulated with explicit water and ions in
isothermal—-isobaric ensemble settings with temperature
being 300 K and pressure being 1 bar. The experiment
was conducted on the biomolecular-optimized Anton su-
percomputer [46] at Pittsburgh Supercomputing Center.
The snapshots contains 3341 atoms and were saved every

240 picoseconds for a total runtime of 1.004 ps.

o IFABP: The data comes from an MD simulation with
12445 atoms of intestinal fatty acid-binding protein in
water. Fatty acid-binding proteins affect the transfer of
fatty acids between cell membranes while their mecha-
nism are largely unknown. The simulation data is valuable
for studying protein dynamics, protein-ion, and protein-
water interactions [47]. The experiment was running for
500 picoseconds using CHARMM]I48]. The timestep is
set to 2 femtoseconds and the snapshots are saved every

1 picosecond.

o Pt: The data corresponds to an MD simulation of surface
diffusion and adatom clustering on a platinum surface.
The model had 2371092 atoms and was run for 32M

timesteps using the local hyperdynamics methodology.
More details on the method and simulation analysis are
given in [49]. The simulation was run on 64 KNL nodes
(4096 cores) of the Theta supercomputer at ALCF [50].
LJ: This simulation dataset was generated by the
Lennard-Jones liquid benchmark [51], [52]. The Lennard-
Jones potential estimates the potential between particles
based on the particle distance. LAMMPS includes the
Lennard-Jones potential as one of the simulation bench-
marks. The simulation cell contains 6912000 atoms. The
simulation was run on up to 500 cores of the Bebop
supercomputer [53] at Argonne National Laboratory.

B. Characterization of Spatial Features
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Fig. 3. Demonstration of spatial correlations in atom position data

Takeaway 1: Our first critical observation is that in many
cases, the MD datasets exhibit various patterns in the spatial
domain. Due to the space limit, we give six typical examples
(including Copper-B, ADK, Helium-A, Helium-B, Pt and LJ)
to demonstrate the diverse spatial patterns in Figure 3. As
illustrated in the figure, the dataset may exhibit a stable zigzag
pattern (Figure 3 (a) (d)), an erratic zigzag pattern (Figure 3
(c) (), a stair-wise pattern (Figure 3 (e)), or a random pattern
(Figure 3 (b)).

Takeaway 2: We also observe from Figure 3 (a) (c) (d)
that in many cases, the data are clustering into several equal-
distant discrete levels in the whole value range. In fact, for
all the data points that are clustering at a specific level, their
positions actually vibrate in a small range and are not strictly
constant. These regular patterns emerge from the crystalline
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structure of the underlying materials. The observed zig-zag
patterns are also typical of how crystalline samples are usually
created. Such patterns can change with time, as the structure
of the materials evolve.

Takeaway 3: Based on Figure 3, we also learn that the
atom’s coordinate may jump from one discrete level to another
nearby level, point by point throughout the whole dataset.
Since many prediction-based compressors such as SZ simply
predict each data point based on its preceding data points
without explicitly using the discrete levels, it would definitely
suffer from relatively low prediction accuracy in this situation,
leading to low compression ratios (as discussed in Section III).

As mentioned above, we observe that the data values often
cluster and vibrate around a number of different discrete levels,
which can be verified by the distribution of the data (as
presented in Figure 4). As shown in the figure, the distribution
of any MD dataset can be split into two categories - multiple-
peak-dominated distribution (see Figure 4 (a) (c) (d)) and
rather uniform distribution (see Figure 4 (b) (e) (f)). The
former clearly indicates the strong clustering feature of the
data in many cases, which is consistent with our analysis based
on Figure 3.

C. Characterization of Temporal Features

Datasets which have no prominent spatial patterns often
exhibit particular temporal correlations that can be used to
achieve very high compression ratios. Figure 5 presents the
position data in the time dimension (i.e., trajectories of atomic
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positions) for six datasets. It is clearly observed that the
data value always exhibit more or less correlations in the
time dimension. Basically, there are two correlation levels as
summarized below. (1) The data may change relatively largely
and frequently for some datasets (such as Copper-B, ADK,
and Helium-B). (2) The data may change slightly in some
situations (such as Helium-A, Pt, and LJ).

Takeaway 4: One very useful observation is that for the
datasets which exhibit low spatial patterns, for example Pt and
LJ, they often have extremely strong data smoothness in the
time dimension and a large majority of the data are extremely
close in the time dimension throughout the whole simulation.

Based on the four important takeaways explored in our
characterization, we develop an adaptive error-bounded lossy
compressor for the diverse MD datasets which can signifi-
cantly improve the compression ratios over the existing state-
of-the-art MD compressors.

VI. MDZ: AN ADAPTIVE ERROR-BOUNDED LOSSY
COMPRESSOR FOR MD DATASETS

The basic design idea is selecting the best method from
among three compressors best suited to diverse data features
in both the spatial and temporal dimension.

Figure 6 summarizes the design of MDZ. Basically, the
datasets are generated by the data source such as the MD
simulation, as illustrated in Figure 1. As mentioned in Section
I and Section IV, the MD applications need to perform the
compression operation periodically in order to avoid out-of-
memory issue. The snapshots to be compressed are stored in
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a buffer and the buffer size (BS) is defined as the maximum
number of snapshots to be kept in the buffer. Finally, the
compressed data will be stored into the parallel file systems
(PES).

As illustrated in Figure 6, the entire compression pipeline
involves four critical steps: prediction, optimized quantization,
encoding and Zstd, following the classic SZ compression
framework [54], [35]. Our key contribution involves improve-
ments to the prediction and quantization stages.

Data Disk
source Buffer | e ]_> (PFS)
Prediction Optimized ;
oooog Quantization —>[Encod|ng —| Zstd |—
OurSol. VQ: Do VQ on
T each snapshot
Do VQ on 1st,

OurSol. VQT:
OurSol. MT:

C] Compression Stage D Our main contributions
(") Data flow in MD Sim [ | One snapshot — Dependency

T on remaining
Do (T) on 1st,
T on remaining

Select best option

Fig. 6. Design Overview (VQ,VQT,and MT are described in Section VI-A
and VI-B )

Specifically, we design three efficient MD data prediction
strategies to adapt to diverse data patterns in the MD datasets:

« Vector-quantization-based compressor (abbreviated as
VQ): The VQ compressor predicts the data values totally
based on the spatial information, thus the data prediction
for any one snapshot has no dependencies on any other
snapshots, such that any snapshot data can be decom-
pressed very quickly without a need in decompressing
other snapshots. This is particularly effective on the
datasets with very low smoothness in time dimension (see
Figure 5 (a) (b)).

« Vector-quantization-time-based compressor (abbreviated
as VQT): The VQT compressor adopts the VQ predictor
on the first snapshot in the buffer, and adopts a time-
based predictor (i.e., predict each data point using the
corresponding data values in the previous snapshot) for
all the remaining snapshots in the buffer. This method is
designed particularly for datasets that have smooth time
dimension and also have strong multi-peak-distribution
patterns in space (see Figure 5 (c) and (d)).

o Multi-level-time-based compressor (abbreviated as MT):
The MT compressor adopts a particular data prediction
method - called initial-time-based prediction (shown as
the notation (7') in Figure 6)), and applies the ordinary
time-based predictor on all other remaining snapshots in
the buffer. This method is particularly effective on the
datasets with very high smoothness in the time dimension
(see Figure 5 (e) (f)).

We describe in detail the compressors with optimized pre-
diction and quantization methods in the following subsections.
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A. Vector-Quantization-Based Compression (VQ and VQT)

The basic idea of the VQ algorithm is to leverage the spatial
patterns characterized in Section V-B (i.e., takeaway 2 and
takeaway 3). Takeaway 2 indicates that the data are clustering
into different roughly equal-distant discrete levels (as shown in
Figure 3 and Figure 4), which motivates us to use the centroid
(ak.a., center) of each cluster to predict all the data values
within this cluster.

We present the pseudo-code of the VQ algorithm in Algo-
rithm 1. The first step is computing the level distance A and the
initial level value p (line 1), based on which every level value
can be retrieved easily. Line 2~8 is is the main compression
procedure, including data prediction (line 4~5), computation
of level index (line 6) and quantization (line 7).

Algorithm 1 VECTOR-QUANTIZATION-BASED COMPRES-
SION (VQ)

Input: raw MD data D (single snapshot)
Output: compressed data (byte stream)

1: Compute the level distance A and the initial level value x4 by the sampling-
based KMeans;

2: Store d,, as it is;

3: for d; €D, where =1, 2, ---, N do

4: L; < Round( dl;“); /*Compute level*/

5: Vi < p + A-L;; /*Get the level’s centroid value - VQ based
predictor™*/

6: jJi < L; — L;_1; /*Compute relative level index*/

7 b +— (@ + 1)/2; /*linear-scale quantization, where e is error
bound*/

8: end for

9: B < HUFFMANy,, ¢ g(B); /*Huffman encoding on quantization codes*/
10: J < HUFFMANj;, ¢ y(J); /*Huffman encoding on level index codes*/
11: ZstD(B + J); /#Compress Huffman output by Zstd [18]*/

We illustrate the key steps (data prediction and quantization)
of the VQ compression algorithm in Figure 7. The figure
shows a snippet of the dataset (=10 — 26). As we mentioned
previously, the data values are clustered at different levels with
a small vibration, so we use the corresponding level’s centroid
value to predict each data point. As such, the quantization bin
(see the red number 3 in the figure) is calculated based on
the prediction error (i.e., d; — V;). The vector B is used to
hold the quantization bins, and J is used to hold the relative
index numbers. Both of them will be compressed by Huffman
encoding later on (line 9-10 in Algorithm 1).
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Fig. 7. Tllustration of VQ-based Prediction + Quantization

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 04:49:23 UTC from IEEE Xplore. Restrictions apply.



As mentioned above, we develop an efficient sampling-
based 1D K-means clustering algorithm to identify the level
distance and initial level value. In what follows, we first
describe the basic K-means algorithm and then discuss how
we boost its performance in the context of compression.

Unlike the time-consuming 2D K-means problem, optimally
partitioning N sorted 1-dimensional data points to K groups
has polynomial time complexity solutions. Define the sorted
data points as dy,ds, ..,dy, and the cost of clustering as the
summation of the distance between the data points and their
centroid points. In Formula (1), we define Cost(l,r) as the
optimal cost of clustering d, .., d,. to one group, F'(n, k) as the
optimal cost of clustering dy, .., d,, to k groups, and H(n, k)
as the argument that minimizes F'.

Cost(l,r) = Y1 (d: — Z247)
F(n, k)=min(F(i—1, k—1)+Cost(i,n),V0<i<=n)
H(n, k)=arg min(F(i—1, k—1)+Cost(i,n), V0<i<=n)

The boundaries of clusters can be restored from H iteratively.
The naive implementation to solve F(N, K) has O(KN?)
time complexity, and we adopt a solution [55] that optimizes
the computational cost to O(KN).

In our case, the number of clusters K is unknown and
the data points are unsorted. To boost the performance, on
the one hand, we compute F' only once during the whole
simulation, and we compute it on a sampled dataset that has
10% data points from the first single snapshot. We observe the
snapshots have unchanged level patterns during the simulation
thus the result on the first snapshot is applicable for the
following snapshots. On the other hand, note that the value
of F(N,1),F(N,2),..,F(N, K) are computed in order when
computing F'(N, K). Let G(k) %, we stop the
computation of F' at x if G(k) decreases significantly than
G(k — 1). The maximum test value of K is set to 150 as a
higher number of clusters will harm the compression ratio of
the vector quantization indexes. The level distance \ and initial
level value i are computed using the boundaries obtained from
H.

For the VQ compression method, we adopt the VQ al-
gorithm on each snapshot, as illustrated in Figure 6. By
comparison, the VQT compression method applies the VQ
algorithm only on the first snapshot in each buffer, and all
other snapshots in the buffer will be compressed by the
classic time-based compression. Specifically, each subsequent
data point will be predicted using the corresponding data
value in the previous timestep. This may significantly improve
the compression ratio especially in situations with relatively
smooth data in the time dimension (see Figure 5 (c)-(f)).

ey

B. Multilevel Time-based Compression (MT)

We propose an additional error-bounded compression
method - called multi-level-time-based compression (MT),
which is particularly effective for the datasets with extremely
high smoothness in the time dimension.

The MT compression algorithm also adopts the prediction-
based compression model. The particular design of MT is that
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the first snapshot in the buffer will be predicted based on the
initial snapshot of the whole dataset, which is motivated by the
very strong correlation between all the simulation snapshots
and the initial snapshot in some datasets. Figure 8 shows
the similarity of all the snapshots compared with the initial
snapshot (i.e., snapshot 0). The similarity is defined in Formula
2). .

Count(| 220l 1< - v )

Count(S;)

(@)

Similarity(r,i) =

where 7 refers to a threshold, S; refers to snapshot 4, S;[7]
refers to the jth data point in the snapshot S;. The similarity
formula calculates the percentage of the “unchanged” data
points (atoms) based on some threshold 7. The figure clearly
demonstrates that succeeding snapshots in some datasets such
as Copper-A and Pt are always extremely similar to the initial
snapshot.
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Fig. 8. Snapshots Similarity with Snapshots-0 (Snapshots normalized to 0-
100)

Using the particular snapshot-0-based prediction, the pre-
diction error could be much lower than the traditional spatial
prediction error such as Lorenzo-predictor, as presented in
Table II.

TABLE I
PREDICTION ERRORS FOR THE FIRST SNAPSHOT IN BUFFER
Method Pt LJ Helium-B
X Y z X y z X Y z
Lorenzo+Regression 3.46 | 5.50 | 3.88 | 5.87 | 3.87 | 3.75 | 5.83 | 1.14 | 0.83
MT(Snapshot-0-based) | 0.13 | 0.13 | 0.01 1.37 | 1.37 | 1.38 [ 0.08 | 0.07 | 0.09

C. Linear-Scale Quantization Optimizations

In this section, we optimize the linear-scale quantization
step by tuning two quantization settings to further improve
the overall compression performance and quality.

1) Optimization of Quantization Scale: The quantization
scale controls the value-range of the quantized integers. The
data points that are out-of-scope will be marked with re-
served integer value and stored separately. A smaller scale
will increase the number of out-of-scope data points which
impacts the compression ratio, while a larger quantization
scale leads to a bigger Huffman tree such that the Huff-
man coding will be slower. In Figure 9, we illustrate the
compression/decompression speed with different quantization
scale settings. The compression speeds of VQ, VQT, and
MT decrease from 95MB/s, 109MB/s, 119MB/s to 19MB/s,
20MB/s, 32MB/s respectively when the quantization scale
changes from 64 to 65536. As such, in our solution, we
set the optimal quantization scale to 1024, which can always
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keep a high compression performance while preserving a high
compression ratio.
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Fig. 9. Compressor Performance Affected by Quantization Scale on Helium-B
Dataset (value-range-based error bound (e) = 1E-3, BS = 10)

2) Optimization of Quantization Sequence: The quanti-
zation sequence controls how the integers from multiple
snapshots are stored together as 1D array for the Huffman
coding and dictionary coding. We denote Seq-1 as storing
one snapshot first, then storing the following snapshots. Seq-
2 is denoted as storing one particle in all snapshots first,
then storing the following particles. We observe that Seq-2
is better than Seq-1 in terms of compression ratio, especially
when the data is stable in time (as shown in Figure 5 (c) (e)
(f)). When many data points remain unchanged in the time
dimension and if they are put together as required by Seq-2,
the dictionary coder will have better compression results. Table
IIT demonstrates compression ratios of the two sequences on
Helium-B dataset. The second row of the table is the value-
range-based error bound (€), and the corresponding absolute
error bound is wvalue_range x €. The table shows Seq-2
improves the compression ratio by 37.8%, 37.6%, and 39.7%
over Seq-1 on axis X, y, and z respectively. As a result, we
adopt Seq-2 in our solution.

TABLE III
COMPRESSION RATIO (CR) OF HELIUM-B DATASET WITH DIFFERENCE
SEQUENCE SETTINGS, BUFFER SIZE (BS) = 10 (METHOD=MT)

Axis X Y 7

€ 1E-1 | 5E-2 | 1E-2 | 1E-1 | 5E-2 | 1E-2 [ 1E-1 | S5E-2 | IE-2
Seq-1 156 97 46 176 101 47 146 97 46
Seq-2 | 215 132 53 236 139 54 204 133 53

D. Adaptive Selection of Best Compressor (ADP)

In this section, we propose our adaptive solution (ADP) that
can select the best compressor (VQ, VQT or MT) dynamically
at runtime. MDZ uses ADP by default to simplify the com-
pression configuration, while manually choosing VQ, VQT, or
MT as the compressor is also supported in MDZ.

We notice that during the simulation, the data patterns stay
the same in a short term and the patterns (either spatial or
temporal) may change prominently in the long term. Further-
more, the best compressor keeps its advantage across some
snapshots, but it may not be the best one on all the snapshots.
As illustrated in Figure 10 (a), MT has the highest compression
ratio before snapshot 400 and VQT becomes the best compres-
sor after that snapshot. As a result, we propose to evaluate

the three compressors (VQ, VQT, and MT) periodically by
using them to compress the same data batch independently
and selecting the one with the best compression ratio for the
following snapshots. The evaluation will be invoked every 50
compression operations. This time interval ensures that the
best compressor is updated in time, while keeping the updating
overhead low (less than 6% of the total compression time).
Figure 10 confirms the effectiveness of our adaptive solution
(ADP). All other datasets exhibit similar results (i.e., our ADP
algorithm can always select the best solution accurately).
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Fig. 10. Illustration of smooth CR in short term and diverse CR in long term
(BS=10). ADP can pick up the best compressor throughout all the snapshots.

VII. EXPERIMENTAL EVALUATION

In this section, we present the experimental settings and
the evaluation results of our solution on eight MD simulation
datasets.
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Fig. 11. Our adaptive solution (ADP) has the highest compression ratio over
VQ, VQT, and MT under different datasets and buffer size (BS) settings,
because ADP can always select the best compression method accurately.
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A. Experimental Setting

1) Execution Environment: The experiments are executed
on the Bebop supercomputer [53] at Argonne National Labo-
ratory with up to 216 cores. Each node in Bebop is equipped
with two Intel Xeon ES5-2695 v4 processors and 128GB
memory.

2) Datasets: The experiments are evaluated on eight real-
world MD simulation datasets. The detailed information about
the datasets is presented in Section V-A and Table 1.

3) State-of-the-Art Lossless Compressors in Our Evalua-
tion: We evaluate six lossless compressors as a comparison
with lossy compressors. We include Zstd, Brotli, and Zlib
which are widely used in databases and file systems. We also
include ZFP, Fpzip, and FPC which specifically target the
floating-point data format and are the state-of-the-art lossless
compressors for scientific datasets.
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Fig. 13. Rate-distortion graphs show our solution has the best compression
quality. Lower bit rate and higher PSNR indicate better compression quality.

4) State-of-the-Art Lossy Compressors In our Evaluation:

We compare our solution with two MD data compressors, two
widely used scientific data compressors, as well as two state-
of-the-art time series compressors.

o TNG [15]: a MD compressor that uses quantization, delta
coding, and a set of integer compressors to compress the
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Fig. 12. Our solution has the highest compression ratio on all datasets and under different buffer size settings, HRTC and TNG fail to run on some datasets.

trajectory data. TNG is supported by the MD simulation
package GROMACSI56].

HRTC [2]: a lossy compressor targets on MD trajectory
compression. HRTC relies on piecewise linear function
to approximate data points.

ASN [16]: a scientific compressor designed for N-body
simulation that utilizes the time dimension for prediction.
SZ2 [57]: a prediction based error-bounded lossy com-
pressor. SZ is widely used in many scientific domains.
The framework of SZ2 is described in Section III-B.
MDB: a full C++ implementation of ModelarDB’s com-
pression solution. ModelarDB is described in Section III.
ModelarDB tightly couples its compressor with many
database features which are useless for scientific data
and introduce extra overhead. As such, we eliminate the
overhead caused by those features for a fair comparison.
LFZip [58]: a lossy compressor designed for multivariate
floating-point time series data. LFZip is a prediction-
based lossy compressor. We evaluate LFZip with its

normalized least mean
skip its neural network

square (NLMS) predictor and
(NN) predictor because the NN

predictor requires training and is 2000X slower than the
NLMS predictor according to the authors [58].
SZ supports both 1D mode and 2D mode. Table IV presents
the compression ratios of SZ in the two modes. We can observe
from the table that the 2D mode has up to 200% higher
compression ratios than 1D, because 2D mode can utilize the
data continuity in the space and time dimension at the same
time. In our experiments, we use 2D mode for SZ.

5) Excluded Cases: HRTC has runtime exceptions on
Copper-A, Helium-A, Pt, and LJ datasets. TNG has runtime
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Fig. 14. Only our solution yields the correct radial distribution function (RDF) on decompressed data (Copper-B, CR=10, BS=10 )

TABLE IV
COMPRESSION RATIOS OF SZ IN 1D AND 2D MODES (BS=10, e=1E-3)
Method Mode Pt Ly Helium-A
X y z X y z X y z
7 D | 1505 | 139.6 | 389 | 635 | 645 | 653 | 7.18 | 7.8 | 6.36
2D | 3565 | 3716 | 3201 | 1226 | 1240 | 12.44 | 11.11 | 12.03 | 11.58

exceptions on Pt and LJ datasets. A possible reason is the
number of atoms is larger than their upper limit. As a result,
no HRTC or TNG results are shown on those datasets.

B. Evaluation Results and Analysis of Lossless Compressors

We first evaluate the six state-of-the-art lossless compres-
sors. Table V shows the compression ratios of the lossless
compressors on four of the MD datasets (results are similar on
other datasets). It is clear that all the lossless compressors have
extremely low compression ratios (around 1~2). The results
confirms our statement in Section II that lossless compressors
are not suitable for scientific applications.

TABLE V
COMPRESSION RATIO COMPARISON OF LOSSLESS COMPRESSORS
Dataset Zstd | Zlib | Brotli | Fpzip | FPC | ZFP
Copper-A | 1.13 | 1.15 1.14 1.41 1.18 | 1.47
Helium-B 1.38 1.33 1.37 1.29 1.22 1.30
ADK 1.08 1.07 1.08 1.26 1.09 | 1.21
LI 1.23 1.31 1.24 1.44 1.16 | 1.39

C. Evaluation Results and Analysis of Lossy Compressors

The evaluation involves two aspects - the compression
quality and performance. On the one hand, the evaluations
of compression error, compression ratio, and rate-distortion
demonstrate that our solution has superior compression quality
over other state-of-the-art lossy compressors. On the other
hand, the performance evaluation reveals that our solution has
near the top compression and decompression throughput.

1) Compression Ratio: Figure 11 demonstrates the com-
pression ratio of our solutions. We can observe that ADP
has the highest compression ratio among our solutions under
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different datasets and buffer size settings. It further confirms
our claim in Section VI-D that ADP can always select the best
compressor from VQ, VQT and MT accurately during runtime.
As such, we focus on ADP in the following evaluation section.

Figure 12 compares the compression ratio of the lossy com-
pressors in different buffer size settings. It clearly shows that
our solution always has the highest compression ratio on all
the eight datasets with any buffer settings. In particular, when
buffer size is 100, our solution has 31%, 114%, 38%, 84%,
6%, 27%, 96%, 233% compression ratio improvements over
the second-best on Copper-A, Copper-B, Helium-A, Helium-
B, ADK, IFABP, Pt, and LJ datasets respectively. MDB has
extremely low compression ratios (1~6) on all the datasets,
as shown in Figure 12. The result confirms our statement
in Section III that simple data estimation methods and the
lack of quantization and entropy coding make ModelarDB
suffer from low compression ratios on MD datasets. As a
comparison, LFZip, which is also a time series compressor,
has comparable results with other lossy compressors, because
LFZip has the adaptive linear predictor as well as quantization
and entropy coding steps. However, LFZip is still not as good
as our solution. The key reason why our solution has such a
high compression ratio is that we investigate and utilize the
MD data features in both spatial and temporal dimensions (as
shown in Figure 3, Figure 4, Figure 5, and Table II).

2) Rate-Distortion: Rate-distortion graph is one of the
main assessment metrics of lossy compression quality. Rate-
distortion involves bit rate and PSNR. The bit rate is defined
as the average bits per data point of the compressed data.
PSNR is the peak-signal-to-noise ratio and it is inversely
proportional to mean squared error. Lower bit rate or higher
PSNR indicts better compression quality. Figure 13 presents
the rate-distortion results of all the lossy compressors. It is
clear that our solution has the best PSNR given the same bit
rate (about 20dB improvement in most cases), and also has the
lowest bit rate given the same PSNR (about 50% reduction in
size in most cases).
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3) Compression Error: In the domain of lossy compression,
compression error is defined as the differences between the
decompressed data and the original data. The maximum of
the compression error (MaxError) and the normalized root-
mean-square error (NRMSE) are two key metrics to evaluate
the compression quality of lossy compressors. As an example,
we present in Table VI the two error metrics for all the lossy
compressors (excluding MDB) based on the Copper-B dataset.
Other datasets exhibit the similar results. MDB is excluded
from this section because it could not achieve a compression
ratio of 10. In this example, the MaxError of ADP always
matches the lowest one from VO, VQT, and MT because VQ
is always the best on x/y-axis, and MT is always better than the
others on z-axis. Thus ADP chooses VQ for x/y-axis and MT
for z-axis all the time. In other cases when no compressor
is always better than the others, ADP will have even lower
MaxError and NRMSE than any of the three compressors.
We can observe from Table VI that our solution has the lowest
MaxError and NRMSE on all axes. Specifically, the MaxError
of our solution is 87%, 87%, 60% lower than the second-best
compressor on X, y, and z axis, respectively.

To further demonstrate that our solution upholds the phys-
ical characteristics of the data after compression, we present
the radial distribution functions (RDFs) of the original data
and decompressed data in Figure 14. RDF, denoted as g(r),
is a critical analysis metric, which represents the possibility
of finding a particle from the base particle at distance . RDF
is proportional to the local density of the particle systems.
Figure 14 reveals that only our solution could yield the correct
RDF on Cooper-B dataset under the same compression ratio.
Therefore, only our solution delivers the decompressed data
with unaltered local density to downstream applications. In
order to get the same RDF as ours, other compressors need
to significantly reduce their compression ratios. In summary,
the RDF result proves that, with suitable compression ratio,
our solution maintains the physical characteristics of the data
accurately.

TABLE VI
MAXERROR AND NRMSE OF DECOMPRESSED COPPER-B DATASET,
CR=10, BS=10
. . OurSol

Type Axis | SZ2 | ASN | TNG | HRTC | LFZip vQ VQT MT ADP
M X 037 | 0.23 0.44 2.06 0.35 0.03 | 0.10 | 0.10 | 0.03
Er:;r Y 032 ] 023 0.44 1.94 0.35 0.03 [ 0.10 | 0.09 | 0.03
Z 0.16 | 0.10 [ 0.44 .13 0.17 0.1T [ 0.05 | 0.04 | 0.04
NRMSE X 455 [ 274 61.8 133 43.2 3.10 | 9.00 | 11.9 | 3.10
1E-4 ) Y 40.0 [ 285 61.9 128 433 3.10 [ 892 [ 10.0 [ 3.10
x Z 20.6 | 9.41 45.2 74.1 214 153 [ 818 | 532 [ 532

4) Compression/Decompression Throughput: We present
the throughput comparison among all lossy compressors in
Figure 15. It is clear that our solution is one of the fastest
among all the lossy compressors on all datasets. As a com-
parison, ASN is slower than some compressors on Pt and
Helium-B datasets. There are no results for TNG and HRTC on
datasets such as Pt due to runtime exceptions, as explained in
Section VII-AS. The results of LFZip are barely visible in this
figure because LFZip has intermediate disk operations which
bring significant runtime overhead. The excellent performance
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of our solution is attributed to both effective prediction meth-
ods and our optimized quantization settings (see Section VI-C1
for details).

D. Integration with LAMMPS

We integrate MDZ into the MD simulation software
LAMMPS. To enable MDZ, LAMMPS users only need to
adjust the data dumping option in the configuration file.

We executed the Lennard-Jones benchmark in LAMMPS
with different settings to evaluate the overhead of our solution
in real-world MD systems. The simulation lasts 1 million
timesteps and is executed in three different scales, with the
number of atoms ranging from 64K to 4096K. We choose
data saving frequencies of 1 per 100 timesteps and 1 per
5000 timesteps, which is the range of the typical data saving
frequency of MD simulations, as discussed in Section IV.
The runtime breakdown is shown in Table VIL It is clear
that enabling MDZ does not affect the output portion of the
runtime or the total runtime. MDZ even improves the output
performance when the data saving frequency is 100 because
the I/O time is significantly reduced due to the reduced file size
by MDZ. In general, MDZ has negligible overhead to the MD
simulation, and it can improve the simulation performance if
a large mount of data needs to be saved and the I/O speed is
the bottleneck.

TABLE VII
RUNTIME BREAKDOWN OF LJ SIMULATION (F: DATA SAVING
FREQUENCY, COMP: COMPUTATION TIME, COMM: COMMUNICATION TIME,
OUTPUT: DATA SAVING TIME INCLUDING COMPRESSION)

. Duration Runtime Breakdown
F # Atoms Option (minutes) | Comp | Comm | Output
64K w/o MDZ 329 96.4% 1.4% 2.2%
w MDZ 322 98.3% 1.4% 03% |
w/o MDZ 428 93.9% 3.5% 2.6%
100 SI2K w MDZ 418 95.5% 3.6% 0.9%
4096K w/o MDZ 516 82.7% | 12.8% 4.5%
w MDZ 513 83.0% | 12.7% 4.3%
64K w/o MDZ 322 97.0% 2.9% 0.06%
w MDZ 312 98.5% 1.5% 0.01%
w/o MDZ 415 96.2% 37% 0.07%
3000 S12K w MDZ 425 93.7% 6.2% 0.03%
4096K w/o MDZ 474 90.0% 9.8% 0.14%
w MDZ 480 889% | 109% | 0.16%

E. Generalizability of Our Solution Beyond MD Simulations

In this section, we discuss the generalizability of our so-
lution beyond MD simulation datasets. As we mentioned in
Section I, scientific data can be categorized into particle data,
structured mesh, and unstructured mesh. In order to reach as
high compression quality as possible, developers need to de-
sign specific solutions for each of the three categories of data.
For example, our previous work [31] proposes a customized
interpolation-based compressor for structured mesh data (the
second category). In comparison, the solution proposed in this
paper leverages both spatial and temporal data characteristics
that exist in many domains. It can be applied to the first
category of datasets (all kinds of particle data instead of only
MD simulation data).
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Fig. 15. Our solution is the only one that always has high compression/decompression throughput (MB/s) on all datasets. As a comparison, ASN is slow on
Pt and Helium-B. TNG and HRTC fail to run on some datasets and LFZip is very slow due its intermediate disk operations.

We present the compression ratio evaluation on the Hard-
ware/Hybrid Accelerated Cosmology Code (HACC) datasets
in Figure 16 to demonstrate the effectiveness of our solution
in domains other than MD simulation. HACC is an extreme-
scale cosmological simulation code that studies the structure
formation in the Universe. HACC saves the positions and
velocities of the particles periodically. We include two HACC
datasets in this evaluation (HACC-1: 30 snapshots x 15767098
atoms, HACC-2: 80 snapshots x 13131491 atoms). It is clear
that our solution is the best among all the compressors on both
of the datasets, and it has 30%~56% higher compression ratios
than the second-best compressor.
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Fig. 16. Our solution has the best compression ratios on HACC datasets

38

VIII. CONCLUSIONS AND FUTURE WORK

In this paper, we develop an efficient error-bounded lossy
compressor (called MDZ) for MD simulation datasets. The key
idea is significantly improving the prediction accuracy based
on the regularities and correlations of the data in both spatial
and temporal dimensions. We propose vector-quantization-
based compressor VQ and VQT, and multilevel-time-based
compressor MT. Our adaptive solution ADP can select the best
compressor (VQ, VQT, or MT) dynamically at runtime. The
key findings based on our experiments with eight real-world
MD simulation datasets are summarized as follows.

e« MDZ can improve the compression ratio by up to 233%
compared with the second-best compressor on eight MD
real-world MD simulation datasets.

o« MDZ has the best data distortion among all the compres-
sors. The RDFs confirm MDZ can maintain the physical
characteristics of the data accurately.

« We integrate MDZ to the MD software LAMMPS. MDZ
shows negligible overhead in real-world MD simulations
under different scales and settings.

o The generalizability experiments show MDZ is capable
of handing particle datasets beyond MD simulations.

In the future, we plan to integrate MDZ in more state-of-
the-art MD packages such as CHARMM and EXAALT, so
that the MD researchers can use it very conveniently.
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