Check for
Updates

Accelerating Parallel Write via Deeply Integrating
Predictive Lossy Compression with HDF3

Sian Jin*, Dingwen Tao*, Houjun Tang’, Sheng Di¥, Suren Byna', Zarija Lukic!, Franck Cappello*
* Indiana University, Bloomington, IN, USA; Email: {ditao, sianjin}@iu.edu
T Lawrence Berkeley National Lab, Berkeley, CA, USA; Email: {htang4, sbyna, zarija} @Ibl.gov
! Argonne National Laboratory, Lemont, IL, USA; Email: {sdil, cappello} @anl.gov

Abstract—Lossy compression is one of the most efficient solu-
tions to reduce storage overhead and improve I/O performance
for HPC applications. However, existing parallel I/O libraries
cannot fully utilize lossy compression to accelerate parallel write
due to the lack of deep understanding on compression-write
performance. To this end, we propose to deeply integrate pre-
dictive lossy compression with HDFS to significantly improve the
parallel-write performance. Specifically, we propose analytical
models to predict the time of compression and parallel write
before the actual compression to enable compression-write over-
lapping. We also introduce an extra space in the process to handle
possible data overflows resulting from prediction uncertainty
in compression ratios. Moreover, we propose an optimization
to reorder the compression tasks to increase the overlapping
efficiency. Experiments with up to 4,096 cores from Summit show
that our solution improves the write performance by up to 4.5x
and 2.9x over the non-compression and lossy compression solu-
tions, respectively, with only 1.5% storage overhead (compared
to original data) on two real-world HPC applications.

Index Terms—parallel 1/0, lossy compresion, HDF5

I. INTRODUCTION

Large-scale scientific simulations on HPC systems play an
important role in today’s science and engineering domains.
Such simulations can generate extremely large amounts of data
that are highly compute and storage intensive. For example,
one Nyx [1] cosmological simulation with a resolution of
4096 x 4096 x 4096 cells can generate up to 2.8 TB of data
for a single snapshot; a total of 2.8 PB of disk storage is
needed, assuming the simulation runs 5 times with 200 snap-
shots dumped per simulation. Nowadays, the ever-increasing
computation power can be utilized to run the simulations.
However, managing such large amounts of data remains a
major challenge. It is impractical to save all the generated raw
data to disk due to: (1) the limited storage capacity even for
supercomputers, and (2) the I/O bandwidth required to save
these data can create bottlenecks in the transmission [2]-[5].

Lossy compression has been identified as one of the major
data reduction techniques to address this issue. Specifically,
a new generation of error-bounded lossy compression tech-
niques, such as SZ [6]-[8], ZFP [9], MGARD [10] and their
GPU versions [11]-[13], have been widely used in the scien-
tific community [4], [6]-[9], [14]-[18]. Compared to lossless
compression with up to 2x of compression ratio on scientific

Dingwen Tao is the corresponding author.

SC22, November 13-18, 2022, Dallas, Texas, USA
978-1-6654-5444-5/22/$31.00 ©2022 IEEE

Number of Partitions

L T —

02 0.6 1 14
Bit-Rate (bits/value)
Fig. 1: Compression bit-rate distribution on a Nyx dataset with 512
partitions. Every partition uses the same compression configuration.

data [19], error-bounded lossy compressors provide much
higher compression ratio with controllable loss of accuracy.

Scientific applications running on Supercomputers typically
use parallel 1/O libraries such as Hierarchical Data Format 5
(HDF5) [20] for managing their data. In specific, HDFS is
considered to provide high parallel I/O performance, porta-
bility of data, and rich APIs for managing data on these
systems. It has been heavily used at supercomputing facilities
for storing, reading, and querying scientific datasets [21], [22].
This is because HDFS has specific designs and performance
optimizations for popular parallel file systems such as Lus-
tre [23], [24]. In addition, instead of using a general database
in distributed storage, these datasets have their specific data
management approach based on the parallel file system [23],
[24]. Moreover, HDF5 also provides users dynamically loaded
filters [25] such as lossless and lossy compression [26], which
can automatically store and access data in compressed formats.
Thus, it allows scientific applications to store and access the
data in compressed formats. Parallel I/O in HDF5 with lossy
compression filters can not only significantly reduce data size,
but also improve the overall I/O performance.

However, the existing implementation of HDF5 with com-
pression filters cannot fully utilize the benefits of reductions
on data size and parallel-write time. This is because to write
the data from different processes to a shared file, one must
specify the offset of each data partition before writing the data.
Thus, the parallel write cannot start until all compression tasks
finish and the compressed sizes are communicated among
all processes. Moreover, the compressed size of each data
partition is distributed across a wide range of bit-rates (i.e.,
bits/value) and restricts any simple pre-allocation strategy. Fig-
ure 1 shows the distribution of compressed bit-rates on a Nyx
dataset. When using lossless compression filters, the parallel-
write performance could be even lower than the original non-



Application Application Application Application
Compression/ Compression/ Compression/ Compression/

Decompression  Decompression  Decompression

i $ 1 Previous i

Parallel Scientific Data Management Library

!

Parallel I/O

Parallel Parallel Parallel Parallel
File System File System File System File System

Decompression

Fig. 2: Scientific data management with compression.

compression solution due to this high overhead [27].

To solve this issue, we propose a parallel write solution
that integrates predictive lossy compression with the asyn-
chronous I/O feature in HDF5, which overlaps I/O latency with
compression to significantly improve the parallel write perfor-
mance [23], [28]. Inspired by the previous research of Jin et
al. [29] that estimates the compression ratio of prediction-
based lossy compression with little overhead, we propose to
predict the time of compression and parallel write before the
actual compression, and leverage the asynchronous I/O feature
to overlap compression with write. We also introduce an extra
space to handle the uncertainty of the prediction. Moreover, we
propose an optimization algorithm to reorder each process’s
compression tasks to increase the overlapping efficiency. The
contributions of this paper are summarized as follows.

« We extend the prediction model for compression ratio to
predict the throughputs of compression and parallel write
for prediction-based lossy compression such as SZ.

« We propose a new compression-write scheme with HDFS
that can efficiently write the compressed data from different
processes to a shared file by overlapping compression with
write based on our prediction models.

« We optimize the execution order of compression tasks in
each process to achieve higher parallel-write performance.

« We evaluate our proposed solution on two real-world HPC
applications with up to 4,096 cores on Summit supercom-
puter and up to 512 cores on Bebop cluster. Experiments
demonstrate that our solution improves the parallel-write
performance by up to 4.5x and 2.9x compared to the
HDF5 write without compression and with the SZ lossy
compression filter (called “H5Z-SZ”) [26], respectively,
with only 1.5% storage overhead.

In Section II, we discuss the research background. In
Section III, we present our design of parallel write with
compression. In Section IV, we present our evaluation results.
In Section V, we conclude our work and discuss future work.

II. RESEARCH BACKGROUND AND CHALLENGES
A. Parallel I/O Libraries for HPC Applications

HPC applications generate and analyze massive amounts
of data. A critical requirement of these applications is the
capability to access and manage this data efficiently on HPC
systems. Parallel I/O becomes the key technology to enable
efficiently moving data between compute nodes and storage

considering the complex storage hierarchy including node-
local persistent memory, burst buffers, and disk-based stor-
age. For example, HDF5 [20], netCDF [30], and Adaptable
I0 System (ADIOS) [31] are the most widely used high-
performance I/O libraries for HPC applications. However,
these 1/O libraries still suffer from handling extremely large
files (e.g. petabytes and beyond) due to inevitably limited
I/0 bandwidths. Therefore, compression techniques are often
adopted by them [32]. For instance, H5Z-SZ [26] is a data
filter for integrating SZ compression into HDF5.

Figure 2 shows the abstraction of different layers in the I/O
systems, where compression is an individual layer in these
systems. Specifically, compression is normally performed be-
tween generating and storing the data (e.g., H5Z-SZ). It is
worth noting that the compression tasks of all processes and
the parallel writing of compressed data to a shared file must
be performed sequentially; in other words, there must be
a synchronization between these two steps. This is because
parallel writing of data from different processes to a shared
file requires the size/offset of each data partition, but different
processes may have vastly different data sizes after compres-
sion (even with the same size before compression). Thus, the
current compression-write scheme cannot fully utilize the high
compression ratio provided by lossy compression, especially
for large-scale HPC applications with multiple data fields.

In this paper, considering HDFS5 is well received by the
HPC community as a system supporting parallel I/O, we
mainly focus our performance evaluation on HDF5 without
loss of generality. In addition, to improve the performance
and productivity, a recent release of HDF5 [23] implements
virtual object layer (VOL) which can redirect I/O operations
into VOL connector and allow asynchronous I/O [28]. This
feature enables an application to overlap I/O with other
operations such as compression. Therefore, we can leverage
this capability to deeply integrate and overlap predictive lossy
compression with parallel write to improve the parallel write
performance. Moreover, we focus on the parallel write to a
large shared file due to three main factors: (1) it reduces
scientists’ workload to manage multiple files for storage, post-
hoc analysis, and visualization; (2) it reduces the performance
overhead of opening/closing multiple files and the storage
overhead of metadata for many small files; and (3) partial
processes (e.g., up to 4096 processes in [33]) of a large-scale
simulation with subfiling still writes to a shared file.

B. Error-Bounded Lossy Compression

Lossy compression can compress data with extremely high
compression ratio by losing non-critical information in the
reconstructed data. Two types of most important metrics
to evaluate the performance of lossy compression are: (1)
compression ratio, i.e., the ratio between original data size
and compressed data size, or bit-rate, i.e., the number of
bits on average for each data point on average (e.g., 32/64
for single/double-precision floating-point data before compres-
sion); and (2) data distortion metrics such as peak signal-to-
noise ratio (PSNR) to measure the reconstructed data qual-



ity compared to the original data. In recent years, a new
generation of high accuracy lossy compressors for scientific
data have been proposed and developed for scientific floating-
point data, such as SZ [6]-[8] and ZFP [9]. These lossy
compressors provide parameters that allow users to control the
loss of information due to lossy compression precisely. Unlike
traditional lossy compressors such as JPEG [34] which are
designed for images (in integers), SZ and ZFP are designed
to compress floating-point data and can provide a strict error-
controlling scheme based on user’s requirements. Generally,
lossy compressors provide multiple compression modes, such
as error-bounding mode. Error-bounding mode requires users
to set an error type, such as point-wise absolute error bound
and point-wise relative error bound, and a bound value (i.e.,
10~?). The compressor ensures that differences between orig-
inal and reconstructed data do not exceed the error bound.

SZ is a prediction-based error-bounded lossy compressor
for scientific data. It has three main steps: (1) predict each
data point’s value based on its neighboring points by using an
adaptive, best-fit prediction method; (2) quantize the difference
between the real value and predicted value based on the user-
set error bound; and (3) apply a customized Huffman coding
and lossless compression to achieve a high ratio.

Prior works have studied the impact of lossy compression
on reconstructed data quality and post-hoc analysis, providing
guidelines on how to set the compression configurations for
certain applications [8], [17], [35]-[38]. For example, a com-
prehensive framework was established to perform a systematic
analysis on compression configurations with a given dataset
and provides the best-fit solution that satisfies the post-hoc
analysis [18]. Moreover, Jin et al. [29] proposed a theoretical
ratio-quality model to efficiently maximize the compression ra-
tio given the quality constraints of post-hoc analysis. Note that
similar to the previous work [39] on improving communication
efficiency via lossy compression, this work assumes that the
compression-configuration is set up by users based on their
requirements of data quality, thus, the above compression-
configuration methods are orthogonal to our solution.

C. Target I/O-Intensive HPC Applications

In this paper, we focus mainly on two I/O-intensive HPC
applications—Nyx [22] and VPIC [40], which have been used
for many previous I/O studies [41]-[46].

Nyx is an adaptive mesh, hydrodynamics code designed to
model astrophysical reacting flows on HPC systems [1], [22].
This code models dark matter as discrete particles moving
under the influence of gravity. The fluid in gas-dynamics is
modeled using a finite-volume methodology on an adaptive
set of 3-D Eulerian grids/meshes. The mesh structure is used
to evolve both the fluid quantities and the particles via a
particle-mesh method. For parallelization, Nyx uses MPI for
the long-range force calculation and architecture-specific pro-
gramming language for the short-range force algorithms, such
as OpenMP and CUDA. Nyx data uses multiple 3-D arrays
to represent field information in grid structure. According to

Process 1 Process 2 Process 3 Process 4
Prediction Prediction Prediction Prediction

I | | |

| | All Gather | |

Optimization Optimization Optimization Optimization

Compression Compression Compression Compression

I 1 I I

All Gather

2 v \Z v
Overflow Overflow Overflow Overflow
Handling Handling Handling Handling

Fig. 3: Overview of our proposed solution.

prior studies [22], [47], it can run up to millions of cores on
leadership supercomputers such as Summit [48].

VPIC (vector particle-in-cell) is a large-scale plasma physics
simulation that can produce an unprecedented amount of
data [40]. Collisionless magnetic reconnection is an important
mechanism that releases explosive amounts of energy as
field lines break and reconnect in plasmas. This reconnection
also plays an important role in a variety of astrophysical
applications that involve both hydrogen and electron-positron
plasmas, including when the Earth’s magnetosphere reacts to
solar eruptions which can interfere satellite communication.
Simulation of magnetic reconnection with VPIC is inher-
ently a multi-scale problem that initiated in the small scale
around individual electrons but eventually leads to a large-
scale reconfiguration of the magnetic field. Recent simulations
have revealed that electron kinetic physics is important not
only in triggering reconnection, but also in its subsequent
evolution [49]. This means plasma physics scientists find
that they need to model the detailed electron motion, and
that modeling poses severe computational challenges for 3D
simulations of reconnection. A full-resolution magnetosphere
simulation is an exascale-class computing problem.

III. PROPOSED DESIGN METHODOLOGY

In this section, we present our proposed design that deeply
integrates the prediction-based lossy compression into HDF5
to significantly improve the parallel-write performance.

A. Design Overview

Figure 3 shows an overview of our proposed framework.
Specifically, we first conduct the ratio and throughput predic-
tion phase for all data partitions on each process, which in-
cludes estimations of compression ratio, compression through-
put, and I/O throughput. Then, an all-gather communication
is performed to distribute the estimated compression ratio
of each partition to all processes. Note that the estimations
of compression throughput and I/O throughput are not dis-
tributed in this phase, since each process only requires these
estimations of its own data partition in order to perform
the following optimization. Next, each process computes the
offset of its own data partition of each field for parallel write
based on the estimated compressed data size with an extra



{

(4) Compression Scheduling Optimization

(2) Lossy Compression
With Collective Write

(3) Overlap Compression & 1/0

1/0

Compression

Fig. 4: Timeline of data aggregation with 5 processes and 2 data fields.

space (a mechanism to handle overflow data under unexpected
prediction failure). Note that since each process gathers the
same estimation results from others, the computation of offsets
is consistent across all processes. After that, we perform
an optimization on the order of compressing different data
fields in each process. Lastly, we overlap compressions and
writes based on the predicted write offsets and the optimized
compression order (the order of compressing different fields).

Compared to the non-compression solution that writes the
entire data to a shared file, our solution can significantly
improve the overall write performance due to the high com-
pression ratio of lossy compression that reduces 1I/O traffic.
Compared to the previous lossy compression solution using
HDFS5 filter, our solution can overlap compression and write
that allows independent and asynchronous write across pro-
cesses. Figure 4 shows the simplified timeline of parallel write
from five processes to a shared file on two data fields with
four methods: (1) collective write without compression; (2)
collective write with compression via filter; 3) independent
writes overlapped with compressions; and (4) independent
writes overlapped with reordered compressiorg

Specifically, the improvement from method (2) to method
(3) is due to the overlapping. From method (3) to method (4),
the scheduling optimizer reordered some compression tasks in
each process to further improve the overlapping efficiency. For
example, the optimizer switches the compression order of the
two data fields in the last process, i.e., the data with smaller
compressed size are compressed later. The improvement of
this optimization is more significant when more data fields are
compressed in parallel write as it has higher chance to improve
the overlapping efficiency. We will discuss more observations
and insights in detail in Section IV-D.

In this paper, we focus on accelerating parallel write due
to two main reasons: (1) HPC simulations are mostly write-
oriented [50], and (2) parallel I/O libraries usually have lower
performance in write than in read [23], [30], [S1]-[53].

In the following sections, we first introduce the prediction
models for prediction-based lossy compressors such as SZ.
Next, we present the estimation of I/O throughput based on
our models and empirical studies. After that, we propose our
compression-write overlapping design with HDFS5. Finally, we
propose our algorithm for compression scheduling.

B. Compressor Throughput Estimation

The estimation on compression ratio in this work is based
on recent research [29], which proposed a ratio-quality model

300

250 & —e—Baryon @ Dark-matter
Q N ©— Temp A Velosity x
g 200 D"'\qﬁ = | —%—RTM |
£.150 \4
2 2
5 \— —s > -
é’ 100

50

0 . . . .
0 1 2 3 4 5 6 7

Bit-Rate (bits/value)

Fig. 5: Single-core compression throughput with different bit-rates
on a Nyx and a RTM datasets. Evaluated on Bebop.

(i.e., compression ratio and reconstructed data quality model)
for prediction-based lossy compressor. It developed algorithms
to predict the compression ratio based on a newly designed
sampling strategy without performing compression, signifi-
cantly reducing the time overhead of the compression ratio
prediction to less than 10% (in relative to the compression
time). We leverage this idea to enable the overlapping design
with small prediction overhead in our design.

On the other hand, estimating the compression throughput
is also essential for compression order optimization. Gener-
ally, higher compression ratio results in higher compression
throughput [17], due to the shorter time for building Huffman
tree and encoding with smaller tree. However, there is no prior
work for an accurate compression-throughput estimation.

In this work, we propose to estimate compression through-
put based on the predicted compression ratio for each data
partition. Figure 5 shows our empirical evaluation of com-
pression throughput and compression ratio with multiple data
fields and data types across different error bounds. Note that
we use bit-rate (the average bits used to represent each value)
on the x-axis to better illustrate the size of compressed data.
For example, a bit-rate of 4 is equivalent to a compression ratio
of 8x when compressing single-precision floating-point data
(32 bits/value). The evaluation is performed on a single CPU
core with SZ lossy compressor, since our target method (4) is
to compress the data in each process/core independently before
writing the compressed data to the shared file. The figure
illustrates that (1) the maximum and minimum compression
throughput are similarly bounded across different data samples
(i.e., about 120~250 MB/s); and (2) the bitrate-throughput
curve for each data sample is highly consistent.

The reasons behind the first observation are: (1) For ex-
tremely high error bounds, despite the small size of the
Huffman tree (negligible tree building time), the prediction



300

250 F

Z
Mm
e
2200 |
="
El
EISO- o ® o , ° o o © oo _ o oo
= ) L L raad L
= 100 |
2
2
8 s0f
|
g 0 . . . . :
Q
0 5 10 15 20 25 30

Sampled Data

Fig. 6: Minimum and maximum compression throughput of a given
data partition based on 30 samples from Baryon density, dark matter
density, temperature and velocity x data fields in a Nyx dataset.
and encoding process still passes each point, which provides
an upper bound on the throughput; (2) For extremely low error
bounds, since SZ limits the maximum size of the Huffman tree
(the maximum number of quantization codes), if one point
is unpredictable with the maximum number of quantization
codes, its original value will be saved directly, which pro-
vides a lower bound on the throughput. Figure 6 shows the
maximum and minimum compression throughput evaluated on
multiple data samples size of 67.1 MB from different data
fields and types on the same experiment platform.

The reason behind the second observation is that for differ-
ent data samples, the quantization codes after prediction are
all centrally distributed, and the overall bit-rates are similar
under the same Huffman encoding efficiency, where the sizes
of the Huffman trees are also similar, resulting in stable tree
building time and encoding time.

Based on Figure 5, we use a power function to predict
compression throughput
Toomp = D/S (1)

= (Bori X n)/(((cmaw - len) X 3—a)Ba + Cmin)a
where Ttom, is the estimated compression time; D is the size
of the original data; .S is the compression throughput; B is the
compressed bit-rate (i.e., the average bits used to save each
value, e.g., a compression ratio of 16 from 32 bits floating
point values results in B = 2); B,,; is the original bit-rate
(i.e., 32 for single-precision floating point values); n is the
number of points in the current data partition; Cy,;,, and Ciyyqq
are the minimum and maximum compression throughputs,
respectively; a is a hyper-parameter to describe the shape of
the power function (i.e., a value smaller than O; the lower
the value, the more curved the function). The compression-
throughput estimation is a power function that takes min-max
into account. Note that the number 3 in the equation is based
on our experiment that yields the best result.

This prediction model can be adapted for different ma-
chines, where we perform lossy compression on a sample
of dataset offline to evaluate the minimum and maximum
compression throughput and map it based on Equation (1). We
show the accuracy of our proposed model in Section IV-B.

C. Write Time Estimation

The write time estimation is needed when optimizing the
compression order, since the compressed data with larger esti-
mated write time tends to be processed earlier to maximize the

60
40 |

Throughput (MB/s)
®
(=]

1)
5]

o

0 10 20 30 40 50 60 70

Data Size Per Process (MB)
Fig. 7: Independent write I/O throughput per process with different
data sizes per process. Evaluated on 128 processes.

\
Predicted Compressed Size Extra Space Original Data

! Shared HDFS5 File

Actual Compressed Size

Fig. 8: Overflow data handling with preserved extra space.

I/O traffic occupancy. However, compared with the estimation
on compression ratio and throughput, the accuracy required
for write-time estimation is considerably lower. This is because
one inaccurate write-time prediction makes a linear shift to all
other write-time predictions within this process, so the relative
time spent for each write remains unchanged compared to
the entire time, and the optimization would not be affected
(but only increase or decrease the actual write time). As a
result, our goal is not to provide a highly accurate write-time
estimation for each data partition, but to provide a capability
to estimate the relative write time across different data sizes.
Figure 7 shows the parallel-write throughput per process
with different data partition sizes. We can observe that the
average throughput first increases as the data size increases
and stabilizes after the data size reaches a certain point.
Similar to the compression-throughput estimation, the write-
time estimation is also based on the predicted bit-rate. Note
that the compression throughput is based on the uncompressed
data size. Considering that usually each process handles a
similar amount of data during the simulation, the variance
of the compression-time difference is limited to Thpq0/Tomin-
While the write throughput is based on the compressed data
size, which can easily vary over 10X across data partitions
according to our evaluation. This means the write time is
mainly dependent on the compression ratio assuming the
write throughput is relatively stable across different processes
without I/O congestion. Thus, we estimate the write time as

Tw’r'ite = (B X n)/cth'r'a (2)
where Ty,ite 1S the write time, B is the compressed bit-rate;
n is the number of points in the data partition; and Cip,. is
the stable write throughput based on an empirical evaluation.

D. Overlapping Compression and Write

When writing data from different processes to a shared
file, the well-known I/O libraries such as HDF5, MPI-IO,
and ADIOS require users to provide an offset for each data



50%

:\-;\ 0, ;\;
S 60% 1 a0% 35
§ 50% }:‘3
é‘; 40% | " _— 1 30% g
» 30% 1 20% g
g 20% 7
d 0,

g 10% 102 8
£ 2
& 0% ! ! ! ! 0% 8
1 11 12 13 14 L5 5

Extra Space Ratio S

| Performance Overhead Size Overhead |

Fig. 9: Trade-off between performance overhead and compression
size overhead. Shown the empirical average result based on Nyx and
VPIC datasets on 512 processes.

partition. For the original non-compression parallel write,
the offset of each partition can easily be computed based
on the data size. However, with compression, the size of
each compressed partition can vary drastically due to diverse
data compressibility and different compression configurations.
Prior to our work, it was impossible to pre-compute the offset
before the compression, thus, it must sequentially process the
collective write after compression. Thanks to the compression-
ratio estimation for each partition [29], we can estimate the
offset even before actual compression and allow overlapping
between compression and write via HDF5’s asynchronous I/0.

We note that although the compression-ratio model can
provide high accuracy for prediction-based lossy compression,
the prediction does not have a guarantee bound. This means
that we must handle the situation when the actual compressed
data size is larger than the predicted size, since it is impractical
to simply recompute and update the offsets of all following
partitions every time when the prediction failure happens as it
would introduce a large amount of communication overhead.
To this end, we propose to reserve an particular extra space
for each prediction to handle the possibility of compressed
data overflow. Moreover, we also propose an overflow data
handling scheme to redirect and store the exceeded portion
beyond the extra space. Figure 8 shows our proposed overflow
handling strategy with an extra data space.

As the compression-ratio estimation error is not bounded,
we cannot simply set a maximum extra space to guarantee no
data overflow in practice. Thus, we take the extra space ratio as
one of the tunable parameters in our framework. For example,
setting this ratio Rpece to 1.5 means that we over preserve
50% storage space (in relative to the predicted compressed
size) when computing the offset of each partition.

In our evaluation, we find that the compression-ratio
model [54], [55] performs poorly under extremely high com-
pression ratio because of three factors: (1) when the compres-
sion ratio is high, the Huffman encoder can only provide a
maximum compression ratio of 32x (when the original data is
single-precision) and relies on the following lossless compres-
sion to further reduce the encoded data; (2) the compression-
ratio model is based on run-length encoding to analyze the
lossless encoding efficiency, which naturally features lower
estimation accuracy compared to the efficiency estimation of
Huffman encoding; and (3) when the compression ratio is low,

the encoded data stream from the Huffman encoder is highly
random and is hardly further reduced by lossless compressors.
Thus, when handling the data partition with compression ratio
higher than 32 (bit-rate lower than 1), we set rgpqce t0
Tspace =MIN(2, 1 4+ (Rgpace — 1) X 4),

Teomp > 32. 3)
where 7¢omp is the compression ratio. On one hand, the higher
the extra space ratio is, the larger the storage size of the
compressed shared file will be, due to the larger extra space
that is likely to be wasted. On the other hand, increasing 7g,qce
may improve the overall performance due to less data overflow
processing overhead, and vice versa. Overall, above a certain
threshold (e.g., space > 1.1X in our evaluation), increasing
Tspace Decomes a trade-off between the write performance and
the overall compression efficiency.

More specifically, below this threshold, decreasing 7spqce
results in a significant write performance drop due to a
large number of compressed data overflows. For example,
when 7rspece = 1.1%, 32.4% data partitions suffer from data
overflow, causing an extra 65.6% time overhead. Based on
our observations from Figure 14, the trade-off between write
performance and compression efficiency is relatively similar
across different fields and datasets. We will demonstrate this
with more details in Section I'V-C.

As a result, we propose to weight the write performance and
compression efficiency overhead and provide a tunable ratio
between them for users. For any given weights, we provide
the extra space ratio based on our proposed mapping. Figure 9
shows our mapping solution for the extra space ratio (a more
detailed evaluation illustrating the accuracy of this mapping
will be shown in Section IV-C). Note that we only support
Tspace Detween [1.1,1.43] due to (1) an extremely high time
overhead below 1.1, and (2) a low efficiency of trading storage
for performance after 1.43. We set the default extra space ratio
to 1.25 in this work.

After estimating the offset of each data partition, we must
store this offset information as metadata for the decompression
purpose. Compared to the compressed size of the entire
dataset, this metadata size is totally negligible. For example,
when writing a total size of 2.5 TB Nyx dataset from 4,096
processes with SZ, there is only 295 KB metadata to store the
offsets for 9 fields, while the compressed data size is 210 GB.

For handling the compressed data overflow, our goal is
to append the exceeded data to the end of the shared file.
Specifically, we continue to optimize and write the maximum
amount of data into the preserved area of the shared file.
Then, after all processes finish writing, we initiate an all-
gather operation across all processes to distribute the size
information of overflow data. After that, some processes
calculate the offset of their own excess and write it to the end
of the shared file independently. Note that since only a small
fraction of processes may need to process/save a small amount
of overflow data, the overall time overhead for processing
overflow data is small. A more detailed evaluation will be
presented in Section IV-D.

where



Algorithm 1 Compression Order Optimization

Compression 1/0

Notation: data fields in current process: ¢; compression queue: (); com-
pression queue after insert and additional data: Q°; possible insert locations
in a queue: 3; time to compress: t.; time to write:t,,; predicted compression
time: P.(¢); predicted write time: Py, ()

Global: P.(¢), Py (¢)

1 procedure TIME(q)

2 te,tw < 0

3 for ¢ < data fields in ¢ do

4 te « te+ Pe(f)

5 tw < Pw(f) + max(te,tw)

6 end for

7 return t,,

8 end procedure

9
16 procedure SCHEDULINGOPTIMIZATOR
11 for ¢ < data fields in current process do
12 for 3 < all possible insert location do
13 Q° « insert £ to 8
14 if TIME(Q®) < TIME(Q) or first 3 then
15 Q<+ Q°
16 end if
17 end for
18 end for

19 return @
20 end procedure

E. Compression Order Optimization

As shown in Figure 4, when writing data to the shared
file, overlapping the compression and I/O can provide a
significant performance benefit over the previous collective-
write solution with lossy compression. However, with multiple
data fields in each process, compressing them sequentially in
the original order is not the optimal solution. In fact, since we
use the modeling approach to predict the compressed size, the
compression time, and the write time of each data partition,
we can reorder the compression tasks for different fields to
maximize the overlapping without any penalty.

Algorithm 1 shows the pseudocode for optimizing the
compression order in each process. The proposed method
is based on the observation that the total compression time
is theoretically fixed regardless of the compression order.
Our optimization focuses on the dependencies and timing
of launching write operations for each compressed data to
minimize timeouts compared to compression. The time com-
plexity of the proposed algorithm is O(n?), whereas the time
complexity of our compression is O(N). Considering that N
(i.e., the number of values) in one data partition is significantly
larger than n (i.e., the number of data fields), the optimization
overhead is almost negligible compared to the actual compres-
sion and write time. For example, this optimization overhead
is only 0.17% of the compression time under an extreme
condition where N is small at 32768 (32 x 32 x 32) but n is
very large at 100.

Based on our algorithm design, we can expect the optimiza-
tion to bring benefit when the balance between compression
time and I/O time is relatively stable. However, we notice
that in the extreme scenarios, the compression time and the
write time could be very unbalanced, which can diminish the
benefit of our reordering optimization, as shown in Figure 10.
Specifically, there are two cases: (a) when the write time is
significantly longer than the compression time, or (b) when the

(a) Compression time is significantly shorter

(b) Compression time is significantly longer

Fig. 10: An example of extremely unbalanced compression time and
write time, limiting the benefit from our reordering.

TABLE I: Details of Tested Datasets

Name Description Scale Size
40964096 x 4096 2.47 TB
. . 2048x2048x2048 206.15 GB
nyx [22] Cosmology simulation
102410241024 25.76 GB
512x512x512 3.22 GB
VPIC [56] Particle simulation 161,297,451,573 4.62 TB

compression time is significantly longer than the write time.
In both cases, there is no significant room to improve perfor-
mance because of the limited overlap between compression
and I/O (more details will be discussed in Section IV-D).

In addition, we note that when the number of data fields
is relatively large, our optimization can bring greater benefit.
This is because the overall performance is dependent on the
worst process with the longest time among all the processes
due to independent asynchronous writes.

1V. EXPERIMENTAL EVALUATION

In this section, we present the evaluation results of our
proposed framework for accelerating parallel write. We first
evaluate the accuracy of our prediction for compression time
and write time. Next, we evaluate the extra space setup under
different compression ratios and scales. Finally, we perform
performance evaluation and scaling study of our approach and
compare it with the original solution without compression and
the solution using using the H5Z-SZ filter [26].

A. Evaluation Setup

We rigorously implement our approach with HDF5 [23] and
SZ3 [36] (a modularized prediction-based lossy compressor).
We conduct our experiments on two HPC systems: (1) the
Summit supercomputer [48] at Oak Ridge National Labora-
tory, each node of which is equipped with two IBM POWERY
processors with 42 physical cores and 512 GB DDR4 memory,
and (2) the Bebop cluster [57] at Argonne National Laboratory,
each node of which is equipped with two 18-core Intel Xeon
E5-2695v4 CPUs and 128 GB DDR4 memory.

We use different scales of Nyx and VPIC datasets in our
evaluation. Table I shows the details of our tested datasets.
According to the previous work [17], [35], using the absolute
error bounds of (0.2,0.4,1e + 3,2e + 5,2¢ + 5,2¢ + 5) for
compressing the six Nyx data fields (i.e., baryon density, dark
matter density, temperature, velocity X, velocity y, velocity
z) can satisfy the post-hoc analysis quality with an average
PSNR (peak signal-to-noise ratio) at 78.6 dB, resulting in a
compression ratio of ~16x. The 4096 x 4096 x 4096 Nyx
dataset has three additional fields: particle_vx, particle_vy and



2 007 P 7
E 0.06 30 i :
= % .".'o;o" :.‘.. ¢
: )
§ 005 oo @
@ e
2004 L
g
S 0.03
002 1 1 1 1 i |
0 1 2 3 4 5 6 7
Bit Rate (bits/value)

Fig. 11: Accuracy of our compression-time estimation on 512% Nyx
data samples (red line is predicted time; black dots are actual time).

0 1 2 3 4 5 6 7
Bit Rate (bits/value)

Fig. 12: Accuracy of our compression-time estimation on 1024% Nyx

data samples. Red line is predicted time; black dots are actual time.

Offline parameter is based on the baryon density of 512 Nyx dataset.

particle_vz. Similarly, we compress them with a compression
ratio of 16x to satisfy the post-hoc analysis quality. For the
VPIC dataset, we also compress the 8 data fields with a com-
pression ratio of 13.8x, which is suggested by the application
developers according to their post-hoc analysis. Note that our
solution can also be applied to other scientific datasets with
similar performance improvement expected. This is because:
(1) our solution provides the same reconstructed data quality
compared to previous solutions, where many studies [8], [17],
[18], [35]-[38] show that lossy compression has a high data
reduction capability on a variety of applications; (2) a previous
study shows that the accuracy of the compression-ratio esti-
mation used in our solution is consistently above 90% across
tens of benchmark datasets [29], implying that the proportion
of data overflows due to inaccurately estimated compression
ratios is relatively stable in most scientific datasets; (3) the
accuracy of the compression-throughput estimation is consis-
tently high across different datasets and fields, as shown in
Figure 5, 11 and 12; and (4) the accuracy of 1/O-throughput
estimation only relies on the estimated compressed data size
as discussed in (2).

B. Accuracy of Compression and 1/0 Throughput Estimation

First, we evaluate the accuracy of our proposed estimation
on compression time. We perform the evaluation on the 5123
Nyx dataset only using the baryon density field and conduct
the offline compression with the relative error bound ranging
between [le-1, 1e-8]. Then we calculate Chin, Crnar and a
in Equation (1) based on the offline results, so that we can
use Equation (1) to predict the compression time of any given

0.08
- o0
0.06 °
—, o
) o .
[} ® ® %
E 0.04 o
= - .Qn.
S e oWt
002 | o8 g V%
-
Y
..
0 1
0 1 2 3 4 5

Bit Rate (bits/value)

Fig. 13: Accuracy of our write time estimation on 1024® Nyx data
samples. Red line is predicted time; black dots are actual time.

data (i.e., 101.7, 240.6, and —1.716, respectively, in this case).
Next, we distribute the Nyx dataset to 64 processes (each
process has a 128 x 128 x 128 data partition) and perform
the write operation. For each field of data partition in each
process, we predict the compression time using Equation (1).
Figure 11 shows the actual compression time versus the
predicted compression time.

Furthermore, we extend our evaluation to the 10243 Nyx
dataset and 512 processes using the same Cipn, Ciae, and
a obtained from the 5123 dataset. Figure 12 shows the actual
compression time versus the predicted compression time. We
can observe from both figures that our compression-time esti-
mation has high accuracy even though the offline experiment
only uses baryon density as input. This is consistent with
the result shown in Figure 5, where different data fields and
datasets have similar compression throughputs.

Similarly, we evaluate the accuracy of our proposed write-
time estimation. We perform the offline evaluation by writing
data from 128 processes into a shared file multiple times. The
size of the data per process is set to 5 MBs, 10 MBs, 20
MBs, 50 MBs, or 100 MBs. We measure the average write
throughput. Based on our observation, further increasing or
decreasing the scale would not significantly affect the average
I/O throughput per process; therefore, we only perform the
offline evaluation on one scale with different data sizes to
reduce the offline evaluation overhead. Next, we distribute
the 10243 Nyx dataset to 64 processes, perform the write
operation, and measure the time of independent write for each
process along with the bit-rate after compression.

Figure 13 shows the comparison between the estimated
write time and the actual write time. Note that the accuracy
of low bit-rate is slightly lower than that of high bit-rate. This
is because the compressed data size is very small (i.e., 0.94
MB in this case) under low bit-rate, which result in a signifi-
cantly low write throughput. However, since we optimize the
compression order based only on the absolute write time, such
a small amount of write-time prediction error has hardly any
effects on optimization decisions.

C. Evaluation on Extra Space Ratio

As mentioned in Section III-D, the extra space ratio is one
of the most important parameters that balance the overall write
performance and storage overhead in our framework. We then



90%
$80% |
70% |-
60% |-
50% |-
40% |
30% |-
0% |

50%

1 40%

\

S

\n

1 30%

1 20%

Storage Overhead (%)

1 10%

Performance Overhead (%

-
N
=N

0%

0%

1 1.05 1.1 .15 1.2 125 13 135 14 145

left y-axis Extra Space Ratio right y-axis
—&—Bebop Dark_Matter Baryon
&—Symmmit Temperature Vx
Vy Vz
(a) Nyx

50%
< 70% -
4 0, o
R 60% 40% %
f‘g 50% 1 30% 8
-
% 40% g
2 30w | 4 20% %
«
E 20% £
] 1 10% 2
510% “
0% 1 1 1 1 X 1 1 1 0%
1105 11 115 12 125 13 135 14 145
left y-axis Extra Space Ratio @—Energy right
—e—Bebop Uy —m—Ux y-axis
—@— Summit Uz X
y z
(b) VPIC

Fig. 14: Trade-off between performance overhead and storage overhead based on different extra space ratios on Nyx dataset (6 data fields)
and VPIC dataset (7 data fields) on both Bebop and Summit with 512 processes. The target compressed bit-rate is 2 bits/value.

35%

30% | o— * ® °
25%
5" o
8 20% | ———————— —0
g 15% |
10%
5% —@— Storage Overhead -©— Performance Overhead
0% \ . . L . . A
40 42 44 46 48 50 52 54 56
Red Shift (z)

Fig. 15: Evaluation on the consistency of the storage and performance
overheads using the same extra space ratio of 1.25 with 512 processes
on Summit. Red shift stands for different time-steps (higher values
means earlier time in the simulation).

evaluate this performance-storage trade-off on both the Nyx
and VPIC datasets. For the Nyx dataset, we use the 10243
dataset and distribute it to 512 processes for parallel write.
For the VPIC dataset, we downscale the original dataset by
sampling 10% data points and distribute it to 512 processes.

Figure 14 shows the correlation between the write-
performance overhead and the storage overhead with the two
datasets on both Bebop and Summit. Note that the write-
performance overhead is compared with the write time without
handling data overflow (excluding the compression time), and
the storage overhead is compared with the ideal compressed
data size (without the extra space). We can observe that
for each dataset on a given system, the trade-off curve is
highly similar across different data fields, since the accuracy
of the compression-ratio model is relatively stable on the same
dataset. We also note that even though the write-performance
overhead and storage overhead with the same extra space ratio
are different on the two datasets, the trade-off between the two
overheads is very similar. This is because the lower upper
bound of the compression-ratio estimation results in larger
number of processes to hold overflow data and hence higher
performance overhead, which also enlarges the total amount
of overflow data and increases the overall storage overhead.

Regarding the results across the two systems, the difference
of the performance overhead is mainly due to the higher I/O
bandwidth of Summit over Bebop, which reduces the overall
write time and enlarges the relative performance overhead.
However, the performance-storage tread-off is still similar

Reordering %
Overlap
Previous
Original
0 50 100 150 200 250 300 350 400

Time (s)

| moptimization Ocompression Bwrite Doverflow |

Fig. 16: Performance comparison among our solution (overlapping
and reordering), original non-compression solution, and previous
compression-write solution on 4096° Nyx dataset with 512 processes.

across different systems, which means that we can use our
offline study to guide the online decision making for the trade-
off between performance and storage. Figure 14 shows the
averages of the performance and storage overhead in different
extra space ratios across the four dataset-system setups (as
mentioned in Section III-D). By default, we use the extra space
ratio of 1.25 to minimize performance overhead while keeping
low storage cost. In addition, we apply the extra space ratio of
1.25 with multiple time-steps in a series of Nyx datasets, as
shown in Figure 15. It shows that our solution has consistent
storage and performance overhead across time-steps. Another
alternative approach is to sample the dataset from the first
time-step and provide users a more accurate estimation on the
trade-off between performance and storage. We will design a
more user-friendly parameter-tuning mechanism in future.

D. Overall Performance Improvement

Next, we compare the performance of our proposed so-
lution with the non-compression solution and the previous
compression-filter solution. For the non-compression solution,
the distributed data is written to the shared file without any
compression. We implement it using HDF5 with independent
write, which can significantly increase the performance over
collective write [23]. For the previous compression-filter so-
lution, the compression process is considered as a filter, and
the parallel write starts only when every process finishes its
compression on all data partitions and the compressed data
sizes are known to all processes to compute the write offsets.



Reordering Overlap Previous

1200

1000 1 Reordering Overlap Previous

%400 l Original Write Time é’ 800 r
£ . £
= 300 7 = 600 7 Original Write Time
2 7 e -
£ £ [ B
£ 200 i % £ 400 ‘
100 a1 a 200 }
0 1iH 8f BAH eAA 0 § 1 B sl BBA
3.09 2.01 1.30 0.88 0.52 6.66 3.30 231 1.04 0.37
Bit-Rate (Bits) Bit-Rate (Bits)
BReordering O Compression BI/O  DOOverflow BRedordering O Compression @I/O  DOOverflow
(a) Nyx with different compression ratio (b) VPIC with different compression ratio
120 250
. . 7 7
100 Reordering  Overlap Previous Z 200 Reordering Overlap Previous
Z 5 | @
P r |l =
= g £ 150
& 60 | 7 | &
2 | | 2 100
g 40 + % =l NG
g B | Al e
) nn 50
| 11
- 7 %
H | 1]
256 512 1024 2048 4096 256 512 1024 2048 4096
Scale Scale

BReordering OCompression @I/O OOverflow

(c) Nyx with different scale

BReordering O Compression @I/O OOverflow

(d) VPIC with different scale

Fig. 17: Performance improvement of overall parallel-write with our proposed solution compared to the previous write solution with H5Z-SZ
on both Nyx and VPIC datasets. Dashed red line is the baseline of HDF5 without compression. (a) and (b) are evaluated with 512 processes

on Summit. (¢) and (d) are evaluated with a target bit-rate of 2.

We implement it using HDF5 with collective write, since
compression filters do not support independent write. Note that
HDFS5 only provides additional features such as asynchronous
I/0 and does not change the collective write.

Figure 16 shows the comparison of the performance break-
down between our proposed solution and the two existing
solutions. We implement our solution both with and without
the compression reordering, referred to as “overlapping” and
“reordering” in the figure, respectively. Note that the write
time bar shown in the overlapping solution is measured by
the time between the end of the slowest compression and the
end of the writing process rather than the entire write time (due
to overlapping). The original/ideal compression ratio (without
the extra space) in this experiment is 17.94x, while the actual
compression ratio considering the extra space (i.e., the extra
space ratio of 1.25) is 14.13x.

We can observe that the collective write solution with lossy
compression still outperforms the independent write without
compression by 1.87x due to the high compression ratio and
reduced data size. Compared to the previous compression-
write solution, our overlapping solution further improves the
overall write performance by 1.79x due to the asynchronous
independent write. Note that the compression times spent in
the two solutions are similar, indicating that our framework
improves the writing efficiency rather than the compression
throughput. Furthermore, with compression order optimiza-
tion, we further improve the performance by 1.30x in addition
to our overlapping optimization. The extra write time (gray
bar) is significantly reduced due to the high overlapping
efficiency. Overall, comparing our optimized solution to the

non-compression write, we improve the write performance
by 4.46x with the compression ratio of 14.1x; compared
to the previous write with H5Z-SZ with the compression
ratio of 17.9x, our optimized solution improves the write
performance by 2.91x with a 26% storage overhead. Note
that this overhead is compared with the compressed data size,
if compared with the original data size, the storage overhead
is equivalent to 1.5%.

Furthermore, we evaluate our framework with different
overall compression ratios and different scales to illustrate
the efficiency of compression reordering on both the Nyx
and VPIC datasets. Figure 17a and Figure 17b show that
the compression reordering optimization has a poor improve-
ment over the overlapping-only solution under extremely high
and low compression ratio, the corresponding performance
improvement and storage overhead are shown in Figure 18a
and Figure 18b. For extremely high compression ratio, the
compressed data size in each process is tiny, so the write time
is significantly smaller than the compression time, as shown
in Figure 17a and Figure 17b (the short gray bar versus the
orange bar). In this case, reordering the compression tasks
provides little performance benefit, since the overall compres-
sion time cannot be further improved and the potential of
reducing the extra write time is negligible. For extremely low
compression ratio, the compressed data size in each process is
large, so the overall compression time is significantly shorter
than the write time, where the overlapping efficiency is likely
to be sufficiently high even without optimization (low potential
to optimize). Both datasets have a similar compression ratio
(14.1x and 10.9x for Nyx and VPIC, respectively) that



bl
[

50%

5 3
£ 1 40% §
2125 =
2, oo 1 30% 8
g o
o L5 1 20% &
g :

: 1 10% S
E 05 + | —@— Performance improvement —@— Storage overhead 10% 3
ﬁ 0 . . . \ \ 0%
~ 0 1 2 3 4 5 6 7

Bit-Rate (Bits)
(a) Nyx with different compression ratio
. 3 50%
g
g2s 0% g
% 2} =
85— - B EEE 30% 2
E1so— 8
Lo 200 o
S

E 0.5 | —@— Performance improvement -©— Storage Overhead 10% 7]
S
E 0 . . . 0%
[ 256 512 1024 2048 4096

Scale

(c) Nyx with different scale

L35 50%
5 3 °
& 1 40% §
2 28 <=
2 2 1 30% g
g ]
i 120% &
g 1 g
: 1 10%
é 0.5 | —@— Performance improvement @— Storage Overhead | 7]
S
E 0 s R ) ) ) ) 0%
A 0 1 2 3 4 5 6 7
Bit-Rate (Bits)
(b) VPIC with different compression ratio

. 3 50%
g
g 25 40% 3
o Q
3 27 ° s0% 5

> — —— - ° >
E15Q ® o)
- 20% 2
o 1 s
g ; 10% S
g 0.5 I —@— Performance improvement ©— Storage Overhead °
€ o . . . %
A 256 512 1024 2048 4096

Scale

(d) VPIC with different scale

Fig. 18: Performance improvement (overall) and storage overhead of our solution compared to the previous solution on both Nyx and VPIC
datasets. (a) and (b) are evaluated with 512 processes om Summit. (c) and (d) are evaluated with a target bit-rate of 2.

benefits the compression reordering optimization. Note that
although the higher compression ratio almost always indicates
the better write performance, it also means lower data quality
with information loss that may potentially hurt post-hoc anal-
ysis. Under the extreme cases when the compression ratio is
very small, the previous write solution with H5Z-SZ shows
even worse performance than the non-compression write.

Finally, we perform the scaling study of our proposed frame-
work. Specifically, we conduct a weak scaling study that keeps
the same data partition size in each process, i.e., 2563 and
39,379, 260 for the Nyx and the VPIC datasets, respectively.
Figure 17c and Figure 17d illustrate that the compression order
optimization over the overlapping solution is relatively stable
on the evaluated scales at (256,512,1024,2048,4096), the
corresponding performance improvement and storage overhead
are shown in Figure 18c and Figure 18d. This is because
the overall compression time and write time in each process
are mostly stable through different scales. However, a larger
scale slightly benefits our solution because the independent,
asynchronous write typically provides better scalability com-
pared to the collective write used by the previous compression-
write solution [23]. Note that the optimization time and the
overflow time increase with the scale, because even though
the prediction time is stable, larger scale introduces longer
communication time for the all-gather operation.

In conclusion, under the circumstances of satisfying the
user-set compression configuration, our parallel write with
lossy compression is scalable and high-performance, espe-
cially when (1) the number of data fields is relatively large; (2)
the overall compression ratio is preferably between 10x and
20x (with balanced compression time and write time); and (3)
the data amount in each process is not too small (deserving
compression). In addition, users can fine-tune the extra space
ratio to make a good performance-storage trade-off.

V. CONCLUSION AND FUTURE WORK

In this paper, we propose to integrate predictive lossy
compression deeply with HDFS5 to significantly improve the
parallel-write performance for large-scale scientific simula-
tions. We introduce a newly designed prediction method to
estimate the compression and write time for each process and
use this information to pre-compute the write offset before
the actual compression. Furthermore, we introduce an extra
space design to handle the uncertainty of the prediction and
an optimization algorithm to reorder the compression tasks in
each process. We evaluate our proposed solution on both Be-
bop cluster and Summit supercomputer with up to 4,096 cores.
The evaluation shows that our solution can provide a 4.46x
performance improvement with a 14.1x compression ratio
compared to the original parallel write without compression,
and provide a 2.91x performance improvement compared to
the previous parallel write with the SZ compression filter with
only 20% compression ratio degradation.

In the future, we will extend our solution to other parallel
I/O libraries such as ADIOS [31] and support more lossy
compressors such as ZFP [9]. Moreover, we plan to evaluate
our solution on more real-world HPC datasets.

ACKNOWLEDGMENTS

This research was supported by the Exascale Computing Project
(ECP), Project Number: 17-SC-20-SC, a collaborative effort of two
DOE organizations—the Office of Science and the National Nuclear
Security Administration, responsible for the planning and preparation
of a capable exascale ecosystem, including software, applications,
hardware, advanced system engineering and early testbed platforms,
to support the nation’s exascale computing imperative. The material
was supported by the U.S. Department of Energy, Office of Science,
Advanced Scientific Computing Research (ASCR), under contracts
DE-AC02-06CH11357 and DE-ACO02-05CH11231. This work was
also supported by the National Science Foundation under Grants
2003709, 2042084, 2104023, 2104024, 2211538, and 2211539. We
gratefully acknowledge the computing resources provided on Ar-
gonne’s Bebop cluster and Oak Ridge’s Summit supercomputer.



[1]

[2]

[4

=

[5]

[6]

[7

—

[8

[t}

[9]

[10]

(11]

[12]

[13]

[14]

[15]

(16]

[17]

(18]

REFERENCES

A. S. Almgren, J. B. Bell, M. J. Lijewski, Z. Luki¢, and E. Van Andel,
“Nyx: A massively parallel amr code for computational cosmology,” The
Astrophysical Journal, vol. 765, no. 1, p. 39, 2013.

L. Wan, M. Wolf, F. Wang, J. Y. Choi, G. Ostrouchov, and S. Klasky,
“Comprehensive measurement and analysis of the user-perceived i/o
performance in a production leadership-class storage system,” in 2017
IEEE 37th International Conference on Distributed Computing Systems
(ICDCS). 1EEE, 2017, pp. 1022-1031.

——, “Analysis and modeling of the end-to-end i/o performance on
olct’s titan supercomputer,” in 2017 IEEE 19th International Conference
on High Performance Computing and Communications;, IEEE 15th
International Conference on Smart City; IEEE 3rd International Con-
ference on Data Science and Systems (HPCC/SmartCity/DSS). IEEE,
2017, pp. 1-9.

F. Cappello, S. Dij, S. Li, X. Liang, A. M. Gok, D. Tao, C. H. Yoon, X.-
C. Wu, Y. Alexeev, and F. T. Chong, “Use cases of lossy compression
for floating-point data in scientific data sets,” The International Journal
of High Performance Computing Applications, 2019.

C. Zhang, S. Jin, T. Geng, J. Tian, A. Li, and D. Tao, “Ceaz: accel-
erating parallel i/o via hardware-algorithm co-designed adaptive lossy
compression,” in Proceedings of the 36th ACM International Conference
on Supercomputing, 2022, pp. 1-13.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. 1EEE, 2017, pp. 1129-1139.
S. Di and F. Cappello, “Fast error-bounded lossy HPC data compression
with SZ,” in 2016 IEEE International Parallel and Distributed Process-
ing Symposium. 1EEE, 2016, pp. 730-739.

X. Liang, S. Di, D. Tao, S. Li, S. Li, H. Guo, Z. Chen, and F. Cappello,
“Error-controlled lossy compression optimized for high compression
ratios of scientific datasets,” in 2018 IEEE International Conference
on Big Data. 1EEE, 2018, pp. 438-447.

P. Lindstrom, “Fixed-rate compressed floating-point arrays,” [EEE
Transactions on Visualization and Computer Graphics, vol. 20, no. 12,
pp. 2674-2683, 2014.

M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky, “Multilevel tech-
niques for compression and reduction of scientific data—the univariate
case,” Computing and Visualization in Science, vol. 19, no. 5-6, pp.
65-76, 2018.

J. Tian, S. Di, K. Zhao, C. Rivera, M. H. Fulp, R. Underwood, S. Jin,
X. Liang, J. Calhoun, D. Tao et al., “cusz: An efficient gpu-based error-
bounded lossy compression framework for scientific data,” in Proceed-
ings of the ACM International Conference on Parallel Architectures and
Compilation Techniques, 2020, pp. 3-15.

J. Tian, S. Di, X. Yu, C. Rivera, K. Zhao, S. Jin, Y. Feng, X. Liang,
D. Tao, and F. Cappello, “Optimizing error-bounded lossy compression
for scientific data on gpus,” in 2021 IEEE International Conference on
Cluster Computing (CLUSTER). 1EEE, 2021, pp. 283-293.

cuzfp. [Online]. Available: https://github.com/LLNL/zfp/tree/develop/
src/cuda_zfp

T. Lu, Q. Liu, X. He, H. Luo, E. Suchyta, J. Choi, N. Podhorszki,
S. Klasky, M. Wolf, T. Liu, and Z. Qiao, “Understanding and modeling
lossy compression schemes on HPC scientific data,” in 2018 IEEE
International Parallel and Distributed Processing Symposium. 1EEE,
2018, pp. 348-357.

H. Luo, D. Huang, Q. Liu, Z. Qiao, H. Jiang, J. Bi, H. Yuan, M. Zhou,
J. Wang, and Z. Qin, “Identifying latent reduced models to precondition
lossy compression,” in 2019 IEEE International Parallel and Distributed
Processing Symposium. 1EEE, 2019.

D. Tao, S. Di, X. Liang, Z. Chen, and F. Cappello, “Optimizing lossy
compression rate-distortion from automatic online selection between
sz and zfp,” IEEE Transactions on Parallel and Distributed Systems,
vol. 30, no. 8, pp. 1857-1871, 2019.

S. Jin, P. Grosset, C. M. Biwer, J. Pulido, J. Tian, D. Tao, and
J. Ahrens, “Understanding gpu-based lossy compression for extreme-
scale cosmological simulations,” in 2020 IEEE International Parallel
and Distributed Processing Symposium (IPDPS). 1EEE, 2020, pp. 105-
115.

P. Grosset, C. Biwer, J. Pulido, A. Mohan, A. Biswas, J. Patchett,
T. Turton, D. Rogers, D. Livescu, and J. Ahrens, “Foresight: analysis that
matters for data reduction,” in 2020 SC20: International Conference for

[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]
(27]

(28]

[29]

[30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

[38]

[39]

High Performance Computing, Networking, Storage and Analysis (SC).
IEEE Computer Society, 2020, pp. 1171-1185.

S. W. Son, Z. Chen, W. Hendrix, A. Agrawal, W.-k. Liao, and
A. Choudhary, “Data compression for the exascale computing era-
survey,” Supercomputing Frontiers and Innovations, vol. 1, no. 2, pp.
76-88, 2014.

The HDF Group. Hierarchical data format version 5.
Available: http://www.hdfgroup.org/HDF5

M. Folk, G. Heber, Q. Koziol, E. Pourmal, and D. Robinson, “An
overview of the hdf5 technology suite and its applications,” in Pro-
ceedings of the EDBT/ICDT 2011 Workshop on Array Databases, 2011,
pp. 36-47.

Nyx. [Online]. Available: https://github.com/AMReX- Astro/Nyx

S. Byna, M. S. Breitenfeld, B. Dong, Q. Koziol, E. Pourmal, D. Robin-
son, J. Soumagne, H. Tang, V. Vishwanath, and R. Warren, “Exahdf5:
delivering efficient parallel i/o on exascale computing systems,” Journal
of Computer Science and Technology, vol. 35, no. 1, pp. 145-160, 2020.
S. Pokhrel, M. Rodriguez, A. Samimi, G. Heber, and J. J. Simpson,
“Parallel i/o for 3-d global fdtd earth—ionosphere waveguide models
at resolutions on the order of” 1 km and higher using hdfS,” IEEE
Transactions on Antennas and Propagation, vol. 66, no. 7, pp. 3548—
3555, 2018.

HDF Group and others, “Hierarchical data format version 5, filter,” 2000.
HS5Z-SZ. [Online]. Available: https://github.com/disheng222/H5Z-SZ
The HDF5 team. Parallel compression improvements in
HDF5 1.13.1. [Online]. Available: https://www.hdfgroup.org/2022/
03/parallel-compression-improvements-in-hdf5-1-13-1/

H. Tang, Q. Koziol, J. Ravi, and S. Byna, “Transparent Asynchronous
Parallel I/0 Using Background Threads,” IEEE Transactions on Parallel
and Distributed Systems, vol. 33, no. 4, pp. 891-902, 2022.

S. Jin, S. Di, J. Tian, S. Byna, D. Tao, and F. Cappello, “Improving
prediction-based lossy compression dramatically via ratio-quality model-
ing,” in 2022 IEEE 38th International Conference on Data Engineering
(ICDE). 1IEEE, 2022, pp. 2494-2507.

J. Li, W.-k. Liao, A. Choudhary, R. Ross, R. Thakur, W. Gropp,
R. Latham, A. Siegel, B. Gallagher, and M. Zingale, “Parallel netcdf:
A high-performance scientific i/o interface,” in SC’03: Proceedings of
the 2003 ACM/IEEE Conference on Supercomputing. 1EEE, 2003, pp.
39-39.

W. F. Godoy, N. Podhorszki, R. Wang, C. Atkins, G. Eisenhauer, J. Gu,
P. Davis, J. Choi, K. Germaschewski, K. Huck et al., “Adios 2: The
adaptable input output system. a framework for high-performance data
management,” SoftwareX, vol. 12, p. 100561, 2020.

H. Tang, S. Byna, N. A. Petersson, and D. McCallen, “Tuning parallel
data compression and i/o for large-scale earthquake simulation,” in 2021
IEEE International Conference on Big Data (Big Data). 1EEE, 2021,
pp. 2992-2997.

S. Byna, M. Chaarawi, Q. Koziol, J. Mainzer, and F. Willmore, “Tuning
hdf5 subfiling performance on parallel file systems,” Lawrence Berkeley
National Laboratory, 2021.

G. K. Wallace, “The JPEG still picture compression standard,” IEEE
Transactions on Consumer Electronics, vol. 38, no. 1, pp. xviii—xxxiv,
1992.

S. Jin, J. Pulido, P. Grosset, J. Tian, D. Tao, and J. Ahrens, “Adaptive
configuration of in situ lossy compression for cosmology simulations
via fine-grained rate-quality modeling,” in Proceedings of the 30th
International Symposium on High-Performance Parallel and Distributed
Computing, 2020, pp. 45-56.

X. Liang, K. Zhao, S. Di, S. Li, R. Underwood, A. M. Gok, J. Tian,
J. Deng, J. C. Calhoun, D. Tao, Z. Chen, and F. Cappello, “Sz3: A
modular framework for composing prediction-based error-bounded lossy
compressors,” IEEE Transactions on Big Data, pp. 1-14, 2022.

D. Tao, S. Di, Z. Chen, and F. Cappello, “Significantly improving lossy
compression for scientific data sets based on multidimensional prediction
and error-controlled quantization,” in 2017 IEEE International Parallel
and Distributed Processing Symposium. 1EEE, 2017, pp. 1129-1139.
S. Di and F. Cappello, “Fast error-bounded lossy hpc data compression
with SZ,” in 2016 IEEE International Parallel and Distributed Process-
ing Symposium. Chicago, IL, USA: IEEE, 2016, pp. 730-739.

Q. Zhou, C. Chu, N. Kumar, P. Kousha, S. Ghazimirsaeed, H. Sub-
ramoni, and D. Panda, “Designing high-performance mpi libraries
with on-the-fly compression for modern gpu clusters,” in 2021 IEEE
International Parallel and Distributed Processing Symposium (IPDPS).
IEEE, 2021, pp. 444-453.

[Online].



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

K. J. Bowers, B. Albright, L. Yin, B. Bergen, and T. Kwan, “Ultra-
high performance three-dimensional electromagnetic relativistic kinetic
plasma simulation,” Physics of Plasmas, vol. 15, no. 5, p. 055703, 2008.
S. Byna, J. Chou, O. Rubel, H. Karimabadi, W. S. Daughter, V. Royter-
shteyn, E. W. Bethel, M. Howison, K.-J. Hsu, K.-W. Lin et al., “Parallel
i/o, analysis, and visualization of a trillion particle simulation,” in SC’12:
Proceedings of the International Conference on High Performance
Computing, Networking, Storage and Analysis. 1EEE, 2012, pp. 1-
12.

B. Behzad, H. V. T. Luu, J. Huchette, S. Byna, R. Aydt, Q. Koziol,
M. Snir et al.,, “Taming parallel i/o complexity with auto-tuning,” in
SC’13: Proceedings of the International Conference on High Perfor-
mance Computing, Networking, Storage and Analysis. 1EEE, 2013, pp.
1-12.

B. Behzad, S. Byna, S. M. Wild, M. Prabhat, and M. Snir, “Improving
parallel i/o autotuning with performance modeling,” in Proceedings of
the 23rd international symposium on High-performance parallel and
distributed computing, 2014, pp. 253-256.

W. Bhimji, D. Bard, M. Romanus, D. Paul, A. Ovsyannikov, B. Friesen,
M. Bryson, J. Correa, G. K. Lockwood, V. Tsulaia et al., “Accelerating
science with the nersc burst buffer early user program,” Lawrence
Berkeley National Laboratory, 2016.

J. Han, D. Koo, G. K. Lockwood, J. Lee, H. Eom, and S. Hwang,
“Accelerating a burst buffer via user-level i/o isolation,” in 2017 IEEE
International Conference on Cluster Computing (CLUSTER). 1EEE,
2017, pp. 245-255.

D. Koo, J. Lee, J. Liu, E.-K. Byun, J.-H. Kwak, G. K. Lockwood,
S. Hwang, K. Antypas, K. Wu, and H. Eom, “An empirical study of
i/o separation for burst buffers in hpc systems,” Journal of Parallel and
Distributed Computing, vol. 148, pp. 96-108, 2021.

S. Habib, A. Pope, H. Finkel, N. Frontiere, K. Heitmann, D. Daniel,
P. Fasel, V. Morozov, G. Zagaris, T. Peterka, V. Venkatram, L. Zarija,
S. Saba, and W.-k. Liao, “Hacc: Simulating sky surveys on state-of-the-
art supercomputing architectures,” New Astronomy, vol. 42, pp. 49-65,
2016.

Summit supercomputer. [Online]. Available: https://www.olcf.ornl.gov/
summit/

W. Daughton, J. Scudder, and H. Karimabadi, “Fully kinetic simulations
of undriven magnetic reconnection with open boundary conditions,”
Physics of Plasmas, vol. 13, no. 7, p. 072101, 2006.

A. K. Paul, O. Faaland, A. Moody, E. Gonsiorowski, K. Mohror, and
A. R. Butt, “Understanding hpc application i/0 behavior using system
level statistics,” in 2020 IEEE 27th International Conference on High
Performance Computing, Data, and Analytics (HiPC). 1EEE, 2020, pp.
202-211.

S. Lee, K.-y. Hou, K. Wang, S. Sehrish, M. Paterno, J. Kowalkowski,
Q. Koziol, R. B. Ross, A. Agrawal, A. Choudhary et al., “A case study
on parallel hdf5 dataset concatenation for high energy physics data
analysis,” Parallel Computing, vol. 110, p. 102877, 2022.

S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, and W. Allcock,
“I/o performance challenges at leadership scale,” in Proceedings of the
Conference on High Performance Computing Networking, Storage and
Analysis. 1EEE, 2009, pp. 1-12.

B. Xie, H. Tang, S. Byna, Q. Koziol, and O. Sarp. Tuning I/O
Performance on Summit — HDF5 Write Use Case Study. [Online].
Available: https://hps.vidio.org/_media/events/2020/hpciodc20-hdf5.pdf
S. Jin, G. Li, S. L. Song, and D. Tao, “A novel memory-efficient deep
learning training framework via error-bounded lossy compression,” in
Proceedings of the 26th ACM SIGPLAN Symposium on Principles and
Practice of Parallel Programming, 2021, pp. 485-487.

S. Jin, C. Zhang, X. Jiang, Y. Feng, H. Guan, G. Li, S. L. Song,
and D. Tao, “Comet: a novel memory-efficient deep learning training
framework by using error-bounded lossy compression,” Proceedings of
the VLDB Endowment, vol. 15, no. 4, pp. 886-899, 2021.

S. Byna, A. Uselton, D. K. Prabhat, and Y. He, “Trillion particles,
120,000 cores, and 350 tbs: Lessons learned from a hero i/o run on
hopper,” in Cray user group meeting, 2013.

Bebop cluster. [Online]. Available: https://www.Icrc.anl.gov/systems/
resources/bebop/



Appendix: Artifact Description/Artifact Evaluation

SUMMARY OF THE EXPERIMENTS REPORTED

The paper reports the overall performance improvement of our
proposed solution HDF5-SZ (i.e., write compressed data and overlap
compression with I/O + compression schedule optimization) over
two existing solutions (i.e., write original data, write compressed
data with SZ lossy compression filter).

We ran the experiments on (1) the Summit supercomputer at
Oak Ridge National Laboratory, each node of which is equipped
with two IBM POWERY processors with 42 physical cores and 512
GB DDR4 memory, and (2) the Bebop cluster at Argonne National
Laboratory, each node of which is equipped with two 18-core Intel
Xeon E5-2695v4 CPUs and 128 GB DDR4 memory. We compiled
the HDF5-SZ demo code with GCC-8.3.1 and OpenMPI 4.1.1 with
HDF5-1.10.6, Argobots-1.1, and SZ-2.1.

AUTHOR-CREATED OR MODIFIED
ARTIFACTS:

Artifact 1
Persistent ID: https://doi.org/10.5281/zenodo. 6875597
Artifact name: HDF5-SZ

Reproduction of the artifact without container: Please see the in-
structions in the Zenodo (https://doi.org/10.5281/zenodo.6875597)
or GitHub repository (https://github.com/jinsian/HDF5-SZ) on how
to compile and execute our demo code. We also describe the in-
structions as follows.

0 EXPERIMENTAL ENVIRONMENT
(1) OS: CentOS (>=7.8)
(2) Compiler: GCC (>=4.8.5)
(3) MPIL: GCC built OpenMPI (>=4.1.1) or MPICH (>=3.3.1)
(a) For users in HPC systems (such as Summit) with Slurm,
please try “module load openmpi” to load the MPI library.
(b) For users in Chameleon Cloud, please request a node in
the user dashboard, create an instance using ANL-MPICH
image, and launch and login to the instance.
(4) Other dependencies: parallel HDF5, Argobots, and SZ (please
follow Step 1 and 2 to build them).

1 STEP 1: DOWNLOAD DEPENDENCIES

1.1 Setup test directory
export TEST_HOME=$(pwd)

1.2 Download code of HDF5, Argobots, SZ, and
our HDF5-SZ

cd $TEST_HOME

git clone https://github.com/HDFGroup/hdf5
git clone https://github.com/pmodels/argobots
git clone https://github.com/szcompressor/SZ
git clone https://github.com/jinsian/HDF5-SZ

1.3 Configure home directory of each software

export H5_HOME=$TEST_HOME/hdf5
export ABT_HOME=$TEST_HOME/argobots
export SZ_HOME=$TEST_HOME/SZ
export VOL_HOME=$TEST_HOME/HDF5-SZ

2 STEP 2: BUILD DEPENDENCIES
2.1 Build parallel HDF5

# create makefile and installation dir
cd $H5_HOME && ./autogen.sh && mkdir install

# build and install parallel HDF5

./configure --prefix=$H5_HOME/install \
--enable-parallel \
--enable-threadsafe \
--enable-unsupported

make -j8 && make install

# check if the installed HDF5 supports parallel mode
$H5_HOME/install/bin/h5pcc -showconfig

2.2 Build Argobots

# create makefile and installation dir
cd $ABT_HOME && ./autogen.sh && mkdir install

# build and install Argobots
./configure --prefix=$ABT_HOME/install
make -3j8 && make install

2.3 Build SZ

# create makefile and installation directory
cd $SZ_HOME && mkdir install

# build and install SZ
./configure --prefix=$SZ_HOME/install
make -j8 && make install

2.4 Build asynchronous VOL connector with SZ

cd $VOL_HOME/src

export HDF5_DIR=$H5_HOME/install
export ABT_DIR=$ABT_HOME/install
make

3 STEP 3: BUILD HDF5-SZ DEMO

3.1 Set environment variables

export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:$SZ_HOME/ \
install/lib

export LD_LIBRARY_PATH=$VOL_HOME/src:$H5_HOME/ \
install/lib:\
$ABT_HOME/install/lib:$LD_LIBRARY_PATH



export HDF5_PLUGIN_PATH="$VOL_HOME/src"
export HDF5_VOL_CONNECTOR="async \
under_vol=0;under_info={}"

3.2 Compile HDF5-SZ demo code

cd $VOL_HOME/test

export H5_DIR=$HDF5_DIR

export ASYNC_DIR=$VOL_HOME/src
make

4 STEP 4: TEST HDF5-SZ DEMO
4.1 Download dataset

You can download and extract the example dataset (i.e., a 2.7 GB
Nyx cosmology dataset with a dimension of 512x512x512) from
SDRBench with the following commands.

cd $VOL_HOME/test

# download dataset

wget https://g-8d6b@.fd635.8443.data.globus.org\
/ds131.2/Data-Reduction-Repo/raw-data/EXASKY/NYX/\
SDRBENCH-EXASKY-NYX-512x512x512.tar.gz

# extract data
tar -zxvf SDRBENCH-EXASKY-NYX-512x512x512.tar.gz

4.2 Run test

Run the overall performance test. Note that you may need to change
the execution command from mpirun to the corresponding MPI
launch command in your system. If you are using the MPICH on
Chameleon, please change mpirun to mpiexec.

mpirun -n 16 overall_test.exe

This demo code is to first distribute the example data to 16
processors where each holds a partition of 6 64x64x64 data fields
and then write these data to a shared HDF5 file using three different
solutions (with different write performances): (1) write original
data, (2) write compressed data with SZ lossy compression filter,
and (3) write compressed data and overlap compression with I/O +
compression schedule optimization.

You’ll expect to see the output like this:

Write time comparison:
Original: 0.216752 s
Previous: 0.160252 s
Ours: 0.135717 s

Jin, et al.



	Introduction
	Research Background and Challenges
	Parallel I/O Libraries for HPC Applications
	Error-Bounded Lossy Compression
	Target I/O-Intensive HPC Applications

	Proposed Design Methodology
	Design Overview
	Compressor Throughput Estimation
	Write Time Estimation
	Overlapping Compression and Write
	Compression Order Optimization

	Experimental Evaluation
	Evaluation Setup
	Accuracy of Compression and I/O Throughput Estimation
	Evaluation on Extra Space Ratio
	Overall Performance Improvement

	Conclusion and Future Work
	References
	0 Experimental Environment
	1 Step 1: Download Dependencies
	1.1 Setup test directory
	1.2 Download code of HDF5, Argobots, SZ, and our HDF5-SZ
	1.3 Configure home directory of each software

	2 Step 2: Build Dependencies
	2.1 Build parallel HDF5
	2.2 Build Argobots
	2.3 Build SZ
	2.4 Build asynchronous VOL connector with SZ

	3 Step 3: Build HDF5-SZ Demo
	3.1 Set environment variables
	3.2 Compile HDF5-SZ demo code

	4 Step 4: Test HDF5-SZ Demo
	4.1 Download dataset
	4.2 Run test


