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Abstract:Weanalyze the systemic risk for disjoint and overlapping groups of financial institutions by propos-
ing new models with realistic game features. Specifically, we generalize the systemic risk measure proposed
in [F. Biagini, J.-P. Fouque, M. Frittelli and T. Meyer-Brandis, On fairness of systemic risk measures, Finance
Stoch. 24 (2020), no. 2, 513–564] by allowing individual banks to choose their preferred groups instead
of being assigned to certain groups. We introduce the concept of Nash equilibrium for these new models,
and analyze the optimal solution under Gaussian distribution of the risk factor. We also provide an explicit
solution for the risk allocation of the individual banks and study the existence and uniqueness of Nash equi-
librium both theoretically and numerically. The developed numerical algorithm can simulate scenarios of
equilibrium, and we apply it to study the banking structure with real data and show the validity of the pro-
posed model.
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1 Introduction
Financial institutions are increasingly and tightly connected together at an unprecedented scale, and the
complex dynamics of the inter-connectedness aggregate their idiosyncratic risks within the financial sys-
tem. Consequently, failures of individual institutions due to excessive risk-taking may quickly propagate
throughout the entire financial network and systemically cause cascading disasters. Such financial crises
(e.g., [7, 24, 30]) have dramatically demonstrated the importance of understanding the nature of systemic
risk and designingmodels andmethods to capture and analyze it. In the literature, various aspects related to
systemic riskhavebeen studied, suchasmodeling andmeasurements [10, 14, 17, 29], the analysis of the con-
tagion [2, 12, 22], the spread of a potential exogenous shock into the system [23], and many others [13, 15].
Recently, the framework has also been extended to include effects such as multi-maturities [26], bankruptcy
costs [18], and exchanging contingent convertible debt obligations [19]. We refer interested readers to the
book [25] for a comprehensive review.
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For a given financial network and a given random shock, one then determines the “cascade”mechanism,
which generates many defaults. This mechanism often requires a detailed description of the balance sheet of
each institution; assumptions on the interbank network and exposures, on the recovery rate at default, on the
liquidation policy; the analysis of direct liabilities, bankruptcy costs, cross-holdings, leverage structures, fire
sales, and liquidity freezes. Meanwhile, central clearing counterparties (CCPs) are introduced to the financial
markets to mitigate the cascade defaults. They require default funds from their members to absorb the cost
of clearing member’s defaults, and several mechanisms of default funds have been designed [1]. While some
literature [4, 11] concentrated on single aspects of central counterparty clearing, the papers [3, 5] treated
the CCP as a complex package: it offers netting services, requires guarantee fund contributions, changes the
profile of liquidations across the network, and comes with its own capital requirements [27]. From an indi-
vidual bank’s perspective, [28] studied how it assesses its risks based on the partial information available
to it provided by CCP. In our analysis, we consider only guarantee fund contributions in a CCP to reduce the
systemic risk.

In the previous works [8, 9], one of the authors (J.-P. Fouque) and his collaborators introduced a general
class of systemic risk measures that allow for random allocations to individual banks before aggregation of
their risks. They also proved the dual representation of a particular subclass of such systemic risk measures
and the existence and uniqueness of the optimal allocation. They interpreted the systemic risk measures as
theminimal amount of cash that secures the aggregated system by allocating capital to the single institutions
before aggregating the individual risks, which allows for a possible ranking of the institutions in terms of
systemic risk measured by the optimal allocations. The papers [6, 20] developed systemic risk measures in
a similar spirit, covering allocation first followed by aggregation frameworks.

In this paper, we generalize the systemic risk measure under exponential utility functions proposed in
[8, 9] by allowing individual banks to choose their allocations of the risks into different groups instead of
being assigned to specific groups. This brings game features into modeling, making it more realistic and
providing baselines for a CCP to design its default fund mechanism from rational banks. To solve the new
models with game features, we first define the concept of Nash equilibrium based on banks’ fair systemic risk
allocation, a concept introduced in [9], and discuss the existence and uniqueness of equilibrium strategies.
Then some explicit formulas are derived under the Gaussian distribution of the risk factor. In the overlapping
group case, still focusing on the risk measure produced by exponential utility functions, we first provide
explicit expressions for the systemic risk measure and fair risk allocation of each bank under general risk
factor. Sensitivity and monotonicity properties are also established. The concept of Nash equilibrium is then
extended to the overlapping group case, namely, its existence and uniqueness are discussed theoretically
and numerically under Gaussian assumptions and with two groups. In particular, we propose a numerical
algorithm based on fictitious play to identify the Nash equilibrium, and use it to study synthetic examples
and the bank-CCP structurewith real data, showing the validity of the proposedmodel. It is worthmentioning
that the complex mechanism of CCP is by no means fully captured by our modeling on group choice and
systemic risk measure. In practice, the CCP requires multiple layers of capital, margin fund, etc., and we
hope our stylized model could provide CCPs guidelines for further mechanism design. To bridge the gap,
for instance, two of the authors and their collaborator design deep learning algorithms [21] to compute the
optimal strategy of capital allocations and improve it to amore realistic situation of scenario-dependent cash
distribution without cross-subsidization.

The rest of the paper is organized as follows. In Section 2, we first describe the systemic risk models with
game features for disjoint groups. Then we introduce the concept of group formation and Nash equilibrium,
and analyze the optimal solution under Gaussian distribution of the risk factor. In Section 3, we generalize
the model and concept of Nash equilibrium to the overlapping group case. We propose numerical methods
for computing Nash equilibrium and give several examples in Section 4. We make conclusive remarks in
Section 5.



Y. Feng et al., Systemic risk grouping equilibrium | 3

2 Fair systemic risk measure on disjoint groups

2.1 Review on systemic risk measure

A concept of systemic risk measure was proposed in [8, 9], where the authors considered the following prob-
lem of risk allocations of N individuals labeled as {1, . . . , N}. Given a joint distribution of an N-dimensional,
real-valued random vector X := (X1, . . . , XN) on a probability space (Ω,F,ℙ), the risk sensitivity vector
α := (α1, . . . , αN) ∈ (0,∞)N , the risk tolerance value B < 0 and the partition set

{Im := {nm−1 + 1, . . . , nm}, m = 1, . . . , h}

(indexed by a vector n := (n1, . . . , nh) with 0 = n0 < n1 < ⋅ ⋅ ⋅ < nh = N for some h ≥ 1) of the N elements
{1, . . . , N}, one defines the aggregate risk

ρ(X) := inf{
N
∑
n=1

Yn : Y = (Y1, . . . , YN) ∈ C(n)0 , 𝔼[
N
∑
n=1

un(Xn + Yn)] = B}, (2.1)

where we take un(x) = − 1αn e
−αnx as exponential utility functions, αn could be interpreted as the risk aver-

sion of individual n, and the random allocation C
(n)
0 of partition index vector n and the associated partition

{Im , m = 1, . . . , h} are given by

C
(n)
0 := {Y ∈ 𝕃0(ℝN) : there exists a real vector d := (d1, . . . , dh) ∈ ℝh

such that ∑
i∈Im

Y i = dm for every m = 1, . . . , h}.

The partition set {Im , m = 1, . . . , h} represents the grouping among the individuals and is determined by the
vector n. Here C(n)0 is a subfamily of random vectors 𝕃0(ℝN) associated with n such that all the partial sums
of elements divided by the partition are deterministic real numbers.

Theorem 6.2 in [9] shows that the infimum of (2.1) is attained by

Y i
X := −Xi +

Sm + dm
αiβm

, Sm := ∑
k∈Im

Xk , βm := ∑
k∈Im

1
αk

,

dm := βm log(− βB𝔼[e
−Sm/βm ]), β :=

N
∑
n=1

1
αn
=

h
∑
m=1

βm

(2.2)

for m = 1, . . . , h and i ∈ Im, and

ρ(X) =
N
∑
n=1

Yn
X =

h
∑
m=1

dm .

Moreover, the systemic risk allocation ρi,(n)(X) of individual i is given by

ρi,(n)(X) := 𝔼ℚmX [Y
i
X] = (𝔼[e

−Sm/βm ])−1𝔼[Y i
Xe
−Sm/βm ], i ∈ Im , (2.3)

for m = 1, . . . , h, where ℚmX is a tilted probability measure, absolutely continuous with respect to ℙ, deter-
mined by the Radon–Nikodym derivative

dℚmX
dℙ

:= (𝔼[e−Sm/βm ])−1e−Sm/βm , m = 1, . . . , h. (2.4)

By the construction, one has

ρ(X) =
h
∑
m=1

dm =
h
∑
m=1
∑
i∈Im

ρi,(n)(X) =
N
∑
n=1

ρn,(n)(X).
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2.2 Groups formation and Nash equilibrium

In this section, we generalize the systemic risk measure to a game setup. For a game with N individuals, we
assume there are N buckets (B1, . . . , BN) for each individual to choose which one she belongs to. The choice
of individual n, n = 1, . . . , N, is denoted by an, and an = jmeans individual n chooses the bucket j.We callA
the set of all strategies. A set of strategies a := (a1, . . . , aN) ∈ A generatesm groups by considering only the
non-empty buckets for some 1 ≤ m ≤ N. Different sets of strategies may generate the same groups denoted
by C(a). We say two strategies a(1) and a(2) are equivalent if the partitions C(a(1)) and C(a(2)) are equivalent.
With the individual systemic risk allocation in (2.3), the objective function of individual n under the partition
C(a) is defined by

ρn(C(a)) = ρn(X;C(a)) = 𝔼ℚmX [Y
n
X],

where n ∈ Im for some m ∈ {1, . . . , h}, Yn
X andℚ

m
X depend on the partition C(a).

Let â = ( ̂a1, . . . , ̂aN) ∈ A and (â−n , an) = ( ̂a1, . . . , ̂an−1, an , ̂an+1, . . . , ̂aN) ∈ A .

Definition 2.1. With the systemic risk allocation map C 󳨃→ ρ ⋅ (X;C) in (2.3) and the above definitions, the
configuration C(â) is a Nash equilibrium if, for every n = 1, . . . , N and an,

ρn(X;C(â)) ≤ ρn(X;C(â−n , an)), (2.5)

i.e., the systemic risk allocation of individual n is minimized under grouping C(â), given other individuals’
choices are â−n. If there are multiple Nash equilibrium strategies satisfying (2.5) and all the partitions asso-
ciated with these Nash equilibrium strategies are equivalent, we say the Nash equilibrium strategy is unique
up to equivalence relation.

In this paper, we shall consider the following questions:
∙ Does a Nash equilibrium exist?
∙ If it exists, is it unique?
We view the equilibrium as a network of risk-sharing. It is easy to show that a single group with all the indi-
viduals, called full risk-sharing, is a Nash equilibrium. We call this the trivial Nash equilibrium. This follows
from the fact that a configuration with a group having only one individual is never a Nash equilibrium; see
[9, Section 6.2 “Monotonicity”]. For simplicity, we take Gaussian distribution for the risk factors and discuss
the proposed model in detail with some examples.

2.3 Extreme examples

Here we discuss some extreme cases. Let |Im| (≥ 1) be the number of elements in Im for m ≥ 1. Under the
exchangeability assumption on the joint distribution ofX and the identical exponential utility functionswith
α1 = ⋅ ⋅ ⋅ = αN = α > 0, themarginal distributions of Xie−Sm/βm , i ∈ Im, are identicalwith the same expectation,
that is,

𝔼[−Xie−Sm/βm ] = −βm
|Im|
𝔼[

Sm
βm

e−Sm/βm], i ∈ Im , (2.6)

and hence, with βm = α−1|Im|, β = α−1N for m = 1, . . . , h,

𝔼[Y i
Xe
−Sm/βm ] = 𝔼[(−Xi +

Sm
αkβm
+

dm
αiβm
)e−Sm/βm] = dm

|Im|
𝔼[e−Sm/βm ].

Then substituting it into (2.3) gives the systemic risk allocation of individual i,

ρi(X; {I ⋅ }) =
dm
|Im|
=
1
α log( −Nα ⋅ (−B)𝔼[e

−αSm/|Im |]), i ∈ Im .

Under the i.i.d. Gaussian distribution assumptions for X, i.e., Xi, i = 1, . . . , N, are independent, iden-
tically distributed Gaussian random variables with mean μ ∈ ℝ and variance σ2 > 0, Sm = ∑i∈Im X

i is dis-
tributed normally with mean μ|Im| and variance σ2|Im| for m ≥ 1. Direct calculation yields the systemic risk
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allocation of individual i,

ρi(X; {I ⋅ }) =
1
α log( N

α ⋅ (−B)) − μ +
ασ2

2|Im|
, i ∈ Im , (2.7)

which is a decreasing function of the size |Im| of the group Im that individual i belongs to.

Example 2.1 (I.i.d. Gaussian with the same exponential utility function). The strategy â := (1, . . . , 1) that
everyone chooses the same group is a unique Nash equilibrium. In this case, C(â) = {I1 = {1, . . . , N}} with
|I1| = N, h = 1. Every individual k belongs to the same group I1, and by (2.7),

ρk(X;C(â)) = 1α log( N
α ⋅ (−B)) − μ +

ασ2

2N ≤ ρ
k(𝕏;C(â−k , ak)), a ∈ A .

To see its uniqueness, if a∗ were a Nash equilibrium strategy with C(a∗) = {I∗m , m = 1, . . . , h∗}, which is not
equivalent to C(â), then h∗ ≥ 2 and all the sets I∗m, m = 1, . . . , h∗, would satisfy 1 ≤ |I∗m| ≤ N − 1. Take the
group number ℓ0 := argmin1≤i≤h|I∗i | of its smallest size. For a fixed individual k ∈ I∗ℓ0 , there exists a ∈ A with
ak = j0 such that, in the new partition C(a∗−k , ak) = {Im}, the individual k belongs to another group Im0 with
|Im0 | > |Iℓ0 |, and hence, by (2.7),

ρk(X;C(a∗)) = ρk(X; {I∗m , m = 1, . . . , h∗}) > ρk(X;C(a∗−k , j0)).

This contradicts with the definition of Nash equilibrium. Thus â is a unique Nash equilibrium up to equiva-
lence relation.

Example 2.2 (Non-random, equal outcomes with the same exponential utility function). Instead, ifX is a de-
terministic constant vector of μ’s (μ ∈ ℝ) with σ2 ≡ 0, that is, Xi = μ for every i = 1, . . . , N, then there is no
contribution from Im in the systemic risk allocation

ρi(X; {I ⋅ }) =
1
α log( N

α ⋅ (−B)) − μ, i ∈ Im ,

and hence the risk sharing is arbitrary and undetermined.

Next we shall relax the condition on α’s. We still assume Xi are i.i.d. Gaussians withmean μ ∈ ℝ and variance
σ2 > 0. In this case, Sm

βm is normally distributed with mean μ|Im |
βm and variance |Im |σ

2

β2m
. Then direct calculations

produce
dm
βm
= log( β
−B) + log𝔼[e

−Sm/βm ] = log( β
−B) −

μ|Im|
βm
+
|Im|σ2

2β2m
,

𝔼ℚm𝕏[ Smβm ] = (𝔼[e−Sm/βm ])−1𝔼[ Smβm e−Sm/βm] = μ|Im|βm
−
|Im|σ2

β2m
,

(2.8)

whereℚmX is the tilted measure defined by (2.4). Also, by (2.6),

𝔼[−Xke−Sm/βm + Sm
αkβm

e−Sm/βm] = (−βm
|Im|
+

1
αk
)𝔼[

Sm
βm

e−Sm/βm] (2.9)

for k ∈ Im. Hence, substituting (2.8)–(2.9) into (2.3) brings, for k ∈ Im,

ρk(X; {I ⋅ }) = (
−βm
|Im|
+

1
αk
)𝔼ℚmX [

Sm
βm
] +

dm
αkβm
= −μ + 1

αk
log( β
(−B)) +

σ2

βm
(1 − |Im|2αkβm

).

In order to find a Nash equilibrium, we evaluate the quantity

ηk({I ⋅ }) :=
1
βm
(1 − |Im|2αkβm

) = αk
∏{j∈Im:j ̸=k} αj
∑j∈Im αj

(1 −
|Im|∏{j∈Im:j ̸=k} αj

2∑j∈Im αj
), k ∈ Im . (2.10)

Note that ηk({I ⋅ }) is an increasing function of αk, and thus, if argmaxk∈Im αk = k0, then

ηk0 ({I ⋅ }) ≥ ηk({I ⋅ }) for everyk ∈ Im . (2.11)
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However, it is not necessarily true that

ρk0 (X; {I ⋅ }) ≥ ρk(X; {I ⋅ }) for every k ≥ 0

because of the term 1
αk log(

β
−B ). Note that η

k({I ⋅ }) is a decreasing function of |Im |βm and is a decreasing function
of βm.

If N = 2 and 0 < α1 ≤ α2, then â := (1, 1) is a unique Nash equilibrium. This is directly verified by the
inequalities

ηk(C(â)) = αk ⋅
α1α2
(α1 + α2)2

≤
αk
4 <

αk
2 = η

k({{1}, {2}}), k = 1, 2, (2.12)

and hence ρk(X;C(â)) < ρk(X;C(â−k , a)) for every k = 1, 2, and a ∈ A which is not equivalent to â.
If N ≥ 2 and 0 < α1 ≤ α2 ⋅ ⋅ ⋅ ≤ αN , then â := (1, . . . , 1) is a Nash equilibrium for a similar calculation to

(2.12),

ηk(C(â)) = αk ⋅
∏i ̸=k αi

α1 + ⋅ ⋅ ⋅ + αk
(1 −

N∏i ̸=k αi
2(α1 + ⋅ ⋅ ⋅ + αN)

) < αk ⋅
∏i ̸=k αi

α1 + ⋅ ⋅ ⋅ + αk
(1 −

∏i ̸=k αi
(α1 + ⋅ ⋅ ⋅ + αN)

)

≤
αk
4 <

αk
2 = η

k({{k}, {1, . . . , N} \ {k}}), k = 1, . . . , N.

There is no reason to move out of the alliance of {1, . . . , N} and to become an outcast. This observation can
be generalized: under this setup, there is no reason to move out of the alliance of a group Im of size greater
than or equal to 2, i.e., |Im| ≥ 2 and to become an outcast.

We conjecture that â is a unique Nash equilibrium under a wide range of configurations of α’s. For each
C(a) = {Im , m = 1, . . . , h}, let us consider the group heads km, m = 1, . . . , h, and the head of the group
heads k∗ defined by

km := argmax
ℓ∈Im

αℓ, m = 1, . . . , h, k∗ := argmax
k∈{k1 ,...,km}

ηk(C(a)). (2.13)

Let us denote bym∗ the group name of k∗, i.e., k∗ ∈ Im∗ . By setting the group heads and the head of the group
heads, we see from the observation made in (2.11) that

ηkm (C(a)) ≥ ηℓ(C(a)) for every ℓ ∈ Im , m = 1, . . . , h,
ηk∗ (C(a)) ≥ ηkm (C(a)) for every m = 1, . . . , h. (2.14)

Lemma 2.1. If there is a group head k∗ ∈ {k1, . . . , km} \ {k∗} in a group m∗, i.e.,

k∗ ∈ Im∗ from C(a) = {Im , m = 1, . . . , h}

such that
αk∗
αk∗ ≤ 1 + 1

|Im∗ | , (2.15)

then ηk∗ (C(a)) ≥ ηk∗ (C(ã)), where C(ã) = { ̃Im , m = 1, . . . , h} is obtained only by removing k∗ from group m∗

and adding k∗ into group m∗, that is,

̃Im∗ := Im∗ \ {k∗}, ̃Im∗ := Im∗ ∪ {k∗}.
In addition, either if the inequality in (2.15) is strict or if the strict inequality ηk∗ (C(a)) > ηk∗ (C(a)) holds, then
C(a) is not a Nash equilibrium.

Proof. We rewrite ηk({I ⋅ }) = f ( 1βm ;
|Im |
2αk ) in (2.10) with a quadratic function f (x; a) := x(1 − ax), x > 0. Note

that f (0) = 0 = f ( 1a ) and f (x; a) is increasing in the interval (0,
1
2a ). For each group head k1, . . . , kh, we have

|Im|
αkm
≤ ∑

k∈Im

1
αk
= βm or 1

βm
≤
αkm
|Im|

, m = 1, . . . , h.

Thus, with a = |Im |2αkm
, we have 1

βm ≤
1
2a , and hence x 󳨃→ f (x; |Im |2αk ) is increasing in the interval (0, 1

βm ) for
m = 1, . . . , h.
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By the definition of k∗ in (2.13) and (2.14), we have

ηk∗ (C(a)) = 1
βm∗ (1 − |Im∗ |

2αk∗βm∗ ) ≥ 1
βm∗ (1 − |Im∗ |

2αk∗βm∗ ) = f( 1
βm∗ ; |Im∗ |

2αk∗ ) = ηk∗ (C(a)).
Then, by the monotonicity of x 󳨃→ f (x; |Im∗ |

2αk∗ ) in the interval (0, 1
βm∗ ), we have

ηk∗ (C(a)) ≥ f( 1
βm∗ ; |Im∗ |

2αk∗ ) ≥ f( 1
βm∗ + 1

αk∗ ;
|Im∗ |
2αk∗ )

=
1

βm∗ + ( 1αk∗ )(1 −
|Im∗ |

2αk∗ (βm∗ + 1
αk∗ ))

≥
1

βm∗ + ( 1αk∗ )(1 −
|Im∗ | + 1

2αk∗ (βm∗ + 1
αk∗ )) = η

k∗ (C(ã)),
where we used (2.15) in the last inequality and C(ã) is obtained only by removing k∗ from the group m∗ and
adding k∗ into the group m∗. Thus, for k∗, it is better to move from m∗ to m∗, and hence C(a) is not a Nash
equilibrium.

Example 2.3. Suppose that we have C(a) = {Im}m=1,2,3, I1 = {1, 2}, I2 = {3, 4, 5}, I3 = {6, 7, 8, 9, 10} with

α1 = α2 = 2, α3 = α4 = α5 = 3, α6 = α7 = α8 = α9 = 4, α10 = 5.

Condition (2.15) holds with a strictly inequality, and C(a) is not a Nash equilibrium.

Example 2.4. Suppose that we have C(a) = {Im}m=1,2, I1 = {1, 2, 3}, I2 = {4, 5, 6} with

α1 = α2 = 2, α3 = 4, α4 = α5 = α6 = 3.

Condition (2.15) does not hold; however, C(a) is not a Nash equilibrium.

2.4 Case discussion: Correlated Gaussian distribution

In a systemwith N individuals, we assume the joint distribution of the column vectorX = (Xi , i = 1, . . . , N)T

follows a multivariate Gaussian distribution, that is, X ∼ N(μ, Σ), where μ ∈ ℝN and Σ ∈ ℝN×N is positive
semi-definite. The exponential utility functions for N individuals have positive parameters α = (α1, . . . , αN).

For every partition set Im, m = 1, . . . , h, define a group vector Am ∈ ℝ1×N which consists of only 0’s
and 1’s. For all the j ∈ Im, the j-th element in Am is 1, otherwise 0. For example, in a 4-player system, if
individuals 1 and 4 are in group 1, and individuals 2 and 3 in group 2, the corresponding vectors for the two
groups are A1 = (1, 0, 0, 1) and A2 = (0, 1, 1, 0). Then, following (2.2), we have

Sm = ∑
i∈Im

Xi = AmX ∼ N(Amμ, AmΣAT
m)

def
= N(μsm , (σsm)2). (2.16)

The results in Appendix A.10 produce that, for m = 1, . . . , h and for k ∈ Im,

dm = βm log(− βB𝔼[e
−Sm/βm ]) = βm log( β

−B) − μ
s
m +
(σsm)2

2βm
,

and the systemic risk allocation of individual k is given by

𝔼ℚmX [Y
k
X] = 𝔼[Y

k
X ⋅

dℚmx
dℙ ] =

𝔼[(−Xk + 1
αkβm Sm +

1
αkβm dm) ⋅ e

−Sm/βm ]

𝔼(e−Sm/βm )

= −μk +
1
αk

log( β
−B) +

1
βm

AmΣ[,k] −
(σsm)2

2β2mαk
. (2.17)

Remark 2.1 (Effect of mean). From the above formula of the systemic risk allocation for individual k, we find
that themean of individual k has no effect on her risk allocation nomatter which group she belongs to. Thus,
in the following discussion, without loss of generality, we take all means to be the constant zero.
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Remark 2.2 (Comparison between trivial grouping and multi-groups). The total risk allocation for multiple
groups (h ≥ 2) is always greater than the total risk allocation for the trivial grouping (h = 1). The proof of
this statement will be given in Appendix A.1, and we refer interested readers to read “Monotonicity” in [9]
for general proof free of the distribution of risk factors.

In the following, we present three concrete examples to help better understand on banks’ rational choices
under this fair risk allocation.

Claim 2.1. If X = (Xi , i = 1, . . . , N)T has the same standard deviation σ > 0 and correlation coefficient
ρ ∈ [−1, 1), and the utility parameters are identical, denoted by α (> 0), then there is only one trivial Nash
equilibrium, that is, all individuals are in the same group.

Claim 2.2. In the case of N = 4, we assume all the utility parameter αi are the same and equal to 1, and all
individuals have the same standard deviation denoted by σ > 0. If the correlation matrix is a block matrix with
uniform correlation coefficient, i.e., the correlation matrix is given by

(

1 ρ 0 0
ρ 1 0 0
0 0 1 ρ
0 0 ρ 1

),

we have the following conclusion about Nash equilibrium.
∙ If ρ ∈ [− 3

13 ,
3
8 ], there is no nontrivial Nash equilibrium.

∙ If ρ ∈ [−1, − 3
13 ), grouping “{1,2}-{3,4}”, i.e., the first twoand the second two individuals are in twodifferent

groups, is a nontrivial Nash equilibrium.
∙ If ρ ∈ (38 , 1], groupings “{1, 3}-{2, 4}” and “{1, 4}-{2, 3}” are both nontrivial Nash equilibria for the system.

According to the claim, when the correlation is not strong, all individuals tend to be together to form a trivial
Nash equilibrium. Otherwise, negatively correlated individuals tend to be in the same group, while positively
correlated individuals tend to be separate.

Claim 2.3. In the case of N = 5, we assume the standard deviation are uniform and the αi’s are 1. Let the
covariance matrix be

Σ =(

σ2 ρσ2 0 0 0
ρσ2 σ2 0 0 0
0 0 σ2 ρσ2 ρσ2

0 0 ρσ2 σ2 ρσ2

0 0 ρσ2 ρσ2 σ2

),

which is of block form with positive standard deviation σ and the correlation coefficient ρ ∈ (−1, 1).
∙ If ρ ∈ (−1, −27 ], grouping “{1, 2}-{3, 4, 5}” is a Nash equilibrium.
∙ If ρ ∈ (−27 , 1), there is no nontrivial Nash equilibrium.
∙ Grouping “{1, 2, 3}-{4, 5}” cannot be a nontrivial Nash equilibrium for any value of ρ.

We give derivations of Claims 2.1, 2.2, and 2.3 in Appendix A.2, A.3, and A.4, respectively. The result further
shows that individuals tend to stay with highly negatively correlated individuals to minimize the systemic
risk if they exist. It is impossible for individuals to stay with correlated and uncorrelated individuals at the
same time except for the trivial case when all individuals are together.

3 Systemic risk measure on overlapping groups
To further study the systemic risk measure under exponential utility functions, we generalize the systemic
risk allocation for N individuals on disjoint groups in Section 2 to the risk allocation for them on overlap-
ping ,groups where they can choose multiple groups to allocate their risks. Assuming there are at most h
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groups, the weighted risk factors for the n-th individual assigned to multiple groups are labeled as wn,kXn,
k = 1, . . . , h, with∑hk=1 wn,k = 1. In the weight wn,k, the index k refers to the group number the individual n
joins, and the weight can be of any value between 0 and 1. If wn,k = 0 for some k, then we say the individ-
ual is not in the k-th group. Therefore, we can extend the systemic risk measure given by (2.1) to a general
measure ρ defined by

ρ(X) := inf{
N
∑
n=1

h
∑
k=1

Yn,k : Y ∈ Cnew0 , 𝔼[
N
∑
n=1

h
∑
k=1

un(wn,kXn + Yn,k)] = B}, (3.1)

where we take un(x) = − 1αn e
−αnx as exponential utility functions, h is the maximum number of groups indi-

viduals can contribute to in total and it is a finite integer, and the random allocation Cnew0 is given by

Cnew0 = {Y = (Y
i,j , 1 ≤ i ≤ N, 1 ≤ j ≤ h) ∈ L0(ℝN×h) : there exists d = (d1, . . . , dh) ∈ ℝh

such that
N
∑
i=1

Y i,j = dj for j = 1, . . . , h}. (3.2)

Remark 3.1. Here h is an integer fixed a priori, to eliminate the situation that an individual wants to split the
risk Xi into infinitely many groups. An alternative way is to impose a minimum value requirement for non-
zero weights to avoid too many groups for an individual to participate in, denoted by wmin. Then, naturally,
h = ⌊ 1

wmin ⌋ ⋅ N.

Remark 3.2. The generalized system (3.1)–(3.2) stillmeets the assumptionsmade in [9] because themeasure
on overlapping groups can be seen as the measure (2.1) on disjoint groups with more individuals with
weighted risk factors. Thus the existence and uniqueness of optimal allocation solution YX of the primal
problem (3.1) is guaranteed, according to the discussion in [9, Section 4].

Given the grouping for all individuals, we define the family of sets

{Ij := {i ∈ ℕ : wi,j > 0, i = 1, . . . , N}, j = 1, . . . , h}.

Theorem 3.1. The optimal value of ρ(X) in (3.1) is attained by

dj = βj log(−
β
B𝔼[e
−Sj/βj ]), Y i,j

X = [−wi,jXi +
1

αiβj
(Sj + dj)]1wi,j>0,

where

Sj =
N
∑
i=1

wi,jXi = ∑
i∈Ij

wi,jXi , βj =
N
∑
i=1

1
αi
1wi,j>0 = ∑

i∈Ij

1
αi

for j = 1, . . . , h and i = 1, . . . , N,

β =
h
∑
j=1

βj =
h
∑
j=1

N
∑
i=1

1
αi
1wi,j>0, and ρ(X) =

h
∑
j=1

N
∑
i=1

Y i,j
X =

h
∑
j=1

dj .

The systemic risk allocation for individual i is∑hj=1 𝔼ℚjX [Y
i,j
X ] with the density

dℚjX
dℙ

:= e−Sj/βj
𝔼[e−Sj/βj ]

, j = 1, . . . , h.

The proof of Theorem 3.1 is left to Appendix A.5. According to the theorem, we define

ρi(X) := 𝔼ℚX [Y i
X] =

h
∑
j=1
𝔼ℚjX [Y

i,j
X ] =

h
∑
j=1
𝔼[Y i,j

X ⋅
dℚjX
dℙ ] (3.3)

as the total fair systemic risk allocation for individual i.

Remark 3.3. Compared with the disjoint group case well discussed by Biagini et al. [9], the model here can
be seen as an extended disjoint group case, where we consider that one individual can be divided into sev-
eral sub-individuals and join different groups. Thus, for the measures {Qi,j

X , 1 ≤ i ≤ N, 1 ≤ j ≤ h}, we have
Qi,j
X = Q

l.k
X := Qm

X if j, k ∈ Im for group m = 1, . . . , h.
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3.1 Sensitivity analysis

Based on the main theorem, Theorem 3.1, we perform a sensitivity analysis by adding a perturbation on the
risk factors. Consider the risk factors are given byX + εZ, where ε ∈ ℝ andX := (X1, . . . ,XN), Z := (Z1, . . . , ZN)
on a probability space (Ω,F,ℙ). Then we have, for wi,j > 0,

Y i,j
X+εZ = −wi,j(Xi + εZ i) + 1

αiβj
(Sj + εSZj ) +

1
αiβj

dX+εZj ,

dX+εZj = βj log(−
β
B𝔼[e
−(Sj+εSZj )/βj ]),

where Sj = ∑i∈Ij wi,jXi, SZj = ∑i∈Ij wi,jZ i, and SX+εZj = Sj + εS
Z
j .

Proposition 3.1. Let ρ be the systemic risk measure in (3.1).
∙ Marginal risk contribution of group j:

∂
∂ε d

X+εZ
j
󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
= 𝔼ℚjX [−S

Z
j ], j = 1, . . . , h.

∙ Local causal responsibility for individual i in group j:

∂
∂ε𝔼ℚ

j
X
[Y i,j

X+εZ]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
= 𝔼ℚjX [−wi,jZ i], i ∈ Ij .

∙ Marginal risk allocation for individual i in group j:

∂
∂ε𝔼ℚ

j
X+εZ [Y i,j

X+εZ]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
= 𝔼ℚjX [−wi,jZ i] −

1
βj

CovℚjX (Y
i,j
X , SZj )

= 𝔼ℚjX [−wi,jZ i] +
wi,j
βj

CovℚjX (X
i , SZj ) −

1
αiβ2j

CovℚjX (Sj , S
Z
j ). (3.4)

We leave the proof of Proposition 3.1 to Appendix A.6. Note that if we replaceℚjX with ℙ, none of the results
above hold. To interpret these formulas, firstwe look at the first term in (3.4),𝔼ℚjX [−wi,jZ i]. This term contains
only the increment Z i in individual i and thus is not a systemic contribution. Summing this term over all
individuals in group j gives

∑
i∈Ij

∂
∂ε𝔼ℚ

j
X+εZ [Y i,j

X+εZ]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
= 𝔼ℚjX [−S

Z
j ] =

∂
∂ε d

X+εZ
j
󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0

. (3.5)

This shows the first term contributes to the marginal risk allocation of individual i without any systemic
influence.When Z i is positive, whichmeans an increment is added, this results in a risk deduction, regardless
of the relation to other individuals. When Z is deterministic, we can see, in (3.4), the marginal risk allocation
to individual i in group j is 𝔼ℚjX [−wi,jZ i] = −wi,jZ i and the covariance terms do not exist anymore.

To better study the effect of other terms in (3.4),we takeZ = Zkek, where k ̸= i. Then, from (3.4),we obtain

∂
∂ε𝔼ℚ

j
X+εZkek [Y i,j

X+εZkek
]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
=
wi,j
βj

CovℚjX (X
i , Zk) − 1

αiβ2j
CovℚjX (Sj , Z

k). (3.6)

Supposing that wi,j
βj Covℚ

j
X
(Xi , Zk) < 0, we look at the first term which relates to the covariance between

(Xi , Zk). When they have a negative correlation under the systemic risk probability ℚjX, the increase in
individual k will result in a decrease of the risk allocation for individual i. That means, individual i takes
advantage of the decrease of others. Since the overall marginal risk allocation of group j does not change
according to (3.5), some other individuals in the group would pay for this advantage. This is related to the
last term.

The last term in (3.4) or (3.6) contains both the systemic contribution − 1β2j
CovℚjX (Sj , Z

k) which only
depends on the group Sj, and the systemic relevance part 1

αi of individual i. The systemic component is dis-
tributed among the individuals based on 1

αi . In addition, this term compensates for possible risk decrease in
the second term of (3.4) since the overall marginal risk allocation of group j is fixed.
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Proposition 3.2 (Sensitivity with respect to weights). For any i, j such that wi,j > 0,

∂𝔼ℚjX [Y
i,j
X ]

∂wi,j
= −𝔼ℚjX [X

i] −
1

αiβ2j
CovℚjX (X

i , Sj) +
wi,j
βj

VarℚjX (X
i)

= −𝔼ℚjX [X
i] −

1
βj

CovℚjX(X
i , 1
αiβj

Sj − wi,jXi).

We give the proof in Appendix A.7.

3.2 Monotonicity

In a grouping set sequence {I1, . . . , Ih}, for some set Im, assume there is a non-empty subset Im󸀠 of Im, and
for every k ∈ Im󸀠 , assume the weight for risk factor Xk is wk,m󸀠 ∈ (0, wk,m]. Then define

Im󸀠󸀠 = {k ∈ Im : wk,m − wk,m󸀠 > 0},
and the corresponding weights are wk,m󸀠󸀠 = wk,m − wk,m󸀠 for all k ∈ Im󸀠󸀠 . Then there will be h + 1 groups, and
the new grouping set sequence is {I1, . . . , Im󸀠 , Im󸀠󸀠 , . . . , Ih}, while the weights structure is the same as before
except those of groups Im󸀠 and Im󸀠󸀠 . Theoptimal risk allocationsunder thenewgroupingof theprimal problem
coincide with Yk,r, k ∈ Ir, for r ̸= m. For r = m, k ∈ Im󸀠 or Im󸀠󸀠 , we first know wk,m󸀠 ≤ wk,m, wk,m󸀠󸀠 ≤ wk,m, and
we have the following.

Proposition 3.3. Under the above setup, define Yk,m, k ∈ Im, the optimal allocation of group m to the primal
problem given h groups. Define Yk,m󸀠 , k ∈ Im󸀠 , and Yk,m󸀠󸀠 , k ∈ Im󸀠󸀠 , the optimal allocations of groups m󸀠 and m󸀠󸀠
to the primal problem given h + 1 groups, where Im󸀠 ∈ Im and Im󸀠󸀠 ∈ Im. Then

𝔼ℚmX [ ∑
k∈Im󸀠

wk,m󸀠
wk,m

Yk,m] ≤ η󸀠m log{−β
󸀠

B 𝔼[exp(−
1
η󸀠m
∑

k∈Im󸀠 wk,m󸀠Xk)]}, (3.7)

where
η󸀠m = ∑

k∈Im󸀠
wk,m󸀠
wk,m

1
αk

.

Particularly, if both∑k∈Im󸀠 wk,m󸀠Xk and∑k∈Im󸀠󸀠 wk,m󸀠󸀠Xk are nonnegative, it holds that

𝔼ℚmX [ ∑
k∈Im󸀠

wk,m󸀠
wk,m

Yk,m] ≤ dm󸀠 , 𝔼ℚmX [ ∑
k∈Im󸀠󸀠

wk,m󸀠󸀠
wk,m

Yk,m] ≤ dm󸀠󸀠 ,
and thus

∑
k∈Im󸀠

wk,m󸀠
wk,m

Yk,m + ∑
k∈Im󸀠󸀠

wk,m󸀠󸀠
wk,m

Yk,m = ∑
k∈Im

Yk,m = dm ≤ dm󸀠 + dm󸀠󸀠 ,
where

dm󸀠 = β󸀠m log{−β
󸀠

B 𝔼[exp(−
1
β󸀠m
∑

k∈Im󸀠 wk,m󸀠Xk)]}

and dm󸀠󸀠 are the total risks of groups m󸀠 and m󸀠󸀠. We point out that each individual profits from this decrease
(of groups) by avoiding being (group) alone (Im ∼ Im󸀠 ∪ Im󸀠󸀠).

Also, when the systemallows only disjoint grouping, i.e., each individual joins groupswithweight1, inequal-
ity (3.7) implies the monotonicity result in [9].

The proof is left to Appendix A.8.

3.3 Generalized group formation and Nash equilibrium

For a game with N individuals and h groups, similar to before, we assume there are h buckets for each indi-
vidual to choose which ones she belongs to and how much she puts. This induces a corresponding weight
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matrix for all individuals

W = (wi,j) =
((

(

w1
...
wi
...
wN

))

)

∈ ℝN×h ,

defined as their strategies to distribute their risks, in order to minimize the individual total risk allocation.
Each vector wi contains values of weights showing which groups individual i belongs to and how much she
wants to distribute the risk. So there is a natural constraint: ∑hj=1 wi,j = 1 for every i = 1, . . . , N. Recall that
the weight of individual i in group j is denoted by wi,j ∈ [0, 1], and wi,j = 0 means individual i is not in
group j, wi,j = 1 means individual i only joins group j. The case wi,j ∈ (0, 1) means, besides group j, indi-
vidual i joins some other groups at the same time. Different sets of strategies may generate the same groups
denoted by C(W).

The objective function of individual i is defined by

ρi(C(W)) := 𝔼ℚX [Y i
X] =

h
∑
j=1
𝔼ℚjX [Y

i,j
X ],

where i = 1, . . . , N and ρi is the total fair systemic risk allocation for individual i defined in (3.3).
Let

Ŵ = (ŵi,j) =
((

(

ŵ1
...
ŵi
...
ŵN

))

)

and (Ŵ−i , wi) =((

(

ŵ1
...
wi

...
ŵN

))

)
be theweightmatrix Ŵ with theweight vector for individual i, i.e., the i-th row, is replaced by a new vector wi

whose elements sum up to 1.

Definition 3.1. The grouping C(Ŵ) defined by the weight matrix Ŵ is a Nash equilibrium if, for every i and
any wi,

ρi(C(X; Ŵ)) ≤ ρi(C(X; Ŵ−i , wi)),
i.e., the systemic risk allocation of individual i is minimized under grouping C(Ŵ), given other individuals’
strategies are Ŵ−i.

According the definition of Nash equilibrium, it is to be determined when the grouping, determined by the
matrixW, is optimized and how individuals distribute their risks under Nash equilibrium.

Remark 3.4. One cannot claim that, in this overlapping group case, it is still true that a single group with
all the individuals is a (trivial) Nash equilibrium. This follows from the proof in Appendix A.9. When B, the
minimal level of expected utility, is small, this means the system has a high tolerance with respect to risks.
Then individuals tend to split into different groups, so there is no trivial Nash equilibrium. This can help
explain why banks tend to join multiple central clearing counterparties (CCPs) to allocate their risks.

3.4 Case discussion: Correlated Gaussian distribution

In this section, we take a Gaussian distribution for the risk factors for simplicity and discuss in detail. Similar
to Section 2.4, assume the joint distribution of X = (Xi , i = 1, . . . , N)T follows a multivariate Gaussian dis-
tribution, that is, X ∼ N(μ, Σ), where μ ∈ ℝN and Σ ∈ ℝN×N is positive semi-definite. And define the column
vector ofW as a group vector given by

Aj =
{
{
{

0, i ∉ Ij ,
wi,j , i ∈ Ij , i = 1, . . . , N,

Aj ∈ ℝ1×N for j = 1, . . . , h.
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Then the group sum
Sj = ∑

i∈Ij
wi,jXi = AjX ∼ N(Ajμ, AjΣAT

j )
def
= N(μsj , (σ

s
j )
2)

follows, where
μsj = ∑

k∈Ij
wk,jμk , (σsj )

2 = ∑
m,k∈Ij

wm,jwk,jσkm .

Using the results in Appendix A.10, we have, for j = 1, . . . , h and for i ∈ Ij,

dj = βj log(−
β
B𝔼[e
−Sj/βj ]) = βj log(

β
−B) − μ

s
j +
(σsj )

2

2βj
,

and the systemic risk allocation of individual i in group j is given by

𝔼ℚjX [Y
i,j
X ] = 𝔼[Y

i,j
X ⋅

dℚjx
dℙ ] =

𝔼[(−wi,jXi + 1
αiβj Sj +

1
αiβj dj) ⋅ e

−Sj/βj ]

𝔼(e−Sj/βj )

= −wi,j(μi −
1
βj
AjΣ[,i]) +

1
αiβj
(μsj −
(σsj )

2

βj
) +

1
αiβj
(βj log(

β
−B) − μ

s
j +
(σsj )

2

2βj
)

=
1
αi

log( β
−B) − wi,jμi +

wi,j
βj

AjΣ[,i] −
(σsj )

2

2β2j αi
, (3.8)

where AjΣ[,i] = ∑k∈Ij wk,jσki.

3.4.1 Optimal weights in a general system

Continuing with the Gaussian distribution assumption, we use formula (3.8) to first find the optimal weight
vector w∗ for a given individual assuming the weight structure for other individuals is known. Then we
search for a Nash equilibrium numerically using an algorithm in Section 4. That is, weminimize the total fair
systemic risk allocation of individual i defined in (3.3) over the weight distributions wi = (wi,j , j = 1, . . . , N),

min
wi
𝔼ℚX [Y i] = min

wi

h
∑
j=1
𝔼ℚjX [Y

i,j] = min
wi,j

h
∑
j=1

1wi,j>0[
1
αi

log( β
−B) − wi,jμi +

wi,j
βj

AjΣ[,i] −
(σsj )

2

2β2j αi
],

subject to
h
∑
j=1

wi,j1wi,j>0 = 1.

For simplicity, we consider the problem when individual i joins at most two groups to discuss the optimal
weights.

3.4.2 Risk allocation under at most two groups

When individual i joins at most 2 groups, there are three cases to discuss about the weights. Without loss of
generality, we assume the weights are denoted by (wi,1, wi,2) for individual i, the weights for others are fixed,
and there is at least one other individual in group 1 and 2. Given that

𝔼ℚX [Y i] = 1wi,1>0[
1
αi

log( β
−B) − wi,1μi +

wi,1
β1

A1Σ[,i] −
(σs1)2

2β21αi
]

+ 1wi,2>0[
1
αi

log( β
−B) − wi,2μi +

wi,2
β2

A2Σ[,i] −
(σs1)2

2β22αi
],

where βj = ∑i∈{k:wk,j>0}
1
αi and β = ∑

h
j=1 βj, we discuss the following two boundary cases and one non-bound-

ary case.
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∙ Boundary case 1: (wi,1, wi,2) = (1, 0). Then

𝔼ℚX [Y i] =
1
αi

log( β
−B) − μi +

1
β1

A1Σ[,i] −
(σs1)2

2β21αi

=
1
αi

log( β
−B) − μi +

1
β1
(

N
∑

k=1, k ̸=i
wk,1σki + σii)

−
1

2β21αi
(

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm + 2

N
∑

k=1, k ̸=i
wk,1σki + σii). (3.9)

∙ Boundary case 2: (wi,1, wi,2) = (0, 1). Then

𝔼ℚX [Y i] =
1
αi

log( β
−B) − μi +

1
β2

A2Σ[,i] −
(σs2)2

2β22αi

=
1
αi

log( β
−B) − μi +

1
β2
(

N
∑

k=1, k ̸=i
wk,2σki + σii)

−
1

2β22αi
(

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm + 2

N
∑

k=1, k ̸=i
wk,2σki + σii). (3.10)

In the above formulas,

β1 = ∑
k ̸=i,wk,1>0

1
αk
+
1
αi
, β2 = ∑

k ̸=i,wk,2>0

1
αk
+
1
αi
, β = ∑

k ̸=i,wk,1>0

1
αk
+ ∑

k ̸=i,wk,2>0

1
αk
+
1
αi
.

∙ Non-boundary case: (wi,1, wi,2) = (w, 1 − w), while 0 < w < 1. Then

𝔼ℚX [Y i] =
2
αi

log( β
󸀠

−B) − μi +
w
β1

A󸀠1Σ[,i] +
1 − w
β2

A󸀠2Σ[,i] −
(σ󸀠1)2

2β21αi
−
(σ󸀠2)2

2β22αi

=
2
αi

log( β
󸀠

−B) − μi +
w
β1
(

N
∑

k=1, k ̸=i
wk,1σki + wσii) +

1 − w
β2
(

N
∑

k=1, k ̸=i
wk,2σki + (1 − w)σii)

−
1

2β21αi
(

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm + 2w

N
∑

k=1, k ̸=i
wk,1σki + w2σii)

−
1

2β22αi
(

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm + 2(1 − w)

N
∑

k=1, k ̸=i
wk,2σki + (1 − w)2σii), (3.11)

where β1, β2 are the same as before but β󸀠 = β1 + β2 = β + 1
αi .

3.4.3 Risk allocation comparison between boundary and non-boundary cases

Here we compare the minimal risk allocation of non-boundary case (3.11) with the risks of boundary cases
(3.9) and (3.10). First we investigate the non-boundary case and prove 𝔼ℚX [Y i] in (3.11) is a quadratic
function of w and the minimal point is w∗ given by (3.12). Taking partial derivative of (3.11) gives

∂𝔼ℚX [Y i]
∂w =

1
β1

N
∑

k=1, k ̸=i
wk,1σki +

2w
β1

σii −
1
β2

N
∑

k=1, k ̸=i
wk,2σki −

2(1 − w)
β2

σii

−
1

β21αi
(

N
∑

k=1, k ̸=i
wk,1σki + wσii) +

1
β22αi
(

N
∑

k=1, k ̸=i
wk,2σki + (1 − w)σii)

=
N
∑

k=1, k ̸=i
(
wk,1
β1
−
wk,2
β2
)σki −

N
∑

k=1, k ̸=i
(
wk,1

β21αi
−
wk,2

β22αi
)σki

+ w[( 2β1
+

2
β2
) − (

1
β21αi
+

1
β22αi
)]σii − (

2
β2
−

1
β22αi
)σii = 0,



Y. Feng et al., Systemic risk grouping equilibrium | 15

and hence

w∗ =
∑Nk=1, k ̸=i(

wk,1
β21αi
− wk,2

β22αi
)σki − ∑Nk=1, k ̸=i(

wk,1
β1 −

wk,2
β2 )σki + (

2
β2 −

1
β22αi
)σii

[( 2β1 +
2
β2 ) − (

1
β21αi
+ 1

β22αi
)]σii

(3.12)

is a minimizer since
∂2𝔼ℚX [Y i]

∂w2 = [(
2
β1
+

2
β2
) − (

1
β21αi
+

1
β22αi
)]σii > 0.

Here note that 2
β1
−

1
β21αi
> 0, 2

β2
−

1
β22αi
> 0.

It is clear that the denominator of (3.12) is positive. If
N
∑

k=1, k ̸=i
(
wk,1

β21αi
−
wk,2

β22αi
)σki −

N
∑

k=1, k ̸=i
(
wk,1
β1
−
wk,2
β2
)σki > −(

2
β2
−

1
β22αi
)σii ,

we have w∗ > 0, and if
N
∑

k=1, k ̸=i
(
wk,1

β21αi
−
wk,2

β22αi
)σki −

N
∑

k=1, k ̸=i
(
wk,1
β1
−
wk,2
β2
)σki < (

2
β1
−

1
β21αi
)σii ,

we have w∗ < 1.
In conclusion, let

A :=
N
∑

k=1, k ̸=i
(
wk,1

β21αi
−
wk,2

β22αi
)σki −

N
∑

k=1, k ̸=i
(
wk,1
β1
−
wk,2
β2
)σki ,

B1 := (
2
β1
−

1
β21αi
)σii , B2 := (

2
β2
−

1
β22αi
)σii .

In the non-boundary case, the local optimal weights for individual i joining two groups are non-zero, i.e.,

w∗ = A + B2
B1 + B2

∈ (0, 1) and 1 − w∗ ∈ (0, 1)

if and only if −B2 < A < B1, i.e.,

−(
2
β2
−

1
β22αi
)σii <

N
∑

k=1, k ̸=i
(
wk,1

β21αi
−
wk,2

β22αi
)σki −

N
∑

k=1, k ̸=i
(
wk,1
β1
−
wk,2
β2
)σki < (

2
β1
−

1
β21αi
)σii . (3.13)

In Appendix A.11, we investigate the condition further by reducing it to a simplified sufficient condition.
Then, given w∗, the minimal risk of (3.11) is

𝔼ℚX [Y i]|w=w∗ = 2
αi

log( β
󸀠

−B) − μi + w
∗

N
∑

k=1, k ̸=i
[(

wk,1
β1
−
wk,2
β2
) − (

wk,1

β21αi
−
wk,2

β22αi
)]σki

+
N
∑

k=1, k ̸=i
(
wk,2
β2
−
wk,2

β22αi
)σki + (

(w∗)2

β1
−
(w∗)2

2β21αi
)σii + (

(1 − w∗)2
β2
−
(1 − w∗)2

2β22αi
)σii

−
1

2β21αi

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm −

1
2β22αi

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm . (3.14)

∙ When condition (3.13) holds, i.e., w∗ ∈ (0, 1), we compare theminimal risk of non-boundary case (3.11)
with that of boundary cases (3.9) and (3.10) in Appendix A.12. We conclude that, when it holds that

{{{{{{
{{{{{{
{

2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) <

(A − B1)2

2(B1 + B2)
+

1
2β22αi

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm ,

2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) <

(A + B2)2

2(B1 + B2)
+

1
2β21αi

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm ,

(3.15)

the minimal risk for individual i is achieved at (wi1, wi2) = (w∗, 1 − w∗) with non-zero weights. This is
a necessary and sufficient condition to determine which one is superior when condition (3.13) is true.
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∙ When condition (3.13) does not hold, if w∗ ≤ 0 and

2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) ≥

1
2β21αi

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm ,

the minimal risk is achieved at the boundary case (wi1, wi2) = (0, 1). If w∗ ≥ 1 and

2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) ≥

1
2β22αi

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm ,

the minimal risk is achieved at (wi1, wi2) = (1, 0).

4 Numerical algorithm for Nash equilibrium
For a game of (large) N individuals, it is hard to find the risk allocation of each individual associated with
the grouping system. Instead, using the discussion introduced in Section 2 and Section 3.4.1, under the
assumption of Gaussian distribution for risk factors, we can do numerical analysis of some examples via
Python to search for a Nash equilibrium for the system such that no individual could achieve a smaller fair
risk allocation by changing grouping or weights under the equilibrium. We conclude that, for the disjoint
group case, a nontrivial Nash equilibrium does not always exist and neither does the overlapping group case.
If we apply the overlapping group setup to the real world, that is, interpreting ∑Nn=1 Yn,j as the default fund
of the CCP j that is liable for any participating institution/bank, the numerical results indicate that big banks
tend to join multiple CCPs, while small banks tend to choose one.

4.1 Numerical algorithm

In this section, we introduce numerical algorithms based on fictitious play. For the disjoint group case dis-
cussed in Section 2, we have the following algorithm.
(1) Let N individuals be in N different groups, i.e., an = n for 1 ≤ n ≤ N, as the initial state.
(2) At each stage, one individual is randomly picked with equal probability, and it chooses to join the group

which gives the minimal risk allocation.
(3) Step (2) is repeated until the grouping is stabilized, and no individual has the incentive tomove anymore.
For the overlapping group case in Section 3, the algorithm is similar. We take the number of groups h fixed,
and the initial weights for every individual in groups are randomly generated. The optimal weights at each
stage are determined based on the discussion in Section 3.4.1.

4.2 Numerical examples

Example 4.1 (Nearly block correlation matrix with positive, uniform ρ). In the case of N = 4, assume that the
means and standard deviations are the same and αi’s are 1, i.e., α = [1, 1, 1, 1], μ = [10, 10, 10, 10], σi ≡ σ
for all i. The correlation matrix is

(

1 0.4 0 0
0.4 1 0.05 0
0 0.05 1 0.4
0 0 0.4 1

).

Then, for the disjoint group case, there exists one nontrivial Nash equilibrium “{1, 3}-{2, 4}”.
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Example 4.2 (N = 10). We take ρij = 0.8 for all i ̸= j, i, j = 1, . . . , N, except ρ19 = −0.3. The values for other
parameters are listed below:

μ = [1, 1, 1, 2, 2, 3, 6, 6, 6, 7],
σ = [4, 2.8, 1.6, 1, 3.8, 2.8, 0.9, 1.1, 4.2, 1.8],
α = [0.4, 1.2, 1.8, 2.2, 0.4, 0.9, 2.8, 2.2, 0.4, 1.9],
B = −8, the initial weights (wi,1, wi,2) = (0.3, 0.7) for all i.

By the algorithm presented in Section 4.1, we find the optimal weights for each individual one by one, and it
turns out there exists a nontrivial Nash equilibrium in the system

(((

(

w1,1 w1,2
...

...
wi,1 wi,2
...

...
w10,1 w10,2

)))

)

=

((((((((((((

(

1 0
0.51 0.49
0.48 0.52
0.44 0.56
0 1
0.49 0.51
0.44 0.56
0.45 0.55
1 0
0.49 0.51

))))))))))))

)

.

We can see for some individuals which seek risks, i.e., with extremely small risk aversion parameters, they
prefer being alone instead of separated.

As mentioned at the beginning of the section, the setup of systemic risks in the individual-group structure
can be applied to the bank-CCP structure in real life, where individuals are banks and groups are CCPs. Then
an individual with a large utility parameter alpha represents a core bank which is very risk-averse.

Example 4.3 (N = 10, less risk-averse individuals). In this example, the utility parameters are modified to
compare with the previous example, and we interpret the results using the “bank-CCP” language. Assuming
there are two core banks (4, 7) and eight peripheral banks, the correlation matrix is given in Figure 1.

The values for other parameters are listed below:

μ = [1, 1, 2, 2, 3, 4, 5, 5, 6, 7],
σ = [4, 2.8, 2.2, 1.7, 1.4, 3.2, 3.8, 1.9, 4.2, 2.5],
α = [0.4, 1, 1.1, 2.2, 2.8, 0.9, 0.8, 1.4, 0.6, 1.3],
B = −8,

and the initial weights are randomly generated based on uniform distribution between 0 and 1 for every i.
There exists a nontrivial Nash equilibrium in the system

(((

(

w1,1 w1,2
...

...
wi,1 wi,2
...

...
w10,1 w10,2

)))

)

=

((((((((((((

(

1 0
1 0
1 0
0.46 0.54
0.32 0.68
0 1
0 1
0 1
0 1
0 1

))))))))))))

)

.

We can see banks tend to stay with negatively correlated banks to mitigate the systemic risks. And risk-averse
banks prefer splitting their risks by joining more CCPs.
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ρpp = −0.25 ρpc = −0.12 ρpc󸀠 = −0.09 ρpp󸀠 = 0.052
3
4 ρpc = −0.12 ρcc󸀠 = 0.7 ρcp󸀠 = −0.09
5 ρpc󸀠 = −0.09 ρcc󸀠 = 0.7 ρc󸀠p󸀠 = −0.12
6

ρpp󸀠 = 0.05 ρcp󸀠 = −0.09 ρc󸀠p󸀠 = −0.12 ρp󸀠p󸀠 = −0.257
8
9

10

Figure 1: Correlation structure in Example 4.3: The top diagram shows partial correlations for 10 banks, where 4 and 5 are core
banks and coefficients are labeled for each bank pair. The correlation table on the bottom shows the correlations matrix, where
diagonals are all 1 and ρ ⋅ , ⋅ represents the correlation between two distinct banks. Subscripts c, c󸀠 stand for core bank 4 and
core bank 5 respectively; p stands for peripheral banks 1, 2, 3, and p󸀠 stands for peripheral banks 6, 7, 8, 9, 10.

The analysis of the systemic risk and grouping formation can be applied to the reality, and it turns out our
numerical results are consistent with the choices of CCPs for banks and financial institutions. One example
is shown below using real data.

Example 4.4 (Real-life example). We take two CCPs who are clearing the same products but in a different
region. One is the Chicago Mercantile Exchange Inc. (CME), which operates two separate clearing services,
one for commodity and financial futures and options, and one for interest rate swaps and swaptions. The
other one is the European Commodity Clearing (ECC), which is a central clearing house in Europe specializ-
ing in energy and commodity products. We select six clearing members and list them in order: J.P. Morgan
(JPM), Goldman Sachs (GS), BNP Paribas (BNP), StoneX Group (SNEX), Banco Santander (SAN), and Inter-
active Brokers Group (IBKR). Among these firms, JPM, GS, SNEX, and BNP are members of both CCPs. SAN is
only in ECC, while IBKR is only in CME.

JPM GS BNP SNEX SAN IBKR

1 0.82 0.61 0.87 −0.27 0.86
0.82 1 0.86 0.83 0.04 0.79
0.61 0.86 1 0.65 0.25 0.60
0.87 0.83 0.65 1 −0.35 0.89

−0.27 0.04 0.25 −0.35 1 −0.24
0.86 0.79 0.60 0.89 −0.24 1

σ 0.262 0.245 0.235 0.264 0.236 0.233

Table 1: Correlation matrix and standard deviation for 6 banks in Example 4.4.
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We estimate the bank correlation matrix and standard deviation σ from banks’ stock prices and list them
in Table 1.Without loss of generality, we assume the expected values of their risks are all 0 since they have no
effect on Nash equilibria according to formula (3.8). The value for B is the same as in the previous example.
The risk-aversion parameters are chosen according to clearing members’ “sizes”,

α = [2, 1.8, 1.7, 1.9, 1.2, 0.85],

and we list them in the following order: [JPM, GS, BNP, SNEX, SAN, IBKR].
The numerical results show that there exists a nontrivial Nash equilibrium

(

w1,1 w1,2
...

...
...

...
w6,1 w6,2

)=
(((

(

0.73 0.27
0.61 0.39
0.56 0.44
0.54 0.46
1 0
0 1

)))

)

.

This is consistent with the fact that the first four firms JPM, GS, BNP, SNEX are spitted and join in both CCP
groups, while SAN and IBKR belong to different CCPs. However, the distribution of weights cannot be verified
here since related data of banks are not revealed in CCP documents.

5 Conclusion
In this paper, we generalize the systemic risk measure proposed in [8, 9] by allowing individual banks to
choose their preferred groups instead of being assigned to certain groups. This introduces realistic game
features in theproposedmodels andallowsus to analyze the systemic risk for disjoint andoverlapping groups
(e.g., central clearing counterparties (CCP)). We introduce the concept of Nash equilibrium for these new
models and analyze the optimal solution under the Gaussian distribution of the risk factor. We also provide
an explicit solution for the individual banks’ risk allocation and study the existence and uniqueness of Nash
equilibrium both theoretically and numerically. The developed numerical algorithm can simulate scenarios
of equilibrium, and we apply it to study the bank-CCP structure with real data and show the validity of the
proposed model. While our formulation of constructing equilibrium groupings is based on minimizing the
capital as a form of cross-absorption of losses, other factors such as netting agreements at the group level
could also impact the change in the liability structure. However, this is beyond the scope of this paper and can
be studied as further research. Further research also includes obtaining more actual data on bank balances
and bank interconnections to conduct more in-depth research and analysis. The participation percentage
of financial institutions is left to be validated and explained with more data. To better study the real CCP,
it is also valuable to include more CCP mechanisms in the measure model, such as waterfall mechanisms,
the existence of multiple layers of capital and CCP clearing fee charge, as in [16], and their effects on the
equilibrium.

A Appendix

A.1 Comparison between trivial grouping and multi-groups

We first look at the trivial grouping, i.e., m = h = 1 and all k ∈ I1 = {1, 2, . . . , N}. The group parameter and
group vectors are

βm = β =
N
∑
i=1

1
αi
, Am = (1, 1, . . . , 1).
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Then, following (2.17), the systemic risk allocation of individual i is

𝔼ℚ1X [Y
i
X] = −μi +

1
αi

log( β
−B) +

1
β

N
∑
j=1

σji −
1

2β2αi

N
∑
k,j=1

σjk .

The total systemic risk allocation for the system is

N
∑
i=1
𝔼ℚ1X [Y

i
X] = −

N
∑
i=1

μi + β log(
β
−B) +

1
2β

N
∑
i,j=1

σji . (A.1)

Then, for the multi-group case, assuming m = 1, . . . , h (h ≥ 2) and for km ∈ Im ̸= 0, the systemic risk
allocation of individual km is

𝔼ℚmX [Y
km
X ] = −μkm +

1
αkm

log( β
−B) +

1
βm
∑
j∈Im

σjkm −
1

2β2mαkm
∑

j,l∈Im
σjl .

The total risk allocation is

h
∑
m=1
∑

km∈Im
𝔼ℚmX [Y

km
X ] = −

N
∑
i=1

μi + β log(
β
−B) +

1
2

h
∑
m=1

1
βm
∑

j,k∈Im
σjk . (A.2)

We need to compare the total risk of trivial grouping (A.1) and the total risk of nontrivial grouping (A.2). For
simplicity, we take h = 2 in the nontrivial grouping case and compare.

Assume an N-individual system is divided into two subgroupswith sizes N1 = |I1|, N2 = |I2|, respectively.
Given all risk factors, define

S =
N
∑
i=1

Xi , S1 = ∑
i∈I1

Xi , S2 = ∑
i∈I2

Xi .

Note that S = S1 + S2. Therefore,

Var(S) =
N
∑
i,j=1

σij , Var(S1) = ∑
i,j∈I1

σij , Var(S2) = ∑
i,j∈I2

σij .

Then we compare the last term in (A.1), (A.2),

(A.1): 1
2β

N
∑
i,j=1

σi,j =
1
2β Var(S), (A.3)

(A.2): 1
2(

1
β1
∑

j,k∈I1
σj,k +

1
β2
∑

j,k∈I2
σj,k) =

1
2(

1
β1

Var(S1) +
1
β2

Var(S2)). (A.4)

Since
Var(S) = Var(S1) + Var(S2) + 2Cov(S1, S2),

2β1β2β ⋅ ((A.4) − (A.3)) = β1β2 Var(S1) + β22 Var(S1) + β
2
1 Var(S2) + β1β2 Var(S2)

− β1β2(Var(S1) + Var(S2) + 2Cov(S1, S2))
= β22 Var(S1) + β

2
1 Var(S2) − 2β1β2 Cov(S1, S2)

= Var(β2S1 − β1S2) ≥ 0.

Thus (A.3) ≤ (A.4), which is equivalent to (A.1) ≤ (A.2). (The equality holds only if S1 = S2 = S, which we can
exclude.)

We can conclude the trivial grouping has a smaller total systemic risk allocation for the N-player system
compared with two-group case. It can be extended to the general grouping case and shows the advantage of
trivial grouping or fewer groups in terms of the total risk. And it is consistent with the monotonicity property
proved in [9].
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A.2 Proof of Claim 2.1

Under the assumption βm = |Im| 1α , equation (2.17) becomes

𝔼ℚmX [Y
k
X] = −μk +

1
α log( β
−B) +

α
|Im|
(σ2 + (|Im| − 1)ρσ2)

−
1
2α(

α
|Im|
)
2
(|Im|σ2 + (

|Im|
2 )2ρσ

2)

= −μk +
1
α log( β
−B) +

α
2|Im|

σ2 + (α |Im| − 1
|Im|
− α |Im| − 12|Im|

)ρσ2

= −μk +
1
α log( β
−B) + α

1
2|Im|

σ2 + α |Im| − 12|Im|
ρσ2

= −μk +
1
α log( β
−B) +

α
2((1 − ρ)

1
|Im|
+ ρ)σ2.

First, when ρ ̸= 1, the function ismonotonically decreasing in |Im|. So the risk allocation for every individual/
individual is maximized when |Im| = n, i.e., all individuals/individuals are in the same group.

If we assume individuals are separated in several groups which makes it a Nash equilibrium for all. For
some individual i in the second largest group, moving to the largest group makes it achieve a smaller risk
allocation, which is better. If there are only two equal size groups, i.e., “ n2 -

n
2”, one individual i in group 1

joining the other one gives “( n2 − 1)-(
n
2 + 1)” and 𝔼ℚ1X [Y

i
X] > 𝔼ℚ2X [Y

i
X]. So “(

n
2 − 1)-(

n
2 + 1)” cannot be a Nash

equilibrium neither.
In conclusion, nontrivial grouping strategy cannot be aNash equilibriumandonly |Im| = n is aNash equi-

librium under the case that all standard deviation and utility parameters are the same, and the correlation
coefficient is ρ ∈ [−1, 1). When ρ = 1, the risk for every individual is constant and grouping has no effect.

A.3 Proof of Claim 2.2

First we look at the grouping “{1, 2}-{3, 4}” and find the equivalent condition to make it a Nash equilibrium.
We compare risks for individual 1 under two cases, according to (2.17),

under “{1, 2}-{3, 4}”: 𝔼ℚ1X [Y
1
X] = −μ1 + log(

β
−B) +

1
2 (σ

2 + ρσ2) − 18 (2σ
2 + 2ρσ2),

under “{2}-{1, 3, 4}”: 𝔼ℚ2X [Y
1
X] = −μ1 + log(

β
−B) +

1
3σ

2 −
1
18 (3σ

2 + 2ρσ2).

For individual 1, to make the risk allocation under “{1, 2}-{3, 4}” at most that under “{2}-{1, 3, 4}”,
1
3σ

2 −
1
18 (3σ

2 + 2ρσ2) ≥ 12 (σ
2 + ρσ2) − 18 (2σ

2 + 2ρσ2) ⇐⇒ ρ ≤ − 313 .

For individuals 2, 3, 4, we repeat a similar discussion, and the condition is the same, ρ ≤ − 3
13 . So, in conclu-

sion, if ρ ≤ − 3
13 , grouping “{1, 2}-{3, 4}” is a Nash equilibrium.

In the grouping “{1, 3}-{2, 4}”, we follow the same discussion about comparing risk allocations for all
individuals. For example, for individual 1,

under “{1, 3}-{2, 4}”: 𝔼ℚ1X [Y
1
X] = −μ1 + log(

β
−B) +

1
2σ

2 −
1
82σ

2,

under “{3}-{1, 2, 4}”: 𝔼ℚ2X [Y
1
X] = −μ1 + log(

β
−B) +

1
3 (σ

2 + ρσ2) − 1
18 (3σ

2 + 2ρσ2).

For individual 1, to make the risk allocation under “{1, 3}-{2, 4}” at most that under “{3}-{1, 2, 4}”,
1
3 (σ

2 + ρσ2) − 1
18 (3σ

2 + 2ρσ2) ≥ 12σ
2 −

1
82σ

2 ⇐⇒ ρ ≥ 38 .

For individuals 2, 3, 4,we repeat a similar discussion, and the condition is the same, ρ ≥ 3
8 . As a result, group-

ing “{1, 3}-{2, 4}” is a Nash equilibrium if ρ ≥ 3
8 . It is also the equivalent condition for grouping “{1, 4}-{2, 3}”

to be a Nash equilibrium
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A.4 Proof of Claim 2.3

Similar to the proof of Claim2.2,we look at the grouping “{1, 2}-{3, 4, 5}” and find the equivalent condition to
make it a Nash equilibrium. Under the assumptions, we first compare risks for individual 1 under two cases,
according to (2.17),

under “{1, 2}-{3, 4, 5}”: 𝔼ℚ1X [Y
1
X] = −μ1 + log(

β
−B) +

1
2 (σ

2 + ρσ2) − 18 (2σ
2 + 2ρσ2),

under “{2}-{1, 3, 4, 5}”: 𝔼ℚ2X [Y
1
X] = −μ1 + log(

β
−B) +

1
4σ

2 −
1
32 (4σ

2 + 6ρσ2).

For individual 1, to make the risk allocation under “{1, 2}-{3, 4, 5}” at most that under “{2}-{1, 3, 4, 5}”,
1
4σ

2 −
1
32 (4σ

2 + 6ρσ2) ≥ 12 (σ
2 + ρσ2) − 18 (2σ

2 + 2ρσ2) ⇐⇒ ρ ≤ −27 .

For individual 2, this is the same condition to have a smaller risk allocation. We then compare risks for
individual 3 under two cases,

under “{1, 2}-{3, 4, 5}”: 𝔼ℚ2X [Y
3
X] = −μ3 + log(

β
−B) +

1
3 (σ

2 + 2ρσ2) − 1
18 (3σ

2 + 6ρσ2),

under “{1, 2, 3}-{4, 5}”: 𝔼ℚ1X [Y
3
X] = −μ3 + log(

β
−B) +

1
3σ

2 −
1
18 (3σ

2 + 2ρσ2).

To make the risk allocation for individual 3 under “{1, 2}-{3, 4, 5}” at most that under “{1, 2, 3}-{4, 5}”,
we get the equivalent condition ρ ≤ 0. This is true for individuals 4, 5 as well. In conclusion, when ρ ≤ −27 ,
“{1, 2}-{3, 4, 5}” is a Nash equilibrium for all individuals.

In the grouping “{1, 3}-{2, 4, 5}”, we follow the same discussion about comparing risk allocations for all
individuals. Individual 1 will stay with individual 3 instead of joining the other group if ρ = 1. Individual 2
will stay if ρ ≥ 0. Individual 3 will stay with individual 1 if ρ ≥ 2

5 , and individuals 4, 5 will not move for any ρ.
As a result, grouping “{1, 3}-{2, 4, 5}” is not a Nash equilibrium for any ρ ∈ (−1, 1).

For the grouping “{1, 2, 3}-{4, 5}”, after the discussion about the condition for every individual not
moving, we find a contradictionwhich proves, for any value of ρ, this grouping cannot be aNash equilibrium.

A.5 Proof of Theorem 3.1

We can rewrite the systemic risk measure ρ as

ρ(X) = inf{
h
∑
m=1

dm : d = (d1, . . . , dh) ∈ ℝh , Y = (Y i,j , i ∈ Ij , 1 ≤ j ≤ h) ∈ L0(ℝ∑
h
m=1|Im |∗h),

𝔼[
h
∑
m=1
∑
k∈Im
−
1
αk

exp[−αk(wk,mXk + Yk,m)]] = B, ∑
i∈Ij

Y i,j = dj for j = 1, 2, . . . , h},

where (I1, . . . , Ih) are the group index sets given. For any groupm, we define the smallest element asm0 ∈ Im
and fix another element m∗ ∈ Im and m∗ ̸= m0. (When there is only one element in the group, m∗ = m0, and
thediscussionwill be similar.) In the followingproof,we assume |Im| ≥ 2 for allm = 1, . . . , h.We also assume
Y is defined on a finite space, Yk,m ∈ {yk,m1 , . . . , yk,mM } for all k,m and yk,mj ∈ ℝ. Then we have

ym
∗ ,m

j = dm − ∑
k∈Im , k ̸=m∗ yk,mj for m = 1, . . . , h.

We show the results with the Lagrange method with the function defined by

L(d,Y, λ) =
h
∑
m=1

dm + λ{
M
∑
j=1

pj
h
∑
m=1
[ ∑
k∈Im , k ̸=m∗ −1αk exp(−αk(wk,mXk(ωj) + yk,mj ))

+
−1
αm∗ exp(−αm∗(wm∗ ,mXm∗

(ωj) + dm − ∑
k∈Im , k ̸=m∗ yk,mj ))] − B}.
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We compute partial derivatives of L with respect to all variables and get all equivalent conditions in the
following.

(1) Given m, for j = 1, . . . ,M, k ∈ Im and k ̸= m∗, we have ∂L
∂yk,mj
= 0 if and only if, for every fixed j,

0 = ∂L
∂yk,mj
= λpj[exp(−αk(wk,mXk(ωj) + yk,mj )) − exp(−αm∗(wm∗ ,mXm∗

(ωj) + dm − ∑
k∈Im , k ̸=m∗ yk,mj ))]

or, equivalently, we have

exp(−αk(wk,mXk(ωj) + yk,mj )) = exp(−αm∗(wm∗ ,mXm∗
(ωj) + dm − ∑

k∈Im , k ̸=m∗ yk,mj )). (A.5)

This implies
exp(−αk(wk,mXk(ωj) + yk,mj )) = exp(−αm0(wm0 ,mXm0

(ωj) + ym
0 ,m

j )).

Then, for k ̸= m∗,
yk,mj =

1
αk
(αm0wm0 ,mXm0

(ωj) − αkwk,mXk(ωj) + αm0ym
0 ,m

j ), (A.6)

and by (A.5) and (A.6), we obtain (details are shown below)

ym
0 ,m

j =
1

αm0βm
( ∑
k∈Im

wk,mXk(ωj)) − wm0 ,mXm0
(ωj) +

1
αm0βm

dm

=
1

αm0βm
Sm(ωj) − wm0 ,mXm0

(ωj) +
1

αm0βm
dm , (A.7)

where βm = ∑k∈Im
1
αk , Sm = ∑k∈Im wk,mXk.

Proof. By (A.6),

∑
k∈Im , k ̸=m∗ yk,mj = ∑

k∈Im , k ̸=m∗ 1
αk

αm0(wm0 ,mXm0
(ωj) + ym

0 ,m
j ) − ∑

k∈Im , k ̸=m∗ wk,mXk(ωj)

= (βm −
1
αm∗ )αm0(wm0 ,mXm0

(ωj) + ym
0 ,m

j ) − ∑
k∈Im , k ̸=m∗ wk,mXk(ωj),

wm∗ ,mXm∗
(ωj) + dm − ∑

k∈Im , k ̸=m∗ yk,mj = dm − (βm −
1
αm∗ )αm0(wm0 ,mXm0

(ωj) + ym
0 ,m

j ) + Sm(ωj).

Thus, using (A.5), we obtain

−αm∗(wm∗ ,mXm∗
(ωj) + dm − ∑

k∈Im , k ̸=m∗ yk,mj )

= −αm∗dm + (βmαm∗ − 1)αm0(wm0 ,mXm0
(ωj) + ym

0 ,m
j ) − αm∗Sm(ωj)

= −αm0(wm0 ,mXm0
(ωj) + ym

0 ,m
j ) by (A.5)

󳨐⇒ αm∗βmαm0(wm0 ,mXm0
(ωj) + ym

0 ,m
j ) = αm∗dm + αm∗Sm(ωj)

󳨐⇒ (A.7).

(2) For m = 1, . . . , h, the derivative with respect to dm, ∂L
∂dm = 0 if and only if

0 = ∂L
∂dm
= 1 + λ

M
∑
j=1

pj exp(−αm∗(wm∗ ,mXm∗
(ωj) + dm − ∑

k∈Im , k ̸=m∗ yk,mj )). (A.8)

By (A.5),

0 = 1 + λ
M
∑
j=1

pj exp(−αk(wk,mXk(ωj) + yk,mj )) for all k ∈ Im and k ̸= m∗,

i.e.,
M
∑
j=1

pj exp(−αk(wk,mXk(ωj) + yk,mj )) =
−1
λ . (A.9)
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(3) The derivative with respect to λ, ∂L
∂λ = 0 if and only if

B = 𝔼[
h
∑
m=1
∑
k∈Im

−1
αk

exp[−αk(wk,mXk + Yk,m)]]

=
M
∑
j=1

pj ⋅
h
∑
m=1
[ ∑
k∈Im , k ̸=m∗ −1αk exp(−αk(wk,mXk(ωj) + yk,mj ))

+
−1
αm∗ exp(−αm∗(wm∗ ,mXm∗

(ωj) + dm − ∑
k∈Im , k ̸=m∗ yk,mj ))]

=
M
∑
j=1

h
∑
m=1
[ ∑
k∈Im , k ̸=m∗ −1αk ⋅ pj exp(−αk(wk,mXk(ωj) + yk,mj ))

+
−1
αm∗ ⋅ pj exp(−αm∗(wm∗ ,mXm∗

(ωj) + dm − ∑
k∈Im , k ̸=m∗ yk,mj ))]

=
h
∑
m=1
[ ∑
k∈Im , k ̸=m∗ −1αk −1λ + −1−αm∗ −1λ ] by (A.8), (A.9)

=
1
λ

h
∑
m=1
∑
k∈Im

1
αk
=
1
λ β.

Hence
λ = βB . (A.10)

We then compute dm by inserting (A.10) and (A.7) in (A.9) for k = m0 ∈ Im, and m0 ̸= m∗,

−
B
β =

M
∑
j=1

pj exp(−αm0(wm0 ,mXm0
(ωj) + ym

0 ,m
j )) =

M
∑
j=1

pj exp(−
1
βm
(Sm(ωj) + dm))

= e−dm/βm
M
∑
j=1

pj exp(−
1
βm

Sm(ωj)) = e−dm/βm𝔼(e−Sm/βm ).

So
dm = βm log( β

−B𝔼(e
−Sm/dm )).

Then, back to (A.6) and (A.7), for k,m0,m∗ ∈ Im and k ̸= m0 ̸= m∗,

ym
0 ,m

j =
1

αm0βm
Sm(ωj) − wm0 ,mXm0

(ωj) +
1

αm0βm
dm ,

yk,mj =
αm0

αk
wm0 ,mXm0

(ωj) − wk,mXk(ωj)

+
1
αk
[
1
βm

Sm(ωj) − αm0wm0 ,mXm0
(ωj) +

1
βm

dm]

= −wk,mXk(ωj) +
1

αkβm
(Sm(ωj) + dm),

ym
∗ ,m

j = dm − ∑
k∈Im , k ̸=m∗ yk,mj

= dm + ∑
k∈Im , k ̸=m∗ wk,mXk(ωj) − ∑

k∈Im , k ̸=m∗ 1
αkβm
(Sm(ωj) + dm)

= dm + (Sm(ωj) − wm∗ ,mXm∗
(ωj)) − (βm −

1
αm∗ ) 1βm (Sm(ωj) + dm)

= −wm∗ ,mXm∗
(ωj) +

1
αm∗βm (Sm(ωj) + dm).

So, for given m, for all k ∈ Im, we have

Yk,m = −wk,mXk +
1

αkβm
(Sm + dm), where dm = βm log( β

−B𝔼(e
−Sm/dm )).
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In addition, the systemic risk measure is given by

ρ(X) =
h
∑
m=1

dm =
h
∑
m=1

βm log( β
−B𝔼(e

−Sm/dm )) = β log( β
−B) +

h
∑
m=1

βm log(𝔼(e−Sm/dm )).

A.6 Proof of Proposition 3.1

First we prove the marginal risk allocation for individual i in group j. By Theorem 3.1, for i ∈ Ij,

𝔼ℚjX+εZ [Y i,j
X+εZ] = 𝔼[Y

i,j
X+εZ ⋅

dℚjX+εZ
dℙ ]

= 𝔼[(−wi,j(Xi + εZ i) + 1
αiβj
(Sj + εSZj ) +

1
αiβj

dX+εZj ) ⋅
e−SX+εZj /βj

𝔼[e−SX+εZj /βj ]
]

= −wi,j
𝔼((Xi + εZ i)e−SX+εZj /βj )

𝔼(e−SX+εZj /βj )
+

1
αiβj

𝔼((Sj + εSZj )e
−SX+εZj /βj )

𝔼(e−SX+εZj /βj )

+
1
αi
(log( β
−B) + log(𝔼(e

−SX+εZj /βj )))

= I + II + III.

Since SX+εZj = Sj + εS
Z
j , and assuming everything is well-defined so that we can use Leibniz integral rule, then

we have the following results:

∂
∂ε𝔼(e

−SX+εZj /βj ) = 𝔼(−
SZj
βj
e−S

X+εZ
j /βj),

∂
∂ε𝔼((Sj + εS

Z
j )e
−SX+εZj /βj ) = 𝔼[SZj e

−SX+εZj /βj − (Sj + εSZj )
SZj
βj
e−S

X+εZ
j /βj].

Then we compute the derivatives

∂I
∂ε = −wi,j

∂
∂ε(
𝔼((Xi + εZ i)e−SX+εZj /βj )

𝔼(e−SX+εZj /βj )
)

= −wi,j
1

(𝔼e−SX+εZj /βj )2
[𝔼(Z ie−S

X+εZ
j /βj )𝔼(e−S

X+εZ
j /βj ) + 𝔼((Xi + εZ i)(−

SZj
βj
)e−S

X+εZ
j /βj)𝔼(e−S

X+εZ
j /βj )

− 𝔼((Xi + εZ i)e−S
X+εZ
j /βj )𝔼(−

SZj
βj
e−S

X+εZ
j /βj)]

= −wi,j[𝔼ℚjX+εZ [Z i] − 1βj𝔼ℚjX+εZ [(Xi + εZ i)SZj ] +
1
βj
𝔼ℚjX+εZ [Xi + εZ i]𝔼ℚjX+εZ [SZj ]]

= 𝔼ℚjX+εZ [−wi,jZ i] +
wi,j
βj

CovℚjX+εZ (Xi + εZ i , SZj ),

∂II
∂ε =

1
αiβj

∂
∂ε(
𝔼((Sj + εSZj )e

−SX+εZj /βj )

𝔼(e−SX+εZj /βj )
)

=
1

αiβj
1

(𝔼e−SX+εZj /βj )2
[(𝔼(SZj e

−SX+εZj /βj ) + 𝔼((Sj + εSZj )(−
SZj
βj
)e−S

X+εZ
j /βj))𝔼(e−S

X+εZ
j /βj )

− 𝔼((Sj + εSZj )e
−SX+εZj /βj )𝔼(−

SZj
βj
e−S

X+εZ
j /βj)]

=
1

αiβj
𝔼ℚjX+εZ [SZj ] − 1

αiβ2j
CovℚjX+εZ (Sj + εSZj , SZj ),

∂III
∂ε =

1
αi

1
𝔼(e−SX+εZj /βj )

⋅ 𝔼(−
SZj
βj
e−S

X+εZ
j /βj) = −

1
αiβj
𝔼ℚjX+εZ [SZj ].
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As a result, we obtain

∂
∂ε𝔼ℚ

j
X+εZ [Y i,j

X+εZ] =
∂
∂ε (I + II + III)

= −wi,j𝔼ℚjX+εZ [Z i] + wi,j
βj

CovℚjX+εZ (Xi + εZ i , SZj ) +
1

αiβj
𝔼ℚjX+εZ [SZj ]

−
1

αiβ2j
CovℚjX+εZ (Sj + εSZj , SZj ) − 1

αiβj
𝔼ℚjX+εZ [SZj ]

= 𝔼ℚjX+εZ [−wi,jZ i] +
wi,j
βj

CovℚjX+εZ (Xi + εZ i , SZj ) −
1

αiβ2j
CovℚjX+εZ (Sj + εSZj , SZj )

= 𝔼ℚjX+εZ [−wi,jZ i] −
1
βj

CovℚjX+εZ (Y i,j
X+εZ, S

Z
j ).

Then, when ε = 0, we have the formula for marginal risk allocation for individual i in group j in Proposi-
tion 3.1.

The marginal risk contribution of group j is trivial, and for the conclusion on local causal responsibility,
we have

𝔼ℚjX [Y
i,j
X+εZ] = 𝔼ℚjX[(−wi,j(Xi + εZ i) + 1

αiβj
(Sj + εSZj ) +

1
αiβj

dX+εZj )].

Then, according to the previous proof,

∂
∂ε𝔼ℚ

j
X
[Y i,j

X+εZ] = 𝔼ℚjX(−wi,jZ i +
1

αiβj
SZj ) −

1
αiβj
𝔼ℚjX+εZ (SZj ),

and thus
∂
∂ε𝔼ℚ

j
X
[Y i,j

X+εZ]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=0
= 𝔼ℚjX [−wi,jZ i].

A.7 Proof of Proposition 3.2

By Theorem 3.1, for i ∈ Ij,

𝔼ℚjX [Y
i,j] = 𝔼[Y i,j ⋅

dℚjX
dℙ ] = 𝔼[(−wi,jXi +

1
αiβj
(Sj + dj)) ⋅

e−Sj/βj
𝔼[e−Sj/βj ]

]

= −wi,j
𝔼(Xie−Sj/βj )
𝔼(e−Sj/βj )

+
1

αiβj
𝔼(Sje−Sj/βj )
𝔼(e−Sj/βj )

+
1
αi
(log( β
−B) + log(𝔼(e

−Sj/βj )))

= I + II + III.

Assuming everything is well-defined so that we can use the Leibniz integral rule, then we have the following
results:

∂
∂wi,j
𝔼(e−Sj/βj ) = 𝔼(−X

i

βj
e−Sj/βj), ∂

∂wi,j
𝔼(Sje−Sj/βj ) = 𝔼[Xie−Sj/βj − Sj

Xi

βj
e−Sj/βj].

Compute the derivatives

∂I
∂wi,j
=

∂
∂wi,j
(−wi,j
𝔼(Xie−Sj/βj )
𝔼(e−Sj/βj )

)

= −
𝔼(Xie−Sj/βj )
𝔼(e−Sj/βj )

− wi,j
𝔼(− (X

i)2
βj e−Sj/βj ) ⋅ 𝔼(e−Sj/βj ) − 𝔼(Xie−Sj/βj ) ⋅ 𝔼(− Xi

βj e
−Sj/βj )

(𝔼(e−Sj/βj ))2

= −
𝔼(Xie−Sj/βj )
𝔼(e−Sj/βj )

+
wi,j
βj
𝔼((Xi)2e−Sj/βj )
𝔼(e−Sj/βj )

−
wi,j
βj
(
𝔼(Xie−Sj/βj )
𝔼(e−Sj/βj )

)
2

= −𝔼ℚjX [X
i] +

wi,j
βj

VarℚjX (X
i),
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∂II
∂wi,j
=

1
αiβj

∂
∂wi,j
(
𝔼(Sje−Sj/βj )
𝔼(e−Sj/βj )

)

=
1

αiβj
1

(𝔼(e−Sj/βj ))2
(𝔼[Xie−Sj/βj − Sj

Xi

βj
e−Sj/βj] ⋅ 𝔼(e−Sj/βj ) − 𝔼(Sje−Sj/βj ) ⋅ 𝔼(−

Xi

βj
e−Sj/βj))

=
1

αiβj
(
𝔼(Xie−Sj/βj )
𝔼(e−Sj/βj )

−
1
βj
𝔼(XiSj

e−Sj/βj
𝔼(e−Sj/βj )

) +
1
βj
𝔼(Xi e−Sj/βj
𝔼(e−Sj/βj )

) ⋅ 𝔼(Sj
e−Sj/βj
𝔼(e−Sj/βj )

))

=
1

αiβj
𝔼ℚjX [X

i] −
1

αiβ2j
CovℚjX (X

i , Sj),

∂III
∂wi,j
=

∂
∂wi,j
(
1
αi

log( β
−B) +

1
αi

log(𝔼(e−Sj/βj ))) = 1
αi

1
𝔼(e−Sj/βj )

⋅ 𝔼(−
Xi

βj
e−Sj/βj)

= −
1

αiβj
𝔼ℚjX [X

i].

As a result,

∂𝔼ℚjX [Y
i,j]

∂wi,j
=

∂
∂wi,j
(I + II + III)

= −𝔼ℚjX [X
i] +

wi,j
βj

VarℚjX (X
i) +

1
αiβj
𝔼ℚjX [X

i] −
1

αiβ2j
CovℚjX (X

i , Sj) −
1

αiβj
𝔼ℚjX [X

i]

= −𝔼ℚjX [X
i] −

1
αiβ2j

CovℚjX (X
i , Sj) +

wi,j
βj

VarℚjX (X
i), i ∈ Ij .

A.8 Proof of Proposition 3.3

Define
η󸀠m = ∑

k∈Im󸀠
wk,m󸀠
wk,m

1
αk

.

By Theorem 3.1, for k ∈ Im ,

∑
k∈Im󸀠

wk,m󸀠
wk,m

Yk,m =
Sm + dm

βm
∑

k∈Im󸀠
wk,m󸀠
wk,m

1
αk
− ∑

k∈Im󸀠
wk,m󸀠
wk,m

wk,mXk =
Sm + dm

βm
η󸀠m − ∑

k∈Im󸀠 wk,m󸀠Xk .

Then

𝔼ℚmX [ ∑
k∈Im󸀠

wk,m󸀠
wk,m

Yk,m]

= 𝔼ℚmX (
η󸀠m
βm

Sm − ∑
k∈Im󸀠 wk,m󸀠Xk) +

η󸀠m
βm

βm log{− βB𝔼[e
−Sm/βm ]}

= η󸀠m log{exp[ 1
η󸀠m
𝔼ℚmX (

η󸀠m
βm

Sm − ∑
k∈Im󸀠 wk,m󸀠Xk)]} + η󸀠m log{− βB𝔼[e

−Sm/βm ]}

≤ η󸀠m log{𝔼ℚmX [exp(
1
βm

Sm −
1
η󸀠m
∑

k∈Im󸀠 wk,m󸀠Xk)]} + η󸀠m log{− βB𝔼[e
−Sm/βm ]}

= η󸀠m log{𝔼[
eSm/βm e−Sm/βm exp(− 1

η󸀠m ∑k∈Im󸀠 wk,m󸀠Xk)

𝔼[e−Sm/βm ]
]} + η󸀠m log{− βB𝔼[e

−Sm/βm ]}

= η󸀠m log{− βB𝔼[exp(−
1
η󸀠m
∑

k∈Im󸀠 wk,m󸀠Xk)]}

< β󸀠m log{−β
󸀠

B 𝔼[exp(−
1
β󸀠m
∑

k∈Im󸀠 wk,m󸀠Xk)]} if ∑
k∈Im󸀠 wk,m󸀠Xk is nonnegative

:= dm󸀠 . (A.11)
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In conclusion, if both ∑k∈Im󸀠 wk,m󸀠Xk and ∑k∈Im󸀠󸀠 wk,m󸀠󸀠Xk are nonnegative, the inequality holds for the
risk allocations of subgroup Im󸀠 , as well as Im󸀠󸀠 . Otherwise, we have the inequality given by (A.11).
A.9 Necessary and sufficient condition for B in Remark 3.4

Here we show a necessary and sufficient condition for B to have a trivial Nash equilibrium through an
example. We assume all risk factors are i.i.d. Gaussian random variables, where σij = 0, i ̸= j and σii = σ for
all i, j.

When all banks are in one group, i.e., h = 1, β = ∑Ni=1 1
αi ,

𝔼ℚX [Y1
X] = 𝔼ℚ1X [Y

1,1
X ] =

1
α1

log( β
−B) − μ1 +

1
β1

σ − 1
2β21α1

Nσ. (A.12)

When bank 1 decides to split and put some weights in another group, e.g. there exist w1,1, w1,2 > 0 and
w1,1 + w1,2 = 1, then β󸀠 = β + 1

α1 and β1 = β, β2 =
1
α1 ,

𝔼ℚX [Y1
X] = 𝔼ℚ1X [Y

1,1
X ] + 𝔼ℚ2X [Y

1,2
X ]

=
2
α1

log( β
󸀠

−B) − μ1 +
w2
1,1
β1

σ +
w2
1,2
β2

σ − 1
2β21α1
((N − 1)σ + w2

1,1σ) −
1

2β22α1
w2
1,2σ. (A.13)

To have a trivial Nash equilibrium, for bank 1, it should hold that (A.13) ≥ (A.12), which gives

1
α1

log(−B) ≤ 1
α1

log((β
󸀠)2

β ) − [
1
β1
− (

w2
1,1
β1
+
w2
1,2
β2
)]σ − 1

2α1
[(

w2
1,1

β21
+
w2
1,2

β22
) −

1
β21
]σ. (A.14)

Then, by extending (A.14) to all banks, we can get the necessary and sufficient condition on B to have a trivial
Nash equilibrium: for all i = 1, . . . , N, B satisfies

1
αi

log(−B) ≤ 1
αi

log((β
󸀠)2

β ) − [
1
β1
− (

w2
i,1
β1
+
w2
i,2
β2
)]σ − 1

2αi
[(

w2
i,1

β21
+
w2
i,2

β22
) −

1
β21
]σ,

where β2 = 1
αi , β1 = ∑

N
i=1

1
αi and β

󸀠 = β1 + β2.
Recall that B is negative and stands for the minimal level of expected utility. Intuitively, when B is small,

log(−B) is large, then some of the inequalities tend to be violated so that there would be no trivial Nash
equilibrium in the system. On the other hand, when B is large (close to 0), log(−B)will be extremely small so
that a trivial Nash equilibrium may exist in the system.

A.10 Remark for Sm in equation (2.16)

Remark A.1. Some results about Sm are the following:

𝔼(e−Sm/βm ) = exp(− 1βm
μsm +

1
2β2m
(σsm)2),

𝔼(Xie−Sm/βm ) = B(μi −
1
βm

AmΣ[,i]) exp(−
1
βm

μsm +
1

2β2m
(σsm)2) for i ∈ Im (see below for a proof),

𝔼(Sme−Sm/βm ) = (μsm −
1
βm
(σsm)2) exp(−

1
βm

μsm +
1

2β2m
(σsm)2).

Proof. Define tT = (t1, . . . , tN). Then

𝔼(XietTX) = ∂Mx(t)
∂ti
=

∂
∂ti

exp(μTt + 12 t
TΣt) = (μi + tTΣ[,i]) exp(μTt +

1
2 t

TΣt).

Thus we obtain

𝔼(Xie−Sm/βm ) = 𝔼(Xie−(Am/βm)X) = (μi −
1
βm

AmΣ[,i]) exp(−
1
βm

μsm +
1

2β2m
(σsm)2).
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A.11 Sufficient condition for local optimal weights

To investigate condition (3.13) further, we make some reasonable assumptions on estimates and introduce
some situations when they hold.

Assuming all wk,1, wk,2 ̸= 0 for all k ̸= i, then β1 = β2 = ∑ 1
αk . Then (3.13) is equivalent to

−(
2
β1
−

1
β21αi
)σii < (

1
β21αi
−

1
β1
)

N
∑

k=1, k ̸=i
(wk,1 − wk,2)σki < (

2
β1
−

1
β21αi
)σii .

Since 1
β21αi
−

1
β1
< 0, |(wk,1 − wk,2)σki| ≤ |σki| for all k, i,

we can deduce a sufficient condition for w∗(i) ∈ (0, 1) for individual i,

(1 − 1
β1αi
)

N
∑

k=1, k ̸=i
|σki| < (2 −

1
β1αi
)σii . (A.15)

Remark A.2. From above, we can have a rough estimation: if σi ∼ σ, ρ > 0 and α = [1, 1, 1, 1] (i.e., no
extremely large σ and no extremely small α), the inequality is true when ρ < 7

9 , according to

(1 − 14) ⋅ (4 − 1)ρσ
2 < (2 − 14)σ

2.

This explains why in numerical experiments, when we apply reasonable values of parameters, the optimal
weights are often located between (0, 1). And when (wk,1, wk,2) are close for most k ̸= i, the weights for
individual i are around 0.5 because of small A ∼ 0 and B1 ∼ B2 in this case.

If, for individual i, σi is small and σi ≪ σi0 for some i0, then the sufficient condition does not hold, and
by numerical results, we found w∗(i) is not in (0, 1) anymore.

Assume for some k(’s), wk,1, wk,2 can be 0 or 1. Then β1 ̸= β2, but it is still true that −1 ≤ wk,1 − wk,2 ≤ 1 for
all k. Then (3.13) can be rewritten as

−(
2
β2
−

1
β22αi
)σii <

N
∑

k=1, k ̸=i
(wk,1(

1
β21αi
−

1
β1
) − wk,2(

1
β22αi
−

1
β2
))σki < (

2
β1
−

1
β21αi
)σii .

A sufficient condition for w∗(i) ∈ (0, 1) for individual i is

{{{{{{
{{{{{{
{

(
1
β1
−

1
β21αi
)

N
∑

k=1, k ̸=i
|σki| < (

2
β2
−

1
β22αi
)σii ,

(
1
β2
−

1
β22αi
)

N
∑

k=1, k ̸=i
|σki| < (

2
β1
−

1
β21αi
)σii .

This is a generalization of (A.15).

A.12 Necessary and sufficient condition for optimal weights

First we compare the minimal risk over non-zero weights (3.14) with the corner case (wi1, wi2) = (0, 1),

𝔼ℚX [Y i]|w=w∗ − (3.10) = 2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B)

+ w∗
N
∑

k=1, k ̸=i
[(

wk,1
β1
−
wk,2
β2
) − (

wk,1

β21αi
−
wk,2

β22αi
)]σki

+ (
(w∗)2

β1
−
(w∗)2

2β21αi
)σii + ((1 − w∗)2 − 1)(

1
β2
−

1
2β22αi
)σii

−
1

2β21αi

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm
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=
2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) + w

∗ ⋅ (−A) + (w
∗)2

2 B1 +
w∗(w∗ − 2)

2 B2

−
1

2β21αi

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm (use notation A, B1, B2)

=
2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) − w

∗ ⋅ (A − w
∗

2 B1 −
w∗ − 2

2 B2)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=∆

−
1

2β21αi

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm

=
2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) −

(A + B2)2

2(B1 + B2)
−

1
2β21αi

N
∑

m,k=1,m,k ̸=i
wk,1wm,1σkm .

(A.16)

Since w∗ = A+B2
B1+B2

, we get ∆ = A − w∗
2 (B1 + B2) + B2 =

A+B2
2 .

We compare the minimal risk of non-boundary case (3.14) with the boundary case (wi1, wi2) = (1, 0),

𝔼ℚX [Y i]|w=w∗ − (3.9) = 2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B)

+ (w∗ − 1)
N
∑

k=1, k ̸=i
[(

wk,1
β1
−
wk,2
β2
) − (

wk,1

β21αi
−
wk,2

β22αi
)]σki

+ ((w∗)2 − 1)( 1β1
−

1
2β21αi
)σii + (1 − w∗)2(

1
β2
−

1
2β22αi
)σii

−
1

2β22αi

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm

=
2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) − (w

∗ − 1)(A − w
∗ + 1
2 B1 −

w∗ − 1
2 B2)

−
1

2β22αi

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm

=
2
αi

log( β
󸀠

−B) −
1
αi

log( β
−B) −

(A − B1)2

2(B1 + B2)
−

1
2β22αi

N
∑

m,k=1,m,k ̸=i
wk,2wm,2σkm . (A.17)

If both (A.17) and (A.16) are less than 0, we get conditions (3.15), which are the necessary and sufficient
conditions to conclude that non-zero weights (w∗, 1 − w∗) are the optimal weights to minimize the total risk.
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