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Abstract—The Community Earth Science Model (CESM) is an
important tool in climate modeling that produces a large volume
of data on each simulation. Researchers have increasingly been
turning to both lossless and lossy compression as an approach to
reduce the volume of data for the CESM climate applications.
Choosing the best-qualified compressor is nontrivial, however,
especially because of the advent of many modern lossless and
lossy compressors and complicated scientific integrity assessment
of climate data model. In this paper we evaluate 11 state-
of-the-art compressors using the quality assessments developed
by climate scientists to understand the effectiveness of the
compressors on the CESM climate datasets with four different
models. Our work also identifies the best compression ratio that
can be reasonably achieved while meeting these strict quality
requirements.

Index Terms—lossy compression, lossless compression, sz, ZFP,
MGARD, CESM

I. INTRODUCTION

The Community Earth System Model (CESM) [1], [2]—

a well-known climate research package—is a fully coupled

global climate model to simulate the past, present, and future

climate states of the Earth. These packages are used in large-

scale simulations that produce extreme volumes of data, which

are analyzed by scientists. For instance, nearly 2.5 PB of data

were produced by the CESM for the Coupled Model Inter-

comparison Project, from which 170 TB were postprocessed

and submitted to the Earth System Grid [3].

Error-bounded lossy compression has been considered as a

solution to resolve big-data issues in climate simulations be-

cause it provides high compression ratios (≈ 100×) and con-

trols the data distortion based on user-specified error bounds.

By comparison, lossless compressors such as zlib [4], zstd

[5], and FPZIP [6] are not suitable for compressing enormous

scientific datasets where large compression ratios are needed,

because they systematically suffer from substantially lower

compression ratios (one or two orders of magnitude lower in

general) than do lossy compressors, although they can ensure

the identical/lossless reconstructed dataset.

Although error-bounded lossy compressors allow users to

control the data distortion with multiple different types of error

bounds (such as absolute error bound, relative error bound,

and peak signal-to-noise ratio), a significant gap remains for

practical usage in that users often have specific requirements

(e.g., particular quantity of interest or metric to preserve)

regarding their post hoc analysis, and climate simulation is

no exception. A number of studies have been done on the

impact of applying lossy compressors on the post hoc analysis

of the climate simulation datasets. The National Center for

Atmospheric Research, for example, has been applying com-

pression to CESM data for years. Specifically, Baker et al. [7]

addressed the issue of striking a balance between meaningfully

reducing data volume and preserving the integrity of the

simulation data. They also identified specific challenges and

concerns when compressing climate data from CESM. In

addition, they performed a thoughtful spatiotemporal statistical

analysis of CESM simulation output data affected by only

ZFP compressor. Poppick et al. [8] analyzed the daily average

surface temperature and daily average precipitation rate from

a historical run of the CESM Atmosphere Model based on

only two lossy compressors—SZ1.4 [9] and ZFP 0.5 [10].

In this paper we perform a comprehensive study to un-

derstand the effects of 11 modern compressors on CESM

datasets including atmosphere, land, ocean, and ice models.

We include both leading lossless compressors (such as zstd

[5] and NDZip [11]) and lossy compressors (such as SZ [9],

[12]–[16], SZ3 [17], ZFP [10], FPZIP [6], MGARD [18]–[20],

MGARDx [21], Bit Grooming [22], and Digit Rounding [23]).

Our evaluation also covers many quality assessments (such as

structural similarity index measure (SSIM/d-SSIM), p-value

of KS-test, Pearson’s coefficient of determination, and spatial

relative error), recommended by the climate researchers [7].

Our contributions are as follows.

1) We conduct an evaluation of 11 compressors, examining

data from all four models of CESM, and we consider

the performance of the compressor with regard to the

state of the art in assessing compressor quality in climate

science.

2) We discuss challenges with using the KS-test for com-

pressor quality assessment for climate data and propose

alternative approaches to be evaluated by the climate

community.

3) We demonstrate a previously unevaluated compressor

SZ3, which achieves the highest compression ratio on

data from CESM.

4) We suggest a path forward for the design of lossy

compressors on datasets containing many small buffers

such as data from CESM’s land and ice models.

The remainder of the paper is organized as follows. In Sec-

tion II we describe the background of the research including
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the CESM model, quality assessments for climate research,

and compressors used in our study. In Section III we discuss

related work. In Section IV we present the methodology we

used in our investigation. In Section V we present and analyze

the assessment results. In Section VI we conclude the paper

with a brief summary and a short discussion of future work .

II. RESEARCH BACKGROUND

In this section we present background knowledge about

CESM, quality assessments, and compressors.

A. The Community Earth Systems Model

Fig. 1. FSUTOA from ATM. Upwelling solar flux at the top of the
atmosphere: (left) original, (right) 21× small version compressed with SZ3
that meets all quality requirements from [24]; 91× smaller version is possible
without the Kolmogorov–Smirnov test.

The Community Earth Systems Model was developed to

provide a “core modeling system for studies of past and current

climate, and projections of future climate change ... to address

important scientific questions ... and [among other goals]

support of U.S. national and international policy decisions”

[1]. Therefore, accuracy of the model is of upmost importance.

To this end, CESM also produces increasingly large volumes

of data that can be used by scientists and policy makers to

make informed inferences regarding climate.

Data for CESM is organized into multiple NetCDF files

each representing a time-step in the simulation. Within each

file, there are multiple variables (or fields) representing some

physical or derived quantity from the simulation. We refer to

an entire variable/field from within a single file as a buffer.

TABLE I
CESM DATASETS USED

Model Datatype Total Size Per Buffer Size

Atmosphere float32 1.5 TB 642 MB
Ocean float32 235 GB 1.35 GB
Land float32 41 GB 216 KB
Ice float32 35 GB 480 KB

CESM has four major components: land, ice, ocean, and

atmosphere. Each of these components produces differing

volumes of floating-point data of distributions, as summarized

in Table I. The largest of these is the atmosphere model,

which has been studied extensively in the context of data

reduction [7], [24]–[26], but the other fields are large as well,

also warranting consideration for data reduction. Figure 1

provides a visualization of one field used in our experiments,

the original field, and the corresponding lossy compressed

field.

B. Quality Assessments for Climate Research

Baker et al. [7] proposed a series of quality assessment

tools 1 for climate data. They proposed four assessments that

have been refined in their later work: the structural similarity

image metric (SSIM/d-SSIM), the p-value of the Kolmogorov–

Smirnov (KS) test, the Pearson correlation coefficient of

determination (R2), and the spatial relative error (SRE). Each

of these quality assessments can be viewed as often holding a

value between 0 and 1. In their paper, Baker et al. proposed

acceptable thresholds for these assessments.

The structural image similarity metric (SSIM) measures the

degree of differences between original and decompressed data

in two images [27]. For example, for two images x and x̂ the

following is computed:

SSIM(x, x̂) =
(2µxµx̂ + c1)(2σxx̂ + c2)

(µ2
x + µ2

x̂ + c1)(σ2
x + σ2

x̂ + c2)
,

with σ. the standard deviation of the studied data. Baker et

al. later refined SSIM into data-SSIM or d-SSIM [25]. Their

refined version attempts to better account for uses of the

method for climate science by normalizing the inputs and

changing certain constants used for perceptual corrections.

Various studies have identified acceptable values of the SSIM:

≥ .98 [7], .99 [28], .99995 [26], or .995 (d-SSIM) [25].

The KS-test is a statistical test of the equality of continuous

probability density functions. Its test statistics are based on

the maximum distance between two cumulative distribution

functions (CDFs) or their empirical forms:

Dn,m = sup
u

|Fx,n(u)− Fx̂,m(u)|.

Associated p-values are typically tabulated from the asymp-

totic distribution of Dn,m. The acceptable p-value of the KS-

test is specified to be ≥ .05 in [7]. We further discuss the

assumptions and uses of KS-test p-values in Sect. V-A1 as

they relate to our results.

The R2 test measures the strength of a linear relationship

between the original data x and the corresponding elements

in the decompressed data x̂:

R2(x, x̂) = 1−

∑N

i (xi − x̂i)
2

∑

(xi − x̄)
2

.

The acceptable value of R2 is ≥ .99999 [26].

The SRE test measures the percentage of elements that

differ by more than a given value-range relative threshold:

SRE (x, x̂) =

∑N

i=0

(

1 if

∣

∣

∣

xi−x̂i

xi

∣

∣

∣
> δ else 0

)

N
.

1We use the term“assessments” here to mean the combination of a quality
metric combined with a pass/fail threshold used for determining whether the
quality is acceptable. We use the term “assessment” rather than “metric”
because of the inclusion of the threshold and instead of “test” to avoid the
ambiguity with frequentist statistical testing

2
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The acceptable value of SRE is ≤ 5% at δ ≤ 1× 10−4 [7].

C. Modern Compressors

In Appendix A we describe the state-of-the-art modern

compressors used by our study. Compared with prior works

that evaluated lossy compressors relative to these assessments

[7], [25], [26], we adopt newer versions where quality im-

provements have been made, and we include many previously

unevaluated compressors such as MGARD, MGARDx, Digit

Rounding, Bit Grooming, TThresh, and SZ3. We include

FPZIP and Zstandard as leading lossless compressors.

We interface with the compressors via LibPressio [29]

which provides a common interface for many compressors

allowing us to write our experiments once instead of for

each compressor. LibPressio also provides features to utilize

equivalence relationships between different notions of error

bounds such as the absolute point-wise error bound and the

value-range relative point-wise error bound further simplifying

implementation. Lastly LibPressio provides features for inter-

facing with NetCDF files (as well as other formats) which we

use to read the data from its raw format.

We additionally utilize OptZConfig [30] which is built atop

of LibPressio to identify which configurations will meet the

quality assessment requirements from the previous section.

The recommended configuration2 of OptZConfig uses black-

box optimization techniques to find the maximum compression

ratio subject to some constraints on the quality. It accomplishes

this via an iterative process which systematically tries different

configurations retrieving the quality assessment results via

APIs provided by LibPressio. Specific information on how we

use OptZConfig can be found in Section IV.

III. RELATED WORK

Cappello et al. [31] proposed the idea of classifying quality

analysis tools into three levels. Level 1 analysis tools assess

qualitative losses in quality and often leverage visualization

to identify artifacts. Level 2 analysis tools assess quantitative

losses in quality using general community measures such as

PSNR. Level 3 analysis tools leverage the domain-specific

quantitative quality measures such as those proposed in Sec-

tion II-B.

Much of the work in the climate community has been a

mix of levels 1, 2, and 3. The early work of Baker et al. [32]

did not suggest thresholds but did suggest that the derivation

relationships between climate variables should be accounted

for when assessing quality requirements. The authors made

the important observation that while some changes may be

detectable, they may not be consequential. Baker et al. [7]

used a mix of visualization (level 1) and quality assessments

(levels 2 and 3) to assess what quality requirements may

be amenable to the climate community for evaluating lossy

compression. Poppick et al. [8] used visualization (level 1) to

support a more detailed quantitative and qualitative analysis

of the artifacts introduced by compression. Baker et al. [26]

2We used opt:search=fraz, opt:max_iterations=50,
fraz:search_threads=$(ncpus)

used a set of image quality assessments (level 2) and asked

domain specialists to determine which images for them were

diagnostically lossless (level 3). Pinard et al. [24] introduced a

Python library LDCPY to compute these assessments for data

stored in NetCDF format and focused on the four assessments

described above. More recently, researchers have refined the

classic SSIM metric into a specialized version for climate

science promoting a level 2 metric to a level 3 one [25].

Similar work has been done outside the climate community

to evaluate the effects of lossy compression (e.g., Laney et

al. [33]), but we focus here on climate applications and their

quality assessment.

In order to support identifying compressor configurations

that preserve level 2 and 3 quality measures, a few approaches

have been taken. One approach is to use bounded-linear

functionals [20]. This approach works for many visualization

tasks but is limiting for these assessments because they con-

tain nonlinear terms. Another approach is to use black-box

compression optimization [30], [34]. This approach is able to

preserve these quality assessments but at a high overhead when

used on individual buffers.

IV. METHODOLOGY

We downloaded CESM data from the Argonne National

Laboratory Computing Resource Center (LCRC)3. We selected

the runs for each component with the greatest volume of

data. The datasets we used are summarized in Table I. These

datasets are either 2D or 3D. We selected two fields at random

for each dataset and considered several random timesteps and

an additional field from the atmosphere because that model

had the most data.

We selected: QI (Ice, 2D, 384×320), AICE (Ice, 2D, 384×
320), DISPVEGC (Land, 2D, 288× 192), QOVER(Land, 2D,

288×192), KE(Ocean, 3D, 3600×2400×42), TEMP(Ocean,

3D, 3600×2400×42), PRECT(Atmosphere, 2D, 3600×1800),

T(Atmosphere 3600×1800×26), and FSUTOA(Atmosphere,

2D 3600 × 1800). For Ice we chose time-steps 1909.09,

1921.11, 1926.07, 1994.08. For Land we chose time-steps

1978.11,1979.03, 1985.01 1987.02, 1991.08. For Ocean we

chose time-steps 0147.01 and 0147.12 4. For Atmosphere

we choose timesteps 0001.03, 0001.11, 0001.11, 0002.10,

0004.12, and 0005.04.

We ran the experiments on Bebop at the LCRC. We selected

the machine for its availability of CPU nodes. Because of lack

of time, space, maturity of the GPU-based compressor imple-

mentations [30], and lack of support for GPU compressors in

I/O used in climate science libraries and codes [29], we leave

the evaluation of GPU compressors to future work.

Software was chosen to be the latest available versions on

Spack [35] and an additional repository for compressors [36]

at the time of experimentation maintained by the LibPressio

developers. Exact versions are listed in Table II. We use

LibPressio [29] to provide a consistent interface between

3https://trac.mcs.anl.gov/projects/parvis/wiki/Datasets
4there were many fewer time-steps from Ocean models available so we

choose fewer of them

3
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TABLE II
HARDWARE AND SOFTWARE VERSIONS

Component Version Component Version

CPU Intel Xeon E5-2695v4 MGARDx 0.0.1
Memory 128 GB DDR4 NDZip 0.0.1
Network Intel OmniPath SZ 2.1.12.2
GCC 10.2.0 SZ3 3.1.5.4
Bit Grooming 2.1.9 TThresh 0.0.5
Digit Rounding 2.1.9 ZFP 0.5.5
FPZIP 1.3.1 Zstandard 1.21.1
MGARD 1.0.0 LibPressio 0.86.5
OptZConfig 0.13.3

different compressors, abstracting away differences in the

compressor interface, such as the order of dimensions, which

fields are mutated, how datatype information is passed, and

how compressors refer to the absolute pointwise error bound

if it is supported.

We read the data directly from the netCDF files created by

CESM using the LibPressio support for netCDF. We conducted

compression and decompression operations on an in-memory

copy of each buffer.

We wrote a LibPressio external metric to compute the d-

SSIM and KS-test. The KS-test was brought in from Scipy,

which is implemented in C, and the d-SSIM was ported to

Julia from the implementation in LDCPY [24]. We chose

to port d-SSIM because it was not easy to call just this

function from LDCPY and because Julia provides additional

performance. An improved implementation would embed this

computation. We used the Pearson’s correlation coefficient and

spatial relative error implementations from LibPressio’s core

metrics implementations in C++.

With LibPressio-compatible metrics implementations for

each quality metric, we can use OptZConfig [30] to identify

the compression configuration that resulted in the highest

compression ratio while satisfying compressor constraints. We

chose the value-range relative error bound mode as the only

input for compressors that support absolute error bounds and

used lower bound = 1 × 10−155, upper bound=1 × 10−1,

max iterations=50, objective mode=max. For compressors that

support other notions of error bounds (i.e. Bit Grooming), we

used the largest and smallest possible values of those bounds

in OptZConfig.

Rather than the penalty functions used in [30] that mark

outcomes that don’t meet quality objectives with a large

negative value, we instead used -1 × the Manhattan distance

from the assessments to the closest configuration that met all

the quality requirements. This approach enabled us to search

a path toward a feasible configuration more easily than simply

returning −∞.

Methods like OptZConfig can have high overhead when

used for a single buffer [30], but they often find reusable

configurations that can be used for many timesteps [34]. The

5IEEE 32 bit floating point values have 23 mantissa bits and have varying
precision over their domain. 10−15 is intended to be a value so small as to
intuitively be unnecessary for most uses

bottleneck in these operations for most compressors (except

TThresh and MGARD) is the computation of the assessments,

which may benefit from acceleration.

V. RESULTS AND TAKEAWAYS

A. Compressors That Do Best on CESM-Atmosphere?

We first consider CESM-Atmosphere since it has the most

data and is the most explored in the literature. We present

results for the “upwelling solar flux at top of atmosphere”

(FSUTOA) field from CESM-Atmosphere (Figure 1)6. Other

fields from CESM-Atmosphere follow similar patterns with

varying compression ratios depending on the field.

1) KS-test: We first observe that different absolute error

bounds are needed to preserve these assessments with different

compressors. The reason is that different compressors produce

different distributions of compression error. Considering the

p-value of the KS-test in that context presents a special

challenge. For example, to meet all compression requirements

from [24], SZ needs a value-range relative error bound of

≪ 1× 10−15, whereas ZFP needs only a value-range relative

error bound of < 6 × 10−5, which affects substantially the

corresponding compression ratios 7. This difference in the

error-bound requirements suggests that the KS-test may be

both too sensitive to what may be inconsequential errors with

value-range relative error magnitudes smaller than 1× 10−15
and, as we will show, too insensitive to larger pointwise errors.

Other properties of the KS-test lead to nonintuitive results

when applied as a measure of quality. The KS-test has been

shown to have a low power (probability of correctly rejecting

the null hypothesis) when testing normality [37], [38] in

comparison with other commonly used tests such as the

Anderson–Darling test. This lack of power is also illustrated in

the following numerical experiments. Additionally, the power

and p-value of a statistical test are known to depend on the

number of datapoints. In particular, the KS-test is known to be

overly sensitive to small differences in large datasets, hence

overrejecting the null hypothesis for large datasets. One of the

preferred alternatives to the KS-test is the Anderson–Darling

test because it considers the difference between the two entire

empirical CDFs and not only the maximum difference between

CDFs as does the KS-test. However, the Anderson–Darling test

is computationally expensive.

We conducted the following numerical experiments with

simulated samples and altered data to highlight some limi-

tations of the KS-test:

(1) Pointwise error To study the effects of high pointwise

6FSUTOA was chosen randomly from the atmosphere variables considered
because atmosphere is the most well studied

7The KS test measures changes in the empirical CDF function. SZ in-
troduces different distributions of error depending on the error bound and
value range of the data [9] which likely induces the failure of the KS test;
however with value range relative error much less than 10−15 we argue
these differences will be found to be inconsequential. ZFP on the other
hand consistently introduces errors more faithful to the original dataset’s
distribution; at least as measured by the KS test (there still are errors; an
example of systematic artifacts from ZFP in [8]; these are improved, but still
present in the latest version). Lastly ZFP tends to over-preserve with respect
to the error bound which it may benefit from here as well

4
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errors, we generated 50 repeats of Gaussian samples from

N (0, 1) with increasing size n = 10i, for i = 1, ..., 7.

One sample has 1% of pointwise corruption consisting of

1% of the values assigned randomly and uniformly between

1010 and 1015. Corresponding distributions of the KS-test p-

values are shown in Figure 2, top panel. We observe that

for these samples, the KS-test fails to detect the pointwise

error on datasets with less than 105 datapoints. This result

highlights the high sensitivity of the test to data size but also

its insensitivity to substantial pointwise error.

(2) Noise and bias Over 50 repeats we generated Gaussian

samples of increasing size from N (0, 1), and we added a bias

ǫ ∼ N (0.01, 0.2) to one sample. This type of error can be

a typical compression error; in practice, the error range of

value is smaller. We report the corresponding KS-test p-value

distributions in the bottom panel of Figure 2. Once again, the

test fails to detect the bias in the mean and variance for smaller

datasets, highlighting the limitations of the KS-test.

(3) Sample size Another KS-test experiment was run between

two Gaussian samples of the same distribution N (0, 1) with

increasing sample size n = 10i, for i = 1, ..., 9. The KS-test

fails to accept the null hypothesis when the sample size is

over 108, highlighting the hypersensitivity of the test for large

datasets. This result creates doubts about whether the KS-test

properly detected the corruption and bias or was sensitive to

any variations in large datasets.

These issues may be caught by other assessments proposed

by Pinard et al. [24], and because the proposed assessments are

designed to be used in concert are not going to be accepted;

however, requiring the KS-test punishes the performance of

some compressors over others for differences that may not be

consequential to the user. We propose that the climate com-

munity consider alternative methods that may more accurately

reflect the desired ability to ensure that distributions do not

meaningfully change.

TABLE III
COMPARING MEASURES OF DISTRIBUTION DIFFERENCES ON ATMOSPHERE

DATA WITH SMALL INJECTED NOISE: U MEANS UNIFORM NOISE, N
MEANS GAUSSIAN NOISE

Dataset Name p(KS − test) Wasserstein Hellinger J-S

FSUTOA(U ) < 2× 10−16 3× 10−17 0 10338

FSUTOA(N ) < 2× 10−16 1× 10−17 0 10338
T(U ) 1 0 0 0
T(N ) 1 0 0 0

PRECT(U ) 0.0067 2× 10−16 0 1.71

PRECT(N ) 0.0065 8× 10−17 0 1.67

As pointed out earlier, since statistical tests may require

users to adapt the error bounds to meet the p-value require-

ments, alternatives to statistical tests should also be con-

sidered. In particular, many metrics for probability densities

have been developed. For instance, the Hellinger distance8 is

commonly used because it provides an intuitive global measure

8H2(p, q) =
1

2

∫

X

(

√

p(x)−
√

q(x)
)

2

dx with p and q the probability

density functions to be compared

of distance between two distributions [39]. The Wasserstein

distance, also known as the Earth’s mover distance [40],

[41], is commonly used in climate studies [42]. In one-

dimensional settings, the Wasserstein distance corresponds to

an Lp-norm between the quantile functions of the distributions

at stake, providing an intuitive and exhaustive comparison

of distributions. Another commonly used divergence is the

Jensen–Shannon divergence9, seen as a symmetrized version

of the Kullback–Leibler divergence. Following the common

practices, these metrics are calculated with the empirical

estimates of the pdfs and cdfs at stake.

In Table IV we gather the values of these three metrics for

the two examples shown in Figure 2 (experiments 1 and 2

from above). The three metrics equal 0 when the compared

distributions are equal. We observe that these metrics unmis-

takably discriminate the corrupted and biased samples from

the original samples.

We also consider two cases of adding noise with distribution

N (0, 1 × 10−16) and with distribution U(−4 × 10−16, 4 ×
10−16) to the three atmosphere datasets FSUTOA, precipita-

tion rate (PRECT), and temperature (T). We summarize these

results in Table III. We find that the KS-test determines a

significant difference for the FSUTOA and PRECT cases but

does not find a difference for T (p=1), while FSUTOA and

T have similar ranges of values. Further investigations will

be pursued on the temperature field. We also compute the

Wasserstein distance, the Jensen–Shannon divergence, and the

Hellinger distance for each of these results. Both Wasserstein

and Hellinger distances show intuitive small value results since

the added errors are very small. In addition, the Wasserstein

distance discriminates between the two types of errors while

showing very small values. On the other hand, the Jensen–

Shannon lacks comprehensive interpretation on this example.

Key findings: The p-value of the KS-test may be too strict

and unreliable a requirement prohibiting the adoption of

compressors that may be otherwise acceptable. The Wasser-

stein distance may be a good candidate for a replacement.

2) Other quality assessments: In this section we run the

search for each quality metric independently to show which

quality metric is the limiting factor for achieving high com-

pression ratios for each compressor. Because of the reasons

outlined in the preceding subsection, we exclude the KS-

test and focus on the other three quality assessments from

[24]. Table V shows which quality metric is the limiting

factor, indicated by which compression ratio is the smallest for

each compressor. Two compressors, MGARD and MGARDx,

fail to preserve the d-SSIM satisfactorily. The best lossy

compressor on this dataset (SZ3) gets a compression ratio

of 59.81, surpassing each of the three quality assessments.

For comparison, the best lossless compressor FPZIP gets a

compression ratio of 1.95. The other compressors either get a

9JSD(p, q) =
1

2
D(p,m)+

1

2
D(q,m) where p and q are the probability

density functions to be compared and m is the uniform mixture of p and q,

D(p, q) =

∫

X

p(x) log

(

p(x)

q(x)

)

dx

5
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Fig. 2. Distributions of p-values for the KS-test over 50 times when testing
whether two samples with increasing sample size n = 10i, for i = 1, ..., 7,
can be considered from the same distribution via the KS-test. The red line
corresponds to the nominal value 0.05 below which the test typically rejects
the null hypothesis. Top panel: two samples from N (0, 1) with one sample
corrupted with 1% of the values assigned randomly and uniformly between
10−10 and 10−15. Bottom panel: two samples from N (0, 1) with one sample
being added a bias in the mean and variance via an added random variable
ǫ ∼ N (0.01, 0.2). The results suggest that the p-value of the KS-test is not a
good fit at large data sizes. The top boxplots highlights the over sensitivity of
the KS-test when sample size increases, in the meantime the bottom boxplots
highlights the lack of discrimination of samples tained by errors by the KS-
test.

worse compression ratio or cannot pass the assessments. We

observe similar results for other CESM-Atmosphere fields.

For some compressors, we understand why particular com-

pressors perform better than others. For example, TTHRESH

does not perform well on the datasets (including FSUTOA)

that are 2D datasets [43]. Likewise, SZ3 generally outper-

forms Bit Grooming and Digit Rounding because of its more

sophisticated prediction scheme and better lossless encoder

(Zstd vs gzip) [17], [44], [45]. Between leading compressors

such are SZ3 and ZFP, however, why a compressor is going

to perform the best on a given dataset at a given error bound

is unclear, requiring greater work to measure and understand

lossy compression ability [46].

Finally, in Table VI we provide the proposed Wasserstein

and Jensen-Shannon metrics computed on original and decom-

pressed FSUTOA data. The Hellinger distance is not shown as

it was degenerate due to the strong similarity between original

TABLE IV
MEDIAN VALUES OF THE PROPOSED METRICS OVER THE 50 REPEATS OF

THE TWO EXAMPLES PRESENTED IN FIGURE 2 (EXPERIMENTS 1 AND 2
FROM ABOVE). FROM TOP TO BOTTOM, THE WASSERSTEIN DISTANCE,

THE HELLINGER DISTANCE, AND THE JENSEN–SHANNON (J-S)
DIVERGENCE. THE THREE METRICS EQUAL 0 WHEN THE COMPARED

DISTRIBUTIONS ARE EQUAL. THE SYMBOL “X” MEANS THAT THE

DISTANCE COULD NOT BE CALCULATED BECAUSE QUANTITIES ARE NOT

INTEGRABLE.

Sample Size 10 102 103 104 105 106 107

Wasserstein
(×10

13 )

5 0.9 0.6 0.5 0.5 0.5 0.5

Hellinger x x x x x x x
J-S 0.6 7.5 73. 738 7385 73767 737803

Wasserstein 0.50 0.18 0.06 0.03 0.02 0.02 0.02
Hellinger 0.29 0.12 0.05 0.02 0.01 0.01 0.01
J-S 0.7 7.1 74 736 7383 73782 737834

TABLE V
MAXIMUM COMPRESSION RATIO THAT MEETS EACH QUALITY METRIC

FROM [24]. X INDICATES A FAILURE TO RUN TO A SOLUTION.

Compressor Pearson R2 2 Spatial Error d-SSIM

SZ 30.65 31.49 39.86
SZ3 93.00 93.00 59.81
ZFP 13.27 13.27 18.87
Zstd 1.35 1.35 1.35
FPZIP 1.95 1.95 1.95
MGARD 27.10 4.69 X
NDZip 1.64 1.64 1.64
MGARDx 14.70 6.49 X
TTHRESH 16.10 16.10 2.98
Bit Grooming 1.51 1.51 1.51
Digit Rounding 1.86 1.86 1.86

and decompressed data. As discussed earlier, the Wasserstein

and Jensen-Shannon metrics provide more gradual comparison

of the compressors than the KS-test. In particular, MGARD,

SZ and TTHRESH are assigned the same 0 p-value for the KS-

test; however, their Wasserstein and Jensen-Shannon metrics

provide more nuanced information about their compression

errors and enables a ranking between these compressors.

Key findings: The best lossy compressor, SZ3, gets a

30.7× improvement over lossless compressors and 3.2×
improvement over the next compressor while passing all

three quality assessments.

B. Improving Performance For Land And Ice models In CESM

When we expand our analysis to other fields from other

models, we find that depending on the field either SZ3 or

ZFP has the best compression ratios that satisfy all three

assessments on the atmosphere and ocean models. Currently,

however, specialized encoding techniques such as FPZIP have

the greatest compression ratios satisfying all three assessments

on land and ice in the cases we tested. When examining

the overhead costs that make lossy compressors perform

worse, the metadata (i.e., settings used) and entropy data (i.e.,

Huffman trees) appear to generate too much overhead for

small buffers. Some of Z-standard’s more exotic features may

point a way forward for lossy improvements, namely Common
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TABLE VI
ILLUSTRATION OF PROPOSED METRICS ON DECOMPRESSED FSUTOA DATA. THE HELLINGER DISTANCE IS NOT SHOWN AS IT WAS DEGENERATE DUE

TO THE STRONG SIMILARITY BETWEEN ORIGINAL AND DECOMPRESSED DATA.

MGARD SZ TTHRESH ZFP MGARD SZ TTHRESH ZFP

Bound 10−5 10−5 10−5 10−5 10−10 10−10 10−10 10−10

KS-test p-value 0.00 0.00 0.00 0.98 0.00 0.00 1.00 0.98

Wasserstein 125.261 7.46×10−4 6.36×10−1 3.56×10−5 125.261 7.46×10−4 0.00 3.56×10−5

JS 583393.701 908.029 3981.525 97.793 583393.701 908.029 0.000 97.793

Dictionary” and “External Metadata.” “Common Dictionary”

allows a common Huffman tree provided by the user to be used

for encoding for multiple buffers. “External Metadata” allows

common metadata to be excluded from the compressed stream

and stored in an auxiliary location and passed in separately to

decompression. Together, these features allow the user to store

only one copy of the metadata for all the buffers that share

a common configuration, thus dramatically improving stor-

age for compressors such as SZ/SZ3/MGARD/MGARDx/Bit

Grooming/Digit Rounding/Zstandard/GZip (as well as com-

pressors like SPERR [47] when Zstandard is used) which all

feature entropy encoding stages and store this kind of metadata

in their compressed byte streams.

For climate codes, however, leveraging these features would

require improvements of HDF5. Currently, HDF5 stores con-

figurations for compressors per dataset and must be encodable

as a series of contiguous bytes. In order to achieve benefits

from using compressors, the ability to de-duplicate the seri-

alized compressor configurations between datasets is needed

to actually improve the overhead incurred by application

codes. For every timestep of the quantity of ice (QI) field

from the ice application, the Huffman tree alone accounts for

52% of the output of SZ prior to the final lossless encoding

stage. If externalized, there would be a significant increase in

compression performance.

Additionally, in order to better support GPU-based com-

pressors, better support for divergent compression and decom-

pression configurations (i.e., the compression system had a

datacenter-grade GPU, and the decompression system has a

laptop-grade GPU with fewer resources or no GPU at all) is

required, as well as better support for GPU primitives such

as cudaStream_t that are not serializable, are consistent

between uses, and are required for resource sharing.

Moreover, in order to see larger improvements for ice and

land, more data needs to be passed to the compressors at

a single time. Doing so would require applications codes to

modify their usage of NetCDF/HDF5 to consider larger chunk

sizes and to place related data into the same datasets instead

of separate HDF5/NetCDF files. Not only will this improve

the compression performance, it also improves runtime per-

formance. As shown in Figure 3, it is faster to read larger data

segments and decompress them than to read and decompress

individual small slices for moderate increases in chunk sizes.

Fig. 3. Median speedup from reading larger chunks vs. serial independent
reading of slices when using SZ ǫabs = 1×10−4 on CLOUD from Hurricane
on SDRBench [48], The drop in speedup corresponds to a systematic change
in the read and compression performance that occurs when decompression
no longer fits in the 45 MB L2+L3 cache but is still 1.5× faster than serial
reads of individual slices. Tools such as OptZConfig [30] can automatically
identify optimal configurations for number of slices read simultaneously.

Key findings: For models such as land and ice that have

many small buffers, improvements to share overhead be-

tween buffers both for compressors and I/O libraries will

be key to achieving high performance.

VI. CONCLUSIONS AND FUTURE WORK

We have evaluated 11 different compressors on data from

all four models of CESM. We have highlighted how well

each compressor is able to compress data under the quality

assessments developed by the climate community. We further

have identified challenges posed by the KS-test and proposed

alternative methods for use by the climate community. More-

over, we propose a path forward for the design of lossy

compressors for the land and ice models.

We see two areas for future work. In climate science, more

work is needed to identify quality assessments that evaluate

compressors that both meet the stringent needs of the climate

community and identify meaningful changes between original

and lossy compressed data. In compressor design, further work

is needed to improve the ability of climate codes to adopt

lossy compression. While this includes improvements to user-

facing features such as packaging compression libraries for

climate researchers to easily download and use, it also requires
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improvements to I/O libraries and compressors to handle the

unique challenges posed by climate data.
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APPENDIX

A. Description of Modern Compressors

Version of the compressors used are found in Table II.

• SZ [9], [12]–[16]. SZ (a.k.a. SZ2) is an error-bounded

lossy compressor based on the classic prediction-based

compression model. It splits each dataset into many

subblocks (16x16 for 2D and 6x6x6 for 3D) and adopts a

hybrid data prediction method that combines the Lorenzo

predictor and linear-regression-based predictor in each

block. Then, SZ2 uses a linear-scaling quantization to

control the compression errors with the user-specified

error bound, which is followed by a customized Huffman

encoder and dictionary encoder (Zstd). The detailed de-

sign and code can be found in [16] and [49], respectively.

• ZFP [10]. ZFP is an error-bounded lossy compressor

designed based on the data transform model. Unlike

SZ, ZFP performs the exponent alignment and near-

orthogonal transform on each small block (block size is

4x4 for 2D and 4x4x4 for 3D), followed by an embedded

encoding to significantly reduce the data size. In general,

ZFP has a better compression quality (e.g., higher visual

quality with the same compression ratio) than does SZ2

on smooth 3D datasets but relatively low quality on 2D

and 1D datasets according to prior studies [16], [17]. The

ZFP code can be found in [50].

• MGARD/MGARDx [18]–[21]. MGARD [18]–[20], short

for “MultiGrid Adaptive Reduction of Data,” is also an

error-controlled lossy compressor for scientific datasets.

It supports not only error-bound control but also bounded-

linear quantity of interest (QoI). In particular, MGARD

provides optimization for the compression of unstructured

datasets in addition to the structured mesh datasets.

MGARDx (a.k.a., MGARD+) [21] is an improved ver-

sion of MGARD, which can possess higher compression

ratios and much higher throughput, because of a lev-

elwise coefficient quantization method and an adaptive

decomposition method, as well as a series of algorithmic

optimization strategies. MGARD and MGARDx can be

downloaded from [51] and [52], respectively.

• Bit Grooming [22]. Bit Grooming is an error-bounded

lossy compressor designed by analyzing the significant

bit-planes that need to be kept in terms of the user-

specified error bound and leveraging the DEFLATE al-

gorithm to reduce the data size. Since Bit Grooming

code was tightly coupled with the NetCDF Operators

(NCO) software stack [53], it could be used only to

compress the datasets stored in the NetCDF format.

We carefully extracted the Bit Grooming code into a

standalone version (called Bit GroomingZ), such that it

can be used on a generic binary-format data file. The Bit

Grooming code and its standalone version can be found in

the NCO website [53] and Bit GroomingZ website [44],

respectively.

• Digit Rounding [23]. Digit Rounding is also an

error-bounded lossy compressor designed by calculat-

ing/manipulating the number of significant bits according

to the user-specified error bounds. Digit Rounding was

originally developed with the HDF5 library because it

needs to compress the truncated datasets by the HDF5

gzip filter, so it could be applied only on HDF5 data files.

Similar to Bit Grooming, we also extracted a standalone

version (called digit roundingZ) for Digit Rounding,

especially for our characterization work. The original

Digital Rounding code and our standalone version can

be downloaded from [54] and [45], respectively.

• TTHRESH [43]. TTHRESH is an error-controlled lossy

compressor designed based on higher-order singular vec-

tor decomposition (HOSVD)—a generalization of the

SVD to three and more dimensions. Because of the

particularly efficient data decorrelation step, HOSVD,

TTHRESH can obtain a much higher compression ratios

than can other non-SVD compressors such as SZ and

ZFP, but it may suffer from substantially lower throughput

(e.g., 1 order of magnitude slower). Thus, TTHRESH

is suitable mainly for the offline use case that requires

extremely high compression ratios yet does not require

the compression/decompression speed. The TTHRESH

code is downloadable from [55].

• SZ3 [17]. SZ3 is an error-bounded lossy compressor that

can get a significantly improved compression ratio and

quality over SZ2 with negligible or slightly higher exe-

cution overhead. The key reason for SZ3’s higher quality

is that it adopts a more efficient dynamic cubic-spline

interpolation-based prediction method in comparison with

the traditional Lorenzo+Linear-regression predictor used

in SZ2. In addition, SZ3 [56] is a composable frame-

work allowing users to customize their own compression

pipeline to adapt to various datasets and use cases. SZ3

code can be downloaded from [57].

• FPZIP [6]. FPZIP is a prediction-based compressor sup-

porting both lossless and lossy compression of 2D and 3D

floating-point data arrays. It includes four steps: Lorenzo

prediction, mapping to integer, computing residuals, and

fast entropy encoding. The FPZIP code can be down-

loaded from [58].

• NDZip [11] NDZip is a lossless compressor designed

for compressing the multidimensional univariate floating-

point datasets. In particular, ndzip optimizes the parallel

compression performance by leveraging a data-parallel

Integer Lorenzo transform for small hypercubes and a

hardware-friendly residual coding scheme. The NDZip

code can be found here [59].

• Zstandard (Zstd) [5]. Zstd is an outstanding lossless

compressor that has been widely used in different tools,

libraries, or environments. According to prior studies

[60], Zstd generally obtains compression ratios compa-

rable to those of other lossless compressors such as zlib

[61] and gzip [4], while Zstd is generally much faster than

them (about 2–3× in throughtput). Zstd can be found in

[5].
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