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Abstract—The Community Earth Science Model (CESM) is an
important tool in climate modeling that produces a large volume
of data on each simulation. Researchers have increasingly been
turning to both lossless and lossy compression as an approach to
reduce the volume of data for the CESM climate applications.
Choosing the best-qualified compressor is nontrivial, however,
especially because of the advent of many modern lossless and
lossy compressors and complicated scientific integrity assessment
of climate data model. In this paper we evaluate 11 state-
of-the-art compressors using the quality assessments developed
by climate scientists to understand the effectiveness of the
compressors on the CESM climate datasets with four different
models. Our work also identifies the best compression ratio that
can be reasonably achieved while meeting these strict quality
requirements.

Index Terms—lossy compression, lossless compression, sz, ZFP,
MGARD, CESM

I. INTRODUCTION

The Community Earth System Model (CESM) [1], [2]—
a well-known climate research package—is a fully coupled
global climate model to simulate the past, present, and future
climate states of the Earth. These packages are used in large-
scale simulations that produce extreme volumes of data, which
are analyzed by scientists. For instance, nearly 2.5 PB of data
were produced by the CESM for the Coupled Model Inter-
comparison Project, from which 170 TB were postprocessed
and submitted to the Earth System Grid [3].

Error-bounded lossy compression has been considered as a
solution to resolve big-data issues in climate simulations be-
cause it provides high compression ratios (= 100x) and con-
trols the data distortion based on user-specified error bounds.
By comparison, lossless compressors such as zlib [4], zstd
[5], and FPZIP [6] are not suitable for compressing enormous
scientific datasets where large compression ratios are needed,
because they systematically suffer from substantially lower
compression ratios (one or two orders of magnitude lower in
general) than do lossy compressors, although they can ensure
the identical/lossless reconstructed dataset.

Although error-bounded lossy compressors allow users to
control the data distortion with multiple different types of error
bounds (such as absolute error bound, relative error bound,
and peak signal-to-noise ratio), a significant gap remains for
practical usage in that users often have specific requirements
(e.g., particular quantity of interest or metric to preserve)
regarding their post hoc analysis, and climate simulation is

no exception. A number of studies have been done on the
impact of applying lossy compressors on the post hoc analysis
of the climate simulation datasets. The National Center for
Atmospheric Research, for example, has been applying com-
pression to CESM data for years. Specifically, Baker et al. [7]
addressed the issue of striking a balance between meaningfully
reducing data volume and preserving the integrity of the
simulation data. They also identified specific challenges and
concerns when compressing climate data from CESM. In
addition, they performed a thoughtful spatiotemporal statistical
analysis of CESM simulation output data affected by only
ZFP compressor. Poppick et al. [8] analyzed the daily average
surface temperature and daily average precipitation rate from
a historical run of the CESM Atmosphere Model based on
only two lossy compressors—SZ1.4 [9] and ZFP 0.5 [10].

In this paper we perform a comprehensive study to un-
derstand the effects of 11 modern compressors on CESM
datasets including atmosphere, land, ocean, and ice models.
We include both leading lossless compressors (such as zstd
[5] and NDZip [11]) and lossy compressors (such as SZ [9],
[12]-[16], SZ3 [17], ZFP [10], FPZIP [6], MGARD [18]-[20],
MGARDx [21], Bit Grooming [22], and Digit Rounding [23]).
Our evaluation also covers many quality assessments (such as
structural similarity index measure (SSIM/d-SSIM), p-value
of KS-test, Pearson’s coefficient of determination, and spatial
relative error), recommended by the climate researchers [7].

Our contributions are as follows.

1) We conduct an evaluation of 11 compressors, examining
data from all four models of CESM, and we consider
the performance of the compressor with regard to the
state of the art in assessing compressor quality in climate
science.

2) We discuss challenges with using the KS-test for com-
pressor quality assessment for climate data and propose
alternative approaches to be evaluated by the climate
community.

3) We demonstrate a previously unevaluated compressor
SZ3, which achieves the highest compression ratio on
data from CESM.

4) We suggest a path forward for the design of lossy
compressors on datasets containing many small buffers
such as data from CESM’s land and ice models.

The remainder of the paper is organized as follows. In Sec-
tion II we describe the background of the research including

978-1-6654-6337-9/22/$31.00 ©2022 IEEE 1
DOI 10.1109/DRBSD56682.2022.00006
Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 05:12:32 UTC from IEEE Xplore. Restrictions apply.



the CESM model, quality assessments for climate research,
and compressors used in our study. In Section III we discuss
related work. In Section IV we present the methodology we
used in our investigation. In Section V we present and analyze
the assessment results. In Section VI we conclude the paper
with a brief summary and a short discussion of future work .

II. RESEARCH BACKGROUND

In this section we present background knowledge about
CESM, quality assessments, and compressors.

A. The Community Earth Systems Model

Fig. 1.
atmosphere: (left) original, (right) 21 x small version compressed with SZ3
that meets all quality requirements from [24]; 91 X smaller version is possible
without the Kolmogorov—Smirnov test.

FSUTOA from ATM. Upwelling solar flux at the top of the

The Community Earth Systems Model was developed to
provide a “core modeling system for studies of past and current
climate, and projections of future climate change ... to address
important scientific questions ... and [among other goals]
support of U.S. national and international policy decisions”
[1]. Therefore, accuracy of the model is of upmost importance.
To this end, CESM also produces increasingly large volumes
of data that can be used by scientists and policy makers to
make informed inferences regarding climate.

Data for CESM is organized into multiple NetCDF files
each representing a time-step in the simulation. Within each
file, there are multiple variables (or fields) representing some
physical or derived quantity from the simulation. We refer to
an entire variable/field from within a single file as a buffer.

TABLE I
CESM DATASETS USED

Model Datatype  Total Size  Per Buffer Size
Atmosphere float32 1.5 TB 642 MB
Ocean float32 235 GB 1.35 GB
Land float32 41 GB 216 KB
Ice float32 35 GB 480 KB

CESM has four major components: land, ice, ocean, and
atmosphere. Each of these components produces differing
volumes of floating-point data of distributions, as summarized
in Table I. The largest of these is the atmosphere model,
which has been studied extensively in the context of data
reduction [7], [24]-[26], but the other fields are large as well,
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also warranting consideration for data reduction. Figure 1
provides a visualization of one field used in our experiments,
the original field, and the corresponding lossy compressed
field.

B. Quality Assessments for Climate Research

Baker et al. [7] proposed a series of quality assessment
tools ! for climate data. They proposed four assessments that
have been refined in their later work: the structural similarity
image metric (SSIM/d-SSIM), the p-value of the Kolmogorov—
Smirnov (KS) test, the Pearson correlation coefficient of
determination (R?), and the spatial relative error (SRE). Each
of these quality assessments can be viewed as often holding a
value between 0 and 1. In their paper, Baker et al. proposed
acceptable thresholds for these assessments.

The structural image similarity metric (SSIM) measures the
degree of differences between original and decompressed data
in two images [27]. For example, for two images x and Z the
following is computed:

(2/%0,“450 + Cl)(ZUacfc + 62)

(u3 + 43 +c1)(0F + 03 +c2)

with o the standard deviation of the studied data. Baker et
al. later refined SSIM into data-SSIM or d-SSIM [25]. Their
refined version attempts to better account for uses of the
method for climate science by normalizing the inputs and
changing certain constants used for perceptual corrections.
Various studies have identified acceptable values of the SSIM:
> .98 [7], .99 [28], .99995 [26], or .995 (d-SSIM) [25].

The KS-test is a statistical test of the equality of continuous
probability density functions. Its test statistics are based on
the maximum distance between two cumulative distribution
functions (CDFs) or their empirical forms:

Dn,m = sup |Fw,n(u) - Fi,m(u)|'
u

SSIM(z,i) =

Associated p-values are typically tabulated from the asymp-
totic distribution of D, ,,,. The acceptable p-value of the KS-
test is specified to be > .05 in [7]. We further discuss the
assumptions and uses of KS-test p-values in Sect. V-Al as
they relate to our results.

The R? test measures the strength of a linear relationship
between the original data x and the corresponding elements
in the decompressed data z:

Y (@i - #)”
2
> (wi —7)
The acceptable value of R? is > .99999 [26].
The SRE test measures the percentage of elements that
differ by more than a given value-range relative threshold:
Zio (1 if > §else 0)

Ti—%;

Tq

N

SRE (z,%) =

I'We use the term“assessments” here to mean the combination of a quality
metric combined with a pass/fail threshold used for determining whether the
quality is acceptable. We use the term “assessment” rather than “metric”
because of the inclusion of the threshold and instead of “test” to avoid the
ambiguity with frequentist statistical testing
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The acceptable value of SRE is < 5% at § <1 x 1074 [7].

C. Modern Compressors

In Appendix A we describe the state-of-the-art modern
compressors used by our study. Compared with prior works
that evaluated lossy compressors relative to these assessments
[7], [25], [26], we adopt newer versions where quality im-
provements have been made, and we include many previously
unevaluated compressors such as MGARD, MGARDx, Digit
Rounding, Bit Grooming, TThresh, and SZ3. We include
FPZIP and Zstandard as leading lossless compressors.

We interface with the compressors via LibPressio [29]
which provides a common interface for many compressors
allowing us to write our experiments once instead of for
each compressor. LibPressio also provides features to utilize
equivalence relationships between different notions of error
bounds such as the absolute point-wise error bound and the
value-range relative point-wise error bound further simplifying
implementation. Lastly LibPressio provides features for inter-
facing with NetCDF files (as well as other formats) which we
use to read the data from its raw format.

We additionally utilize OptZConfig [30] which is built atop
of LibPressio to identify which configurations will meet the
quality assessment requirements from the previous section.
The recommended configuration? of OptZConfig uses black-
box optimization techniques to find the maximum compression
ratio subject to some constraints on the quality. It accomplishes
this via an iterative process which systematically tries different
configurations retrieving the quality assessment results via
APIs provided by LibPressio. Specific information on how we
use OptZConfig can be found in Section IV.

III. RELATED WORK

Cappello et al. [31] proposed the idea of classifying quality
analysis tools into three levels. Level 1 analysis tools assess
qualitative losses in quality and often leverage visualization
to identify artifacts. Level 2 analysis tools assess quantitative
losses in quality using general community measures such as
PSNR. Level 3 analysis tools leverage the domain-specific
quantitative quality measures such as those proposed in Sec-
tion II-B.

Much of the work in the climate community has been a
mix of levels 1, 2, and 3. The early work of Baker et al. [32]
did not suggest thresholds but did suggest that the derivation
relationships between climate variables should be accounted
for when assessing quality requirements. The authors made
the important observation that while some changes may be
detectable, they may not be consequential. Baker et al. [7]
used a mix of visualization (level 1) and quality assessments
(levels 2 and 3) to assess what quality requirements may
be amenable to the climate community for evaluating lossy
compression. Poppick et al. [8] used visualization (level 1) to
support a more detailed quantitative and qualitative analysis
of the artifacts introduced by compression. Baker et al. [26]

2We used opt:search=fraz,
fraz:search_threads=$ (ncpus)

opt:max_iterations=50,
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used a set of image quality assessments (level 2) and asked
domain specialists to determine which images for them were
diagnostically lossless (level 3). Pinard et al. [24] introduced a
Python library LDCPY to compute these assessments for data
stored in NetCDF format and focused on the four assessments
described above. More recently, researchers have refined the
classic SSIM metric into a specialized version for climate
science promoting a level 2 metric to a level 3 one [25].

Similar work has been done outside the climate community
to evaluate the effects of lossy compression (e.g., Laney et
al. [33]), but we focus here on climate applications and their
quality assessment.

In order to support identifying compressor configurations
that preserve level 2 and 3 quality measures, a few approaches
have been taken. One approach is to use bounded-linear
functionals [20]. This approach works for many visualization
tasks but is limiting for these assessments because they con-
tain nonlinear terms. Another approach is to use black-box
compression optimization [30], [34]. This approach is able to
preserve these quality assessments but at a high overhead when
used on individual buffers.

IV. METHODOLOGY

We downloaded CESM data from the Argonne National
Laboratory Computing Resource Center (LCRC)?. We selected
the runs for each component with the greatest volume of
data. The datasets we used are summarized in Table I. These
datasets are either 2D or 3D. We selected two fields at random
for each dataset and considered several random timesteps and
an additional field from the atmosphere because that model
had the most data.

We selected: QI (Ice, 2D, 384 x 320), AICE (Ice, 2D, 384 x
320), DISPVEGC (Land, 2D, 288 x 192), QOVER(Land, 2D,
288 x 192), KE(Ocean, 3D, 3600 x 2400 x 42), TEMP(Ocean,
3D, 3600 x 2400 x42), PRECT(Atmosphere, 2D, 3600 x 1800),
T(Atmosphere 3600 x 1800 x 26), and FSUTOA(Atmosphere,
2D 3600 x 1800). For Ice we chose time-steps 1909.09,
1921.11, 1926.07, 1994.08. For Land we chose time-steps
1978.11,1979.03, 1985.01 1987.02, 1991.08. For Ocean we
chose time-steps 0147.01 and 0147.12 . For Atmosphere
we choose timesteps 0001.03, 0001.11, 0001.11, 0002.10,
0004.12, and 0005.04.

We ran the experiments on Bebop at the LCRC. We selected
the machine for its availability of CPU nodes. Because of lack
of time, space, maturity of the GPU-based compressor imple-
mentations [30], and lack of support for GPU compressors in
I/O used in climate science libraries and codes [29], we leave
the evaluation of GPU compressors to future work.

Software was chosen to be the latest available versions on
Spack [35] and an additional repository for compressors [36]
at the time of experimentation maintained by the LibPressio
developers. Exact versions are listed in Table II. We use
LibPressio [29] to provide a consistent interface between

3https://trac.mes.anl.gov/projects/parvis/wiki/Datasets
4there were many fewer time-steps from Ocean models available so we
choose fewer of them

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 05:12:32 UTC from IEEE Xplore. Restrictions apply.



TABLE II
HARDWARE AND SOFTWARE VERSIONS

Component Version ‘ Component Version
CPU Intel Xeon E5-2695v4 | MGARDx 0.0.1
Memory 128 GB DDR4 | NDZip 0.0.1
Network Intel OmniPath | SZ 2.1.12.2
GCC 10.2.0 | SZ3 3.154
Bit Grooming 2.1.9 | TThresh 0.0.5
Digit Rounding 2.1.9 | ZFpP 0.5.5
FPZIP 1.3.1 | Zstandard 1.21.1
MGARD 1.0.0 | LibPressio 0.86.5
OptZConfig 0.13.3

different compressors, abstracting away differences in the
compressor interface, such as the order of dimensions, which
fields are mutated, how datatype information is passed, and
how compressors refer to the absolute pointwise error bound
if it is supported.

We read the data directly from the netCDF files created by
CESM using the LibPressio support for netCDF. We conducted
compression and decompression operations on an in-memory
copy of each buffer.

We wrote a LibPressio external metric to compute the d-
SSIM and KS-test. The KS-test was brought in from Scipy,
which is implemented in C, and the d-SSIM was ported to
Julia from the implementation in LDCPY [24]. We chose
to port d-SSIM because it was not easy to call just this
function from LDCPY and because Julia provides additional
performance. An improved implementation would embed this
computation. We used the Pearson’s correlation coefficient and
spatial relative error implementations from LibPressio’s core
metrics implementations in C++.

With LibPressio-compatible metrics implementations for
each quality metric, we can use OptZConfig [30] to identify
the compression configuration that resulted in the highest
compression ratio while satisfying compressor constraints. We
chose the value-range relative error bound mode as the only
input for compressors that support absolute error bounds and
used lower bound = 1 x 107193, upper_bound=1 X 1071,
max iterations=50, objective_mode=max. For compressors that
support other notions of error bounds (i.e. Bit Grooming), we
used the largest and smallest possible values of those bounds
in OptZConfig.

Rather than the penalty functions used in [30] that mark
outcomes that don’t meet quality objectives with a large
negative value, we instead used -1 x the Manhattan distance
from the assessments to the closest configuration that met all
the quality requirements. This approach enabled us to search
a path toward a feasible configuration more easily than simply
returning —oo.

Methods like OptZConfig can have high overhead when
used for a single buffer [30], but they often find reusable
configurations that can be used for many timesteps [34]. The

SIEEE 32 bit floating point values have 23 mantissa bits and have varying
precision over their domain. 10715 is intended to be a value so small as to
intuitively be unnecessary for most uses
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bottleneck in these operations for most compressors (except
TThresh and MGARD) is the computation of the assessments,
which may benefit from acceleration.

V. RESULTS AND TAKEAWAYS
A. Compressors That Do Best on CESM-Atmosphere?

We first consider CESM-Atmosphere since it has the most
data and is the most explored in the literature. We present
results for the “upwelling solar flux at top of atmosphere”
(FSUTOA) field from CESM-Atmosphere (Figure 1)°. Other
fields from CESM-Atmosphere follow similar patterns with
varying compression ratios depending on the field.

1) KS-test: We first observe that different absolute error
bounds are needed to preserve these assessments with different
compressors. The reason is that different compressors produce
different distributions of compression error. Considering the
p-value of the KS-test in that context presents a special
challenge. For example, to meet all compression requirements
from [24], SZ needs a value-range relative error bound of
< 1 x 10715, whereas ZFP needs only a value-range relative
error bound of < 6 x 1075, which affects substantially the
corresponding compression ratios . This difference in the
error-bound requirements suggests that the KS-test may be
both too sensitive to what may be inconsequential errors with
value-range relative error magnitudes smaller than 1 x 10715
and, as we will show, too insensitive to larger pointwise errors.

Other properties of the KS-test lead to nonintuitive results
when applied as a measure of quality. The KS-test has been
shown to have a low power (probability of correctly rejecting
the null hypothesis) when testing normality [37], [38] in
comparison with other commonly used tests such as the
Anderson-Darling test. This lack of power is also illustrated in
the following numerical experiments. Additionally, the power
and p-value of a statistical test are known to depend on the
number of datapoints. In particular, the KS-test is known to be
overly sensitive to small differences in large datasets, hence
overrejecting the null hypothesis for large datasets. One of the
preferred alternatives to the KS-test is the Anderson—Darling
test because it considers the difference between the two entire
empirical CDFs and not only the maximum difference between
CDFs as does the KS-test. However, the Anderson—Darling test
is computationally expensive.

We conducted the following numerical experiments with
simulated samples and altered data to highlight some limi-
tations of the KS-test:

(1) Pointwise error To study the effects of high pointwise

SFSUTOA was chosen randomly from the atmosphere variables considered
because atmosphere is the most well studied

"The KS test measures changes in the empirical CDF function. SZ in-
troduces different distributions of error depending on the error bound and
value range of the data [9] which likely induces the failure of the KS test;
however with value range relative error much less than 10~ 1% we argue
these differences will be found to be inconsequential. ZFP on the other
hand consistently introduces errors more faithful to the original dataset’s
distribution; at least as measured by the KS test (there still are errors; an
example of systematic artifacts from ZFP in [8]; these are improved, but still
present in the latest version). Lastly ZFP tends to over-preserve with respect
to the error bound which it may benefit from here as well
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errors, we generated 50 repeats of Gaussian samples from
N(0,1) with increasing size n = 10% for i = 1,...,7.
One sample has 1% of pointwise corruption consisting of
1% of the values assigned randomly and uniformly between
10'° and 10'5. Corresponding distributions of the KS-test p-
values are shown in Figure 2, top panel. We observe that
for these samples, the KS-test fails to detect the pointwise
error on datasets with less than 10° datapoints. This result
highlights the high sensitivity of the test to data size but also
its insensitivity to substantial pointwise error.

(2) Noise and bias Over 50 repeats we generated Gaussian
samples of increasing size from A/(0, 1), and we added a bias
e ~ N(0.01,0.2) to one sample. This type of error can be
a typical compression error; in practice, the error range of
value is smaller. We report the corresponding KS-test p-value
distributions in the bottom panel of Figure 2. Once again, the
test fails to detect the bias in the mean and variance for smaller
datasets, highlighting the limitations of the KS-test.

(3) Sample size Another KS-test experiment was run between
two Gaussian samples of the same distribution N (0,1) with
increasing sample size n = 10¢, for s = 1, ...,9. The KS-test
fails to accept the null hypothesis when the sample size is
over 108, highlighting the hypersensitivity of the test for large
datasets. This result creates doubts about whether the KS-test
properly detected the corruption and bias or was sensitive to
any variations in large datasets.

These issues may be caught by other assessments proposed
by Pinard et al. [24], and because the proposed assessments are
designed to be used in concert are not going to be accepted;
however, requiring the KS-test punishes the performance of
some compressors over others for differences that may not be
consequential to the user. We propose that the climate com-
munity consider alternative methods that may more accurately
reflect the desired ability to ensure that distributions do not
meaningfully change.

TABLE III
COMPARING MEASURES OF DISTRIBUTION DIFFERENCES ON ATMOSPHERE
DATA WITH SMALL INJECTED NOISE: { MEANS UNIFORM NOISE, A/
MEANS GAUSSIAN NOISE

Dataset Name p(KS —test) Wasserstein ~ Hellinger J-S
FSUTOA(U) <2x10716  3x10-17 0 10338
FSUTOA(N) <2x10716  1x10"17 0 10338
TWU) 1 0 0 0
TW) 1 0 0 0
PRECT(UA) 0.0067 2 x 1016 0 1.71
PRECT(N) 0.0065 8 x 10~17 0 1.67

As pointed out earlier, since statistical tests may require
users to adapt the error bounds to meet the p-value require-
ments, alternatives to statistical tests should also be con-
sidered. In particular, many metrics for probability densities
have been developed. For instance, the Hellinger distance® is
commonly used because it provides an intuitive global measure

1 2
8H2(p7 q) = 5 / (x/p(:c) — x/q(a:)) dx with p and g the probability
x

density functions to be compared
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of distance between two distributions [39]. The Wasserstein
distance, also known as the Earth’s mover distance [40],
[41], is commonly used in climate studies [42]. In one-
dimensional settings, the Wasserstein distance corresponds to
an LP-norm between the quantile functions of the distributions
at stake, providing an intuitive and exhaustive comparison
of distributions. Another commonly used divergence is the
Jensen—Shannon divergence9, seen as a symmetrized version
of the Kullback—Leibler divergence. Following the common
practices, these metrics are calculated with the empirical
estimates of the pdfs and cdfs at stake.

In Table IV we gather the values of these three metrics for
the two examples shown in Figure 2 (experiments 1 and 2
from above). The three metrics equal O when the compared
distributions are equal. We observe that these metrics unmis-
takably discriminate the corrupted and biased samples from
the original samples.

We also consider two cases of adding noise with distribution
N(0,1 x 10716) and with distribution 2/(—4 x 107%6,4 x
10716) to the three atmosphere datasets FSUTOA, precipita-
tion rate (PRECT), and temperature (T). We summarize these
results in Table III. We find that the KS-test determines a
significant difference for the FSUTOA and PRECT cases but
does not find a difference for T (p=1), while FSUTOA and
T have similar ranges of values. Further investigations will
be pursued on the temperature field. We also compute the
Wasserstein distance, the Jensen—Shannon divergence, and the
Hellinger distance for each of these results. Both Wasserstein
and Hellinger distances show intuitive small value results since
the added errors are very small. In addition, the Wasserstein
distance discriminates between the two types of errors while
showing very small values. On the other hand, the Jensen—
Shannon lacks comprehensive interpretation on this example.
Key findings: The p-value of the KS-test may be too strict
and unreliable a requirement prohibiting the adoption of
compressors that may be otherwise acceptable. The Wasser-
stein distance may be a good candidate for a replacement.

2) Other quality assessments: In this section we run the
search for each quality metric independently to show which
quality metric is the limiting factor for achieving high com-
pression ratios for each compressor. Because of the reasons
outlined in the preceding subsection, we exclude the KS-
test and focus on the other three quality assessments from
[24]. Table V shows which quality metric is the limiting
factor, indicated by which compression ratio is the smallest for
each compressor. Two compressors, MGARD and MGARDX,
fail to preserve the d-SSIM satisfactorily. The best lossy
compressor on this dataset (SZ3) gets a compression ratio
of 59.81, surpassing each of the three quality assessments.
For comparison, the best lossless compressor FPZIP gets a
compression ratio of 1.95. The other compressors either get a

9 1 1 s
JSD(p,q) = 5D(p, m) + = D(q, m) where p and ¢ are the probability
density functions to be compareg and m is the uniform mixture of p and ¢,
p(x)

q(z)

D(p,q) = /;Yp(:r) log<
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Fig. 2. Distributions of p-values for the KS-test over 50 times when testing
whether two samples with increasing sample size n = 107, for i = 1,...,7,
can be considered from the same distribution via the KS-test. The red line
corresponds to the nominal value 0.05 below which the test typically rejects
the null hypothesis. Top panel: two samples from A(0, 1) with one sample
corrupted with 1% of the values assigned randomly and uniformly between
10~10 and 10~ 15, Bottom panel: two samples from A/(0, 1) with one sample
being added a bias in the mean and variance via an added random variable
e ~ N(0.01,0.2). The results suggest that the p-value of the KS-test is not a
good fit at large data sizes. The top boxplots highlights the over sensitivity of
the KS-test when sample size increases, in the meantime the bottom boxplots
highlights the lack of discrimination of samples tained by errors by the KS-
test.

worse compression ratio or cannot pass the assessments. We
observe similar results for other CESM-Atmosphere fields.

For some compressors, we understand why particular com-
pressors perform better than others. For example, TTHRESH
does not perform well on the datasets (including FSUTOA)
that are 2D datasets [43]. Likewise, SZ3 generally outper-
forms Bit Grooming and Digit Rounding because of its more
sophisticated prediction scheme and better lossless encoder
(Zstd vs gzip) [17], [44], [45]. Between leading compressors
such are SZ3 and ZFP, however, why a compressor is going
to perform the best on a given dataset at a given error bound
is unclear, requiring greater work to measure and understand
lossy compression ability [46].

Finally, in Table VI we provide the proposed Wasserstein
and Jensen-Shannon metrics computed on original and decom-
pressed FSUTOA data. The Hellinger distance is not shown as
it was degenerate due to the strong similarity between original
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TABLE 1V
MEDIAN VALUES OF THE PROPOSED METRICS OVER THE 50 REPEATS OF
THE TWO EXAMPLES PRESENTED IN FIGURE 2 (EXPERIMENTS 1 AND 2
FROM ABOVE). FROM TOP TO BOTTOM, THE WASSERSTEIN DISTANCE,
THE HELLINGER DISTANCE, AND THE JENSEN—SHANNON (J-S)
DIVERGENCE. THE THREE METRICS EQUAL 0 WHEN THE COMPARED
DISTRIBUTIONS ARE EQUAL. THE SYMBOL “X” MEANS THAT THE

DISTANCE COULD NOT BE CALCULATED BECAUSE QUANTITIES ARE NOT

INTEGRABLE.

Sample Size 10 10> 10% 10* 105 108 107
Wasserstein 5 0.9 0.6 0.5 0.5 0.5 0.5
(x1013)

Hellinger X X X X X X X
J-S 0.6 7.5 73. 738 7385 73767 737803
Wasserstein ~~ 0.50  0.18 0.06 0.03  0.02 0.02 0.02
Hellinger 029 0.2 0.05 0.02 001 0.01 0.01
J-S 0.7 7.1 74 736 7383 73782 737834

TABLE V

MAXIMUM COMPRESSION RATIO THAT MEETS EACH QUALITY METRIC
FROM [24]. X INDICATES A FAILURE TO RUN TO A SOLUTION.

Compressor Pearson R? 2 Spatial Error  d-SSIM
SZ 30.65 31.49 39.86
SZ3 93.00 93.00 59.81
ZFP 13.27 13.27 18.87
Zstd 1.35 1.35 1.35
FPZIP 1.95 1.95 1.95
MGARD 27.10 4.69 X
NDZip 1.64 1.64 1.64
MGARDx 14.70 6.49 X
TTHRESH 16.10 16.10 2.98
Bit Grooming 1.51 1.51 1.51
Digit Rounding 1.86 1.86 1.86

and decompressed data. As discussed earlier, the Wasserstein
and Jensen-Shannon metrics provide more gradual comparison
of the compressors than the KS-test. In particular, MGARD,
SZ and TTHRESH are assigned the same O p-value for the KS-
test; however, their Wasserstein and Jensen-Shannon metrics
provide more nuanced information about their compression
errors and enables a ranking between these compressors.
Key findings: The best lossy compressor, SZ3, gets a
30.7x improvement over lossless compressors and 3.2x
improvement over the next compressor while passing all
three quality assessments.

B. Improving Performance For Land And Ice models In CESM

When we expand our analysis to other fields from other
models, we find that depending on the field either SZ3 or
ZFP has the best compression ratios that satisfy all three
assessments on the atmosphere and ocean models. Currently,
however, specialized encoding techniques such as FPZIP have
the greatest compression ratios satisfying all three assessments
on land and ice in the cases we tested. When examining
the overhead costs that make lossy compressors perform
worse, the metadata (i.e., settings used) and entropy data (i.e.,
Huffman trees) appear to generate too much overhead for
small buffers. Some of Z-standard’s more exotic features may
point a way forward for lossy improvements, namely Common
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TABLE VI
ILLUSTRATION OF PROPOSED METRICS ON DECOMPRESSED FSUTOA DATA. THE HELLINGER DISTANCE IS NOT SHOWN AS IT WAS DEGENERATE DUE
TO THE STRONG SIMILARITY BETWEEN ORIGINAL AND DECOMPRESSED DATA.

| MGARD |  SZ | TTHRESH |

ZFP

|| MGARD | Sz | TTHRESH |  ZFP

Bound | 10°° | 1075 | 1075 |

1075 ||

10—10 ‘ 10—10 ‘ 10—10 ‘ 10—10

0.00
125.261
583393.701

0.00 0.00
746x107% | 6.36x1071
908.029 3981.525

KS-test p-value
Wasserstein
JS

0.98
3.56x10~°
97.793

0.00 1.00
7.46x10~% 0.00
908.029 0.000

0.98
3.56x10°
97.793

0.00
125.261
583393.701

Dictionary” and “External Metadata.” “Common Dictionary”
allows a common Huffman tree provided by the user to be used
for encoding for multiple buffers. “External Metadata” allows
common metadata to be excluded from the compressed stream
and stored in an auxiliary location and passed in separately to
decompression. Together, these features allow the user to store
only one copy of the metadata for all the buffers that share
a common configuration, thus dramatically improving stor-
age for compressors such as SZ/SZ3/MGARD/MGARDx/Bit
Grooming/Digit Rounding/Zstandard/GZip (as well as com-
pressors like SPERR [47] when Zstandard is used) which all
feature entropy encoding stages and store this kind of metadata
in their compressed byte streams.

For climate codes, however, leveraging these features would
require improvements of HDF5. Currently, HDF5 stores con-
figurations for compressors per dataset and must be encodable
as a series of contiguous bytes. In order to achieve benefits
from using compressors, the ability to de-duplicate the seri-
alized compressor configurations between datasets is needed
to actually improve the overhead incurred by application
codes. For every timestep of the quantity of ice (QI) field
from the ice application, the Huffman tree alone accounts for
52% of the output of SZ prior to the final lossless encoding
stage. If externalized, there would be a significant increase in
compression performance.

Additionally, in order to better support GPU-based com-
pressors, better support for divergent compression and decom-
pression configurations (i.e., the compression system had a
datacenter-grade GPU, and the decompression system has a
laptop-grade GPU with fewer resources or no GPU at all) is
required, as well as better support for GPU primitives such
as cudaStream_t that are not serializable, are consistent
between uses, and are required for resource sharing.

Moreover, in order to see larger improvements for ice and
land, more data needs to be passed to the compressors at
a single time. Doing so would require applications codes to
modify their usage of NetCDF/HDF?5 to consider larger chunk
sizes and to place related data into the same datasets instead
of separate HDF5/NetCDF files. Not only will this improve
the compression performance, it also improves runtime per-
formance. As shown in Figure 3, it is faster to read larger data
segments and decompress them than to read and decompress
individual small slices for moderate increases in chunk sizes.

7

25+ 7

speedup

1s5b |

1.0 |

0 10 20 30 40 50 60 70 80 90
slices read concurrently

Fig. 3. Median speedup from reading larger chunks vs. serial independent
reading of slices when using SZ €,ps = 1% 10~* on CLOUD from Hurricane
on SDRBench [48], The drop in speedup corresponds to a systematic change
in the read and compression performance that occurs when decompression
no longer fits in the 45 MB L2+L3 cache but is still 1.5 faster than serial
reads of individual slices. Tools such as OptZConfig [30] can automatically
identify optimal configurations for number of slices read simultaneously.

Key findings: For models such as land and ice that have
many small buffers, improvements to share overhead be-
tween buffers both for compressors and I/O libraries will
be key to achieving high performance.

VI. CONCLUSIONS AND FUTURE WORK

We have evaluated 11 different compressors on data from
all four models of CESM. We have highlighted how well
each compressor is able to compress data under the quality
assessments developed by the climate community. We further
have identified challenges posed by the KS-test and proposed
alternative methods for use by the climate community. More-
over, we propose a path forward for the design of lossy
compressors for the land and ice models.

We see two areas for future work. In climate science, more
work is needed to identify quality assessments that evaluate
compressors that both meet the stringent needs of the climate
community and identify meaningful changes between original
and lossy compressed data. In compressor design, further work
is needed to improve the ability of climate codes to adopt
lossy compression. While this includes improvements to user-
facing features such as packaging compression libraries for
climate researchers to easily download and use, it also requires

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 05:12:32 UTC from IEEE Xplore. Restrictions apply.



improvements to I/O libraries and compressors to handle the
unique challenges posed by climate data.
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APPENDIX

A. Description of Modern Compressors

Version of the compressors used are found in Table II.

e SZ [9], [12]-[16]. SZ (a.k.a. SZ2) is an error-bounded
lossy compressor based on the classic prediction-based
compression model. It splits each dataset into many
subblocks (16x16 for 2D and 6x6x6 for 3D) and adopts a
hybrid data prediction method that combines the Lorenzo
predictor and linear-regression-based predictor in each
block. Then, SZ2 uses a linear-scaling quantization to
control the compression errors with the user-specified
error bound, which is followed by a customized Huffman
encoder and dictionary encoder (Zstd). The detailed de-
sign and code can be found in [16] and [49], respectively.
ZFP [10]. ZFP is an error-bounded lossy compressor
designed based on the data transform model. Unlike
SZ, ZFP performs the exponent alignment and near-
orthogonal transform on each small block (block size is
4x4 for 2D and 4x4x4 for 3D), followed by an embedded
encoding to significantly reduce the data size. In general,
ZFP has a better compression quality (e.g., higher visual
quality with the same compression ratio) than does SZ2
on smooth 3D datasets but relatively low quality on 2D
and 1D datasets according to prior studies [16], [17]. The
ZFP code can be found in [50].

MGARD/MGARDXx [18]-[21]. MGARD [18]-[20], short
for “MultiGrid Adaptive Reduction of Data,” is also an
error-controlled lossy compressor for scientific datasets.
It supports not only error-bound control but also bounded-
linear quantity of interest (Qol). In particular, MGARD
provides optimization for the compression of unstructured
datasets in addition to the structured mesh datasets.
MGARDx (a.k.a., MGARD+) [21] is an improved ver-
sion of MGARD, which can possess higher compression
ratios and much higher throughput, because of a lev-
elwise coefficient quantization method and an adaptive
decomposition method, as well as a series of algorithmic
optimization strategies. MGARD and MGARDx can be
downloaded from [51] and [52], respectively.

Bit Grooming [22]. Bit Grooming is an error-bounded
lossy compressor designed by analyzing the significant
bit-planes that need to be kept in terms of the user-
specified error bound and leveraging the DEFLATE al-
gorithm to reduce the data size. Since Bit Grooming
code was tightly coupled with the NetCDF Operators
(NCO) software stack [53], it could be used only to
compress the datasets stored in the NetCDF format.
We carefully extracted the Bit Grooming code into a
standalone version (called Bit_GroomingZ), such that it
can be used on a generic binary-format data file. The Bit
Grooming code and its standalone version can be found in
the NCO website [53] and Bit GroomingZ website [44],
respectively.

Digit Rounding [23]. Digit Rounding is also an
error-bounded lossy compressor designed by calculat-
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ing/manipulating the number of significant bits according
to the user-specified error bounds. Digit Rounding was
originally developed with the HDFS5 library because it
needs to compress the truncated datasets by the HDF5
gzip filter, so it could be applied only on HDF5 data files.
Similar to Bit Grooming, we also extracted a standalone
version (called digit_roundingZ) for Digit Rounding,
especially for our characterization work. The original
Digital Rounding code and our standalone version can
be downloaded from [54] and [45], respectively.
TTHRESH [43]. TTHRESH is an error-controlled lossy
compressor designed based on higher-order singular vec-
tor decomposition (HOSVD)—a generalization of the
SVD to three and more dimensions. Because of the
particularly efficient data decorrelation step, HOSVD,
TTHRESH can obtain a much higher compression ratios
than can other non-SVD compressors such as SZ and
ZFP, but it may suffer from substantially lower throughput
(e.g., 1 order of magnitude slower). Thus, TTHRESH
is suitable mainly for the offline use case that requires
extremely high compression ratios yet does not require
the compression/decompression speed. The TTHRESH
code is downloadable from [55].

SZ3 [17]. SZ3 is an error-bounded lossy compressor that
can get a significantly improved compression ratio and
quality over SZ2 with negligible or slightly higher exe-
cution overhead. The key reason for SZ3’s higher quality
is that it adopts a more efficient dynamic cubic-spline
interpolation-based prediction method in comparison with
the traditional Lorenzo+Linear-regression predictor used
in SZ2. In addition, SZ3 [56] is a composable frame-
work allowing users to customize their own compression
pipeline to adapt to various datasets and use cases. SZ3
code can be downloaded from [57].

FPZIP [6]. FPZIP is a prediction-based compressor sup-
porting both lossless and lossy compression of 2D and 3D
floating-point data arrays. It includes four steps: Lorenzo
prediction, mapping to integer, computing residuals, and
fast entropy encoding. The FPZIP code can be down-
loaded from [58].

NDZip [11] NDZip is a lossless compressor designed
for compressing the multidimensional univariate floating-
point datasets. In particular, ndzip optimizes the parallel
compression performance by leveraging a data-parallel
Integer Lorenzo transform for small hypercubes and a
hardware-friendly residual coding scheme. The NDZip
code can be found here [59].

Zstandard (Zstd) [5]. Zstd is an outstanding lossless
compressor that has been widely used in different tools,
libraries, or environments. According to prior studies
[60], Zstd generally obtains compression ratios compa-
rable to those of other lossless compressors such as zlib
[61] and gzip [4], while Zstd is generally much faster than
them (about 2-3x in throughtput). Zstd can be found in

[5].
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