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Abstract—Today’s scientific simulations are producing ex-
tremely large amount of data everyday, which induces grand
challenges in transferring and storing the data efficiently. Error-
bounded lossy compression has been thought of as the most
promising solution to the bigdata issue, however, it would cause
data distortion that has to be controlled carefully for user’s post-
hoc analysis. Recently, the preservation of quantities of interest
has become a priority. Derivative-related metrics are critical
quantities of interest for many applications across domains. How-
ever, no prior research explored the impact of lossy compression
on derivative-related metrics in particular. In this paper, we focus
on understanding the impact of various error-controlled lossy
compressors on multiple derivative-related metrics commonly
concerned by users. We perform solid experiments that involve
5 state-of-the-art lossy compressors and 4 real-world application
datasets. We summarize 5 valuable takeaways, which can shed
some light in understanding the impact of lossy compression on
derivative-related metrics.

I. INTRODUCTION

With the ever-increasing execution scale of high perfor-

mance computing (HPC) simulations across different scientific

domains, too large amounts of data are being produced every

day. Even though memory and storage capabilities of modern

machines have been improved immensely, the sheer amount

of data still puts significant pressure on the memory and

storage systems, so that the limited memory/storage capacity

has become a significant concern for the scientific simulations.

Significantly reducing the data volume at runtime has be-

come one of the most promising solutions to the big scientific

data issue for these large-scale applications. Although lossless

compression can have the reconstructed data identical to the

original data, it suffers from very low compression ratios

(generally 2:1 according to existing studies [1]–[3]), which is

far from the expected level (generally 10:1 or higher [4]). In

comparison, error-bounded lossy compression [5]–[8] allows a

certain distortion of data during the compression such that the

compression ratio could reach a very high level (10:1, 100:1,

or even higher), while the data distortion can also be controlled

strictly based on user-specified error bound.

The existing state-of-the-art error-bounded lossy compres-

sors mainly offer specific types of error bounds (such as

absolute error bound and relative error bound) for users to

control the data distortion, which still brings out a significant

gap to users’ de-facto requirement on data fidelity for their

post hoc analysis.

In this paper, we focus on derivative-related metrics, which

has a wide range of usage in post hoc analysis across different

scientific domains. In practice, the derivatives in a dataset are

generally approximated by calculating the difference (or delta)

of the adjacent values in the dataset in different directions.

In what follows, we give several examples to demonstrate

the significance of the derivative-related metrics used by the

practical analysis in different applications. Laminar/turbulent

flow is a very significant topic that is closely related to

a wide range of research domains such as air flow going

around a vehicle’s windshield or an aircraft’s wings, fluid flow

passing by a ship’s body, and combustion airflow. The post hoc

analysis based on these fluid dynamics simulations is closely

related to or driven by the gradients (derivative vector) of

datasets. For instance, velocity gradient [9] is a critical metric

in analyzing turbulent flow and its stress. Climate/weather

simulation such as Hurricane simulation is also closely related

to the gradients of air flows during the simulation. In fact,

hurricanes could be thought of as heat engines, which are

driven by two different types of thermal gradients [10]. In

addition to gradients, other derivative-related metrics such

as Laplacian and Sobolev norm are also closely related to

scientific research, which will be detailed later.

The error-bounding nature offered by the existing error-

controlled lossy compressors [3], [11]–[14] is far less than

enough for preserving the derivative-metric values in the

dataset [15]. In fact, raw data and the derivatives calculated

based on them are fundamentally different in nature. For

example, if a dataset contains the position of an asteroid near

Earth, the first-order derivative of the asteroid’s movement

indicates the speed, and the second-order derivative indicates

its acceleration (and in turn, the forces exerted on that asteroid,

due to F=ma, where F and m refer to force and mass,

respectively). Suppose one simulation needs to determine

whether the asteroid would hit the earth, a relatively small

error on the raw data may not have a big effect on the

predictions of the asteroid’s trace, while the similar errors

introduced to the derivatives, which correspond to the speed

and acceleration, may distort the trace significantly since

these errors considerably affect the asteroid’s behavior as the

simulation time passes.

Assessing the impact of lossy compression on derivative-

related metrics faces two grand challenges. On the one hand,

the derivative metric is much more complicated and diverse
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than the traditional commonly-used lossy compression quality

metric such as mean squared error (MSE), Peak Signal to

Noise Ratio (PSNR), and Structural Similarity Index Measure

(SSIM), in that it may involve different spatial directions

and different orders. On the other hand, the derivative-related

metric values are generally more volatile than the original raw

datasets. Specifically, the higher order of the derivative, the

more volatile the derivative metric tends to be.

In this paper, we provide an in-depth analysis of the impact

of lossy compression on multiple derivative-based metrics.

The derivative metrics include the point-wise derivatives gen-

erated along each dimension, the statistics (such as PSNR

and SSIM) of the derivative dataset, Laplacian, gradient, and

Sobolev norms. Not only does our analysis include theoretical

derivation of the upper bound for derivative metric’s distortion

under error-bounded lossy compression, but we also perform

careful evaluation running state-of-the-art lossy compressors

with real-world scientific datasets across from a wide range

of domains including cosmological simulation, climate sim-

ulation, and turbulence simulation. We summarize a series

of valuable characteristics of gradient metrics and takeaways

regarding error-bounded lossy compression quality from our

comprehensive characterization work.

The remaining of the paper is organized as follows. Section

II discusses the related work. Section III describes our analysis

methodology. In Section IV, we present our characterization

results with an in-depth analysis. In Section V, we conclude

the paper with a discussion of the future work.

II. RELATED WORK

To the best of our knowledge, this paper is the first

systematic study about the impact of error-controlled lossy

compressors on the derivative-related metrics (a kind of critical

quantity of interest (QoI) to many applications in practice) for

scientific datasets. In what follows, we discuss the existing

related work in the regard of controlling errors based on

different QoI metrics with error-bounded lossy compressors.

Most of the existing state-of-the-art error-bounded lossy

compressors support multiple simple metrics other than abso-

lute error bound. SZ [16]–[20], for example, support absolute

error bound control, point-wise relative error bound control,

and peak signal to noise ratio (PSNR). ZFP [11] offers

three compression modes: absolute error bound, precision (an

integer), and fix-rate (or fix compression ratio). MGARD [13],

[21] supports different types of norms such as infinity norm

(i.e., absolute error bound) and more bounded linear QoIs.

There are also some existing studies focused on how to

preserve the specific QoIs by error-bounded lossy compres-

sors. Liang et al. [22] proposed a novel strategy to preserve

the topological features in 2D and 3D vector fields. More

specifically, they developed a new compression method by

leveraging SZ compression pipeline, which can keep each

critical point in its original cell and retain the type of each

critical point (e.g., saddle and attracting node). Liu et al.

[23]–[25] developed a compression method that can optimize

the compression ratio and quality, according to diverse user-

specified constraints (such as preserving data points’ sign,

supporting diverse error bounds according to regions of in-

terest). Recently, a quality metric oriented lossy compressor

was proposed [26]: it can automatically adjust the compressor

to adapt to user’s diverse requirement in optimizing the rate-

distortion measure based on different quality metrics (such as

PSNR, SSIM, and compression ratio).

Despite the above in-depth related lossy compression works

on QoIs, the impact of these error-bounded lossy compressors

on the derivative-related metrics are still unknown. This raises

a significant gap to derivative-dependent applications, which

will be filled in this paper.

III. ANALYSIS METHODOLOGY

In this section, we provide an overview of our analysis

method, including how we select state-of-the-art lossy com-

pressors and their error configurations, description of various

derivative metrics, description of real-world scientific datasets

used in our study, and how we execute the compressors and

open source libraries/tools such as Z-checker [27], [28], QCAT

[29] and Paraview [30].

A. Error-bounded Lossy Compressors

In our study, we selected 5 error-bounded lossy compressors

– ZFP [11], SZ2 [16], SZ3 [17], SZx [3] and FPZIP [12],

which are all state-of-the-arts because of their high execution

performance, excellent compression ratios, or great recon-

structed data quality. We describe them in Appendix A.

Note that in our study, we focus only on the error-bounded

lossy compressors that have relatively high execution through-

put (generally 200+MB/s on a single CPU-core). Some other

lossy compressors such as TTHRESH [31], [32] and Auto-

encoder based compressor [33] can get fairly high compression

ratios, but they all suffer from very low speed/throughput

(generally 10s of MB/s or even lower), which may cause

very low efficiency in the evaluation because of many datasets

across multiple scientific domains involved in our study.

B. Derivative Metrics in Our Study

We describe the derivative metrics investigated in our study

as follows. All these metrics are fundamental and essential

to many application users across different scientific domains.

In the following, we use x, y, z to represent the three

different dimensions in the dataset. We use f to denote the

corresponding function based on the dataset and we use D to

denote the values of the dataset: e.g., D(x,y) means the value

at the data point (x,y) in the given dataset.

1) Partial Derivatives: Partial derivative (denoted by ∂f
∂x

,
∂f
∂y

, ∂f
∂z

) is the basic metric that represents the rate of data

variation in space along one coordinate dimension, which is

also a fundamental measure for computing all other derivative

metrics. Intuitively, for a data point, its partial derivative with

respect to a coordinate dimension (such as x) is the difference

between adjacent values on this data point. Basically, there
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are two ways to calculate the partial derivative – forward

difference and central difference.

Forward difference is an intuitive approach to compute

derivatives on a scalar filed:

∂f(i,j)
∂x

= D[i, j + 1]−D[i, j] (1)

∂f(i,j)
∂y

= D[i+ 1, j]−D[i, j] (2)

Central difference is an accurate and most commonly used

method to calculate derivatives in the visualization community:

∂f(i,j)
∂x

= (D[i,j+1]−D[i,j])+(D[i,j]−D[i,j−1])
2

= D[i,j+1]−D[i,j−1]
2

(3)

∂f(i,j)
∂y

= (D[i+1,j]−D[i,j])+(D[i,j]−D[i−1,j])
2

= D[i+1,j]−D[i−1,j]
2

(4)

Similarly, we can calculate the second-order derivative along

the dimension x and mixed partial derivative on the data point

(x,y) based on the following formulas, respectively:

∂f2(i,j)
∂x2 =(D[i, j + 1]−D[i, j])−(D[i, j]−D[i, j − 1]) (5)

∂f2(i,j)
∂xy

=D[i−1,j−1]+D[i+1,j+1]−D[i−1,j+1]−D[i+1,j−1]
4

(6)

Figure 1 illustrates how we calculate the first-order and

second-order derivatives on the point (i,j) by an example with

a 2D dataset. The above derivative formulas can be extended

easily for higher-dimensional cases such as 3D datasets.

Fig. 1: Illustration of calculating 1st/2nd-order derivatives on

the point (i,j).

2) Statistics of Partial Derivatives: In order to measure the

distortion of partial derivatives generated based on the lossy

reconstructed dataset, we propose to apply three statistical

measures (PSNR, SSIM and point-wise maximum errors)

on the distortion of the derivative datasets. Specifically, we

calculate the partial derivative datasets based on the original

dataset (denoted by f ′) and the decompressed dataset (denoted

by f̂ ′), respectively. The range of f ′ is denoted by R. And

then, we compute the PSNR, SSIM and the point-wise errors

based on the two derivative datasets (f ′ and f̂ ′), respectively.

As an example, we demonstrate how to calculate the derivative

PSNR in the following formula.

PSNR(f ′, f̂ ′) = 20 log10

(
R(f ′)√

MSE(f ′,f̂ ′)

)
(7)

3) Gradient Length (a.k.a., Gradient Magnitude, denoted

by GL): Gradient is the vector with the direction and rate

of fastest increase at a data point: more specifically, it is the

vector sum of the partial derivatives along all the coordinate

variables of a scalar quantity, as shown in the Formula (8)

(using 2D dataset as an example).

|∇f(i, j)| =

√(
∂f(i,j)

∂x

)2

+
(

∂f(i,j)
∂y

)2
(8)

The length of the gradient is a critical metric to measure

the local intensity of the data point, which has a very wide

range of usage, such as characterizing turbulent flows in

fluid dynamics simulation [9], calculating halos by pressure

gradients in cosmology simulation [34] and detection of edges

in visualization [35]. It is also known as gradient magnitude

(measuring the intensity/magnitude of local change at a point)

in visualization or image processing domain.

4) Laplacian (a.k.a., Laplace operator, denoted by ∇2 or

Lap): Laplacian is a differential operator provided by the

divergence of a scalar function’s gradient on Euclidean space.

Laplacian is achieved by calculating the sum of the second-

order partial derivatives of the function with respect to each

coordinate variable, as shown in the Formula (9) (using 2D

dataset as an example).

∇2f(i, j) = ∂2f(i,j)
∂x2 + ∂2f(i,j)

∂y2
(9)

Laplacian is an operator widely used in many differential

equations describing physical phenomena, such as Poisson’s

equation that describes electric and gravitational potentials,

the diffusion equation which describes heat and fluid flow,

the wave equation that describes wave propagation, and the

Schrödinger equation in quantum mechanics.

5) Sobolev Norm: Sobolev norm [36] (denoted by ||f ||k,p)

is the natural norm admitted in Sobolev space, which is a

vector space of functions with a norm combining Lp-norms of

the function with its derivatives up to a specific order (denoted

by k). Sobolev spaces [36] are very effective for studying the

partial differential equations (PDEs) since they are Banach

spaces, bringing out a powerful tool of functional analysis.

Formula (10) gives the definition of the Sobolev norm based

on the p-norm.

||f ||k,p =
(∑k

i=0 ||f
(i)||

p

p

) 1

p

(10)

where f (i) represents the i-th partial derivative. In our study

we focus only on the 2-norm cases in that the corresponding

Sobolev spaces form a Hilbert space, which is the core con-

cept of many research problems/domains such as functional

analysis and quantum mechanics.

Our investigation involves three k values (0,1,2), and the

corresponding Sobolev norms are shown in the following

formulas (in a two dimension dataset D, where M and N

represents the total number of data points in the direction of

first and second dimension, respectively).

||f(i, j)||0,2 =
√
||f ||22 =

√∑
D[i,j]2

MN
(11)
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||f(i, j)||1,2 =
√
||f ||22 + ||f (1)||22

=
√

1
MN

∑(
D[i, j]2+f ′

x(i, j)
2+f ′

y(i, j)
2
) (12)

||f(i, j)||2,2 =
√
||f ||22 + ||f (1)||22 + ||f (2)||22

=

√∑
(D[i,j]2+f ′

x
(i,j)2+f ′

y
(i,j)2+f ′′

x
(i,j)2+f ′′

y
(i,j)2+f ′′

xy
(i,j)2)

MN

(13)

where f ′

x(i, j)=
∂f(i,j)

∂x
, f ′

y(i, j)=
∂f(i,j)

∂y
, f ′′

x (i, j)=
∂2f(i,j)

∂x2 ,

f ′′

y (i, j)=
∂2f(i,j)

∂y2 , and f ′′

xy(i, j)=
∂2f(i,j)

∂xy
.

C. Theoretical Analysis of Derivative Metric Value Distortion

under Error-bounded Lossy Compression

In the following text, we present the theoretical analyses

mainly focusing on the maximum errors of the derivative

metrics. We denote the raw dataset by D, lossy reconstructed

dataset by D̂, and the user-specified absolute error bound by

e.

Proposition 1: The maximum error (or difference) of the

derivatives calculated based on the reconstructed dataset and

the raw dataset can be derived as Formula (14):
∣∣∣∂f(i,j)∂x

− ∂f̂(i,j)
∂x

∣∣∣ ≤ 2e (14)

Proof: According to Formula (1), the 1st-order par-

tial derivative’s error at the point(i, j) based on the re-

constructed dataset and the raw dataset can be written as∣∣∣|(D[i, j + 1]−D[i, j])| − |(D̂[i, j + 1]− D̂[i, j])|
∣∣∣. Due to

|D[i, j + 1] − D̂[i, j + 1]| ≤ e and |D[i, j] − D̂[i, j]| ≤ e,

the total 1st-order partial derivative’s distortion at the point(i,

j) would be bounded by 2e.

Proposition 2: The PSNR of the 1st-order partial derivative

datasets can be derived as Formula (15):

PSNR(f ′, f̂ ′) ≥ 20 log10

(
R(f ′)
2e

)
(15)

Proof: According to Formula (7), the PSNR of the 1st-

order derivative datasets calculated over the reconstructed

dataset and the raw dataset is determined by the range of the

raw derivative dataset and the MSE between the two derivative

datasets, which can be expressed as Formula (16).

MSE(f ′, f̂ ′) =

∑
(D(i,j)−D̂(i,j))2

MN
(16)

In the worst case, the maximum MSE is up to 4e2 when

the maximum point-wise error between the raw dataset and

reconstructed dataset is e. So, the PSNR should be no smaller

than 20 log10

(
R(f ′)
2e

)
.

Proposition 3: The point-wise error of gradient length

datasets calculated based on the raw data and lossy recon-

structed data can be derived as Formula (17):

∣∣∣|∇f(i, j)| − |∇f̂(i, j)|
∣∣∣ ≤ 2

√
e
(
|∂f(i,j)

∂x
|+ |∂f(i,j)

∂y
|
)
+ 2e2 (17)

Proof: Based on the Formula (8), the physical meaning of

the gradient length is the length of the vector with a x-direction

derivative and y-direction derivative as subvectors, and the

calculation follows the Pythagorean theorem. After squaring

the difference of the gradient lengths from the reconstructed

dataset and the raw dataset, the equation can be presented

as
(
|∇f(i, j)| − |∇f̂(i, j)|

)2

= ∇f(i, j)
2
− 2 × ∇f(i, j) ×

∇f̂(i, j) +∇f̂(i, j)
2
. In the worst case, each element of the

reconstructed dataset is larger than the element of the raw

dataset by e. It would be true that ∇f̂(i, j) > ∇f(i, j) and(
|∇f(i, j)| − |∇f̂(i, j)|

)2

≤ ∇f̂(i, j)
2
− ∇f(i, j)

2
. After

simplifying and square rooting, the proposition is proved.

Proposition 4: The point-wise error of the Laplacian dataset

calculated based on the raw and the reconstructed dataset can

be derived as Formula (18):

|∇2f(i, j)−∇2f̂(i, j)| ≤ 8e (18)

Proof: Based on the Formula (9), the value at point(i,

j) of the Laplacian dataset is calculated by the sum of the

second-order partial derivatives as ∇2f(i, j) = D(i+ 1, j) +
D(i− 1, j) +D(i, j + 1) +D(i, j − 1)− 4D(i, j). Since the

error of every point from the reconstructed dataset and the raw

dataset is up to e, the absolute value of the point-wise error

of the Laplacian dataset is up to 8e. And the same proposition

extends to 3D datasets with a maximum error of 12e. The

proposition is proved.

Proposition 5: The error of the Sobolev norm 2 order 0

calculated based on the raw dataset and the reconstructed

dataset can be derived as Formula (19):

||f ||0,2 − ||f̂0,2|| ≤
√
2e×Avg + e2 (19)

where Avg=

∑
D(i,j)

MN

Proof: Based on the Formula (11), the Sobolev Nomr 2

order 0 is calculated by the value of points of raw datasets.

In the worst case, each element of the reconstructed dataset is

larger than the element of the raw dataset by e. It would be

true that ||f ||0,2 ≤ ||f̂0,2||. After squaring the difference of the

order 0 of Sobolev Norm 2, the equation can be represented as

(||f ||0,2−||f̂0,2||)
2 ≤ (||f̂ ||0,2)

2−(||f0,2||)
2. After simplifying

and square rooting, the proposition is proved.

Due to the complication of the Sobolev Norm 2 Order 1

and Order 2, the proofs of the maximum error of them will

be represented in our future work.

Takeaway 1: The maximum error regarding several

derivative metrics such as Laplacian and derivative maxi-

mum error is only determined by the user-specified error

bound e. The point-wise error of derivative datasets has an

upper bound of 2e, and the point-wise error of Laplacian

datasets has the upper bound of 8e and 12e in 2D and 3D,

respectively.

Takeaway 2: For some derivative metrics such as deriva-

tive’ PSNR, maximum error of gratident length, and 0-

ordered Sobolev norm 2, the deviation is determined not

only by e, but also by the raw dataset values or derivative

metric values. The derivative’ PSNR depends on the value

range of the first-order partial derivative datasets; the

maximum error of the gradient length depends on the

value of first order derivatives of the raw dataset in
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respective directions; the maximum error of the Sobolev

norm 2 order 0 relies on the average of the raw dataset.

D. Tool Chain and Development

The analysis workflow that involves different open-source

tools and our codes is described in Appendix B.

IV. EVALUATION AND ANALYSIS

In this section, we conduct several experiments and ana-

lyze the evaluation results regarding several derivative-related

metrics.

A. Scientific Application Datasets in Our Study

We perform the evaluation using 4 real-world scientific

applications from different domains. All the datasets were

downloaded from SDRBench [37], [38], which are described

in Appendix C in detail.

B. Characterization of The Impact of Lossy Compressors on

Derivative-related Metrics

First, we check the data quality of gradient length calculated

based on the reconstructed dataset under 5 cutting-edge com-

pressors (denoted by Cmprs) with different compression error

bounds. Because of space limits, we demonstrate the compres-

sion ratio (denoted by CR), maximum error, average error and

PSNR using only the NYX dataset (baryon density log 2),

as shown in Table I (The large numbers have be bolded). We

can observe that the maximum error of gradient length dataset

calculated based on the raw and reconstructed dataset is larger

than the real maximum compression error under 3 compres-

sors, even up to 2.69× lager than the compression error in

some cases. Whereas, the maximum errors demonstrated in

the gradient length are smaller than the compression errors

on the raw data with respect to the other two compressors

probably due to different compression mechanisms. Due to

the small average value of the elements in the gradient length

dataset, the point-wise average errors of gradient length are

always smaller than the compression errors on the raw dataset.

The similar observation also goes to the PSNR of gradient

length. Takeaway 3: For a relatively smooth dataset with

the lossy compression, the point-wise average error of

the gradient length dataset calculated from the raw and

the reconstructed dataset tends to be smaller than the

compression error, but the maximum error tends to be

larger than that.

Figure 2 represents the visual comparison of the data

distortion of the raw dataset and the gradient length dataset cal-

culated based on it under 2 compressors. Figure 2a and Figure

2b show the 3D rendering and 2D top view of the raw dataset,

respectively. Figure 2c and Figure 2d show the reconstructed

data from SZ3 and ZFP with compression ratio CR=117,

respectively, and we can observe that the reconstructed data’s

visual quality is good for both compressors. Regarding gradi-

ent length, the visual difference of gradient length calculated

based on the raw dataset and the reconstructed dataset under

SZ3 (Figure 2g) is also slight, but the data distortion of

TABLE I: Raw, Reconstructed and Gradient Length Datasets.
baryon density log2 From EXASKY-NYX

Cmprs e CR
Maximum Error Average Error PSNR

Raw &

Rec
GL

Raw &

Rec
GL

Raw &

Rec
GL

SZx

1 4.97 1.0000 1.1508 1.23E-1 5.27E-2 41.5377 36.8293
1E-1 3.09 0.0313 0.0375 7.85E-3 3.51E-3 65.7024 61.0256
1E-2 2.40 0.0039 0.0048 9.86E-4 4.43E-4 83.7226 78.9964
1E-3 1.89 0.0005 0.0007 1.23E-4 5.55E-5 101.7827 97.0500

SZ2

1 217.09 1.0000 2.4658 1.18E-1 7.88E-2 41.3460 32.3355
1E-1 21.65 0.1000 0.2560 4.83E-2 3.29E-2 51.4113 42.2389
1E-2 10.48 0.0100 0.0250 4.98E-3 3.31E-3 71.2081 62.2314
1E-3 5.27 0.0010 0.0023 4.97E-4 3.31E-4 91.2144 82.2380

SZ3

1 1034.23 1.0000 2.6937 1.92E-1 7.63E-2 38.7435 33.4168
1E-1 59.20 0.1000 0.2287 3.67E-2 2.39E-2 53.3757 44.8030
1E-2 11.79 0.0100 0.0237 4.91E-3 3.28E-3 71.3038 62.3314
1E-3 5.37 0.0010 0.0024 5.00E-4 3.32E-4 91.1865 82.2100

ZFP

1 24.20 0.2641 0.2266 2.25E-2 1.63E-2 57.1644 48.0335
1E-1 6.71 0.0193 0.0156 2.10E-3 1.60E-3 77.7409 68.2671
1E-2 4.12 0.0024 0.0019 2.63E-4 2.01E-4 95.7543 86.2719
1E-3 2.97 0.0003 0.0003 3.29E-5 2.51E-5 113.8156 104.3333

FPZIP

p=10 17.14 3.9850 2.6553 1.92E-1 9.34E-2 38.0284 32.4843
p=12 12.76 1.0000 0.6572 5.33E-2 2.41E-2 48.9581 43.6705
p=14 9.12 0.3630 0.1648 1.37E-2 5.75E-3 60.7513 56.3279
p=16 6.24 0.1130 0.0615 3.44E-3 1.45E-3 72.7325 68.2820

gradient length from reconstructed data under ZFP (Figure

2h) is significant. Takeaway 4: The compressor SZ3 can

preserve the gradient length very well at a compression

ratio of 100 with slight distortion of visual quality, but

ZFP may substantially affect visual quality of the gradient

length dataset at the same compression ratio on the NYX

dataset.

TABLE II: Raw, Reconstructed and Laplacian Datasets.
CLOUDf48.log10.bin.f32 From Hurricane-ISABEL

Cmprs e CR
Maximum Error Average Error PSNR

Raw &

Rec
Lap

Raw &

Rec
Lap

Raw &

Rec
Lap

SZx

1 15.73 0.9821 6.0603 1.14E-1 2.74E-1 34.4480 46.3344

1E-1 13.08 0.0995 0.5472 6.91E-3 2.12E-2 58.6824 69.1870

1E-2 10.75 0.0039 0.0388 8.63E-4 2.70E-3 76.7594 87.1710

1E-3 9.59 0.0005 0.0048 1.08E-4 3.38E-4 94.8283 105.2177

SZ2

1 102.83 1.0000 11.5006 1.50E-1 3.43E-1 30.4448 39.6637

1E-1 40.50 0.1000 1.1322 1.35E-2 6.96E-2 50.7639 55.6239

1E-2 26.81 0.0100 0.1141 1.38E-3 6.61E-3 70.9799 75.9179

1E-3 18.56 0.0010 0.0119 1.30E-4 6.84E-4 91.0653 95.8165

SZ3

1 111.08 1.0000 11.5480 1.71E-1 2.02E-1 32.9973 42.7558

1E-1 53.44 0.1000 1.1247 3.50E-2 3.78E-2 48.4059 58.7284

1E-2 27.00 0.0100 0.1146 1.48E-3 4.62E-3 72.4406 77.3927

1E-3 18.70 0.0010 0.0111 2.14E-4 4.75E-4 91.0997 97.2605

ZFP

1E 19.30 0.3112 1.5371 9.05E-3 3.80E-2 54.6258 59.6900

1E-1 12.30 0.0201 0.0996 5.43E-4 2.69E-3 78.1210 82.9645

1E-2 9.62 0.0025 0.0121 6.73E-5 3.48E-4 96.0244 100.7967

1E-3 7.86 0.0003 0.0015 1.03E-5 4.41E-5 113.9136 118.7569

FPZIP

p=10 41.22 0.2500 1.2114 8.67E-2 2.29E-2 41.2149 62.5481

p=12 30.83 0.0625 0.3135 2.66E-2 6.33E-3 51.4619 73.9942

p=14 24.45 0.0015 0.0772 1.15E-2 2.17E-3 58.6077 83.5911

p=16 19.94 0.0039 0.0209 8.68E-4 3.57E-4 81.1468 98.5534

We present the data distortion of the Laplacian datasets

calculated based on the raw and the reconstructed datasets

regarding several metrics in Table II. The results from the

Hurricane-ISABEL dataset (CLOUDf48.log10.bin.f32) under

different compressors show that the maximum error of Lapla-

cian datasets are much larger than the maximum compression

error in all cases with the peak around 11.55 times (which is

held in the theoretical maximum error with 12e at Propositio

4). The average error of the Laplacian dataset calculated

by summing up the second-order derivatives of the three

dimensions grows rapidly with the dramatic variation change

of the raw dataset. The experiment results show that only the

average error of Laplacian datasets calculated based on the

datasets recovered by FPZIP is smaller than the actual com-

pression error, while the average error of Laplacian datasets

caused by the other four compressors is larger than the actual

compression error. We can observe that the PSNRs of the

Laplacian datasets are all larger than that of the raw and
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(a) Raw, 3D (b) Raw, 2D (c) Reconstructed, SZ3 (d) Reconstructed, ZFP

(e) GL from Raw, 3D (f) GL from Raw, 2D (g) GL from Reconstructed, SZ3 (h) GL from Reconstructed, ZFP

Fig. 2: Data Distortion of Raw and Gradient Length from SZ3 and ZFP, NYX, Compression Ratio 117.

reconstructed dataset probably due to the Laplacian datasets

with a bigger range.

To demonstrate the influence of the Laplacian dataset caused

by the lossy compression on the raw dataset, we present the

visual distortion of the Laplacian data calculated based on the

reconstructed dataset under SZ3 with different compression

error bounds (see Appendix D: Figure 3). Figure 3a show

the 3D rendering of the raw dataset, as well as the Figure

3b and Figure 3c represent the 3D rendering and 2D slicing

pictures of the Laplacian dataset, respectively. We can observe

that the Figure 3d and Figure 3e show little visual distortion

under SZ3 with absolute error bound e=1E-2 and 1E-1 (value-

range relative error bound around 1E-3 and 1E-2), respectively.

While with the compression error bounds larger than that,

the results have a non-negligible visual error of Laplacian

datasets. Takeaway 5: The Laplacian metric of raw datasets

can be well preserved under SZ3 with the value-range

relative error bound 1E-2 and a compression ratio of 53,

while the compression with higher error bounds will cause

a significant visual distortion on the Hurricane-ISABEL

dataset.

Through Table IV to Table VII (as presented in Appendix

E), we can clearly observe the influence of lossy decompressed

data on the Sobolev Norm 2 of the datasets based on different

compression error bounds. The Sobolev Norm 2 is mainly

calculated by the second order square of values and partial

derivatives of the scalar field datasets, in which the larger

the values and partial derivatives, the larger Sobolev Norm

2 values are. We note that the data distortion of Sobolev

Norm 2 affected by the lossy compression exhibits similar

trends on the 4 datasets. The lossy compression has nearly no

impact on the 0th-, first-, and second-order of Sobolev Norm

2 under all compressors with e=1E-4, and even some lossy

compressors can perform the same results with the error bound

e=1E-3. By comparison, the lossy compression applied on raw

datasets does not project a particular changing trend of the data

distortion for different orders of Sobolev Norm 2.

V. CONCLUSION AND FUTURE WORK

In this paper, we provide an in-depth understanding of the

impact of lossy compressors on the derivative-related metrics.

We theoretically derive the upper bounds of the distortion

for different derivative-related metrics under the error-bounded

lossy compression. In our experiments, we run 5 state-of-the-

art lossy compressors with 4 real-world application datasets,

and present the observed distortion of derivative metrics under

the lossy compression compared with their original true values.

We summarize 5 takeaways, which we believe are very helpful

to scientific applications related to derivative calculation.
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APPENDIX

A. Description of Error-bounded Lossy Compressors

• ZFP: ZFP is an outstanding error-bounded lossy com-

pressor designed based on near-orthogonal data trans-

form, which exhibits very high execution performance

and also high data quality (especially for 3D datasets).

ZFP supports three compression modes – accuracy (or

absolute error bound), precision, and fix-rate. According

to the prior studies (also as mentioned in ZFP’s official

website), the accuracy mode generally leads to the best

rate distortion, so we use the accuracy mode in our

investigation.

• SZ2 [16]: SZ2 is a classic prediction-based lossy com-

pressor for scientific datasets, which is designed based on

a prediction-based compression model. It has a hybrid

predictor (Lorenzo and Linear-regression), followed by

quantization, Huffman encoding and Zstd [39]. SZ2 sup-

ports compression based on absolute error bound (ABS),

value-range based relative error bound (VR REL), point-

wise relative error bound (PW REL) [40]–[42] and peak

signal to noise ratio (PSNR) [43]. In our investigation, we

choose the ABS mode because of the following reasons:

(1) VR REL and PSNR are equivalent to ABS in the

regard of rate distortion, because SZ actually transforms

them to corresponding absolute error bounds and then

performs compression using the ABS mode [14], [43];

(2) PW REL always suffers from very low compression

ratios, as verified by prior works [40].

• SZ3 [17], [19]: SZ3 is a more advanced compressor over

SZ2 especially in the situation with high compression

ratios. In principle, the key difference between SZ3 and

SZ2 is that SZ3 adopts a more effective predictor called

dynamic spline interpolation [], which can obtain abut 2X

higher compression ratios with the same PSNR. SImilar

to SZ2, we also use the ABS mode to perform the

compression for SZ3.

• SZx [3]: SZx (an ultra-fast error-bounded lossy com-

pressor) is designed particularly for the high-speed re-

quirement. SZx is about 3-4X as fast as SZ2/3 and

ZFP on single CPU and about 10X faster on GPU,

with a reasonably degraded compression ratios. SZx’s

compression ratio is generally around 5-30 [3], which

is still much higher than the lossless compressors such

as Zstd. SZx supports only absolute error bound (ABS)

mode, so all the experiments with SZx in our study are

based on ABS.

• FPZIP [12]: FPZIP is a classic lossy compressor which

is developed based on Lorenzo predictor. FPZIP controls

the data distortion via an integer (called precision), whose

value is in the range of [1,32] (higher number means

higher precision). A prior study about preserving vector-

based critical points (mainly determined by gradients) in

lossy compression showed that FPZIP outperforms both

SZ2 and ZFP in rate distortion. As such, we include

FPZIP in our study related to gradient metrics.

TABLE III: Data Fields of Applications Used by Evaluations
Datasets of application size per field precision

baryon density log.f32 NYX 512× 512× 512 single

CLOUDf48.log10.bin.f32 Hurricane ISABEL 100× 500× 500 single

CLDHGH 1 1800 3600.dat CESM-ATM 1800× 3600 single

density.d64 Miranda 256× 384× 384 double

B. Analysis Workflow and Tool chain

1) We run all the error-bounded lossy compressors listed

in Appendix A by their executables built from their

packages.

2) Then, we perform the corresponding decompression for

each compressed data file to get the lossy reconstructed

data files, based on four absolute error bound (1E-1, 1E-

2, 1E-3 and 1E-4). Since FPZIP does not have absolute

error bound mode but the precision mode, we run it with

different precision settings so as to obtain comparable

compression ratios with other compressors.

3) Then, we generate all the derivative metrics or datasets

which are listed in Section III-B. Specifically, we imple-

mented all the derivative metrics in QCAT [29], and also

integrated them in the Z-checker library/tool [27] such

that our codes can also be used by other researchers if

needed.

4) Finally, we use the analytical functions (such as calcu-

lateSSIM) provided by QCAT to perform an in-depth

analysis, and also use the visualization tool (either

PlotSliceImage offered by QCAT [29] or the vis panel

offered by Paraview [30]) to plot the data for further

understanding the impact of lossy compressors on these

derivative metrics.

C. Application Datasets Used in The Paper

• NYX [44]: An adaptive mesh, cosmological hydrodynam-

ics simulation code.

• Hurricane: A simulation of a hurricane from the National

Center for Atmospheric Research in the United States.

• CESM-ATM [45], [46]: Community Earth System Model

(CESM) is a fully-coupled global climate model provid-

ing computer simulations of the Earth’s climate changes.

CESM involves multiple sub-modules such as ICE, At-

mosphere (ATM), Ocean (OCN), and Land (LND). We

use ATM model in our experiments.

• Miranda [47]: A radiation hydrodynamics code designed

for large-eddy simulation of multicomponent flows with

turbulent mixing.

We present the details in Table III.

D. Visualizing Impact of Lossy Compression on Laplacian

Figure 3 visualizes the impact of SZ3 on Laplacian with

Hurricane simulation dataset, based on different error bounds.

E. Evaluation Results about Sobolev Norms

The evaluation results about the impact of lossy compres-

sion on Sobolev norms are presented in Table IV through VII.
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(a) RawD, 3D (b) LRaw, 3D (c) LRaw, 2D (d) LRec, SZ3, e=1E-2, CR=27

(e) LRec, SZ3, e=1E-1, CR=53 (f) LRec, SZ3, e=5E-1, CR=91 (g) LRec, SZ3, e=1, CR=111 (h) LRec, SZ3, e=3, CR=154

Fig. 3: Laplacian Distortion and Compression Error Bound in SZ3, Hurricane

TABLE IV: The Sobolev Norm 2, CESM-ATM
CLDHGH 1 1800 3600.dat

Cmprs & e CR Order 0 Diff 0 Order 1 Diff 1 Order 2 Diff 2

Raw Data 1 0.251206 0 0.251428 0 0.251479 0

SZx

1E-1 39.57 0.250500 0.000706 0.250994 0.000434 0.252732 0.001253
1E-2 4.70 0.251114 0.000092 0.251335 0.000093 0.251402 0.000077
1E-3 3.19 0.251194 0.000012 0.251415 0.000013 0.251466 0.000013
1E-4 2.30 0.251205 0.000001 0.251427 0.000001 0.251478 0.000001

SZ2

1E-1 809.42 0.251100 0.000106 0.251303 0.000125 0.251408 0.000071
1E-2 60.18 0.251232 0.000026 0.251479 0.000051 0.251795 0.000316
1E-3 17.15 0.251207 0.000001 0.251429 0.000001 0.251488 0.000009
1E-4 7.04 0.251206 0 0.251428 0 0.251479 0

SZ3

1E-1 3079.48 0.251274 0.000068 0.251480 0.000052 0.251504 0.000025
1E-2 137.22 0.251190 0.000016 0.251409 0.000019 0.251502 0.000023
1E-3 19.77 0.251207 0.000001 0.251429 0.000001 0.251485 0.000006
1E-4 7.08 0.251206 0 0.251428 0 0.251479 0

ZFP

1E-1 17.90 0.251283 0.000077 0.251515 0.000087 0.251646 0.000167
1E-2 9.44 0.251199 0.000007 0.251421 0.000007 0.251476 0.000003
1E-3 5.34 0.251207 0.000001 0.251429 0.000001 0.251480 0.000001
1E-4 3.24 0.251206 0 0.251428 0 0.251479 0

FPZIP

p=14 21.94 0.248350 0.002856 0.248575 0.002853 0.248691 0.002788
p=16 12.74 0.250488 0.000718 0.250709 0.000719 0.250765 0.000714
p=18 7.64 0.251027 0.000179 0.251248 0.000180 0.251299 0.000180
p=20 5.24 0.251161 0.000045 0.251383 0.000045 0.251434 0.000045

TABLE V: The Sobolev Norm 2, NYX
baryon density log.f32

Cmprs & e CR Order 0 Diff 0 Order 1 Diff 1 Order2 Diff2

Raw Data 1.00 1.441198 0 1.473953 0 1.487979 0

SZx

1 4.97 1.390223 0.050975 1.417625 0.056328 1.418664 0.069315
1E-1 3.09 1.434077 0.007121 1.466602 0.007351 1.480721 0.007258
1E-2 2.40 1.440302 0.000896 1.473026 0.000927 1.487042 0.000937
1E-3 1.89 1.441086 0.000112 1.473837 0.000116 1.487861 0.000118

SZ2

1 217.09 1.430359 0.010839 1.466008 0.007945 1.544127 0.056148
1E-1 21.65 1.442209 0.001011 1.476344 0.002391 1.507392 0.019413
1E-2 10.48 1.441210 0.000012 1.473981 0.000028 1.488215 0.000236
1E-3 5.27 1.441199 0.000001 1.473953 0 1.487981 0.000002

SZ3

1 1034.23 1.390223 0.050975 1.417625 0.056328 1.441138 0.046841
1E-1 59.20 1.442111 0.000913 1.475156 0.001203 1.493628 0.005649
1E-2 11.79 1.441214 0.000016 1.473984 0.000031 1.488205 0.000226
1E-3 5.37 1.441199 0.000001 1.473953 0 1.487981 0.000002

ZFP

1 24.20 1.441280 0.000082 1.474331 0.000378 1.490815 0.002836
1E-1 6.71 1.441194 0.000004 1.473952 0.000001 1.488015 0.000036
1E-2 4.12 1.441199 0.000001 1.473954 0.000001 1.487980 0.000001
1E-3 2.97 1.441198 0 1.473953 0 1.487979 0

FPZIP

p=10 17.14 1.218766 0.222432 1.253661 0.220292 1.324954 0.163025
p=12 12.76 1.378017 0.063181 1.410079 0.063874 1.431586 0.056393
p=14 9.12 1.424908 0.016290 1.457346 0.016607 1.471807 0.016172
p=16 6.24 1.437095 0.004103 1.469760 0.004193 1.483785 0.004194

TABLE VI: The Sobolev Norm 2, Miranda
density.d64

Cmprs & e CR Order 0 Diff 0 Order 1 Diff 1 Order2 Diff2

Raw Data 1.00 1.923554 0 1.939679 0 2.138136 0

SZx

1E-1 38.05 1.920580 0.002974 1.935242 0.004437 2.119065 0.019071
1E-2 27.82 1.923153 0.000401 1.939087 0.000592 2.135641 0.002495
1E-3 21.51 1.923501 0.000053 1.939602 0.000077 2.137820 0.000316
1E-4 15.85 1.923550 0.000004 1.939674 0.000005 2.138116 0.000020

SZ2

1E-1 603.41 1.922877 0.000677 1.938750 0.000929 2.134620 0.003516
1E-2 188.50 1.923544 0.000010 1.939668 0.000011 2.138114 0.000022
1E-3 122.13 1.923558 0.000004 1.939683 0.000004 2.138139 0.000003
1E-4 43.26 1.923554 0 1.939679 0 2.138137 0.000001

SZ3

1E-1 2668.65 1.922057 0.001497 1.936769 0.002910 2.120703 0.017433
1E-2 618.52 1.923658 0.000104 1.939789 0.000110 2.138293 0.000157
1E-3 154.48 1.923569 0.000015 1.939695 0.000016 2.138163 0.000027
1E-4 56.89 1.923554 0 1.939679 0 2.138137 0.000001

ZFP

1E-1 75.40 1.923579 0.000025 1.939711 0.000032 2.138237 0.000101
1E-2 51.40 1.923551 0.000003 1.939675 0.000004 2.138125 0.000011
1E-3 35.60 1.923554 0 1.939679 0 2.138138 0.000002
1E-4 23.30 1.923554 0 1.939679 0 2.138137 0.000001

FPZIP

p=14 39.59 1.703893 0.219661 1.720822 0.218857 1.932323 0.205813
p=16 37.28 1.868802 0.054752 1.884560 0.055119 2.079579 0.058557
p=18 36.03 1.910055 0.013499 1.926076 0.013603 2.123459 0.014677
p=20 34.81 1.920231 0.003323 1.936332 0.003347 2.134537 0.003599

TABLE VII: The Sobolev Norm 2, Hurricane ISABEL
CLOUDf48.log10.bin.f32

Cmprs & e CR Order 0 Diff 0 Order 1 Diff 1 Order2 Diff2

Raw Data 1.00 12.193243 0 12.258431 0 12.639667 0

SZx

1 15.73 12.104116 0.089128 12.160559 0.097872 12.509620 0.130047
1E-1 13.08 12.187895 0.005348 12.252512 0.005919 12.631488 0.008179
1E-2 10.75 12.192575 0.000668 12.257692 0.000739 12.638643 0.001024
1E-3 9.59 12.193160 0.000083 12.258338 0.000092 12.639539 0.000128

SZ2

1 102.83 12.115463 0.077780 12.174132 0.084299 12.522736 0.116931
1E-1 40.50 12.192696 0.000547 12.257943 0.000487 12.639706 0.000039
1E-2 26.81 12.193083 0.000160 12.258271 0.000160 12.639513 0.000154
1E-3 18.56 12.193243 0 12.258431 0 12.639667 0

SZ3

1 111.08 12.243989 0.050746 12.308690 0.050260 12.695751 0.056084
1E-1 53.44 12.165990 0.027253 12.231398 0.027033 12.613321 0.026346
1E-2 27.00 12.192990 0.000253 12.258190 0.000240 12.639446 0.000221
1E-3 18.70 12.193290 0.000047 12.258478 0.000047 12.639713 0.000046

ZFP

1 19.30 12.195410 0.002167 12.260614 0.002184 12.641970 0.002303
1E-1 12.30 12.193313 0.000070 12.258501 0.000070 12.639736 0.000069
1E-2 9.62 12.193236 0.000007 12.258424 0.000007 12.639661 0.000006
1E-3 7.86 12.193246 0.000003 12.258434 0.000003 12.639670 0.000003

FPZIP

p=14 41.22 12.106090 0.087153 12.171206 0.087225 12.552070 0.087597
p=16 30.83 12.166302 0.026941 12.231404 0.027027 12.612146 0.027521
p=18 24.45 12.181359 0.011884 12.246458 0.011972 12.627181 0.012486
p=20 19.94 12.192394 0.000849 12.257587 0.000843 12.638856 0.000811
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