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Abstract—Today’s scientific simulations are producing ex-
tremely large amount of data everyday, which induces grand
challenges in transferring and storing the data efficiently. Error-
bounded lossy compression has been thought of as the most
promising solution to the bigdata issue, however, it would cause
data distortion that has to be controlled carefully for user’s post-
hoc analysis. Recently, the preservation of quantities of interest
has become a priority. Derivative-related metrics are critical
quantities of interest for many applications across domains. How-
ever, no prior research explored the impact of lossy compression
on derivative-related metrics in particular. In this paper, we focus
on understanding the impact of various error-controlled lossy
compressors on multiple derivative-related metrics commonly
concerned by users. We perform solid experiments that involve
5 state-of-the-art lossy compressors and 4 real-world application
datasets. We summarize 5 valuable takeaways, which can shed
some light in understanding the impact of lossy compression on
derivative-related metrics.

I. INTRODUCTION

With the ever-increasing execution scale of high perfor-
mance computing (HPC) simulations across different scientific
domains, too large amounts of data are being produced every
day. Even though memory and storage capabilities of modern
machines have been improved immensely, the sheer amount
of data still puts significant pressure on the memory and
storage systems, so that the limited memory/storage capacity
has become a significant concern for the scientific simulations.

Significantly reducing the data volume at runtime has be-
come one of the most promising solutions to the big scientific
data issue for these large-scale applications. Although lossless
compression can have the reconstructed data identical to the
original data, it suffers from very low compression ratios
(generally 2:1 according to existing studies [1]-[3]), which is
far from the expected level (generally 10:1 or higher [4]). In
comparison, error-bounded lossy compression [5]—[8] allows a
certain distortion of data during the compression such that the
compression ratio could reach a very high level (10:1, 100:1,
or even higher), while the data distortion can also be controlled
strictly based on user-specified error bound.

The existing state-of-the-art error-bounded lossy compres-
sors mainly offer specific types of error bounds (such as
absolute error bound and relative error bound) for users to
control the data distortion, which still brings out a significant
gap to users’ de-facto requirement on data fidelity for their
post hoc analysis.

In this paper, we focus on derivative-related metrics, which
has a wide range of usage in post hoc analysis across different
scientific domains. In practice, the derivatives in a dataset are
generally approximated by calculating the difference (or delta)
of the adjacent values in the dataset in different directions.

In what follows, we give several examples to demonstrate
the significance of the derivative-related metrics used by the
practical analysis in different applications. Laminar/turbulent
flow is a very significant topic that is closely related to
a wide range of research domains such as air flow going
around a vehicle’s windshield or an aircraft’s wings, fluid flow
passing by a ship’s body, and combustion airflow. The post hoc
analysis based on these fluid dynamics simulations is closely
related to or driven by the gradients (derivative vector) of
datasets. For instance, velocity gradient [9] is a critical metric
in analyzing turbulent flow and its stress. Climate/weather
simulation such as Hurricane simulation is also closely related
to the gradients of air flows during the simulation. In fact,
hurricanes could be thought of as heat engines, which are
driven by two different types of thermal gradients [10]. In
addition to gradients, other derivative-related metrics such
as Laplacian and Sobolev norm are also closely related to
scientific research, which will be detailed later.

The error-bounding nature offered by the existing error-
controlled lossy compressors [3], [11]-[14] is far less than
enough for preserving the derivative-metric values in the
dataset [15]. In fact, raw data and the derivatives calculated
based on them are fundamentally different in nature. For
example, if a dataset contains the position of an asteroid near
Earth, the first-order derivative of the asteroid’s movement
indicates the speed, and the second-order derivative indicates
its acceleration (and in turn, the forces exerted on that asteroid,
due to F'=ma, where F' and m refer to force and mass,
respectively). Suppose one simulation needs to determine
whether the asteroid would hit the earth, a relatively small
error on the raw data may not have a big effect on the
predictions of the asteroid’s trace, while the similar errors
introduced to the derivatives, which correspond to the speed
and acceleration, may distort the trace significantly since
these errors considerably affect the asteroid’s behavior as the
simulation time passes.

Assessing the impact of lossy compression on derivative-
related metrics faces two grand challenges. On the one hand,
the derivative metric is much more complicated and diverse
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than the traditional commonly-used lossy compression quality
metric such as mean squared error (MSE), Peak Signal to
Noise Ratio (PSNR), and Structural Similarity Index Measure
(SSIM), in that it may involve different spatial directions
and different orders. On the other hand, the derivative-related
metric values are generally more volatile than the original raw
datasets. Specifically, the higher order of the derivative, the
more volatile the derivative metric tends to be.

In this paper, we provide an in-depth analysis of the impact
of lossy compression on multiple derivative-based metrics.
The derivative metrics include the point-wise derivatives gen-
erated along each dimension, the statistics (such as PSNR
and SSIM) of the derivative dataset, Laplacian, gradient, and
Sobolev norms. Not only does our analysis include theoretical
derivation of the upper bound for derivative metric’s distortion
under error-bounded lossy compression, but we also perform
careful evaluation running state-of-the-art lossy compressors
with real-world scientific datasets across from a wide range
of domains including cosmological simulation, climate sim-
ulation, and turbulence simulation. We summarize a series
of valuable characteristics of gradient metrics and takeaways
regarding error-bounded lossy compression quality from our
comprehensive characterization work.

The remaining of the paper is organized as follows. Section
II discusses the related work. Section III describes our analysis
methodology. In Section IV, we present our characterization
results with an in-depth analysis. In Section V, we conclude
the paper with a discussion of the future work.

II. RELATED WORK

To the best of our knowledge, this paper is the first
systematic study about the impact of error-controlled lossy
compressors on the derivative-related metrics (a kind of critical
quantity of interest (Qol) to many applications in practice) for
scientific datasets. In what follows, we discuss the existing
related work in the regard of controlling errors based on
different Qol metrics with error-bounded lossy compressors.

Most of the existing state-of-the-art error-bounded lossy
compressors support multiple simple metrics other than abso-
lute error bound. SZ [16]-[20], for example, support absolute
error bound control, point-wise relative error bound control,
and peak signal to noise ratio (PSNR). ZFP [11] offers
three compression modes: absolute error bound, precision (an
integer), and fix-rate (or fix compression ratio). MGARD [13],
[21] supports different types of norms such as infinity norm
(i.e., absolute error bound) and more bounded linear Qols.

There are also some existing studies focused on how to
preserve the specific Qols by error-bounded lossy compres-
sors. Liang et al. [22] proposed a novel strategy to preserve
the topological features in 2D and 3D vector fields. More
specifically, they developed a new compression method by
leveraging SZ compression pipeline, which can keep each
critical point in its original cell and retain the type of each
critical point (e.g., saddle and attracting node). Liu et al.
[23]-[25] developed a compression method that can optimize
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the compression ratio and quality, according to diverse user-
specified constraints (such as preserving data points’ sign,
supporting diverse error bounds according to regions of in-
terest). Recently, a quality metric oriented lossy compressor
was proposed [26]: it can automatically adjust the compressor
to adapt to user’s diverse requirement in optimizing the rate-
distortion measure based on different quality metrics (such as
PSNR, SSIM, and compression ratio).

Despite the above in-depth related lossy compression works
on Qols, the impact of these error-bounded lossy compressors
on the derivative-related metrics are still unknown. This raises
a significant gap to derivative-dependent applications, which
will be filled in this paper.

III. ANALYSIS METHODOLOGY

In this section, we provide an overview of our analysis
method, including how we select state-of-the-art lossy com-
pressors and their error configurations, description of various
derivative metrics, description of real-world scientific datasets
used in our study, and how we execute the compressors and
open source libraries/tools such as Z-checker [27], [28], QCAT
[29] and Paraview [30].

A. Error-bounded Lossy Compressors

In our study, we selected 5 error-bounded lossy compressors
— ZFP [11], SZ2 [16], SZ3 [17], SZx [3] and FPZIP [12],
which are all state-of-the-arts because of their high execution
performance, excellent compression ratios, or great recon-
structed data quality. We describe them in Appendix A.

Note that in our study, we focus only on the error-bounded
lossy compressors that have relatively high execution through-
put (generally 200+MB/s on a single CPU-core). Some other
lossy compressors such as TTHRESH [31], [32] and Auto-
encoder based compressor [33] can get fairly high compression
ratios, but they all suffer from very low speed/throughput
(generally 10s of MB/s or even lower), which may cause
very low efficiency in the evaluation because of many datasets
across multiple scientific domains involved in our study.

B. Derivative Metrics in Our Study

We describe the derivative metrics investigated in our study
as follows. All these metrics are fundamental and essential
to many application users across different scientific domains.
In the following, we use z, y, z to represent the three
different dimensions in the dataset. We use f to denote the
corresponding function based on the dataset and we use D to
denote the values of the dataset: e.g., D(z,y) means the value
at the data point (z,y) in the given dataset.

1) Fartial Derivatives: Partial derivative (denoted by 7,
%, %) is the basic metric that represents the rate of data
variation in space along one coordinate dimension, which is
also a fundamental measure for computing all other derivative
metrics. Intuitively, for a data point, its partial derivative with
respect to a coordinate dimension (such as x) is the difference
between adjacent values on this data point. Basically, there

of
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are two ways to calculate the partial derivative — forward
difference and central difference.

Forward difference is an intuitive approach to compute
derivatives on a scalar filed:

)
2

Central difference is an accurate and most commonly used
method to calculate derivatives in the visualization community:
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Similarly, we can calculate the second-order derivative along
the dimension x and mixed partial derivative on the data point
(z,y) based on the following formulas, respectively:

0G0 — (Dli, j + 1]— Dli, 1) — (D[i, j]—D[i,j — 1) (5)
8f2(i,j) _ D[i—l,j—1]+D[i+1,j+1]—D[z’—1,j+1]—D[i+1,j—1] (6)
oxy 4

Figure 1 illustrates how we calculate the first-order and
second-order derivatives on the point (%,7) by an example with
a 2D dataset. The above derivative formulas can be extended
easily for higher-dimensional cases such as 3D datasets.
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Fig. 1: Ilustration of calculating 1st/2nd-order derivatives on
the point (4,7).

2) Statistics of Partial Derivatives: In order to measure the
distortion of partial derivatives generated based on the lossy
reconstructed dataset, we propose to apply three statistical
measures (PSNR, SSIM and point-wise maximum errors)
on the distortion of the derivative datasets. Specifically, we
calculate the partial derivative datasets based on the original
dataset (denoted by /") and the decompressed dataset (denoted
by f’), respectively. The range of f’ is denoted by R. And
then, we compute the PSNR, SSIM and the pAoint—wise errors
based on the two derivative datasets (f’ and f’), respectively.
As an example, we demonstrate how to calculate the derivative
PSNR in the following formula.

PSNR(f', ') = 201logy, ( o)

R(") )
V MSE(f'.J)
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3) Gradient Length (a.k.a., Gradient Magnitude, denoted
by GL): Gradient is the vector with the direction and rate
of fastest increase at a data point: more specifically, it is the
vector sum of the partial derivatives along all the coordinate
variables of a scalar quantity, as shown in the Formula (8)
(using 2D dataset as an example).

9 766.9) = (22" + (252"

The length of the gradient is a critical metric to measure
the local intensity of the data point, which has a very wide
range of usage, such as characterizing turbulent flows in
fluid dynamics simulation [9], calculating halos by pressure
gradients in cosmology simulation [34] and detection of edges
in visualization [35]. It is also known as gradient magnitude
(measuring the intensity/magnitude of local change at a point)
in visualization or image processing domain.

4) Laplacian (a.k.a., Laplace operator, denoted by V? or
Lap): Laplacian is a differential operator provided by the
divergence of a scalar function’s gradient on Euclidean space.
Laplacian is achieved by calculating the sum of the second-
order partial derivatives of the function with respect to each
coordinate variable, as shown in the Formula (9) (using 2D
dataset as an example).

®)

)

Laplacian is an operator widely used in many differential
equations describing physical phenomena, such as Poisson’s
equation that describes electric and gravitational potentials,
the diffusion equation which describes heat and fluid flow,
the wave equation that describes wave propagation, and the
Schrodinger equation in quantum mechanics.

5) Sobolev Norm: Sobolev norm [36] (denoted by || f||x,p)
is the natural norm admitted in Sobolev space, which is a
vector space of functions with a norm combining LP-norms of
the function with its derivatives up to a specific order (denoted
by k). Sobolev spaces [36] are very effective for studying the
partial differential equations (PDEs) since they are Banach
spaces, bringing out a powerful tool of functional analysis.

Formula (10) gives the definition of the Sobolev norm based
on the p-norm.

L. 62 ,7. 82 ,7,
V6,5) = 40 + Cfisa

(10)

1Flles = (S IFOIE)

where f() represents the i-th partial derivative. In our study
we focus only on the 2-norm cases in that the corresponding
Sobolev spaces form a Hilbert space, which is the core con-
cept of many research problems/domains such as functional
analysis and quantum mechanics.

Our investigation involves three k values (0,1,2), and the
corresponding Sobolev norms are shown in the following
formulas (in a two dimension dataset D, where M and N
represents the total number of data points in the direction of
first and second dimension, respectively).

1FG. Doz = VITIE =V o™ (D
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C. Theoretical Analysis of Derivative Metric Value Distortion
under Error-bounded Lossy Compression

of(i, 9% f(4,
f(;J), FG, )= f(ZJ),
02 f(ir4)

dzy

In the following text, we present the theoretical analyses
mainly focusing on the maximum errors of the derivative
metrics. We denote the raw dataset by D, lossy reconstructed
dataset by D, and the user-specified absolute error bound by
e.

Proposition 1: The maximum error (or difference) of the
derivatives calculated based on the reconstructed dataset and
the raw dataset can be derived as Formula (14):

af(i.j) _ 0f (i)
ox ox

< 2 (14)

Proof: According to Formula (1), the Ist-order par-
tial derivative’s error at the point(i, j) based on the re-
constructed dataset and the raw dataset can be written as
|(Di, j + 1] = Di, j])| = |(D[é, j + 1] = D[, jDI" Due to
|D[i,j 4+ 1] — D[i,j + 1]| < e and |D[i,j] — D[i,j]| < e,
the total 1st-order partial derivative’s distortion at the point(z,
7) would be bounded by 2e. ]

Proposition 2: The PSNR of the 1st-order partial derivative
datasets can be derived as Formula (15):
R(f’))
2e

Proof: According to Formula (7), the PSNR of the 1st-
order derivative datasets calculated over the reconstructed
dataset and the raw dataset is determined by the range of the
raw derivative dataset and the MSE between the two derivative
datasets, which can be expressed as Formula (16).

PSNR(f', J') = 2010g,, ( (15)

MSE(f', ') = Z(D(iﬁ;fﬁu,j)ﬁ (16)

In the worst case, the maximum MSE is up to 4e? when
the maximum point-wise error between the raw dataset and
reconstructed dataset is e. So, the PSNR should be no smaller
than 201log; (Réﬁl) u

Proposition 3: The point-wise error of gradient length
datasets calculated based on the raw data and lossy recon-

structed data can be derived as Formula (17):

99691 = (9762 <2 e (125621 +1252) +2e2 (17)

Proof: Based on the Formula (8), the physical meaning of
the gradient length is the length of the vector with a x-direction
derivative and y-direction derivative as subvectors, and the
calculation follows the Pythagorean theorem. After squaring
the difference of the gradient lengths from the reconstructed
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dataset and the raw dataset the equation can be presented
s (IV76.0)| =196 )I) " = V(. ~2 x V5(i.5) x

Vi, j) + Vf(@j)z. In the worst case, each element of the
reconstructed dataset is larger than the element of the raw
dataset by e. It would bthrue that Vf(?l,j) > Vf(i,j) and
V5G| = IVFGD) < VIG5 — V1G,0)% After
simplifying and square rooting, the proposition is proved. W
Proposition 4: The point-wise error of the Laplacian dataset
calculated based on the raw and the reconstructed dataset can
be derived as Formula (18):
V2 £ (i, §) = V21 (i, 5)] < e (18)
Proof: Based on the Formula (9), the value at point(z,
7) of the Laplacian dataset is calculated by the sum of the
second-order partial derivatives as V2f(i,j) = D(i + 1,75) +
D(i—1,5)+D(@i,5+ 1)+ D(i,j — 1) — 4D(4, j). Since the
error of every point from the reconstructed dataset and the raw
dataset is up to e, the absolute value of the point-wise error
of the Laplacian dataset is up to 8e. And the same proposition
extends to 3D datasets with a maximum error of 12e. The
proposition is proved. u
Proposition 5: The error of the Sobolev norm 2 order 0
calculated based on the raw dataset and the reconstructed
dataset can be derived as Formula (19):

1 £llo.2 = || fo2ll < \/2e x Avg + €2 (19)
where Avg:%

Proof: Based on the Formula (11), the Sobolev Nomr 2
order O is calculated by the value of points of raw datasets.
In the worst case, each element of the reconstructed dataset is
larger than the element of the raw dataset by e. It would be
true that || f||o.2 < ||fo.2||. After squaring the difference of the
order 0 of Sobolev Norm 2, the equation can be represented as
(1 fllo.2~[1Foz2l)? < (I Fllo.2)2— (Il foll)2. After simplifying
and square rooting, the proposition is proved. ]

Due to the complication of the Sobolev Norm 2 Order 1
and Order 2, the proofs of the maximum error of them will
be represented in our future work.

Takeaway 1: The maximum error regarding several
derivative metrics such as Laplacian and derivative maxi-
mum error is only determined by the user-specified error
bound e. The point-wise error of derivative datasets has an
upper bound of 2¢, and the point-wise error of Laplacian
datasets has the upper bound of 8¢ and 12¢ in 2D and 3D,
respectively.

Takeaway 2: For some derivative metrics such as deriva-
tive’ PSNR, maximum error of gratident length, and 0-
ordered Sobolev norm 2, the deviation is determined not
only by e, but also by the raw dataset values or derivative
metric values. The derivative’ PSNR depends on the value
range of the first-order partial derivative datasets; the
maximum error of the gradient length depends on the
value of first order derivatives of the raw dataset in
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respective directions; the maximum error of the Sobolev
norm 2 order 0 relies on the average of the raw dataset.

D. Tool Chain and Development

The analysis workflow that involves different open-source
tools and our codes is described in Appendix B.

IV. EVALUATION AND ANALYSIS

In this section, we conduct several experiments and ana-
lyze the evaluation results regarding several derivative-related
metrics.

A. Scientific Application Datasets in Our Study

We perform the evaluation using 4 real-world scientific
applications from different domains. All the datasets were
downloaded from SDRBench [37], [38], which are described
in Appendix C in detail.

B. Characterization of The Impact of Lossy Compressors on
Derivative-related Metrics

First, we check the data quality of gradient length calculated
based on the reconstructed dataset under 5 cutting-edge com-
pressors (denoted by Cmprs) with different compression error
bounds. Because of space limits, we demonstrate the compres-
sion ratio (denoted by CR), maximum error, average error and
PSNR using only the NYX dataset (baryon_density_log_2),
as shown in Table I (The large numbers have be bolded). We
can observe that the maximum error of gradient length dataset
calculated based on the raw and reconstructed dataset is larger
than the real maximum compression error under 3 compres-
sors, even up to 2.69x lager than the compression error in
some cases. Whereas, the maximum errors demonstrated in
the gradient length are smaller than the compression errors
on the raw data with respect to the other two compressors
probably due to different compression mechanisms. Due to
the small average value of the elements in the gradient length
dataset, the point-wise average errors of gradient length are
always smaller than the compression errors on the raw dataset.
The similar observation also goes to the PSNR of gradient
length. Takeaway 3: For a relatively smooth dataset with
the lossy compression, the point-wise average error of
the gradient length dataset calculated from the raw and
the reconstructed dataset tends to be smaller than the
compression error, but the maximum error tends to be
larger than that.

Figure 2 represents the visual comparison of the data
distortion of the raw dataset and the gradient length dataset cal-
culated based on it under 2 compressors. Figure 2a and Figure
2b show the 3D rendering and 2D top view of the raw dataset,
respectively. Figure 2c and Figure 2d show the reconstructed
data from SZ3 and ZFP with compression ratio CR=117,
respectively, and we can observe that the reconstructed data’s
visual quality is good for both compressors. Regarding gradi-
ent length, the visual difference of gradient length calculated
based on the raw dataset and the reconstructed dataset under
SZ3 (Figure 2g) is also slight, but the data distortion of
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TABLE I: Raw, Reconstructed and Gradient Length Datasets.

baryon density log2 From EXASKY-NYX
Cmprs e CR Maximum Error Average Error PSNR
Raw & GL Raw & GL Raw & GL
Rec Rec Rec

1 497 1.0000 | 1.1508 | 1.23E-1 | 5.27E-2 [ 41.5377 36.8293

SZx 1E-1 3.09 0.0313 [ 0.0375 | 7.85E-3 | 351E-3 | 65.7024 61.0256
h 1E-2 2.40 0.0039 | 0.0048 | 9.86E-4 | 443E-4 | 83.7226 78.9964
1E-3 1.89 0.0005 | 0.0007 | 1.23E-4 | 5.55E-5 | 101.7827 | 97.0500

1 217.09 1.0000 | 2.4658 | 1.18E-1 | 7.88E-2 | 41.3460 32.3355

s72 1E-T 21.65 0.1000 [ 0.2560 | 4.83E-2 | 3.29E-2 | 51.4113 42.2389
1E-2 10.48 0.0100 [ 0.0250 | 4.98E-3 | 3.31E-3 | 71.2081 622314

1E-3 527 0.0010 | 0.0023 | 4.97E-4 | 331E-4 | 91.2144 82.2380

1 103423 | 1.0000 | 2.6937 | 1.92E-1 | 7.63E-2 | 38.7435 33.4168

s73 1E-1 59.20 0.1000 | 0.2287 | 3.67E-2 | 2.39E-2 | 53.3757 448030
1E-2 11.79 0.0100 [ 0.0237 | 491E-3 | 3.28E-3 | 71.3038 62.3314

1E-3 5.37 0.0010 | 0.0024 | 5.00E-4 | 3.32E-4 | 91.1865 82.2100

1 24.20 0.2641 | 0.2266 | 2.25E-2 | 1.63E-2 | 57.1644 48.0335

ZFP 1E-1 6.71 0.0193 [ 0.0156 | 2.10E-3 | 1.60E-3 | 77.7409 68.2671
1E-2 412 0.0024 | 0.0019 | 2.63E-4 | 2.01E-4 | 95.7543 86.2719
1E-3 297 0.0003 | 0.0003 | 3.29E-5 | 2.51E-5 | 113.8156 | 104.3333

p=10 17.14 3.9850 [ 2.6553 | 1.92E-1 | 9.34E-2 | 38.0284 32.4843

FPZIP p=12 12.76 1.0000 0.6572 | 5.33E-2 | 2.41E-2 48.9581 43.6705
p=14 9.12 0.3630 | 0.1648 | 1.37E-2 | 5.75E-3 | 60.7513 56.3279

p=16 6.24 0.1130 | 0.0615 | 3.44E-3 | 1.45E3 | 72.7325 68.2820

gradient length from reconstructed data under ZFP (Figure
2h) is significant. Takeaway 4: The compressor SZ3 can
preserve the gradient length very well at a compression
ratio of 100 with slight distortion of visual quality, but
ZFP may substantially affect visual quality of the gradient
length dataset at the same compression ratio on the NYX
dataset.
TABLE II: Raw, Reconstructed and Laplacian Datasets.

CLOUD(f48.1og10.bin.f32 From Hurricane-ISABEL
Cmprs e CR Maximum Error Average Error PSNR
Raw & L Raw & L Raw & L
Rec ap Rec ap Rec ap
1 15.73 0.9821 6.0603 1.14E-1 2.74E-1 34.4480 46.3344
SZx 1E-1 13.08 0.0995 0.5472 6.91E-3 2.12E-2 58.6824 69.1870
1E-2 10.75 0.0039 0.0388 8.63E-4 | 2.70E-3 76.7594 87.1710
1E-3 9.59 0.0005 0.0048 1.08E-4 | 3.38E-4 94.8283 105.2177
1 102.83 1.0000 11.5006 1.50E-1 3.43E-1 30.4448 39.6637
s72 1E-1 40.50 0.1000 1.1322 1.35E-2 6.96E-2 50.7639 55.6239
1E-2 26.81 0.0100 0.1141 1.38E-3 6.61E-3 70.9799 75.9179
1E-3 18.56 0.0010 0.0119 1.30E-4 | 6.84E-4 91.0653 95.8165
1 111.08 1.0000 11.5480 1.71E-1 2.02E-1 32.9973 42.7558
s73 1E-1 53.44 0.1000 1.1247 3.50E-2 | 3.78E-2 48.4059 58.7284
: 1E-2 27.00 0.0100 0.1146 1.48E-3 | 4.62E-3 72.4406 77.3927
1E-3 18.70 0.0010 0.0111 2.14E-4 | 4.75E-4 91.0997 97.2605
1E 19.30 0.3112 1.5371 9.05E-3 | 3.80E-2 54.6258 59.6900
ZFP 1E-1 12.30 0.0201 0.0996 5.43E-4 | 2.69E-3 78.1210 82.9645
1E-2 9.62 0.0025 0.0121 6.73E-5 | 3.48E-4 96.0244 100.7967
1E-3 7.86 0.0003 0.0015 1.03E-5 | 4.41E-5 113.9136 118.7569
p=10 41.22 0.2500 1.2114 8.67E-2 2.29E-2 41.2149 62.5481
FPZIP p=12 30.83 0.0625 0.3135 2.66E-2 | 6.33E-3 51.4619 73.9942
p=14 24.45 0.0015 0.0772 1.15E-2 | 2.17E-3 58.6077 83.5911
p=16 19.94 0.0039 0.0209 8.68E-4 | 3.57E-4 81.1468 98.5534
We present the data distortion of the Laplacian datasets
calculated based on the raw and the reconstructed datasets

regarding several metrics in Table II. The results from the
Hurricane-ISABEL dataset (CLOUD{f48.10og10.bin.f32) under
different compressors show that the maximum error of Lapla-
cian datasets are much larger than the maximum compression
error in all cases with the peak around 11.55 times (which is
held in the theoretical maximum error with 12e at Propositio
4). The average error of the Laplacian dataset calculated
by summing up the second-order derivatives of the three
dimensions grows rapidly with the dramatic variation change
of the raw dataset. The experiment results show that only the
average error of Laplacian datasets calculated based on the
datasets recovered by FPZIP is smaller than the actual com-
pression error, while the average error of Laplacian datasets
caused by the other four compressors is larger than the actual
compression error. We can observe that the PSNRs of the
Laplacian datasets are all larger than that of the raw and
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Fig. 2: Data Distortion of Raw and Gradient Length from SZ3 and ZFP, NYX, Compression Ratio 117.

reconstructed dataset probably due to the Laplacian datasets
with a bigger range.

To demonstrate the influence of the Laplacian dataset caused
by the lossy compression on the raw dataset, we present the
visual distortion of the Laplacian data calculated based on the
reconstructed dataset under SZ3 with different compression
error bounds (see Appendix D: Figure 3). Figure 3a show
the 3D rendering of the raw dataset, as well as the Figure
3b and Figure 3c represent the 3D rendering and 2D slicing
pictures of the Laplacian dataset, respectively. We can observe
that the Figure 3d and Figure 3e show little visual distortion
under SZ3 with absolute error bound e=1E-2 and 1E-1 (value-
range relative error bound around 1E-3 and 1E-2), respectively.
While with the compression error bounds larger than that,
the results have a non-negligible visual error of Laplacian
datasets. Takeaway 5: The Laplacian metric of raw datasets
can be well preserved under SZ3 with the value-range
relative error bound 1E-2 and a compression ratio of 53,
while the compression with higher error bounds will cause
a significant visual distortion on the Hurricane-ISABEL
dataset.

Through Table IV to Table VII (as presented in Appendix
E), we can clearly observe the influence of lossy decompressed
data on the Sobolev Norm 2 of the datasets based on different
compression error bounds. The Sobolev Norm 2 is mainly
calculated by the second order square of values and partial
derivatives of the scalar field datasets, in which the larger
the values and partial derivatives, the larger Sobolev Norm
2 values are. We note that the data distortion of Sobolev
Norm 2 affected by the lossy compression exhibits similar
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trends on the 4 datasets. The lossy compression has nearly no
impact on the Oth-, first-, and second-order of Sobolev Norm
2 under all compressors with e=1E-4, and even some lossy
compressors can perform the same results with the error bound
e=1E-3. By comparison, the lossy compression applied on raw
datasets does not project a particular changing trend of the data
distortion for different orders of Sobolev Norm 2.

V. CONCLUSION AND FUTURE WORK

In this paper, we provide an in-depth understanding of the
impact of lossy compressors on the derivative-related metrics.
We theoretically derive the upper bounds of the distortion
for different derivative-related metrics under the error-bounded
lossy compression. In our experiments, we run 5 state-of-the-
art lossy compressors with 4 real-world application datasets,
and present the observed distortion of derivative metrics under
the lossy compression compared with their original true values.
We summarize 5 takeaways, which we believe are very helpful
to scientific applications related to derivative calculation.
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APPENDIX

A. Description of Error-bounded Lossy Compressors

e ZFP: ZFP is an outstanding error-bounded lossy com-
pressor designed based on near-orthogonal data trans-
form, which exhibits very high execution performance
and also high data quality (especially for 3D datasets).
ZFP supports three compression modes — accuracy (or
absolute error bound), precision, and fix-rate. According
to the prior studies (also as mentioned in ZFP’s official
website), the accuracy mode generally leads to the best
rate distortion, so we use the accuracy mode in our
investigation.

SZ2 [16]: SZ2 is a classic prediction-based lossy com-
pressor for scientific datasets, which is designed based on
a prediction-based compression model. It has a hybrid
predictor (Lorenzo and Linear-regression), followed by
quantization, Huffman encoding and Zstd [39]. SZ2 sup-
ports compression based on absolute error bound (ABS),
value-range based relative error bound (VR_REL), point-
wise relative error bound (PW_REL) [40]-[42] and peak
signal to noise ratio (PSNR) [43]. In our investigation, we
choose the ABS mode because of the following reasons:
(1) VR_REL and PSNR are equivalent to ABS in the
regard of rate distortion, because SZ actually transforms
them to corresponding absolute error bounds and then
performs compression using the ABS mode [14], [43];
(2) PW_REL always suffers from very low compression
ratios, as verified by prior works [40].

SZ3 [17], [19]: SZ3 is a more advanced compressor over
SZ2 especially in the situation with high compression
ratios. In principle, the key difference between SZ3 and
SZ2 is that SZ3 adopts a more effective predictor called
dynamic spline interpolation [], which can obtain abut 2X
higher compression ratios with the same PSNR. SImilar
to SZ2, we also use the ABS mode to perform the
compression for SZ3.

SZx [3]: SZx (an ultra-fast error-bounded lossy com-
pressor) is designed particularly for the high-speed re-
quirement. SZx is about 3-4X as fast as SZ2/3 and
ZFP on single CPU and about 10X faster on GPU,
with a reasonably degraded compression ratios. SZx’s
compression ratio is generally around 5-30 [3], which
is still much higher than the lossless compressors such
as Zstd. SZx supports only absolute error bound (ABS)
mode, so all the experiments with SZx in our study are
based on ABS.

FPZIP [12]: FPZIP is a classic lossy compressor which
is developed based on Lorenzo predictor. FPZIP controls
the data distortion via an integer (called precision), whose
value is in the range of [1,32] (higher number means
higher precision). A prior study about preserving vector-
based critical points (mainly determined by gradients) in
lossy compression showed that FPZIP outperforms both
SZ2 and ZFP in rate distortion. As such, we include
FPZIP in our study related to gradient metrics.
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TABLE II: Data Fields of Applications Used by Evaluations

Datasets of application size per field precision
baryon density log.f32 NYX 512 x 512 x 512 single
CLOUDf48.log10.bin.f32 Hurricane ISABEL | 100 x 500 x 500 single
CLDHGH 1 1800 3600.dat CESM-ATM 1800 x 3600 single
density.d64 Miranda 256 x 384 x 384 double

B. Analysis Workflow and Tool chain

D

2)

3)

4)

We run all the error-bounded lossy compressors listed
in Appendix A by their executables built from their
packages.

Then, we perform the corresponding decompression for
each compressed data file to get the lossy reconstructed
data files, based on four absolute error bound (1E-1, 1E-
2, 1E-3 and 1E-4). Since FPZIP does not have absolute
error bound mode but the precision mode, we run it with
different precision settings so as to obtain comparable
compression ratios with other compressors.

Then, we generate all the derivative metrics or datasets
which are listed in Section III-B. Specifically, we imple-
mented all the derivative metrics in QCAT [29], and also
integrated them in the Z-checker library/tool [27] such
that our codes can also be used by other researchers if
needed.

Finally, we use the analytical functions (such as calcu-
lateSSIM) provided by QCAT to perform an in-depth
analysis, and also use the visualization tool (either
PlotSlicelmage offered by QCAT [29] or the vis panel
offered by Paraview [30]) to plot the data for further
understanding the impact of lossy compressors on these
derivative metrics.

C. Application Datasets Used in The Paper

NYX [44]: An adaptive mesh, cosmological hydrodynam-
ics simulation code.

Hurricane: A simulation of a hurricane from the National
Center for Atmospheric Research in the United States.
CESM-ATM [45], [46]: Community Earth System Model
(CESM) is a fully-coupled global climate model provid-
ing computer simulations of the Earth’s climate changes.
CESM involves multiple sub-modules such as ICE, At-
mosphere (ATM), Ocean (OCN), and Land (LND). We
use ATM model in our experiments.

Miranda [47]: A radiation hydrodynamics code designed
for large-eddy simulation of multicomponent flows with
turbulent mixing.

We present the details in Table III.

D. Visualizing Impact of Lossy Compression on Laplacian

Figure 3 visualizes the impact of SZ3 on Laplacian with
Hurricane simulation dataset, based on different error bounds.

E. Evaluation Results about Sobolev Norms

The evaluation results about the impact of lossy compres-

sion

on Sobolev norms are presented in Table IV through VIL
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Fig. 3: Laplacian Distortion and Compression Error Bound in SZ3, Hurricane

TABLE 1V: The Sobolev Norm 2, CESM-ATM

TABLE VI: The Sobolev Norm 2, Miranda

CLDHGH_1_1800_3600.dat density.d64
Cmprs & e CR Order 0 Diff 0 Order 1 Diff 1 Order 2 Diff 2 Cmprs & e CR Order 0 Diff 0 Order 1 Diff 1 Order2 Diff2
Raw Data T 0.251206 0 0.251428 0 0.251479 0 Raw Data .00 1.923554 0 1.939679 0 2.138136 0
TE-T | 3957 | 0250500 | 0.000706 | 0.250994 | 0.000434 | 0.252732 | 0.001253 TE-1 | 3805 | 1.920580 | 0.002974 | 1.935242 | 0.004437 | 2.119065 | 0.019071
§zx | JTE2Z | 470 [ 0251114 | 0.000092 | 0251335 | 0.000093 | 0.251402 | 0.000077 szx | B2 | 2782 | 1923153 | 0.000401 | 1.39087 | 0.000592 | 2.135641 | 0.002495
1E3 3.09 | 0251194 | 0.000012 | 0.251415 | 0.000013 | 0.251466 | 0.000013 TE3 | 2151 | 1923501 | 0.000053 | 1.939602 | 0.000077 | 2.137820 | 0.000316
1E-4 230 0251205 | 0.000001 | 0.251427 | 0.000001 | 0.251478 | 0.000001 1E-4 15.85 1.923550 | 0.000004 | 1.939674 | 0.000005 | 2.138116 | 0.000020
TE-T | 809.42 | 0251100 | 0.000106 | 0.251303 | 0.000125 | 0251408 | 0.000071 TE-T | 60341 | 1.922877 | 0.000677 | 1.938750 | 0.000929 | 2.134620 | 0.003516
szz | _TE-Z | G0I8 0251232 | 0.000026 | 0251479 | 0.00005T | 0251795 | 0.000316 sza | JEZ | T8850 | 1923544 | 0.000010 | 1939668 | 0.00001T | 2.T38T14 | 0.000022
TE3 | 17.15 | 0.251207 | 0.000001 | 0.251429 | 0.000001 | 0251488 | 0.000009 TE3 | 12213 | 1.923558 | 0.000004 | 1.939683 | 0.000004 | 2.138139 | 0.000003
TE-4 | 704 | 0251206 0 0.25T428 0 0.25T479 0 TE-4 | 4326 | 1923554 0 1.939679 0 2.138137 | 0.000001
TE-T | 307948 | 0251274 | 0.000068 | 0.251480 | 0.000052 | 0.251504 | 0.000025 TE-1 | 2668.65 | 1.922057 | 0.001497 | 1.936769 | 0.002910 | 2.120703 | 0.017433
sz3 | JEZ | 13722 0251190 | 0.000016 | 0251409 | 0.000019 | 0251502 | 0.000023 sz3 618.52 | 1.923658 | 0.000104 | 1.939789 | 0.000110 | 2.138293 | 0.000157
TE-3 | 19.77 | 0.251207 | 0.000001 | 0.251429 | 0.000001 | 0.251485 | 0.000006 15448 | 1.923569 | 0.000015 | 1.939695 | 0.000016 | 2.138163 | 0.000027
IE4 | 708 | 0.251206 0 0.25T428 0 0.251479 0 56.89 | 1.923554 0 1.939679 0 2.138137 | 0.000001
TE-T | 1790 | 0.251283 | 0.000077 | 0.251515 | 0.000087 | 0251646 | 0.000167 7540 | 1.923579 | 0.000025 | 1.039711 | 0.000032 | 2.138237 | 0.000101
gFp | IE2Z | 944 [ 0251199 | 0.000007 | 0251421 | 0.000007 | 0251476 | 0.000003 ZEP 5140 | 1.923551 | 0.000003 | 1.039675 | 0.000004 | 2.138125 | 0.000011
TE3 | 534 | 0251207 | 0.000001 | 0.251429 | 0.000001 | 0.251480 | 0.000001 35.60 | 1.923554 0 1.939679 0 2.138138 | 0.000002
1E-4 | 324 | 0251206 0 0.251428 0 0.251479 0 2330 | 1923554 0 1.939679 0 2.138137 | 0.000001
p=14 | 2194 | 0.248350 | 0.002856 | 0.248575 | 0.002853 | 0.248691 | 0.002788 39.50 | 1.703893 | 0.219661 | 1.720822 | 0.218857 | 1.932323 | 0.205813
FPZIP p=16 12.74 0.250488 | 0.000718 | 0.250709 | 0.000719 | 0.250765 | 0.000714 FPZIP 37.28 1.868802 | 0.054752 1.884560 | 0.055119 | 2.079579 | 0.058557
p=18 7.64 0.25T027 | 0.000179 | 0.251248 | 0.000180 [ 0.251299 | 0.000180 36.03 1.910055 | 0.013499 | 1.926076 | 0.013603 | 2.123459 | 0.014677
p=20 [ 524 [ 0251161 | 0.000045 [ 0.25T383 | 0.000045 | 0.251434 [ 0.000045 3481 | 1.920231 | 0.003323 | 1936332 | 0.003347 | 2.134537 | 0.003599
TABLE V: The Sobolev Norm 2, NYX TABLE VII: The Sobolev Norm 2, Hurricane ISABEL
baryon_density_log.{32 CLOUDI8.logl0.bin.i32
Cmprs & e CR Order 0 | Diff0 | Order1 | Diff1 | Order2 Diff2 Cmprs & e CR | Order0 | Diff 0 | Order 1 Diff 1 Order2 Dili2
Raw Data 100 | 1441198 0 1.473953 0 1.487979 0 Raw Data 100 | 12193243 0 12.258431 0 12.639667 0
1 497 | 1390223 | 0.050975 | 1.417625 | 0.056328 | 1418664 | 0.069315 T 1573 | 12104116 | 0.089128 | 12.160550 | 0.097872 | 12.509620 | 0.130047
szx | JET 3.09 T.434077 | 0.007121 | 1466602 | 0.007351 | 1.480721 | 0.007258 sz TET 1 1308 | 12187895 | 0.005348 | 12252512 | 0.005919 | 12631488 | 0.008179
IE2 | 240 | 1440302 | 0.000896 | 1.473026 | 0.000927 | 1.487042 | 0.000937 X [IE2 | 1075 | 12.192575 | 0.000668 | 12257692 | 0.000739 | 12.638643 | 0.001024
1IE-3 1.89 1.441086 [ 0.000112 | 1.473837 [ 0.000116 [ T.487861 [ 0.000118 TE-3 | 959 | 12.193160 | 0.000083 | 12258338 | 0.000092 | 12.639539 | 0.000128
1 217.09 | 1430359 | 0.010839 | 1.466008 | 0.007945 | 1.544127 | 0.056148 1 102.83 | 12.115463 | 0.077780 | 12.174132 | 0.084299 | 12.522736 | 0.116931
s72 1E-1 21.65 | 1.442209 | 0.00I0TT | T.476344 | 0.00239T | 1.507392 ] 0.019413 szz2 | BT | 4050 | 12.192696 | 0.000547 | 12257943 | 0.000487 | 12.639706 | 0.000039
TE-2 | 1048 | 1441210 | 0.000012 | T.47398T | 0.000028 | T.488215 | 0.000236 TE-2 | 2681 | 12.193083 | 0.000160 | 12258271 | 0.000160 | 12.639513 | 0.000154
1E3 | 527 T.441199 | 0.000001 | 1.473953 0 T.48798T | 0.000002 TE3 | 1856 | 12.193243 0 12.258431 0 12.639667 0
1 103423 [ 1390223 | 0.050975 | 1.417625 | 0.056328 | 1.441138 [ 0.046841 1 T11.08 | 12.243989 | 0.050746 | 12.308690 | 0.050260 | 12.695751 | 0.056084
sz3 | TET | 5920 | 1442111 | 0.000913 | T.475156 | 0.001203 | 1.493628 | 0.005649 sz3 | TE-T | 5344 | 12165990 | 0.027253 | 12231398 | 0.027033 | 12613321 | 0.026346
TE2 | 1179 | 1441214 | 0.000016 | 1.473984 | 0.000031 | 1.488205 | 0.000226 TE-2 | 2700 | 12.192990 | 0.000253 | 12258190 | 0.000240 | 12.639446 | 0.000221
TE3 | 537 T441199 | 0.000001 | 1473953 0 T.48798T | 0.000002 TE-3 | 18.70 | 12.193290 | 0.000047 | 12.258478 | 0.000047 | 12.639713 | 0.000046
T 2420 | 1.441280 | 0.000082 | 1.474331 | 0.000378 | 1.490815 | 0.002836 1 1930 | 12.195410 | 0.002167 | 12.260614 | 0.002184 | 12.641970 | 0.002303
arp | IET 671 T.441194 | 0.000004 | 1.473952 | 0.000001 | 1.488015 | 0.000036 zFp |_1E-T | 1230 | 12193313 | 0.000070 | 12258501 | 0.000070 | 12.639736 | 0.000069
B2 | 412 T.441199 | 0.000001 | 1.473954 | 0.000001 | 1.487980 | 0.000001 TE2 | 9.62 | 12.193236 | 0.000007 | 12258424 | 0.000007 | 12.639661 | 0.000006
1E3 | 297 T.441198 0 1473953 0 487979 0 TE-3 | 7.86 | 12.193246 | 0.000003 | 12258434 | 0.000003 | 12.639670 | 0.000003
=10 | 17.14 | 1.218766 | 0.222432 | 1.253661 | 0.220292 | 1.324954 | 0.163025 p=14 | 41.22 | 12.106090 | 0.087153 | 12.171206 | 0.087225 | 12.552070 | 0.087597
ppzip | P=12 | 1276 | 1378017 | 0.063I81 | 1.410079 | 0.063874 | 1431586 | 0.056393 Fpzip | P=16 | 3083 | 12166302 | 0026941 | 12231404 | 0.027027 | 12612146 | 0027521
p=17 | 912 1424908 | 0.016290 | 1.457346 | 0.016607 | T.471807 | 0.016172 p=18 | 2445 | 12.181359 | 0.011884 | 12.246458 | 0.011972 | 12.627181 | 0.012486
p=16 6.24 1.437095 | 0.004103 | 1.469760 | 0.004193 | 1.483785 | 0.004194 p=20 19.94 12.192394 | 0.000849 | 12.257587 | 0.000843 | 12.638856 [ 0.00081T

53

Authorized licensed use limited to: Argonne National Laboratory. Downloaded on July 05,2023 at 05:14:14 UTC from IEEE Xplore. Restrictions apply.




