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ABSTRACT

Today’s scientific simulations and instruments are producing a large
amount of data, leading to difficulties in storing, transmitting, and
analyzing these data. While error-controlled lossy compressors
are effective in significantly reducing data volumes and efficiently
developing databases for multiple scientific applications, they mainly
support error controls on raw data, which leaves a significant gap
between the data and user’s downstream analysis. This may cause
unqualified uncertainties in the outcomes of the analysis, a.k.a
quantities of interest (Qols), which are the major concerns of users
in adopting lossy compression in practice. In this paper, we propose
rigorous mathematical theories to preserve four families of Qols
that are widely used in scientific analysis during lossy compression
along with practical implementations. Specifically, we first develop
the error control theory for univariate Qols which are essential
for computing physical properties such as kinetic energy, followed
by multivariate Qols that are more commonly used in real-world
applications. The proposed method is integrated into a state-of-the-
art compression framework in a modular fashion, which could easily
adapt to new Qols and new compression algorithms. Experiments on
real-world datasets demonstrate that the proposed method provides
faithful error control on important Qols including kinetic energy,
regional average, and isosurface without trials and errors, while
offering compression ratios that are up to 4x of the compression
ratios provided by state-of-the-art compressors.
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1 INTRODUCTION

Today’s large-scale simulation and high-resolution instruments
are producing data at an unprecedented velocity and amount. For
instance, climate simulations can generate over 200 TB of data in 16
seconds [33], and fusion simulations produce over 200 PB of data
in a single run [3]. As such data velocity and amount significantly
outpace storage and I/O systems, there is an urgent need for data
systems to efficiently store and query these scientific data.

Compression is the most promising way to address the big data
problem and has been widely used in designing databases [18, 22,
25, 54, 58] and accelerating queries [14, 21] or analytics [60, 61].
However, traditional compression techniques face critical challenges
when dealing with scientific data. On the one hand, lossless com-
pressors [13, 23, 26] suffer from limited compression ratios (usually
< 2 according to [46, 52]) because of the random mantissas in the
floating-point format. On the other hand, although lossy compres-
sors [37, 50, 56] can obtain fairly high compression ratios, they
have certain data loss during the compression, which may cause
unqualified reconstructed data for post-processing.

Error-controlled lossy compression [10, 16, 36, 40, 45, 47, 53, 62]
has been proposed and developed in recent years to significantly
reduce scientific data volume and provide error controls at the
same time. Using these compressors, scientists can specify an error
tolerance (usually in the forms of L® norms and/or L? norms) and
gurantee the decompressed data is within the given error tolerance
compared with the original data. As such, scientists can control
the impact of the lossy compression on their post hoc analysis
as needed. Error-controlled lossy compressors have been widely
used in different applications including cosmology [57], quantum
chemistry [27], molecular dynamics [64], and climate studies [15].
For the success of error-controlled lossy compressors in multiple
disciplines, there is an ever-increasing trend of using them in the
development of today’s databases [30, 64].

Because of the gap between the error tolerance applied on the
raw data and that on the user’s post hoc analysis, how the recon-
structed data can be guaranteed to produce correct outcomes in the
downstream analysis, a.k.a., Quantities of Interest (Qols), is still the
most critical and challenging issue. Typical Qols, including physical
properties such as kinetic energy and topological information such
as isosurface [48], contain important information that should not be
altered too much during compression, otherwise the reconstructed
data can lead to misinterpretation. However, most existing error-
controlled lossy compressors, including SZ [62] and ZFP [45], have
no error control for Qols. As a result, determining a proper setting



Table 1: Error control provided by existing compressors

o Pointwise | Linear uadratic | Topological
Compressor L L Relative Qol © Qol onIg
ISABELA [36] 7
FPZIP [47] v
ZFP [45] v
SZ [62] v M v
MGARD [11] v v v
cpSZ [41] v v
Our method v v v v v v

to ensure acceptable Qols loss with these compressors requires trial
and error, which is contrary to the benefits of adding error control.

While being understudied in the community, Qol-preserving com-
pression has already been explored for a few specific data analyses.
MGARD [11] is the first compressor that considers Qol preservation
via rigorous mathematical derivation, but it can only guarantee
errors in bounded-linear Qols while many important Qols such
as kinetic energy is nonlinear. The feature-preserving compressor
in [41] proposes an elegant way to keep the locations and types of
critical points in 2D and 3D vector fields, but it is specialized for that
particular feature. Table 1 summarizes the error control provided
by state-of-the-art lossy compressors for scientific data. To the best
of our knowledge, there is no compression software that preserves
families of generic nonlinear Qols such as the polynomial ones.

In this work, we develop both the theory and the implementation
of a general Qol-preserving lossy compression framework. Inspired
by [41], we leverage a pointwise error bound for each data point to
convey the constraints from Qol to data. Specifically, we formulate
the Qol error preservation problem as an error bound derivation
problem for the compression of raw data. We theoretically establish
a series of mappings from the error of target Qols to the pointwise
error bound on raw data. In particular, we show that four families
of important Qols can be preserved in this way and the set of
preservable Qols is closed under certain arithmetic operations. This
method further generalizes to multivariate Qols by taking advantage
of the prediction-based compression pipeline where decompressed
data is immediately accessible during compression. To this end, we
develop a Qol-preserving compressor based on a state-of-the-art
compression framework and validate it using real-world datasets
on a cluster. Our contributions are summarized as follows.

e We develop rigorous error preservation theories for four
families of important univariate Qols. We also prove that
Qols composed through the operations such as addition,
multiplication, and composition, can also be preserved.

e We extend our theories to preserve multivariate Qols based
on the coupled compression scheme in [41]. By leveraging
the immediately available decompressed data during com-
pression, we reduce the preservation of multivariate Qols
to that of univariate Qols, which can be solved using the
proposed error preservation theories.

e We implement a general Qol-preserving lossy compression
framework based on our theories and a state-of-the-art lossy
compressor. Particularly, we decouple the Qol derivation from
the compressor so that 1) new Qol can be easily integrated
and 2) the Qol preservation method can adapt easily to new
compression algorithms.

e We evaluate our framework using four scientific datasets
from real applications on a cluster. Experiments demonstrate
that our method delivers compression ratios that are up to 4X
of the compression ratios provided by the best existing com-
pressors under the same Qol tolerance. The proposed method
is also able to preserve the isosurface, leading to almost no
difference in the underlying visualization. In addition, the
localized error constraints make it easy and convenient for
our algorithm to preserve multiple Qols at the same time.

The rest of the paper is organized as follows. In Section 2, we
discuss about the background and related works. In Section 3, we
formulate the research problem and present an overview of the com-
pression framework. In Section 4, we introduce error preservation
theories for both univariate and multivariate Qols, which serves
as the foundation for the proposed work. In Section 5, we describe
the implementation of the proposed framework. In Section 6, we
present our evaluation results with real-world datasets on a cluster.
In Section 7, we conclude with a vision for future work.

2 BACKGROUND AND RELATED WORKS

In this section, we present the background of Quantities-of-Interest
(Qols) and related works on scientific data compression.

2.1 Quantities-of-Interest in Scientific Data

Scientific data generated by simulations and instruments will be
used in data analytics to identify patterns and extract features. As
studied in [11], Quantities-of-Interest (Qols) are used to refer to
the outcomes of the underlying analytics, derived statistics from
raw data. Typical Qols include physical properties such as mass and
momentum and topological features such as critical points [7] and
isosurface [48], and they can be generalized to any information that
is extracted from the data.

We classify Qols into two categories and define them as follows.
Univariate Qols are defined as the downstream quantities computed
using only one data point. These include momentum p = mo and
kinetic energy E = %mv2 for particles, and logarithmic mapping
y = logx for log-scale visualization, etc. Multivariate Qols are
defined as the downstream quantities computed using multiple
data points. Statistical measurements such as regional average and
topological information such as isosurface fall into this category.

In our paper, we focus on how to preserve four families of Qols
widely used in domain scientific analytics, with the corresponding
visualization on a sample data field in Fig. 1. It is observed that these
Qols exhibit very different properties that are needed by different
data analytics. The detailed mathematical formulation of these Qols
will be presented in Section 3.1.

Polynomials: Polynomials are univariate Qols that involve only
the operations of addition, subtraction, multiplication, and non-
negative integer exponentiation of a data point . As a typical exam-
ple, kinetic energy E = %mvz is the energy that an object possesses
due to its motion, where m and v are the mass and velocity of the
object. Because m is usually a constant (especially for particle simu-
lations), kinetic energy is a quadratic function of v. As one of the
key properties needed in many physics-related domains, the preser-
vation of kinetic energy is important for many physics simulations
including fusion energy science [19] and cosmology [29].



(d) Regional average of 4 X 4 X 4 block (e Isosurface (isovalue = 0)

Figure 1: Visualization of original data and the four Qols on
a scientific data field (NYX velocity_x).

Logarithmic Mappings: Logarithmic mappings are univariate
Qols that map original data to the logarithmic domain with a given
base. As demonstrated in previous work [39], this Qol is particularly
useful for visualizing data with clustered values close to 0, which is
usually the case for certain data fields in scientific datasets (such as
dark matter density in cosmology simulations [2]).

Weighted Sum: Weighted sum is a family of multivariate Qols
that compute aggregated information in local regions, where the
regional average is a particular example. The regional average
is usually used to represent data in coarse resolution for either
visualization or exploratory analysis, as doing that on the entire
data is costly while sampling approaches based on decimation may
not be accurate due to the negligence of unselected data points. For
instance, it is a required preprocessing step for images produced by
the x-ray diffraction in [1] due to the ultra-fast data generation rate.

Isoline/Isosurface: Isoline, also known as contour line, is the
line connecting specified constant values (a.k.a isovalues) in 2D data
and isosurface is its generalization to 3D cases. Similar to weighted
sum, they are multivariate Qols whose computation involves data
from local regions. They are widely used in various applications to
recognize and understand patterns and relationships in the data. For
instance, isobar used in [51] is the isoline used to represent points
of equal atmospheric pressure and isotherm studied in [32] is the
one for equal temperature in climate research.

2.2 Compression for Scientific Data

Many approaches have been proposed in the literature to address the
imbalanced growth between data and storage systems for scientific
applications. Lossless compression techniques such as GZIP [26],
ZSTD [23], and BLOSC [13] can recover the exact data during
decompression, but they suffer from limited compression ratios on
scientific data due to the random mantissas in the floating-point
format. Recently studies show that lossless compression can only
achieve 2x reduction in most cases [46, 52], while at least 10X is
required in many use cases [17].

General lossy compressors such as JPEG/JPEG2000 [50, 56] and
VAPOR [37] are able to trade-off accuracy for high compression
ratios, but they are not trusted by many scientists because of the

unbounded loss in decompressed data. To mitigate this issue, error-
controlled lossy compression is proposed to reduce data while
maintaining a certain level of accuracy.

There are two main models for error-controlled lossy compres-
sion, namely prediction-based [36, 40, 47, 53, 62] and transform-
based [10, 45]. Prediction-based compression models such as SZ [53,
62] usually follow a general compression pipeline [43], which con-
sists of four stages including prediction, quantization, entropy encod-
ing, and lossless compression. In the first two stages, each data value
is predicted using specific predictors, e.g., Lorenzo predictor in [53]
and spline predictor in [62], to take advantage of the spatiotemporal
correlation in the data, and then the difference between the pre-
dicted value and the original value is quantized to an integer value to
reduce the entropy while enforcing the error bound. Please note that
decompressed data is required for prediction during compression
to ensure the enforcement of error bound during decompression.
The quantized integer values are then encoded by entropy encoders
such as Huffman encoder [31] and arithmetic encoder [59], followed
by another lossless compression stage with GZIP [26] or ZSTD [23]
that further reduces the size. ZFP is a transform-based compressor
that compresses data in separate blocks. During compression, it
first converts data in each block to fixed-point format under the
same exponents, and then applies a near-orthogonal transform to
generate coefficients in the transformed domain, which are further
quantized and encoded using embedded encoding. Although these
compressors provide error control on the decompressed data, un-
certainties may arise in Qols derived from raw data because their
compression stages are completely Qol-agnostic.

Recently, the developers of MGARD proposed to preserve Qol
during lossy compression and managed to control the error for
the family of bounded-linear Qols [11]. Drawn from the wavelet
theories and finite element analysis, the original MGARD [10] relies
on multilinear interpolation with L? projection to transform data
into multilevel coefficients, which are then quantized and encoded
using linear-scaling quantization [53] and lossless compression. In
the latest studies, the MGARD team proposed an operator norm to
integrate Qol information, which is used to adjust the quantization
strategy based on prior knowledge. Through careful derivations on
both the Qol and error propagation of multilevel coefficients, they
showed that the errors in bounded-linear Qols, such as mass and
streamlines, can be preserved. Nevertheless, the Qol error control
in MGARD is a little loose due to pessimistic estimations, and it
cannot control the errors in nonlinear Qols.

In [41], the authors proposed a novel way to preserve critical
points in 2D/3D vector fields. Specifically, they transform the re-
quirements of retaining critical points in local cells to sufficient
error bounds on the data points based on how critical points are ex-
tracted, and use them to reduce data with two compression schemes.
However, the derivation is specific to critical point extraction and
thus cannot be generalized to other use cases. There are contradic-
tory deficiencies between the proposed two schemes as well: the
decoupled scheme can adapt to different compression methods but
suffers from limited compression ratios, while the coupled scheme
is tightly integrated with a specific compression method and thus is
hard to adapt when new compression algorithms are developed.

In this work, we develop a Qol-preserving compression frame-
work based on the coupled scheme in [41], but significantly expand



Table 2: Notations

Symbol Description

User-specified error tolerance on Qols.
Actual error of Qols using decompressed data.
Number of data points.
Dimentionality of data.
Original data (single point).
Decompressed data (single point).
Derived error bound for a single data point.
The error of a data point (£ = x — x” € [—¢,€]).
Vectors of x, x’, € in multivariate cases.
€; The i-th element in x, X', €.
Abstraction for univariate Qol.
g Abstraction for multivariate Qol.
Q(f,7,x) | A univariate error bound derivation problem.
|| Operator of getting absolute value.
[-Tpeo Operator of getting L™ norm.

m
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the functionality to guarantee the preservation of a wide range
of Qols and easy adaption to any prediction-based compression
method. Specifically, we develop a general error control theory
to map the tolerance of Qols to that of data for four families of
important Qols, and prove its applicability for any new Qols of
their composition through certain arithmetic operations. We fur-
ther design and implement a flexible and modular compression
framework to decouple Qols from the actual compression method
for easy adaption. Specifically, our framework is integrated into
the latest interpolation-based compressors [62] whose predictor
switches according to the user-specified tolerance, which usually
yields higher compression ratios.

3 OVERVIEW

In this section, we formulate our research problem and describe
the quality measurement, followed by an overview of the proposed
Qol-preserving lossy compression framework. Common notations
used in this paper are summarized in Table 2. The focused Qols that
are preserved in this paper as summarized in Table 3.

Table 3: Target Qols

Name Category Formula Goal
Polynomials univariate f(x) =Y ax’ e<T
Logarithmic Mapping univariate | f(x) = alog, x+c¢ e<T
Weighted Sum multivariate | g(x) = > a;f(x;) e<T
Isoline/isosurface multivariate | g(x) = {x|u(x) =z} | ¢ =0

* Using the localized metric defined in Section 3.

3.1 Problem Formulation

The objective of Qol-preserving lossy compression is to provide
error control on the underlying Qols while compressing raw data
lossily, such that scientists can effectively reduce the volumes of
their data based on their actual needs. We first define Qol in this
paper as follows, and formulate the research objectives thereafter.

DEFINITION 1. A univariate Qol f : R — R is a function that
maps a data value to a quantity, e.g., f(v) = %ma2 maps velocity
v to kinetic energy. A multivariate Qol g : R"™ — R is a function
that maps a vector of data values to a quantity, e.g., g(X) = Y ex X

maps the data vector to its mean value. Note that this definition easily
generalizes to Qols that map original data to multiple quantities.

Given d-dimensional scientific data x and Qol tolerance 7, the
general goal is to achieve maximum compression ratio while en-
suring ¢ = |[f(x) — f(x')|r~> < r for univariate Qol f or ¢ =
|g(x) — g(x”)| < r for multivariate Qol g in decompressed data
x’. Note that some statistical Qols such as Mean Square Errors
(MSE) are defined in the form of g(x, x) instead of g(x). In this case,
we re-define ¢’ (y) = g(x,y) (using y as the independent variable),
such that these Qols can be formulated in the same way.

With this general formulation, we then formulate examples of
the four Qols that will be used in our evaluation. Specifically, we
will preserve f(x) = x* which represents the order of kinetic
energy, and f(x) = log x which is a general logarithmic function
for polynomials and logarithmic mapping, respectively. We will
then consider the preservation of the regional average of x? and the
isosurface with the specified isovalue as two multivariate Qols. As
the general formulation directly applies to the univariate examples,
we mainly focus on the formulation of the latter two.

Regional average of x?: We use the regional average of x?
instead of x as our example because 1) it cannot be preserved by
existing compressors and 2) it can be compared with the univariate
preservation of f(x) = x2. Given data of dimension ny Xnz X- - -Xng
and block size B, we can segment the data into blocks of B?. The
regional average Qol g maps each block of data to a single quantity
that equals to the average of their squares and produce a dataset
with a coarse resolution f%] X f%] X e X f%‘i] The goal is then
to control the maximal error in the coarse-resolution quantities.

Isoline/Isosurface: Formally, the isoline of an isovalue z can be
described as the collection I(z) = {(x,y)|f(x,y) = z and (x,y) €
Q} where f is the functional representation of data and Q is the
corresponding domain, and isosurface is its direct generalization to
3D cases. As there is no general metric to evaluate the error of the
isoline or isosurface, we leverage a localized definition similar to
that of critical points in [41].

We first introduce the classical marching squares algorithm which
extracts isolines (marching cubes for isosurfaces [48]), followed by
our definitions for correct and erroneous cells. In particular, the
algorithm takes one cell with 4 neighbor locations at a time (8 for
3D cases) and determines the shape of the polygon based on their
relative values compared to the isovalue. An edge is identified as
required for representing the isoline if one of the node values on
the edge is larger than the isovalue and the other is smaller. Then,
linear interpolations are performed between the two nodes on the
required edges to find the exact position and generate the isoline.
An example of isoline extraction is illustrated in Fig. 2(a).

Since the shape of the isoline is solely determined by the relative
values of the nodes compared to the isovalue, we define the metric
for isoline preservation as shown in Fig. 2(b). Specifically, we define
a cell as "matched" if the relative values of all nodes (compared
with the isovalue) keep the same in original and decompressed data,
or formally (x — z)(x” — z) > 0 for an isovalue z and any node x
belonging to the cell. Please note that we overlook the perturbations
on the required edges as they will not affect the shape or trend of
the isoline. Mismatches happen in the following 3 cases: (1) False
Negative (FN) if an isoline is present in the original data but absent
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Figure 2: Isoline extraction and examples of False Negative
(FP), False Positive (FN), and False Shape (FS) cells. Red nodes
have larger values than the isovalue while blue nodes have
smaller values. Dotted lines indicate the extracted isoline.

in the decompressed data; (2) False Positive (FP) if an isoline is
absent in the original data but appears in the decompressed data;
(3) False Shape (FS) for any other mismatches that lead to a wrong
connection of an isoline to adjacent cells. The number of FN/FP/FS
will indicate how the isoline is preserved during lossy compression.

3.2 Quality Measurement

We use rate-distortion as a quality measurement in this paper as it
is an important and widely used metric in the community. Rate here
stands for bit-rate, which is computed by the size of the original data
type (e.g., 32 for single-precision floating point and 64 for double)
over compression ratio thus indicating the mean number of bits
used in the compressed format. When multiple fields are present in a
dataset, the aggregated bit-rate is the average bit-rate of all the fields.
We use the error of the underlying Qol as our distortion metric.
Thus, higher compression quality is indicated by a lower Qol error
under the same bit-rate or lower bit-rate (i.e., higher compression
ratios) under the same Qol error. We also present the compression
performance/throughput, which is evaluated by the size of data
divided by the corresponding compression/decompression time.

3.3 System Overview

We present the overview of our Qol-preserving compression frame-
work in Fig. 3 with the bottom line depicting stages in existing
prediction-based lossy compressors (e.g., SZ [53] and FPZIP [47]).
Unlike existing compressors which utilize a uniform global error
bound, our framework leverages a Qol module to estimate the error
bound for each data point and use it during quantization. Specifi-
cally, the pointwise error bound is estimated by a univariate Qol
solver based on original and already decompressed data follow-
ing the theories to be presented in Section 4, and quantized by a
dedicated error bound quantizer to reduce storage cost. Then, the
decompressed value of the error bound (instead of the uniform

global error bound) is fed to the data quantizer in the prediction-
based compression pipeline. When all the data points have been
processed, the quantized values of both error bounds and data are
compressed using Huffman encoding and lossless compression.
Note that the workflow of the proposed framework is similar to
the online compression scheme proposed in [41], but differs in the
decoupled design for generalization and easy extension to both new
Qols and new predictors/compressors. The detailed implementation
and integration with the target Qols will be introduced in Section 5.

Qol preservation

univariate __ error __ error bound compressed
Qol solver bound quantization error bound
decompressed
error bound
: e o ! compr i ¢ lossl
! prediction —>: quantization i—; compressed iy lossless
CT . : i data H i compressor :

overwrite with

decompressed value Prediction-based compression pipeline

Figure 3: Design of Qol-preserving lossy compression frame-
work. The QoI module is fully decoupled from the pipeline
for easy adaption to new Qols and diverse predictors.

4 THEORETICAL FOUNDATION

In this section, we present the theoretical foundation of our Qol-
preserving lossy compression framework. Specifically, we aim to
derive the analytical solutions to preserve certain families of uni-
variate and multivariate Qols using the pointwise error bounds
proposed in [41]. Note that the theories in this section only deliver
a sufficient solution to demonstrate the feasibility of this approach
for the target families of Qols. Integration of the example Qols and
the corresponding optimizations will be introduced in Section 5.

4.1 Univariate Qol Preservation

Our key idea for enabling Qol preservation is to derive the proper
error bound on each point of the raw data according to the Qols.
As such, we formulate the error bound derivation problem for
univariate Qol preservation as follows.

DEFINITION 2. Given a univariate Qol f : R — R and an accept-
able QoI tolerance t, the error bound derivation problem Q(f, 7, x) for
a data point x solves an error bound € in the form of user-specified toler-
ancet, such that |f (x) — f(x")| < = foranyx’ satisfying |x — x| < e.

Per the definition, solving an error bound derivation problem
€ = Q(f, 7, x) returns the required error bound € on the raw data
point x, which leads to a maximal error of 7 in the QoI f. This
definition can be easily generalized to cover Qols that map original
data x to multiple quantities by treating each mapping as a sep-
arate Qol. For instance, it is straightforward to have Q(f,7,x) =
min(Q(fi, 7, x), Q(f2, 7, x)) when f(x) = (f1(x), f2(x)). Once € is
identified, compressing x with the error bound € guarantees that
the error in the underlying Qol is less than 7. Note that e must exist,
because € = 0 is a feasible solution. Based on this property, we
further define the preservability of Qols as follows.



DEFINITION 3. A univariate Qol f is preservable if there is an
analytical solution for the error bound € = Q(f, 7, x).

This definition indicates a sufficient condition for univariate Qols
that can be preserved in this paper. Also, when multiple preservable
Qols are present at the same time, selecting the minimal derived
error bound will guarantee the required errors on them all, as
summarized in the following corollary.

CoRroLLARY 1. min(Q(fi, 71, x), Q(f2, 72, x)) provides a sufficient
error bound that satisfies the error requirements of two Qols (71 for fi
and 1y for f,) at the same time.

We seek for sufficient bounds to solve the error bound derivation
problems in practice, because the optimal solution that yields the
largest € is usually hard to find especially for complex nonlinear
Qols. In the following, we present and prove some general properties
for preservable Qols at first, and then the sufficient solutions for
certain families of Qols.

First, we show that the preservable Qols are closed under certain
arithmetic operations including addition, multiplication, and com-
position, as shown in the following lemmas. These properties can
be used to compose complex preservable Qols based on existing
ones thus increasing the coverage of the proposed method.

LEMMA 1. Ife; and €3 are sufficient solutions for Q(fi, 71, x) and
Q(f2, 12, x), respectively, then min(ey, €2) is a sufficient solution for

Q(fi + form1 +12,%).
ProoF. Let f = fi+f2. We have | f(x)—f(x”)| < |fi(x)—fi(x")|+

|f2(x) = f2(x")| < 71 + 72 using the triangular inequality. m]

LEMMA 2. Ife; and ey are sufficient solutions for Q(fi, 71, x) and
Q(f2, 12, x), then min(e1, €2) is a sufficient solution for Q(fifa, 1172 +
i)z + | f2(x) |72, x).

ProOF. Let f = fi fo. We have the following relationship:

If ) = fED)=1f(x) = f@) = AENfa(x) = fi(x) fo ()]
= (i(x) - i) (L () - o () + (i(x) - fi(x))
R+ i) (L) - ()]
<A - ANAE) - L)+ 1(AGK) - filx)]
ARG+ A®INRE) - f(0)]

<un+|il)ln+1f(x)|n o

By trivially setting 71 = 72, these lemmas can be used to solve
the error bound derivation problem for Qols composed by additive
and/or multiplicative operations, as shown in the below corollaries.

CoRrOLLARY 2. min(Q(fi, 7/2,x), Q(f2,7/2,x)) is one sufficient
solution for Q(fi + f2, 7, x).

COROLLARY 3. Let f* (x) A+ ), T = (x)+\/4f+f (x)?
min(Q(f1, 7, x), Q(fo, 7/, x)) is onesuﬁ?czentsolutlonforQ(ﬁfz, 7,X).
LemMA 3. Q(f2, O(f1, 7, f2(x)), x) is a sufficient solution for Q(fi o

f2, T, x) where o is composition operation.

Proor. Q(fi, 7, f2(x)) gives a sufficient error bound for f>(x) so
a sufficient error bound for x would be Q(f2, Q(fi, 7, f2(x)),x). O

Given these properties, we then identify the several preservable
Qols including the families of polynomials, logarithmic functions,
and radical functions.

LEmMA 4. For non-degenerative linear Qol f (x) = ax+b, e = t/|a|
is a sufficient solution for Q(f, , x).

Proor. By directly applying the triangular inequality, we have
If () = f(x)] < lallx = x| < |ale = . o

THEOREM 1. All polynomial Qols are preservable.

ProoF. Because an order n polynomial can be written as the
multiplication of a linear polynomial and an order n — 1 polynomial,
this can be proved by mathematical induction with Lemma 1/2/4. O

THEOREM 2. For logarithmic Qols f(x) = alogy, x + ¢ withb > 1,
€ = |x| min(1=b~7/1al_p7/lal_1) is a sufficient solution for Q(f, 7, x).
ProoF. Let é = x — x” € [—¢, €]. We have
If () = fFN=1f(x") = f(x)| = |alogy, (1 +&/x)]
< lalllogy, (1 +&/x)| < lallzl/lal = 7 o

Vx, e = 2 = 21/x is a

THEOREM 3. For radical Qols f(x) =
sufficient solution for Q(f, 7, x).
ProoF. Let £ = x — x” € [—¢, €]. We have

<T.

x) = f(x')] = |———
100 - 561 = |

This reduces to (¢ — 7yx)? < 72(x + &) and (£ + 7vx)? > 7%(x + &),
or equivalently £ — (2r+/x + 72)& < 0 and & + (2r+/x — 72)& < 0.
Similarly, it has closed-form solution ¢ = min(z? + 2rv/x, 7% —

2r4/x) = 12 — 21/x. O

4.2 Multivariate Qol Preservation

We define the error bound derivation problem and preservability of
multivariate Qols in a way similar to those of the univariate ones,
which is detailed as follows.

DEFINITION 4. Given a multivariate Qol g : R" — R and an ac-
ceptable Qol tolerance t, the error bound derivation problem Q(g, 7, x)
for input d-dimensional data x solves an error bound €, such that
lg(x)—g(x’)| < 7 foranyx’ satisfying |x—x’| < €, where|x—x’| < €
means |x; — x{| < €; for anyi.

The definition is a direct extension of Definition 2 which works
for univariate Qols. Instead of solving a single error bound € for
a single data point x in Q(f,7,x), Q(g,7,x) needs to solve the
sufficient error bounds for all data points that are involved in the
computation of the multivariate Qol g.

DEFINITION 5. A multivariate Qol g is preservable if there is an
analytical solution for the error bound vector € = Q(g, 7, X).

Similar to Definition 3, this definition indicates a sufficient con-
dition for multivariate Qols that can be preserved in this paper,
and can be generalized to cover Qols that map the original data to
multiple quantities. Based on this definition, we have the following
theorem for multivariate Qol preservation.

THEOREM 4. Preservation of a multivariate Qol can be reduced
to that of a family of univariate Qols when the prediction-based
compression pipeline is used.
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Figure 4: Online error bound derivation and compression with prediction-based compression pipeline for multivariate QolIs.

ProoF. We reduce the multivariate error bound derivation prob-
lem Q(g, 7, %) to a family of univariate problems as follows. As men-
tioned in Section 2, prediction-based compressors such as SZ [53]
and FPZIP [47] process input data point one by one, and the decom-
pressed value for any data point is known immediately after it is
processed. Consider the case when the i-th point is being processed.
As x; is the only value that will be changed in this iteration, the mul-
tivariate Qol g(x) can be regarded as a univariate one when x;(; ;)
are treated as constants with decompressed values and x; ;5 ;) are
treated as constants with the original value, respectively. Specifi-
cally, let X; = (x[, ..., X]_, X, Xi+1, . .., Xn—1) T and g;(x;) = g(%3)
be a univariate Qol of x;, and we have Xp = x, X" = Xy, and g; (x]) =
g(Xit1)- Then, the error bound derivation problem at the current
iteration with 7; as the allowed tolerance is reduced to Q(gi, 7i, x;)
based on the definitions in the previous section. If Q(g;, 7, x;) is
preservable for any i, the multivariate problem is divided into n
univariate problems and solved thereafter by letting 7; = 7/n, based
on the fact that |g(x) — g(x')| < Ig(x) — g(X1)| +|9(x1) — 9(%2)| +
o+ 19(xnm1) — 9(xX)| = Zilgi(xi) —gi(x))| < n - (r/n) = 7. To
illustrate the processing steps, we present an example with 2 x 2
input data x = (xo, x1, x2, x3) T in Fig. 4. m}

One can prove that a wide range of Qols are preservable given
Lemma 1, 2, and 3, and the four theorems. For instance, the norm of

velocity v = [vZ + vi is preservable because it is composed by a

radical function and a polynomial. As a more complex example, if
the original data is a probability function, the Kullback-Leibler di-
vergence [35] between the original and decompressed distributions
is preservable as it is a weighted average of logarithmic functions.

5 IMPLEMENTATION AND INTEGRATION

In this section, we introduce the implementation of our lossy com-
pression framework and the integration of the example Qols. Com-
pared with existing error-controlled compressors, the proposed
framework features guaranteed Qol error control, non-iterative
compression, and high extensibility to new Qols and predictors.

5.1 Algorithm and Implementation

We present our Qol-preserving compression algorithm in Algo-
rithm 1 based on a modular prediction-based compression frame-
work [43], with the highlighted changes in blue (compared with
the general compression algorithms). Specifically, a Qol object is

initiated in the beginning (line 1) with user-specified error tolerance
7. In each iteration, the Qol information is used to estimate the
pointwise error bound. This estimated pointwise error bound is the
minimum of the global error bound and the one derived from Qol
(line 3-4). Then, this estimated error bound is quantized using a
log-scale quantizer [41] and immediately recovered as the actual
pointwise error bound to guide the quantization of data points (line
5-7) using the existing algorithms [53]. Next, an optional sanity
check (line 8-12) is performed to eliminate corner cases where the
error bound is not met due to round-off errors. By the end of each
iteration, tolerance in the Qol is updated using decompressed data
(line 13). In the end, the quantizer and encoder for the derived
error bounds are both stored to ensure complete information dur-
ing decompression (line 17 and line 19). Such a design decouples
Qol preservation (which includes error bound derivation and error
bound compression) with data compression (which compresses data
based on the derived error bounds), thus facilitating the integration
of the former to diverse prediction-based compression algorithms.

Algorithm 1 QOI-PRESERVING Lossy COMPRESSOR

Input: input data d of size n, Qol error 7, global error bound €,
Output: compressed data cc
1: qoi.init(r) /*Initiate Qol information™/
2: fori=1—ndo
3: eb « qoi.estimate_eb(d[i]) /“Estimate error bound for data*/
4: eb < min(ey, eb) /*Ensure global error bound*/
5 eb, q_e[i] < quantizer_eb.quantize(eb) /*Quantize computed error bound*/
6 p « predictor.predict(d[i]) /*Perform prediction*/
7 qlil,d'[i] « quantizer.quantize(d[i], p,eb) /*Perform quantization
based on the estimated error bound*/
8:  /*Optional condition check for Qols*/
9: if qoi.check_compliance(d[i], d’[i]) then
eb « 0,q_e[i] « 0/*Set error bound to 0*/
qli] « 0,d'[i] « d[i]
end if
qoi.update_tolerance(d[i], d’[i]) /*Update the error tolerance for aggregated
Qols*/
: end for
: ¢ « allocate_memory()
: predictor.save(c) /*Save predictor*/
: quantizer_eb.save(c) /*Save error bound quantizer®/
: quantizer.save(c) /*Save data quantizer*/
: encoder_eb.encode(q_e, ¢) /*Perform encoding for error bounds®/
: encoder.encode(q, c) /*Perform encoding for data*/
: encoder.save(c) /*Save encoder*/
: cc « lossless_compressor.compress(c) /*Perform lossless compression®/
: return cc

We integrate the proposed method to two families of predic-
tors, namely multi-layer Lorenzo predictors [53] and interpolation



predictors [62], because recent studies show that they lead to the
best rate-distortion under relatively low and high error bounds,
respectively. In practice, we notice that the final compression ratio
will first increase and then decrease when the global error bound
decreases. This is because a very large global error bound will lead
to large errors and low prediction accuracy (thus low compression
ratios) for certain datasets, while a very small global error bound
will over-preserve the data in most cases. As such, we set the most
appropriate global error bound based on a sampling approach if it
is not specified by the users. Specifically, we start with the largest
allowed error bound (or a rough estimation) and use the selected pre-
dictors to perform compression on sampled data. The error bound
is decreased by half every time and this process is repeated until the
current error bound leads to a lower compression ratio compared
with the previous iteration.

5.2 Qol Integration

We demonstrate how the examples of the target Qols can be inte-
grated into our framework. To this end, we further show that our
framework is adept at preserving multiple Qols at the same time.

Quadratic function f(x) = x?: Since this Qol is quadratic,
it falls into the polynomial family and the corresponding error
bound derivation problem can be solved by the theory in Section 4.
According to Corollary 3, a sufficient error bound for this problem
would be Q(f, 7, x) = —|x| + Vx2 + 7 because f*(x) = 2|x|. There
is no need to update tolerance in this case as it is a univariate Qol.

Logarithmic mapping f (x) = log, x: The sufficient error bound
for this Qol can be directly derived using Theorem 2 with a = 1,
b =2, and ¢ = 0. Again, there is no need to update tolerance in this
case as it is a univariate Qol.

Regional average of x%: Based on our theory, this Qol can be
treated as Hdzln i decomposed Qols where each of them operates on
a data block independently. Specifically, denoting the set of data in
the i-th block as Q;, the corresponding Qol in this block is translated

ZXEQI' X . . . . .
to gi(x) = ard(o;) 0 this case, where card is the cardinality, ak.a

number of data points in the block. As each g; is a multivariate
linear Qol, they can be preserved using Theorem 4. Specifically, the
sufficient error bound for the j-th data point in the block would
be Q(gi, 7, xj) = % = 7. This reduces to the uniform error
bound of 7 on all the data points, which certainly preserves the
error in the regional average.

We further optimize our method in this case, since the direct
derivation above does not take the cancellation into consideration
when computing the average, leading to over-conservative error
bounds. Specifically, we accumulate an error value e; = 3¢, and
x is processed x — x” in each block during compression, which sums

up the error in all decompressed data at the current stage. Then, a
rxcard(Q;)—e; hich
card(Q;)—j whic
accounts for both the cancellation and the number of points left.
After this data point is processed, the accumulated tolerance will be

updated to e; = e; + x; — xjf. As this method takes the cancellation

possible better solution could be Q(g;, 7, xj) =

during the summation into consideration, we find in practice that it
always leads to better compression ratios than compressing with a
uniform Qol error bound 7.

Isoline/Isosurface: Based on the marching cube algorithm and
our metrics described in Section 3.1, a possible error bound esti-
mation function for a data point x with respect to an isovalue z
could be |x — z|. In a general case where multiple isovalues {z;}
need to be preserved, the estimated error bound be min; |x — z;|. In
our implementation, we optimize the estimation process by sorting
the isovalues at first and then identifying the most adjacent ones
with the binary search for comparison.

Preservation with multiple Qols: Our framework easily gen-
eralizes to preserve multiple desired Qols. Based on Corollary 1, this
can be done by solving the error bounds for all Qols and choosing
the minimal one as the final error bound.

6 EXPERIMENTAL EVALUATIONS

We evaluate our method with the four Qols mentioned above with
four real-world datasets from Scientific Data Reduction Bench-
marks [63]. Specifically, we mainly compare the compression quality
and Qol error control capability of our method with three state-of-
the-art error-controlled lossy compressors, namely SZ-interp [62],
ZFP [45], and MGARD [10, 11]. For all compressors we have bench-
marked, the latest releases from their master branches were used as
of Feb. 1st, 2022. Throughout the evaluation, we use "CR" to denote
compression ratio, "S¢" for compression speed in megabytes per
second (MB/s), "Sp" for decompression speed in MB/s, "NMAE"
for normalized maximal absolute error, and "#FN/#FP/#FS" for the
number of false negative/false positive/false shape cells in the iso-
line/isosurface preservation, respectively.

6.1 Experiment Setup

We evaluate four scientific datasets from diverse applications do-
mains (shown in Table 4), including Hurricane Isabel climate simu-
lation [24], NYX cosmology simulation [12], SCALE climate simula-
tion [44], and QMCPACK quantum Monte Carlo simulation [34].

Table 4: Benchmark datasets

Dataset #Fields Dimensions Size
Hurricane 13 100 X 500 X 500 1.21 GB
NYX 3 512 X 512 X 512 3.00 GB
SCALE 12 98 X 1200 X 1200 6.31 GB
QMCPACK 1 288 X 115X 69 %X 69 | 0.59 GB

All the experiments are conducted on a high-performance clus-
ter [5], where each compute node is equipped with 2 AMD EPYC
7502 processors containing 64 physical cores in total and 128 GB
of DDR4 memory. GCC 9.2 is used as the compiler for all the com-
pressors. Any experiment related to compression/decompression
speed is performed 5 times and the average values are reported.
We present the aggregated results over the datasets in most of the
experiments and use two representative data fields, namely Uf48
and Pf48 from Hurricane ISABEL, to demonstrate the effectiveness
of our method on error control and isosurface preservation.

6.2 Preservation of x?

We first compare the compression quality and performance of our
method with other state-of-the-art lossy compressors when preserv-
ing f(x) = x2. Since none of the existing compressors preserve this



non-linear Qol, we iteratively tune them to make the error of this
Qol in their decompressed data as close to the target as possible.
This usually requires several compress-decompress-verification pro-
cesses that are extremely time-consuming and inefficient. We test
two modes of MGARD: the L® mode [10] (Iabeled "MGARD(inf)"
in the figures) which better preserves pointwise error and the L2
mode [9] (labeled "MGARD(0)") with smooth parameter s = 0 which
better preserves sum of squared errors.

Hurricane

1054
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10731

10724 d

10-14

QMCPACK

Error of x~2

50 75 00 25 50 75
Bit-rate
—e-- SZ-interp -+ ZFP -#-- MGARD(0) -#-- MGARD(inf) -#&-- Our method

Figure 5: Rate-distortion for preserving f(x) = x2.

Fig. 5 shows the overall rate-distortion of all the evaluated com-
pressors on the four datasets. It is observed that our method always
leads to the best compression ratios under the same Qol error bound.
In absolute terms, the compression ratios of our method are up to
1.77x (1E-3 on Hurricane), 4.03X (1E-3 on NYX), 2.06X (1E-2 on
SCALE), and 2.12x (1E-5 on QMCPACK) of those of the best existing
compressors, respectively. Such benefits demonstrate the necessity
of leveraging pointwise error bounds against a uniform error bound,
because the latter usually over-preserves data in many regions.

We also present the compression/decompression speed in Fig. 6
and Fig. 7, respectively, using log-scale because of the large gap
between the fastest and slowest compressors. Similar to previous
works [38, 42, 62], ZFP leads in both the compression speed and
decompression speed in most cases because its optimized implemen-
tation for orthogonal transforms and embedded encoding. SZ-interp
is generally slower compared with ZFP, but it outperforms ZFP
in some small error bounds because the embedded encoding in
ZFP becomes costly in those cases. The two modes of MGARD are
usually the slowest, because they use a general implementation that
is applicable to broader use cases, e.g., compressing data in non-
uniform and unstructured grids. Our method has a slower speed
compared with SZ-interp, because it involves extra computation
including error bound estimation, quantization, and encoding.

Hurricane

800
500
200
100

50

20
10

=

SCALE QMCPACK

800
500
200
100

50

20
10

Compression speed (MB/s)

E
E

1E-1 1E-2 1E-3 1E-4 1E-5 1E-1 1E-2 1E-3 1E-4 1E-5

Error of (x"2)
=3 MGARD(0) [ MGARD(inf) [ ZFP [ SZ-interp A Our Method

Figure 6: Compression speed of different compressors.
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Figure 7: Decompression speed of different compressors.

Since the results above overlook the tuning process, we further
perform a more fair comparison between our method and FRaZ [55],
a state-of-the-art tuning-based compressor that is able to preserve
Qols via trials and errors. Specifically, FRaZ starts with a preset
error bound and compressor, and then iteratively refines the error
bound by decompressing the data and checking the tolerance of
the target Qol. We present the results with FRaZ in Table 5. Note
that we only test FRaZ with SZ and ZFP because our method al-
ready delivers comparable speed with higher compression ratios
compared to MGARD. According to the table, FRaZ cannot achieve
high compression ratios unless lower-bound is set close to the tar-
get. The only case FRaZ outperforms our method in compression
ratio is when 7 = 1E — 1 on Pf48, because the compressed error
bounds in our method manifest high overhead when compression
ratios become extremely high. Also, FRaZ yields similar (and lower
when the number of iterations becomes large) compression speed



Table 5: Preservation of f(x) = x? compared with FRaZ. MT indicates "manually tuned" results. LB is the lower-bound of
acceptable errors in FRaZ and "#Iter" indicates the number of iterations used to find the appropriate setting.

Ufas Pf48
T Compressor LB #lter | CR | Sc | Sp | NMAE | #ter | CR | Sc | Sp | NMAE
1E2 ] 3 1034.90 | 28.72 | 394.08 | 7.75E2 | 3 254836 | 30.63 | 39736 | 8.35E-2
SZ3-FRaZ [5E2 | 3 1034.90 | 28.73 | 394.08 | 77562 | 3 2526.46 | 30.66 | 397.36 | 8.35E-2
OE2 | 25 | 143062 | 445 | 399.03 | 9.73E-2 | 36 | 2913.84 | 313 | 399.03 | 9.63E2
SZ3-MT - - 1517.68 | 154.13 | 507.85 | 991E-2 | - | 3101.16 | 173.20 | 532.42 | 9.96E-2
iE2 | 3 5946 | 52.78 | 472.12 | 8.19E2 | 5 57.24 | 36.71 | 489.06 | 4.90E-2
1E-1 | ZFP-FRaZ [ 5E2 | 3 5946 | 52.81 | 472.12 | 8.19E2 | N/A - - - -
9E-2 | N/A - - - - N/A - - - -
ZFP-MT 5 5 59046 | 45244 | 955.20 | 8.19E2 | - 4474 | 40832 | 94241 | 23362
Our method | - -~ [ 1619.30 | 33.24 | 6546 | 9.79E2 | - 211265 | 33.12 | 64.88 | 9.89E-2
1E3 | 3 5585 | 24.97 | 338.18 | 7.98E3 | 3 237.63 | 27.50 | 364.00 | 8.78E-3
SZ3-FRaZ [5E3 | 3 5585 | 28.73 | 394.08 | 798E3 | 3 237.63 | 27.52 | 364.00 | 8.78E-3
9E3 | 25 68.75 372 | 350.62 | 9.89E3 | 66 | 261.96 1.65 | 368.21 | 9.90E-3
SZ3-MT - - 66.71 | 135.08 | 422.66 | 9.61E3 | - 260.82 | 142.48 | 443.08 | 9.87E3
iE3 | 5 1656 | 26.06 | 346.79 | 7.02E3 | 5 2576 | 30.21 | 41651 | 8.18E-3
1E-2 | ZFP-FRaZ [ 5E3 | 5 1656 | 26.02 | 348.06 | 7.02E3 | 5 2576 | 30.20 | 416,52 | 8.18E-3
9E-3 | N/A - - - - N/A - - - -
ZFP-MT - - 1656 | 28991 | 55351 | 7.02E3 | - 2576 | 336.23 | 751.05 | 8.17E-3
Our method | - - 155.79 | 3333 | 6422 | 9.98E3 | - 329.71 | 34.11 | 64.83 | 9.98E3
1E4 | 3 1347 17.70 | 17277 | 8.09E-4 | 3 3477 | 2343 | 294.43 | 9.07E4
SZ3-FRaZ |[5E4 | 3 1345 17.70 | 172.77 | 80954 | 3 3477 | 2343 | 293.44 | 9.07E4
9E4 | 25 14.06 273 | 13841 | 988E4 | 3 3477 | 2344 | 293.44 | 9.07E4
SZ3-MT 5 B 1397 | 88.12 | 14324 | 9.61E4 | - 3751 | 12681 | 331.89 | 9.81E4
14| 3 7.78 29.88 | 270.16 | 87764 | 3 1138 | 35.65 | 317.89 | 8.44E-4
1E-3 | ZFP-FRaZ [ 564 | 3 7.78 29.89 | 271.70 | 8.7764 | 3 1138 | 35.66 | 31895 | 8.44E-4
9E-4 | N/A - - - 5 N/A - - - B
ZFP-MT - - 778 | 224.94 | 37807 | 8.77E4 | - 1138 | 259.28 | 510.04 | 8.43E4
Our method | - - 27.17 | 33.10 | 60.55 | 9.99E4 62.68 | 34.07 | 62.50 | 9.99E-4
compared to our method because of the costly iterative tuning. This 105 Hurricane NYX
table also demonstrates the tight error bound in our method, as our
NMAEs are very close to the target error bounds. 10-4
6.3 Preservation of Regional Average of x* 1073 !
&
.. . . . . —_ & !
We then present how the optimization proposed in Section 5.2 im- N 102 7 i
proves the compression ratios when the Qol is the regional average X H I
2 . . o _ i I
of x*. Again, we first show in Table 6 that our method successfully 2 10718 )
preserves the regional average of x? for various block sizes. It is T 0 1 2 0 1 2
. . SCALE MCPACK
noticed that the error control becomes looser when the block size 2 105 Q
increases. This is because larger block sizes lead to less number of &
blocks and it becomes less likely for the last point in the block to °© 107
have an error that is close to the error bound. g
w 10—3
Table 6: NMAE of regional average of x? (r=1E-3) V;
1024 ;
i 13
i E
Block size 1 2 3 4 10118 é
Uf48 9.99426E-4 | 9.99285E-4 | 9.17413E-4 | 8.66270E-4 0 1 2 0.0 0.5 10
PF48 9.99293E-4 | 9.87116E-4 | 9.05715E-4 | 7.06676E-4 Bit-rate

We also show how this optimization improves compression qual-
ity by presenting the rate-distortion in Fig. 8, where the case of block
size equals 1 reduces to the preservation of f(x) = x2. According
to the figures, the Qol integration with cancellation generally leads
to 10% ~ 30% improvement on the compression ratios when the
block size equals 4, and this improvement comes with the fact that
the regional average applies a uniform weight on all the data in the
block, which is not the most advantageous case for this approach. A
larger compression ratio gain is expected when a weighted average
QoI with non-uniform weights needs to be preserved.

—e— blcock size=1 -e- blcock size=2 -#- blcock size=3 --#- blcock size=4

Figure 8: Rate-distortion in terms of the regional average of

x? using different region block sizes.

6.4 Preservation of Isoline/Isosurface
Next, we present both the quantitative and qualitative analysis of

isosurface preservation using the two example data fields. Specifi-
cally, we use the number of #FN/#FP/#FS cells for the quantitative
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Figure 9: Isosurface of a zoomed-in region on Uf48 (isovalue equals to the mean of data).
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study and the visualization result from ParaView [8] for the qualita-
tive study. The compression ratios of all the compressors are tuned
to the same level for a fair comparison. For MGARD, we evaluate
the modes s = 0 and s = —0.5, and leave out the L* mode for Qol
preservation as recommended by the authors [11].

Table 7: Quantitative error for isosurface (Hurricane Uf48)

Compressor CR #FN #FP #FS Sc Sp
SZ-interp 59.71 33168 | 43321 369902 147.17 510.35
ZFP 59.46 93798 | 83806 553660 | 442.23 | 931.24

MGARD(s=0) 59.02 | 29854 | 40198 | 354863 26.74 29.85
MGARD(s=-0.5) | 56.60 | 29591 | 37855 | 345242 26.82 29.61
Our method 59.84 0 0 0 31.94 61.04

The quantitative results in terms of erroneous cells for the iso-
surface on Uf48 are presented in Table 7, where the isovalue is the
mean of the data. It is observed that, under this compression ratio,
all the other compressors have a large number of #FN/#FP/4ES cells,
while our method preserves all the cells. However,our method is
slightly slower than SZ-interp and ZFP.

Fig. 9 shows the qualitative results over a zoomed-in region of
the extracted isosurface with the same setting. Although SZ-interp
maintains the rough shape of the isosurface, there are obvious
disjoints (e.g., islands on the left), extra joints (islands in the middle
top), distorted shapes (e.g., holes on the right), etc. ZFP leads to larger
distortions with blockwise artifacts owing to its block-transform-
based design. Compared with SZ-interp, the two modes of MGARD
have relatively better preservation of the holes on the right, but
exhibit larger distortion in the middle. Also, s = 0 has better quality
in this region because it cares more about high frequencies related
to the local details compared with s = —0.5, although it has less
#FN/#FP/4FS cells in the global view. In contrast, our method keeps
almost all isosurface details and exhibits negligible visual distortions.

Table 8: Quantitative error for isosurface (Hurricane Pf48)

Compressor CR #FN #FP #FS Sc Sp
SZ-interp 130.05 17252 51760 98320 152.78 539.46
ZFP 129.71 | 3798289 | 33408 | 358907 | 730.06 | 1224.94
MGARD(s=0) 126.17 8665 56591 95248 23.62 24.76
MGARD(s=-0.5) | 124.97 8222 55365 92958 23.62 24.64
Our method 133.90 0 0 0 31.75 63.05

(b) SZ-Interp (CR=129.81) (c) ZFP (CR=129.71)

(f) Our method (CR=133.81)

(d) MGARD (s=0, CR=126.17) (e) MGARD (s=-0.5, CR=124.97)

Figure 10: Isosurface on Pf48 (isovalue equals to 0).

We also present the results on Pf48, using a special isovalue 0 be-
cause 1) it represents some important features such as critical points
in vector fields, and 2) it is easily distorted by existing compressors.
The corresponding quantitative and qualitative results are shown
in Table 8 and Fig. 10, respectively. According to the figures, severe
artifacts are present in almost all the other compressors because the
existing compression algorithm easily flushes values to 0, which is
also evidenced by the large number of FP cells in Table 8.

6.5 Preservation of Multiple Qols

Finally, we present the results of the preservation of multiple Qols.
The selected Qols and error requirements are: (1) fi = x? with
normalized error bound 1E-3; (2) f> = log, x with error bound 1E-2;
(3) f5 is the isosurface extraction with mean as the only isovalue.
We omit the regional average of x? because it is overlapped with
fi. Also, our error bound for f; is 10x larger than fi as it usually
poses much more stricter constraints than f; under the same error
bound. We evaluate all 7 combinations of the three Qols on the two
example data fields, and present the results in Table 9.

As shown in the table, our method faithfully preserves the Qols
as requested. For instance, when fi is enabled, the NMAE of x?
is always smaller than the error bound 1E-3. Nevertheless, such
bound is exceeded when fi is not enabled, even though both f;
and f3 are enabled (row 6). Furthermore, our method successfully
preserves multiple Qols at the same time. It is observed that all the
corresponding error bounds are respected when all three Qols are
enabled and some of them might be over-preserved because of the
combined constraints.



Table 9: Preservation of multiple Qols: f; = x% (r = 1E - 3), f = log, x (r = 1E — 2), and isosurface f; (mean as the isovalue)

Field | fi | 2 | & | NMAE (x?) | NMAE (logx) | #FN | #FP #FS Sc Sp CR
¥ 9.99E-4 INF 27389 | 35903 | 329811 | 33.16 | 60.49 | 27.17
1.07E-2 1.00E-2 5707 | 6939 | 88540 | 20.94 | 55.59 | 6.75

7 1.84E-2 INF 0 0 0 38.18 | 62.80 | 59.95

Ufas [V |V 8.57E-4 9.99E-3 4712 | 5508 | 71574 | 1938 | 52.69 | 7.26
4 9.99E-4 INF 0 0 0 27.86 | 59.86 | 24.21

1.15E-3 9.99E-3 0 0 0 2003 | 52.21 | 7.34

8.57E-4 9.99E-3 0 0 0 18.40 | 52.58 | 7.20

v 9.99E-4 INF 5949 | 5236 | 46651 | 34.13 | 62.38 | 62.68
2.36E-2 1.00E-2 423 418 6095 | 23.25 | 67.76 | 9.46

7 1.85E-2 INF 0 0 0 3913 | 64.32 | 244.96

Pfas [V |/ 9.99E-4 9.99E-3 347 399 5080 | 20.41 | 57.73 | 15.38
7 9.99E-4 INF 0 0 0 2839 | 62.22 | 58.54
2.29E-3 9.99E-3 0 0 0 2112 | 57.32 | 1601

9.99E-4 9.99E-3 0 0 0 1941 | 57.73 | 1535

An interesting trend in the table is that the compression ratio and
speed will be dominated by the strictest constraint, which is f5 in this
case. One can see degraded compression ratios and speed every time
when f; is included (e.g., row 1 and row 4). Nevertheless, an increase
in compression ratio is noticed when other Qols are included in the
target Qol sets where f3 is present (e.g., row 2 and row 4). This is
because f> imposes a very large error bound on data points with a
large value, which may negatively impact the prediction accuracy
(because prediction is performed using the decompressed data [53]).
Under those circumstances, adding constraints from additional Qols
could decrease the error bounds that are actually assigned to those
large values, thus improving the prediction accuracy, and in turn
leading to better compression ratios.

6.6 Discussion

Coverage and limitations: The proposed method in this paper
provides guaranteed error control for four families of Qols and any
Qol of their composition through certain arithmetic operations.
These Qols cover a wide range of frequently used analyses in scien-
tific simulations, including quantity derivation (e.g., kinetic energy,
the magnitude of velocity, and density, etc.) in fusion and cosmology
simulation [28], statistical analysis (e.g., mean, standard derivation,
and contrast variations, etc.) in climate research [49], and isosurface
extraction in almost all the domains [20, 32, 51]. The same idea can
be generalized to other analyses, as long as the mapping from the
target Qol error to those of raw data is derivable. One limitation is
that this method does not apply to Qols without such an error map-
ping, which is typical when the Qols are irreversible. For instance,
it does not work for the halo finding analysis in HACC cosmol-
ogy simulation [29], which requires a random down-sampling step
that prevents the derivation of the error bounds. In such cases, an
iterative approach would be needed to control the errors.
Trade-offs between compression ratio and speed: There
are two urgent needs for data compression in the scientific domains:
mitigation of storage overhead and improvement of I/O performance.
For the former, higher compression ratios are always preferred. For
the latter, the trade-offs between compression ratio and speed need
to be considered. As evidenced by previous works, compression
ratios have a higher impact when I/O dominates the overall time [38]
(which is typical for medium-scale clusters such as [4]), and high
compression speed would be more important after compression time

occupies a certain portion of the running time (which is observed on
high-end computing systems such as [6]). In this work, we focus on
developing the theory and implementation of Qol-preserving lossy
compression that yields high compression ratios. We will investigate
how to improve our compression speed in the future.

7 CONCLUSION AND FUTURE WORK

In this paper, we design and develop a novel lossy compression
framework for scientific data that is capable of preserving the er-
rors in the downstream Qols in addition to those of the raw data.
Specifically, we develop rigorous theories to preserve four families
of important Qols, which cover a wide range of data analytics per-
formed by computational scientists in real applications. The theories
and methods are further integrated into a state-of-the-art lossy com-
pression framework in a modular fashion, such that new Qols and
novel compression algorithms can be supported easily. Extensive
evaluations on four real-world scientific datasets demonstrate that
our framework provides strict error guarantees on the underly-
ing Qols while offering up to 4X compression ratios compared to
state-of-the-art error-controlled compressors. In the future, we will
work on improving the compression/decompression speed using
advanced optimization techniques and/or accelerators, as well as
designing efficient database systems with compression for scientific
data while providing quality guarantees.
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