Check for
Updates

Lightweight Huffman Coding for Efficient GPU
Compression

Milan Shah

North Carolina State University
Argonne National Laboratory
Raleigh, NC, USA
mkshah5@ncsu.edu

Michela Becchi

North Carolina State University
Raleigh, NC, USA
mbecchi@ncsu.edu

ABSTRACT

Lossy compression is often deployed in scientific applica-
tions to reduce data footprint and improve data transfers
and I/O performance. Especially for applications requiring
on-the-flight compression, it is essential to minimize com-
pression’s runtime. In this paper, we design a scheme to
improve the performance of cuSZ, a GPU-based lossy com-
pressor. We observe that Huffman coding - used by cuSZ to
compress metadata generated during compression - incurs
a performance overhead that can be significant, especially
for smaller datasets. Our work seeks to reduce the Huffman
coding runtime with minimal-to-no impact on cuSZ’s com-
pression efficiency.

Our contributions are as follows. First, we examine a va-
riety of probability distributions to determine which distri-
butions closely model the input to cuSZ’s Huffman coding
stage. From these distributions, we create a dictionary of
pre-computed codebooks such that during compression, a
codebook is selected from the dictionary instead of comput-
ing a custom codebook. Second, we explore three codebook
selection criteria to be applied at runtime. Finally, we eval-
uate our scheme on real-world datasets and in the context
of two important application use cases, HDF5 and MP]I, us-
ing an NVIDIA A100 GPU. Our evaluation shows that our

“Corresponding author: Sheng Di, Mathematics and Computer Science
Division, Argonne National Laboratory, Lemont, IL, USA

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
the United States government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.

ICS °23, June 21-23, 2023, Orlando, FL, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0056-9/23/06. .. $15.00
https://doi.org/10.1145/3577193.3593736

Xiaodong Yu
Argonne National Laboratory
Lemont, IL, USA
xyu@anl.gov

99

Sheng Di*
Argonne National Laboratory
Lemont, IL, USA
sdil@anl.gov

Franck Cappello
Argonne National Laboratory
Lemont, IL, USA
cappello@mcs.anl.gov

method can reduce the Huffman coding penalty by a factor
of 78-92x, translating to a total speedup of up to 5x over
baseline cuSZ. Smaller HDF5 chunk sizes enjoy over an 8X
speedup in compression and MPI messages on the scale of
tens of MB have a 1.4-30.5X speedup in communication time.

CCS CONCEPTS

« Information systems — Data compression; - Comput-
ing methodologies — Parallel algorithms.

KEYWORDS

compression, Huffman coding, GPU

1 INTRODUCTION

Scientific applications running on high-performance comput-
ing clusters generate large amounts of floating-point data and
require efficient I/O and data transfers to meet the demands
of large-scale simulations. Large amounts of floating-point
data present significant costs in terms of storage and power.
In addition, efficient data transfers are instrumental to the
scalability of parallel scientific applications since large com-
munication overhead inhibits application speedup as data
size and parallelism increase. To address these two require-
ments, compression can be integrated into data pipelines
to reduce data footprint and improve performance of costly
data transfers and I/O operations.

Lossless compressors [3, 4, 6, 24] ensure that data that
have been compressed can be accurately restored after de-
compression, but struggle to achieve high compression ratios
on floating point data [21]. Many scientific applications can
tolerate some degree of inaccuracy, allowing lossy compres-
sion to shine as a high compression ratio and high through-
put alternative to lossless compression. Lossy compressors
often allow users to supply an error bound, such that data

ICS ’23, June 21-23, 2023, Orlando, FL, USA

distortion due to compression does not greatly impact sub-
sequent data analysis. cuSZ [17] is a GPU-accelerated lossy
compressor, and it consists of three compression stages: pre-
diction, quantization, and Huffman coding. Huffman coding,
a lossless compression algorithm, is performed on metadata
generated in the second stage, called quantization codes, to
further improve the compression ratio of cuSZ.

Huffman coding [8] compresses data by assigning variable-
length encodings to each symbol in the input data, based
on the input symbols’ frequency. The encoding assignment
involves building a Huffman tree, where each symbol is rep-
resented by a leaf node and each path from root to leaf cor-
responds to the symbol’s encoding. The resulting codebook
mapping symbols to variable-length codes is used to encode
the input data. While there exist parallel implementations
of Huffman coding [12][18], pre-computed codebooks have
been proposed as a means of offloading codebook genera-
tion [1][20]. However, these prior pre-computed codebook
designs either have not focused on limiting the compression
ratio degradation, or have not targeted the specific require-
ments of compressors such as cuSZ.

In this work, we design a pre-computed Huffman code-
book scheme for cuSZ. Our design seeks to greatly reduce the
overhead of Huffman codebook generation through main-
taining a dictionary of pre-computed codebooks, while si-
multaneously limiting compression ratio degradation from
using a custom codebook.

Our contributions are:

e We use maximum likelihood estimation with a variety
of probability distributions to closely model quantiza-
tion code distributions, such that pre-computed code-
books are tailored to cuSZ metadata. The resulting
codebooks can be used in a dictionary accessed during
compression, enabling compression ratios comparable
to a custom codebook (i.e., a codebook specific to the
considered input data).

e We evaluate various selection criteria to access the dic-
tionary at runtime in an effort to find a pre-computed
codebook that best fits the input data. The selection
criteria are calculated during compression and require
significantly less time to compute than a custom Huff-
man codebook.

o We perform design space exploration for sizing the
dictionary and targeting GPU, quantifying the effects
of using our design on GPU resources.

e We evaluate our design using an NVIDIA A100 GPU,
studying the effect of our pre-computed codebook dic-
tionary on compression ratio across four scientific
datasets. We additionally explore the compression per-
formance of using our design and the performance
impact in two real-world use cases: HDF5 and MPL

100

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

Input Data
[ofo]][o]
Generate Histogram 0 1
{} / . \ Huffman Codebook
Symbol | Frequency | Use Min Heap o Symbol Encoding
to make /
0 4 Huffman tree 0 1
1 2 1 01
-2 1 From tree -2 001
7 1 paths, map | 000
symbol to

encoding

Figure 1: Huffman codebook generation algorithm

Our evaluation indicates that our method improves
the performance of cuSZ’s Huffman coding step by a
factor 78-92x while limiting compression ratio degra-
dation to less than 4%. HDF5 chunking with compres-
sion enjoys up to 8% speedup for smaller chunk sizes
compared to baseline cuSZ and MPI communication
time is sped up by a factor 1.4-30.5X%.

2 BACKGROUND
2.1 Compression with cuSZ

Lossy compression is often used in scientific applications to
reduce floating-point data footprint. In contrast with loss-
less compression, which perfectly reconstructs data when
decompressed, lossy compression introduces distortions to
data such that decompressed data may not be exactly equal
to the data prior to compression. While lossy compression
can reduce data quality, it can significantly increase com-
pression ratios for floating-point data compared to lossless
counterparts [21]. Scientific floating-point data often have a
tolerance for error, enabling the use of a lossy compressor
to improve performance and compression ratio.

cuSZ [17] is a state-of-the-art lossy compressor, developed
for GPU. Compared to other GPU-based lossy compressors,
such as cuZFP, cuSZ achieves 2.41-3.48% higher compression
ratios and is the first error-bounded GPU lossy compressor
with user-specified error [17]. Based on the SZ lossy com-
pressor [10], cuSZ has three main stages: (1) data prediction,
(2) linear-scale quantization based on a user-specified error
bound, and (3) encoding quantization codes with Huffman
coding, a lossless compression technique. The first stage in-
volves predicting data points based on previous data points.
SZ implements various predictors depending on the data di-
mensionality; the results from these predictors influence the
effectiveness of the second and third stages. In the second
stage, predicted data points are quantized with respect to
both the given error bound and the original data points. For
each data point, the quantization code maps the data point’s
prediction to a region of values within the error bound of the
original point. This stage yields quantization codes that must
be compressed further. The third stage performs lossless com-
pression on the quantization codes. Lossless compression

Lightweight Huffman Coding for Efficient GPU Compression

Symbol Frequency
0 4
Generate

Input Data Histogram 1 2

-2 1

[0l [2[o[1 [o[7}— > : 1

Input Ascending
Histogram

Send CL

GenerateCL

Create internal
node

Parallel Merge

Update CL
values

Assign CW to | GenerateCW
symbols
Reverse
Codebook

Codéebook

While there
pre nodes f
process

Reversed C

Figure 2: Huffman codebook generation algorithm for GPU

is required because the quantization codes themselves are
metadata that have no tolerance for error. If lossy compres-
sion was used at this stage, decompressed data points may
not respect the user-specified error bound since their quanti-
zation code may not map to a value within the error bound.
It is at this stage that Huffman encoding is used. cuSZ is
configured to have a user-specified quantization code range.
If a data point’s quantization code is not within this range,
it is treated as an outlier and the data point is stored instead
of being compressed with Huffman coding. During decom-
pression, cuSZ first uses Huffman decoding to retrieve the
quantization codes.

2.2 Huffman Coding

Huffman coding is a lossless data compression algorithm
that assigns variable-length codes to an input set of symbols.
It is used in a variety of compressors, both lossless (ie. Zstd
[6]) and lossy (MGARD [2]). In order to achieve compres-
sion, Huffman coding aims to assign shorter codes to more
frequently occurring symbols. In the case of cuSZ, the input
symbols are the quantization codes generated in the second
step of the compressor. The encoding process begins with
the creation of a Huffman tree based on the frequency of oc-
currence of the input symbols in the data being compressed.
An Huffman tree is a binary tree that stores input symbols
as leaf nodes with more frequent symbols residing higher in
the tree (Fig. 1). The edges along the path from the root node
to a symbol’s leaf node correspond to the symbol’s encod-
ing. Typically, traversing to the left child of node indicates
a "0" bit element of the code while traversing to the right
child indicates a "1" bit. Since more frequent symbols have
lower depth, their traversal path is shorter, yielding a smaller
encoding length. Once the Huffman tree is generated, a code-
book associating an encoding to each input symbol can be
derived from it. That codebook will be used to compress the
input.

101

ICS ’23, June 21-23, 2023, Orlando, FL, USA

Fig. 1 illustrates a serial implementation of Huffman cod-
ing. The algorithm consists of three steps: (1) input histogram
generation, (2) Huffman tree’s construction using Min Heap,
and (3) codebook generation through Huffman tree traversal.
Stage (2)’s Min Heap algorithm first places all the symbols in
a priority queue, with priority inversely related to frequency.
The first two queue elements are popped and an internal
node is created as a parent of the two symbols’ nodes. The
internal node stores the sum of the two children’s frequen-
cies and is inserted back into the priority queue. This process
is repeated until there is only one node in the queue: the root
node. For n input symbols, this algorithm has O(nlog n) time
complexity. Ostadzadeh et al. [12] proposed a parallel Huff-
man codebook creation algorithm, later ported to GPU by
Tian et al. [18] and incorporated in cuSZ. This parallel imple-
mentation, illustrated in Fig. 2, consists of two primary stages
(each implemented in a GPU kernel): GenerateCL and Gen-
erateCW. First, GenerateCL calculates the encoding length
of each symbol, and then GenerateCW generates the actual
encoding (i.e., the codebook) based on the lengths calcu-
lated in the GenerateCL step. This implementation includes
two additional steps. First, the generated codebook is canon-
ized [15], enabling Huffman decoding with only a reversed
codebook while maintaining the same compression ratio.
Secondly, the reversed codebook itself is generated, with a
key-value pairing of (encoding, symbol). For H bits for the
longest codeword, this GPU implementation has a practical
time complexity of O(H log). This means that codebook
generation time increases with the number of symbols and
the depth of the Huffman tree.

3 MOTIVATION

The runtime cost of Huffman codebook’s generation can
affect the performance of cuSZ significantly, especially for
small input datasets. Table 2 shows the fraction of cuSZ’s
compression time spent in Huffman codebook’s creation for
five datasets from SDRBench [22] and [14]. The size of these
datasets and their application domain are summarized in Ta-
ble 1. As can be seen, for these datasets codebook generation
accounts for 29.6-81.7% of the compression time.
Table 1: Dataset Attributes

Dataset Dimensionality Size (MB) Domain
CESM 1800x3600x1 24.7 Climate Simulation
NWChem 102953248x1x1 392.7 Electron Repulsion
Miranda 256x384x384 36.0 Hydrodynamics
QTensor 67108864x1x1 256.0 Quantum Computing
Nyx 512x512x512 512.0 Cosmology

Recall that, since cuSZ performs Huffman coding on the
quantization codes, the codebook generation overhead does
not depend on cuSZ’s input data size, but on the quantization

ICS °23, June 21-23, 2023, Orlando, FL, USA

Table 2: Fraction of cuSZ compression time spent in the code-
book generation algorithm for quantization code range of
(-512,512) (1023 symbols)

Dataset Total Time (ms) Codebook Gen. Time (%)
CESM 2.39 81.7
NWChem 5.90 33.2
Miranda 3.63 55.5
QTensor 491 46.2
Nyx 7.09 29.6

code set size. Therefore, if the range of quantization codes is
fixed, the cost to generate the codebook remains the same
independent of the input data size. While creating the quan-
tization code histogram requires a scan through the input
data, histogram generation is a high-throughput stage with
negligible cost (and can be integrated in cuSZ’s quantization
stage). The number of quantization codes directly impacts
the performance, but increasing the range of quantization
codes (thus the set of input symbols for Huffman tree cre-
ation) can increase the compression ratio since there are
fewer data points considered outliers in cuSZ.

Since the codebook generation overhead is non-negligible
and accounts for a significant portion of cuSZ’s runtime, our
design seeks to avoid codebook generation altogether, opt-
ing for a dictionary of pre-computed codebooks with a fast
codebook selection step. In this work, we examine the per-
formance of our method on general scientific floating-point
datasets and on applications relying on the HDF5 library and
the MPI protocol. Many such applications can benefit from
good compression performance in real time while operating
on small-middle size datasets. While we note that the per-
cent of time cuSZ spends in codebook generation becomes
smaller as the input data size grows, compression for small-
and medium-sized datasets on the scale of tens to hundreds
of MB is a problem space that must be explored to yield high
speeds for real-time applications.

3.1 Example applications

HDFS5 is a data management and storage framework im-
plemented as the combination of a model, a library, and a
file format [7]. HDF5 data are organized in a hierarchical
fashion where groups contain other groups or datasets, and
datasets contain raw data. HDF5 chunking breaks a dataset
into smaller partitions, or chunks, stored separately on disk.
HDF5 chunking presents an attractive alternative to con-
tiguous storage for applications that operate on only sub-
sets of data at a time. When chunks are written to disk or
loaded from disk, I/O filters, such as compression, can be
implemented to operate on each individual chunk. Chunk
compression reduces data footprint as well as disk I/O time
[5, 9]. Since chunks have a maximum size of 4 GB and most

102

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

often are on the scale of kilobytes to megabytes, compres-
sion filters must be able to perform well on small datasets.
The cost of codebook creation in cuSZ can be prohibitive in
the adoption of cuSZ as a compression filter for HDF5 since
chunks are relatively small inputs for compression. Table 2
suggests that reducing the codebook generation time can
significantly improve the performance of HDF5, leading to
up to 80% faster compression and thus, less computationally-
intensive HDF5 writes and reads from disk.

MPI applications’ performance is often limited by com-
munication costs. Data compression has been proven an
efficient mechanism to limit data transfer overhead and im-
prove the utilization of the interconnect bandwidth [5, 23].
Data sent via messages typically are in the range of kilo-
bytes to megabytes in size, meaning that compressors must
perform well on small data sizes. Compression introduces
its own overhead in addition to communication, thus for
scalable applications, minimizing communication overhead
and compression overhead are crucial for high performance.

3.2 Problem Formulation

We formulate the research problem as follows. Given a dataset
T, whose data points’ original values are denoted as x;, and
whose set of quantization codes is denoted as Q(T), our ob-
jective is to develop a fast pre-computed codebook scheme
for Q(T). This scheme should allow for quantization code
compression ratios close to using an optimal Huffman code-
book while improving the performance of cuSZ.

Compression ratio,CR, is defined as the ratio of the original
1T
kM
denotes the decompressed data; |T| and |T’| represent the
raw data size and compressed data size, respectively. The
T Where 7. (T)
(1)’ ¢
refers to the compression time of the raw dataset.
Specifically, our pre-computed codebook compressor should
address two important objectives: minimizing the compres-
sion ratio difference between the optimal and pre-computed
Huffman codebook and maximizing throughput, which are

formulated as Formula (1) and Formula (2), respectively.

raw data size to the compressed data size: where T’

compression throughput is defined as

min |CReysrom — CRpre—computed|
s.t. |x; — x]| < €,Vx; € T, WITH ERROR BOUND €

T
masx (L7zs)

s.t. |x; — x]| < €,Vx; € T, WITH ERROR BOUND €

(1)

)

4 DESIGN
4.1 Overview

In order to avoid the runtime cost of Huffman codebook gen-
eration, we propose building a dictionary of pre-computed
Huffman codebooks and selecting at compression time a
“best-fit” codebook for the input data. The pre-computed

Lightweight Huffman Coding for Efficient GPU Compression

31.0 31.0
C c i
208 208 !
S 0 c IR CESM S06 i CESM
e NWChem (T I i NWChem
2 0.4 ——— Miranda o 0.4 [l(f - Miranda
0.2 0.2 I
200 200 4 N
-400-200 0 200 400 -10 -5 0 5 10
Quantization Code Quantization Code
(a) Full Distribution (b) Zoomed-In Distribution

Figure 3: Distributions of quantization codes for CESM,
NWChem, and Miranda; radius=512, R2R error bound of
0.01. QTensor and Nyx have similar distributions, thus are
omitted.

Huffman codebooks are generated based on probability dis-
tributions that closely resemble common quantization code
distributions. In the following subsections, we will discuss:
1) the pre-computation of Huffman trees that model vari-
ous quantization code distributions, 2) criteria to select a
codebook from the dictionary at compression time, 3) GPU-
specific implementation details, and 4) design space explo-
ration for sizing the dictionary.

4.2 Creating Huffman Trees

As discussed in Section 2, the input to Huffman tree/codebook
generation is the histogram of quantization codes. Thus,
if one could accurately predict the histogram of quantiza-
tion codes for a given dataset, using a pre-computed Huff-
man codebook would not affect compression accuracy. Since
we cannot perfectly predict the histograms of all datasets,
we propose pre-computing Huffman codebooks from his-
tograms that model representative distributions of quan-
tization codes. If we divide the probability density func-
tion of some common distributions into n partitions, tak-
ing the integral for each partition can yield a relative fre-
quency histogram of n bins. For cuSZ, this approach can

Table 3: Average PDF mean squared error of probability distri-
butions w.r.t five datasets in Table 1. The top three performers
are Cauchy, Laplace, and Gaussian distributions.

Distribution Average PDF MSE Standard Dev.
Cauchy 4.2E-06 3.7E-06
Laplace 4.5E-06 8.4E-05

Gaussian 3.5E-05 2.7E-05
Chi-square 7.7E+07 1.4E+08
Weibull 2.5E-01 4.9E-01

Exp. Weibull 1.1E+35 2.1E+35

Gamma 4.2E+38 8.4E+38

103

ICS ’23, June 21-23, 2023, Orlando, FL, USA

be applied to distributions modeling quantization code fre-
quency, yielding histograms to generate pre-computed Huff-
man codebooks. Fig. 3 shows the quantization code distribu-
tions for the CESM, NWChem, and Miranda datasets summa-
rized in Table 1. QTensor and Nyx have similar distributions
to these three, thus they are omitted. The three datasets
have a user-specified relative-to-value-range (R2R) error of
0.01. R2R error r translates to an absolute error bound € as
€ = r(Xmax — Xmin), Where X4, and x,,;, are the maximum
and minimum data points in the input dataset, respectively.

To determine probability distributions that model quan-
tization codes well, we utilize a parameter-fitting method
known as Maximum Likelihood Estimation, or MLE.
MLE is a method of estimating the parameters of a statistical
model given some observed data. Given a probability distri-
bution and an input dataset, MLE returns the parameters for
the distribution that yield a model closest to the input data’s
distribution. Repeating MLE on the same input data with
varying distributions will yield the best-fit model for each
distribution. The resulting models that can subsequently be
compared against each other using other statistical metrics.

We use the SciPy library for Python [19] to perform MLE
with 21 probability distributions on the quantization codes
of the datasets in Table 1. Table 3 reports the average and
standard deviation mean-squared error of the top seven per-
forming distributions’ probability density functions (PDFs)
with respect to the datasets. Our results indicate that the
three distributions modeling quantization code frequencies
the best are the Cauchy, Laplace, and Gaussian distributions.

The standardized form of the Cauchy, Laplace, and Gauss-
ian distributions’ PDFs are shown in Eq. 3, 4, and 5, respec-
tively.

1
f;;auchy(x) = m (3)
fiaptace () = 5 exp (~}x) @
2
féaussian (x) = M (5)

Var
For a given PDF f(x), the PDF can be shifted by L and scaled
by S to yield a final PDF F(x) as follows:
55 ©)
S
Using Eq. 6, altering S can create a variety of Huffman
codebooks from these three distributions. For this work, L
is fixed at zero since all quantization code distributions are
centered around zero. Increasing S will increase the spread
of the distribution, meaning quantization codes further from
zero will have an increase in relative frequency, resulting in
a more balanced Huffman tree. Quantization codes further

F(x) =

ICS °23, June 21-23, 2023, Orlando, FL, USA

from zero will benefit from shorter encoding lengths while
codes closer to zero suffer from longer encoding lengths.

To generate a final Huffman codebook for the dictionary,
we first select one of the three distributions, divide the PDF
into as many regions as there are quantization codes (typ-
ically between 512-2048) to create a histogram, then feed
the histogram as input to the Huffman coding algorithm to
generate a codebook. This process is repeated for different
values of S, resulting in a dictionary of codebooks.

4.3 Tree Selection Criterion

Given a set of codebooks, the compressor must select the
one that fits best the quantization codes of the data being
compressed. The selection criterion should have the follow-
ing qualities: 1) it should identify a codebook that yields
the optimal or close-to-optimal compression ratio for the
input data, 2) it should rely on some data inherent to the
pre-created codebooks, and 3) it should be faster to compute
than the codebook generation algorithm. Here, we examine
three selection criteria: Shannon’s entropy, cross entropy, and
Kullback—-Leibler (KL) divergence.

Shannon’s Entropy gives the optimal average number
of bits to encode a random variable from a given probability
distribution. For an n bin histogram and relative frequency
p; for each bin i, entropy H is defined in Eq. 7.

n
H==" pilog,p: ()
i=1

Using Shannon’s entropy as selection criterion requires
computing, at compression, the entropy of the quantization
codes’ distribution for the input data. The result is then com-
pared against the entropy of all pre-computed codebooks,
and the codebook with the closest entropy is selected. Increas-
ing the scale factor S when creating pre-computed codebooks
increases the entropy of the distribution.

Cross Entropy is closely related to Shannon’s entropy
since it gives an average number of bits to encode a vari-
able, with the key difference being that the coding scheme is
optimized for a different distribution. That is, for an n bin his-
togram, relative frequency p; for the dataset being encoded,
and relative frequency g; for the pre-computed codebook’s
distribution, cross entropy CE is defined in Eq. 8.

CE=-) pilog, q; ®)
i=1

This criterion accounts for the distribution of both the input
data and pre-computed codebook, unlike entropy alone. As
such, cross entropy can discriminate a “best-fit” codebook
relative to the input data. When q(x) = p(x), cross entropy
becomes entropy, providing a lower bound for the average
number of bits to encode the data.

104

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

To select a codebook using cross entropy, cross entropy
is first calculated based on the histograms of the input data
quantization codes and the codebook’s input histogram. Then,
the codebook yielding the smallest cross entropy is selected
for Huffman encoding.

KL Divergence, also called relative cross entropy, is closely
related to cross entropy since it measures the similarity be-
tween two distributions. If two distributions are identical,
their KL divergence is zero. For an n bin histogram, relative
frequency p; for the dataset being encoded, and relative fre-
quency q; for the pre-computed codebook’s distribution, KL
divergence KL is defined in Eq. 9.

KL=~ pilog, %f (9)
i=1 !

KL divergence is often used in machine learning applications
as a loss function and can be applied here as a measure of
compressibility "loss". Note that KL divergence is not a metric
due to its asymmetry and is dependent on the reference
distribution.

KL divergence yields a nearly identical shape to cross
entropy when varying the entropy of the codebooks. As
such, the minimum KL divergence corresponds to the same
codebook as the minimum cross entropy. Both of these find a
codebook that minimizes the reduction in compression ratio
from using a custom Huffman codebook, but KL divergence
requires one additional division and prevents the logarithm
calculation beforehand. Using cross entropy, each dictionary
key can hold the log, g; terms instead of only the g; terms for
a codebook, further offloading runtime computation. Since
cross entropy is less computationally costly, we use cross
entropy over KL divergence as the selection criterion.

Example: Fig. 4 compares using entropy and cross en-
tropy as selection criteria for CESM and NWChem. The other
three datasets exhibit similar behavior and their plots are
omitted for space. We generated 100 codebooks with varying
S, thus varying the entropy from approximately 0 to 7. The
optimal compression ratio when using a custom codebook is
plotted in green while pre-computed codebook compression
ratios are plotted in red. Cross entropy, plotted in blue, can
yield a global minimum value that coincides with the high
compression ratio regions of the plots.

If Shannon’s entropy were the selection criteria, the code-
book with the closest entropy to the quantization code his-
togram entropy (plotted as black lines in Fig. 4) does coin-
cide with the high compression ratio regions for CESM and
NWChem at these error bounds. However, if the dictionary
does not have enough codebook entries, the nearest entropy
codebook may reduce the compression ratio compared to
cross entropy selection. For example, if we had a dictionary
of two Cauchy-based codebooks with entropies of 1.7 and 4.0,

Lightweight Huffman Coding for Efficient GPU Compression

5

25
4 o
2 E:

o 20
23 S
L g
@ o
§2 155
& §
o

1 10

Codebook Entropy

(a) CESM

~

w

Cross Entropy
mpression Ratio

Codebook Entropy

(b)) NWChem

Figure 4: Cross Entropy and Entropy effects on Compression
Ratio using Cauchy distribution for CESM and NWChem.
Each line style is associated with an absolute error bound.
The black lines denote the quantization code entropy.
Achieved compression ratio is in red and on right axis. Cross
entropy is blue and on left axis. The green line denotes cuSZ
compression ratio when using a custom Huffman codebook.

and an error bound of 1E-4 (entropy of 2.9) for compressing
NWChem, the 4.0 codebook has the nearest entropy while
the 1.7 codebook has the minimum cross entropy. Fig. 4b
indicates that the 1.7 codebook would achieve higher com-
pression ratio in this instance. For this reason, we opt for
cross entropy over Shannon’s entropy as the selection cri-
terion since it discriminates among many codebooks and
directly accounts for the input quantization codes.

4.4 GPU-based Design

Fig. 5 illustrates our GPU-based implementation, written in
CUDA C/C++. The blue boxes indicate host code for manag-
ing data and the red boxes indicate kernels run on the GPU.
When using cross entropy as the selection criterion, the dic-
tionary holds the following for each codebook: log, ¢; values
as keys, codebook as one value and the reversed codebook
as the second value. Since log, g; values are pre-computed,

105

ICS ’23, June 21-23, 2023, Orlando, FL, USA

Dictionary

. Q Key Value 1 Value 2

o2

g g log ¢;Vi € [1,n] Codebook Reverse Codebook
EQ

23

< IXT BytEs > < Zxibyes > € IXTByEs >
Quantization Codes

v

Generate Histogram

Launch D CUDA
blocks, each
computes cross
entropy H_d for one
codebook

Free log_g arrays,
cudaMalloc(codebook)
cudaMalloc(rev_codebook)
for selected entry

cudaMalloc(log_q arrays)

Figure 5: CUDA-based algorithm

the GPU kernel performs a fast multiply-accumulate oper-
ation. Each block is assigned one codebook and reads the
quantization code histogram and the array storing the code-
book’s log, g; values in a coalesced fashion. Before this ker-
nel, only the log, g; array needs to be additionally allocated
on GPU global memory. Each thread is assigned one bin i
and performs the multiplication p; X log, q;. After a barrier
synchronization, an accumulate operation is performed and
the resulting cross entropy is compared against all other
cross entropy values to find the minimum. The minimum
cross entropy codebook is selected and its codebook and
reverse codebook are brought onto GPU for the encoding
phase.

In terms of memory requirements, the pre-computed Huff-
man codebook dictionary requires relatively little space. For
D codebooks and a quantization code range of (—n/2,n/2),
the dictionary keyset and each value set occupy 4 X n X D
bytes. If the quantization code radius is 512 and there are 100
codebooks in the dictionary, the entire dictionary occupies
about 1.17 MB, and at most only 400 KB is used on GPU
memory since calculating the cross entropy only requires all
log, g; values at once. GPU memory is sized typically on the
scale of tens of GBs, thus the dictionary occupies less than
0.1% of global memory.

4.5 Design Space Exploration

There are two primary design parameters for sizing the dic-
tionary appropriately: 1) the number of codebooks that com-
pose the dictionary, and 2) the quantization code range. On
an NVIDIA A100 GPU, the cross entropy kernel takes about
0.023 ms, with little variation across the number of code-
books or the R2R error bound. A 100-codebook dictionary
takes the longest, taking 0.025 ms. Fig. 6 explores the effect
of varying the number of codebooks from 5 to 100 for the
CESM dataset. Specifically, Fig. 6 plots the compression ra-
tio relative to that achieved using 100 codebooks. As the
number of dictionary entries increases, the entropy space
becomes more finely sampled, leading to more codebook
choices at runtime and better compression ratio. However,
increasing the number of entries requires more memory and

ICS ’23, June 21-23, 2023, Orlando, FL, USA

1.0000

(]

[0}

£ 0.9975

o

o

< 0.9950

o L g

g 09925 10 ;

s L g5 3

o 09900 - - 50 ‘\‘\

< — 100 3
0.9875 <

107 107 107

Absolute Error

Figure 6: Compression ratio for NWChem dataset with vary-
ing R2R error bound and number of codebooks in the dictio-
nary. The legend corresponds to the number of codebooks
for each series plotted. The compression ratio is relative to
that achieved using 100 codebooks.

at some point, negatively impacts performance. Having too
few entries may hurt compression ratio since the dictionary
may not have a close-to-optimal codebook. According to
Fig. 6, having the number of entries around 25 achieves good
performance and reduces the memory footprint while not
greatly sacrificing compression ratio. For this reason and
since the performance is similar across datasets, we size our
dictionary to have 25 entries.

The quantization code range is specified by the user when
calling cuSZ’s compression APL. Since the dictionary must be
pre-computed, the number of bins for each distribution must
be selected prior to use. We find that having a radius of 512
for quantization codes is suitable for the datasets we tested
since there is little to no improvement in compression ratio
as we increase the radius beyond 512. Thus, our dictionary
assumes 1023 bins and the Cauchy, Laplace, and Gaussian
PDFs are partitioned into 1023 segments for codebook gener-
ation. Larger radius values increase the runtime of both the
cross entropy kernel and custom Huffman codebook kernel.
The dictionary used in the evaluation ultimately occupies
300 KB, with only 100 KB at most allocated on GPU global
memory.

5 EXPERIMENTAL EVALUATION
5.1 Methodology

We perform our experiments on a system equipped with an
AMD EPYC 7742 64-core CPU and an NVIDIA A100 GPU,
which features 64 FP32 cores per streaming multiprocessor
(SM), 108 SMs, and a global memory size of 40 GB. We test
the cross entropy kernel runtime against the codebook gen-
eration runtime using the CESM, NWChem, Miranda, and
QTensor datasets in Table 1. To test the performance of our
design in real-world use cases, we use our implementation as
a compression filter for HDF5 chunking and as a compressor

106

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

L2225 .
@© ©
¥ 500 o 30
| =1 | =4
2475 cauchy -2 —— cauchy
] . — laplace $2s —— laplace
g —— gaussiar g —— gaussian
38128 7 custom 3 o WA custom
107 107 1 10° 107 107"
R2R Error R2R Error
(a) CESM (b)) NWChem
S28 Z 2300
@]
o4 14
= 26 c 275
2 cauchy 9 —— cauchy
& 24 ? 250
o — laplace ¢~ —— laplace
g2 —— gaussiar £, —— gaussian
8 ——————— custom 8 ——————— custom

20.0

10 1 10

R2R Error R2R Error
(c) Miranda (d) QTensor
o 31.49
T 31.48
[v4
c 31.47
.% 3146 —— cauchy
e —— laplace
531.45 :
€310 —— gaussian
e |/ 00 custom
31.43 s 5 ,
10 10 10
R2R Error
(e) Nyx

Figure 7: cuSZ compression ratio of Cauchy-, Laplace-, and
Gaussian-based pre-computed Huffman codebooks. Custom
Huffman codebook is plotted as a dashed line.

Table 4: Average codebook generation ("Book") time and cross
entropy ("CE") kernel time for five datasets over 100 trials.
Speedup is the ratio of codebook time to CE time.

Dataset Book Time (ms) CE Time (ms) Speedup
CESM 1.815 0.023 78.2X
NWChem 1.735 0.023 74.1X
Miranda 1.782 0.023 76.3X
QTensor 2.166 0.024 91.7Xx
Nyx 2.064 0.022 93.8%

in an MPI application. For these use cases, we use the Nyx
dataset described in Table 1 since it is stored in HDF5 file
format and we can vary the data size easily. We use CUDA
11 and, for MPI experiments, the OpenMPI library [11].

5.2 Results

Raw Data Fig. 7 plots the compression ratio using pre-
computed codebooks based on the Cauchy, Laplace, and
Gaussian distributions with varying R2R error for the datasets

Lightweight Huffman Coding for Efficient GPU Compression

in Table 1. The “custom” series corresponds to the compres-
sion ratio of cuSZ when using the Huffman codebook gen-
eration algorithm at runtime instead of pre-computing the
codebook, providing a baseline for performance.

Fig. 7 indicates that pre-computed codebooks for these
three distributions have a limited impact on the final cuSZ
compression ratio. As the R2R error bound increases, the
pre-computed codebooks converge closer to optimal cuSZ
compression ratio. For error bounds of 0.01 or larger, pre-
computed codebook compression ratios are less than 4%
lower than custom codebook compression ratios. For smaller
R2R error bounds, such as 0.001, the pre-computed code-
books have a slightly more variable impact on compres-
sion ratio. For instance, Gaussian-based codebooks attain
compression ratios 5-10% less than the custom codebook.
Since increasing the error bound increases the entropy and
"smoothness" of the quantization code histogram, common
distribution PDFs can better model the histogram as they
tend to avoid large relative frequency variations for points
close to the distribution center. Of the three distributions,
Gaussian codebooks tend to incur the greatest degradation
in compression ratio. The Gaussian distribution has a shal-
lower gradient for points approaching the distribution center,
leading to longer encodings for quantization codes close to
zero, which can negatively impact compression ratio.

Table 4 reports the execution time for the cross entropy
kernel and custom codebook algorithm. Since both kernels
are dependent on the number of quantization bins, and this
value is fixed, their runtime is constant regardless of varying
R2R error. The cross entropy kernel is 78-92X faster than
custom codebook generation for the four datasets, greatly

Cauchy

| anlace

apace

Gaussian

2.0%

o
=

CR Difference

1.0%

o
@
=

0.0%

Miranda

Dataset

Figure 8: cuSZ with pre-computed codebook total time
speedup over baseline cuSZ for five datasets, averaged over
varying R2R error from [0.001, 0.1]. Codebook distribution is
varied. The average compression ratio (CR) difference from
baseline cuSZ for each dataset is plotted on the right y-axis

(cyan).

107

ICS ’23, June 21-23, 2023, Orlando, FL, USA

I Cauchy

8 B Laplace

I Gaussian
0.6
=
el
[
2
&4
2
0

64x64x64

128x128x128
Chunk Size

256x256x256

Figure 9: cuSZ with pre-computed codebook total time
speedup over baseline cuSZ for varying HDF5 chunk sizes of
Nyx dataset.

impacting performance for datasets on the scale of tens of
MBs or less. CUDA data management APIs like cudaMalloc
and cudaMemcpy are completely masked in pre-processing
or during kernel execution, thus data movement times are
not explicitly timed. Fig. 8 plots the speedup in cuSZ com-
pression time when using pre-computed codebooks against
custom codebooks, as well as the average compression ratio
degradation. Across all datasets, compression ratio degrada-
tion was typically less than 3%. CESM, a 24.7 MB dataset,
enjoys about a 5X speedup in compression runtime, while
larger datasets like NWChem benefit less with about a 1.4x
speedup. This speedup effect is due to Huffman codebook
generation being a fixed cost independent of the data size.
The main factor affecting codebook creation time is the quan-
tization code range, fixed with a radius of 512. We expect that
increasing the data size will lead to diminishing returns for
pre-computed codebooks, in line with the results reported
in Fig. 8.

HDF5 Compression for HDF5 chunks reduces data foot-
print and consumes less disk I/O bandwidth for each chunk,
but costly compression operations, such as Huffman coding,
must be accelerated to achieve these benefits. In Fig. 9, we
report the total compression time speedup for pre-computed
codebooks over the custom codebook algorithm. We use the
Nyx dataset, described in Table 1, since it is typically stored
in the HDFS5 file format. Nyx is composed of many different
fields, each with its own raw data in the shape 512x512x512.

We vary the HDF5 chunk size from 64x64x64 to 128x128x128
to 256x256x256. Since the data is 512x512x512, these chunk
sizes respectively correspond to 512, 64, and 8 chunks. For
the smallest chunk size tested, 64°, pre-computed codebooks
can lead to over 8X speedup in total compression time over
custom codebooks. With 512 chunks for a 643 chunk size, the
first time the entire dataset is written to disk would require
512 compression runs, requiring a high performance com-
pressor. Since codebook creation time dominates runtime

ICS ’23, June 21-23, 2023, Orlando, FL, USA

15 WM Pre-computed 30 BN Pre-computed
lmm Base s Base

S S20
510 5
(] (0]
2 2
N 5 n 10

o EL 0 W L

1 8 64 512 1 8 64
)

Message Size (MB Message Size (MB)

(a) Point-to-Point (b) Scatter
Figure 10: cuSZ with pre-computed codebook (Pre-computed)
and custom codebook (Base) total time speedup over no com-
pression for varying MPI message sizes of Nyx dataset. Total
time is defined as the time to compress and send the data.

for small data sizes, our proposed pre-computed codebook
scheme has a significant impact on HDF5 chunking perfor-
mance. Fig. 9 supports the idea that pre-computed codebook
speedup diminishes as data size increases, since a chunk size
of 256° has a more limited speedup of 3-4x.

MPI In order to test our method on MPI, we created two
synthetic benchmarks: one using point-to-point and the
other using collective communication primitives. In both
cases, we use the Nyx dataset, we run 16 processes, and we
set the R2R error bound to 0.005. All experiments are con-
ducted on a single machine to isolate the effect of compres-
sion from interconnect performance. The first benchmark
uses the MPI Send and MPI Recv primitives. Each process
p sends a data message to the next process p + 1; the last
process sends a message to the first. After receiving the mes-
sage, each process performs a local reduction on it. Before
sending the data, compression is performed to reduce the
message size. Once received, the message is decompressed
to yield the original data. The second benchmark performs
a scatter operation, where one process (root) sends data to
all other MPI processes. When using compression, the root
process serially compresses equal-sized chunks of the in-
put data and uses MPI_Scatterv to send compressed bytes to
all other processes. Message size directly impacts commu-
nication time and consumes interconnect bandwidth, thus
reducing message size can improve the scalability of MPI
applications.

Fig. 10 reports the results of the first use case (“Point-to-
Point”), and plots the communication speedup over using
no compression to send a message with varying initial size.
Specifically, we vary the size of a message generated from
the Nyx dataset, increasing from 1 to 512 MB. The total
communication time is the sum of compression time and
MPI_Send time. Fig. 10a reports the results of two configura-
tions: cuSZ with pre-computed codebooks averaged across
Cauchy, Laplace, and Gaussian distributions, and "base" cuSZ
(using custom codebook algorithm). We did not observe sig-
nificant performance differences across distributions. The
speedups reported are averages for the 16 processes launched.

108

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

The APIs MPI Send and MPL_Recv are blocking calls that re-
turn only when communication completes, thus we use these
APIs to measure communication overhead. For 1 MB mes-
sages, compression with baseline cuSZ performs worse than
sending uncompressed messages. However, using compres-
sion improves communication time in all configurations for
message sizes >1 MB. Using pre-computed codebooks im-
proves total communication time from 1.4 to 16.2X compared
to custom codebook speedup of 0.25 to 14.3%.

Fig. 10b reports the communication speedup over using
no compression for the second use case, “Scatter”, with the
same configurations as Fig. 10b. Again, we did not observe
significant performance differences across probability distri-
butions. In these experiments, we vary the size of the mes-
sage received from 1MB to 8MB. When using compression,
the actual message size transmitted is smaller, which reduces
the MPI_Scatterv overhead. Even with serial compression
on each message at the root node, using our pre-computed
codebook dictionary improves communication performance
2.2-30.5%. Baseline cuSZ with custom codebook generation
has a diminished effect, yielding speedup of 0.4-18.6X. In
summary, compression with cuSZ in any form is well suited
to improve communication time for larger message sizes,
while pre-computed codebooks improve compression per-
formance for smaller message sizes.

6 RELATED WORK

Ostadzadeh et al. [12] propose a parallel Huffman codebook
generation algorithm that later, Tian et al. [18] adapt for GPU.
Tian et al. focus on both the codebook generation phase and
the encoding phase of Huffman coding and their implemen-
tation is used in the cuSZ pipeline. Compared to a serial CPU
implementation, this GPU implementation can perform up
to 45.5x faster than CPU, but only for 8192 symbols or more.
For less symbols, corresponding to a smaller quantization
code range, the GPU implementation can perform worse
than a serial CPU implementation. Since many quantization
codes ranges have a radius of 512, 1024, and 2048, our pre-
computed codebooks have a large reduction in overhead
and can be more suitable for GPU, a platform that performs
worse with complex branch logic.

Patel et al. [13] parallelize three stages of the bzip2 pipeline:
Burrows-Wheeler transform, move-to-front transform, and
Huffman coding. Their Huffman tree generation algorithm
uses parallel reduction to search for nodes with the smallest
frequencies, but node merging cannot be parallelized. Thus,
their implementation finds that move-to-front transform
with Huffman coding is 1.34x slower than serial bzip2. Tian
et al. [16] explore run-length encoding as an alternative
to Huffman coding for quantization codes. Their findings

Lightweight Huffman Coding for Efficient GPU Compression

suggest that for very lower entropy histograms (average bit-
length is less than 1.09), run-length encoding (RLE) can yield
higher compression ratios with comparable performance.
Huffman coding, in contrast with RLE, requires a codebook
generation phase, which is the primary focus of our work.
Additionally, Huffman coding yields higher compression
ratios compared to RLE for quantization code histograms
with entropy larger than 1.09.

Zhang et al. [20] implement a pre-computed Huffman
codebook method for cuSZ’s prediction and quantization.
Their method targets FPGA and uses one pre-computed code-
book, created from the average histogram of several scientific
datasets. If the codebook does not lead to sufficiently high
compression ratios, online codebook generation is performed.
Our design differs in a few ways: 1) We use a dictionary of
codebooks based on a variety of common probability dis-
tributions, 2) As the R2R error decreases, they report more
significant compression ratio degradation (5.1-10.7% less)
compared to the Cauchy and Laplace codebooks in our dic-
tionary (approx. 4% less), 3) Online codebook generation can
still occur, while our design relies completely on offline code-
book generation, 4) The target platforms differ. Abali et al.
[1] patented a general method of precomputing codebooks
using a table storing the length of each symbol’s encoding.
At runtime, the dataset’s values are assigned symbols with
the corresponding length of each entry in the table and the
overall bits required using each precomputed codebook is
calculated. Their work relies on a sorting step after histogram
generation and before selecting a table entry, a process that
has additional overhead on GPU. Additionally, they do not
perform a GPU- or cuSZ-specific design space exploration.
Our work leverages properties of cuSZ quantization codes
specifically, and we evaluate how to size the dictionary and
quantify compression ratio degradation. The selection crite-
ria between the patent and our work also differs since they
calculate predicted bit length while we use cross entropy.

7 CONCLUSION

In this work, we have designed and evaluated a pre-computed
Huffman codebook scheme to offload codebook generation
during cuSZ compression. Using a dictionary of pre-computed
codebooks, we can calculate the cross entropy of a quantiza-
tion code distribution to select a best-fit codebook for Huff-
man encoding. Our evaluation on the A100 GPU suggests the
following: 1) Cauchy, Laplace, and Gaussian distributions
can be leveraged to create a codebook dictionary, typically
limiting compression ratio degradation to less than 4%, while
achieving up to 5x total compression time speedup on MB-
scale datasets over baseline cuSZ. 2) HDF5 chunking with
compression filters can enjoy a performance speedup over
cuSZ of nearly 9X. Speedup benefits are multiplied by the

109

ICS ’23, June 21-23, 2023, Orlando, FL, USA

number of chunks written to or read from disk. 3) MPI com-
munication time with our design has a speedup of 1.4-16.2x
compared to baseline cuSZ speedup of 0.25-14.3X over using
no compression prior to sending a message.

ACKNOWLEDGMENT

This research was supported by the Exascale Computing
Project (ECP), Project Number: 17-SC-20-SC, a collaborative
effort of two DOE organizations — the Office of Science and
the National Nuclear Security Administration, responsible
for the planning and preparation of a capable exascale ecosys-
tem, including software, applications, hardware, advanced
system engineering and early testbed platforms, to support
the nation’s exascale computing imperative. The material
was supported by the U.S. Department of Energy, Office of
Science, Advanced Scientific Computing Research (ASCR),
under contract DE-AC02-06CH11357, and supported by the
National Science Foundation under Grants OAC-2003709,
OAC-2104023 and CNS-1812727. We acknowledge the com-
puting resources provided on Bebop (operated by Laboratory
Computing Resource Center at Argonne) and on Theta and
JLSE (operated by Argonne Leadership Computing Facility).

REFERENCES

[1] Bulent Abali, Bartholomew Balner, Hubertus Franke, and John J. Reilly.
2017. Creating a dynamic Huffman table.

[2] M. Ainsworth, O. Tugluk, B. Whitney, and S. Klasky. 2017. MGARD:
A Multilevel Technique for Compression of Floating-Point Data. In
DRBSD-2 Workshop at Supercomputing.

[3] BlosC compressor. [n.d.]. http://blosc.org/. Online.

[4] M. Burtscher and P. Ratanaworabhan. 2009. FPC: A High-Speed Com-

pressor for Double-Precision Floating-Point Data. IEEE Trans. Comput.

58, 1 (Jan 2009), 18-31. https://doi.org/10.1109/TC.2008.131

Franck Cappello, Sheng Di, Sihuan Li, Xin Liang, Ali Murat

Gok, Dingwen Tao, Chun Hong Yoon, Xin-Chuan Wu, Yuri Alex-

eev, and Frederic T Chong. 2019. Use cases of lossy compres-

sion for floating-point data in scientific data sets. The Inter-

national Journal of High Performance Computing Applications 33,

6 (2019), 1201-1220. https://doi.org/10.1177/1094342019853336

arXiv:https://doi.org/10.1177/1094342019853336

Yann Collet. 2015. Zstandard — Real-time data compression algorithm.

http://facebook.github.io/zstd/ (2015).

[7] HDF5. [n.d.]. https://portal. hdfgroup.org/display/HDF5/HDF5. On-
line.

[8] David A. Huffman. 1952. A Method for the Construction of Minimum-

Redundancy Codes. Proceedings of the IRE 40, 9 (1952), 1098-1101.

https://doi.org/10.1109/JRPROC.1952.273898

Sian Jin, Dingwen Tao, Houjun Tang, Sheng Di, Suren Byna, Zarija Lu-

kic, and Franck Cappello. 2022. Accelerating Parallel Write via Deeply

Integrating Predictive Lossy Compression with HDF5. In Proceedings of

the International Conference on High Performance Computing, Network-

ing, Storage and Analysis (Dallas, Texas) (SC "22). IEEE Press, Article

61, 15 pages.

Xin Liang, Sheng Di, Dingwen Tao, Sihuan Li, Shaomeng Li, Hangi Guo,

Zizhong Chen, and Franck Cappello. 2018. Error-Controlled Lossy

Compression Optimized for High Compression Ratios of Scientific

(5

—

(6]

[9

—

[10]

ICS

—
[
—_

—

[12

—

[13

—_

(14

=

(15

[

[16

—

(17

—

(18

[t

[19

—

[20

[t

[21

—

[22

—

(23]

’23, June 21-23, 2023, Orlando, FL, USA

Datasets. In IEEE Big Data. 438-447. https://doi.org/10.1109/BigData.
2018.8622520

OpenMPL [n.d.]. https://www.open-mpi.org/. Online.

SA Ostadzadeh, B Maryam Elahi, ZZ Tabrizi, M Amir Moulavi, and K
Bertels. 2007. A two-phase practical parallel algorithm for construction
of huffman codes. In PDPTA 2007. CSREA Press, 284-291.

Ritesh A. Patel, Yao Zhang, Jason Mak, Andrew Davidson, and John D.
Owens. 2012. Parallel lossless data compression on the GPU. In 2012
Innovative Parallel Computing (InPar). 1-9. https://doi.org/10.1109/
InPar.2012.6339599

Roman Schutski, Danil Lykov, and Ivan Oseledets. 2020. Adaptive
algorithm for quantum circuit simulation. Phys. Rev. A 101 (Apr 2020),
042335. Issue 4. https://doi.org/10.1103/PhysRevA.101.042335
Eugene S. Schwartz and Bruce Kallick. 1964. Generating a Canonical
Prefix Encoding. Commun. ACM 7, 3 (mar 1964), 166-169. https:
//doi.org/10.1145/363958.363991

Jiannan Tian, Sheng Di, Xiaodong Yu, Cody Rivera, Kai Zhao, Sian
Jin, Yunhe Feng, Xin Liang, Dingwen Tao, and Franck Cappello. 2021.
Optimizing Error-Bounded Lossy Compression for Scientific Data on
GPUs. In 2021 IEEE International Conference on Cluster Computing
(CLUSTER). 283-293. https://doi.org/10.1109/Cluster48925.2021.00047
Jiannan Tian and et al. 2020. cuSZ: An Efficient GPU-Based Error-
Bounded Lossy Compression Framework for Scientific Data (PACT
"20). Association for Computing Machinery, New York, NY, USA, 3-15.
https://doi.org/10.1145/3410463.3414624

Jiannan Tian, Cody Rivera, Sheng Dj, Jieyang Chen, Xin Liang, Ding-
wen Tao, and Franck Cappello. 2021. Revisiting Huffman Coding:
Toward Extreme Performance on Modern GPU Architectures. In
2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 881-891. https://doi.org/10.1109/IPDPS49936.2021.00097
Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland,
Tyler Reddy, David Cournapeau, Evgeni Burovski, Pearu Peterson,
Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt, Matthew
Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew
R.J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J Carey, {lhan Polat,
Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef Perktold,
Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Anténio H. Ribeiro, Fabian Pedrcegosa, Paul van
Mulbregt, and SciPy 1.0 Contributors. 2020. SciPy 1.0: Fundamental
Algorithms for Scientific Computing in Python. Nature Methods 17
(2020), 261-272. https://doi.org/10.1038/541592-019-0686-2
Chengming Zhang, Sian Jin, Tong Geng, Jiannan Tian, Ang Li, and
Dingwen Tao. 2022. CEAZ: Accelerating Parallel I/O via Hardware-
Algorithm Co-Designed Adaptive Lossy Compression. In Proceedings
of the 36th ACM International Conference on Supercomputing (Virtual
Event) (ICS °22). Association for Computing Machinery, New York, NY,
USA, Article 12, 13 pages. https://doi.org/10.1145/3524059.3532362
Kai Zhao, Sheng Di, Maxim Dmitriev, Thierry-Laurent D. Tonellot,
Zizhong Chen, and Franck Cappello. 2021. Optimizing Error-Bounded
Lossy Compression for Scientific Data by Dynamic Spline Interpola-
tion. In 2021 IEEE 37th International Conference on Data Engineering
(ICDE). 1643-1654. https://doi.org/10.1109/ICDE51399.2021.00145
Kai Zhao, Sheng D1, Xin Lian, Sihuan Li, Dingwen Tao, Julie Bessac,
Zizhong Chen, and Franck Cappello. 2020. SDRBench: Scientific
Data Reduction Benchmark for Lossy Compressors. In 2020 IEEE In-
ternational Conference on Big Data (Big Data). 2716-2724. https:
//doi.org/10.1109/BigData50022.2020.9378449

Q. Zhou, C. Chu, N. S. Kumar, P. Kousha, S. M. Ghazimirsaeed, H.
Subramoni, and D. K. Panda. 2021. Designing High-Performance MPI
Libraries with On-the-fly Compression for Modern GPU Clusters. In
2021 IEEE International Parallel and Distributed Processing Symposium
(IPDPS). 444-453. https://doi.org/10.1109/IPDPS49936.2021.00053

110

Milan Shah, Xiaodong Yu, Sheng Di, Michela Becchi, and Franck Cappello

[24] Zlib. [n.d.]. https://www.zlib.net/. Online.

	Abstract
	1 Introduction
	2 Background
	2.1 Compression with cuSZ
	2.2 Huffman Coding

	3 Motivation
	3.1 Example applications
	3.2 Problem Formulation

	4 Design
	4.1 Overview
	4.2 Creating Huffman Trees
	4.3 Tree Selection Criterion
	4.4 GPU-based Design
	4.5 Design Space Exploration

	5 Experimental Evaluation
	5.1 Methodology
	5.2 Results

	6 Related Work
	7 Conclusion
	References

