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Table 2: Fraction of cuSZ compression time spent in the code-

book generation algorithm for quantization code range of

(-512,512) (1023 symbols)

Dataset Total Time (ms) Codebook Gen. Time (%)

CESM 2.39 81.7
NWChem 5.90 33.2
Miranda 3.63 55.5
QTensor 4.91 46.2
Nyx 7.09 29.6

code set size. Therefore, if the range of quantization codes is
fixed, the cost to generate the codebook remains the same
independent of the input data size. While creating the quan-
tization code histogram requires a scan through the input
data, histogram generation is a high-throughput stage with
negligible cost (and can be integrated in cuSZ’s quantization
stage). The number of quantization codes directly impacts
the performance, but increasing the range of quantization
codes (thus the set of input symbols for Huffman tree cre-
ation ) can increase the compression ratio since there are
fewer data points considered outliers in cuSZ.

Since the codebook generation overhead is non-negligible
and accounts for a significant portion of cuSZ’s runtime, our
design seeks to avoid codebook generation altogether, opt-
ing for a dictionary of pre-computed codebooks with a fast
codebook selection step. In this work, we examine the per-
formance of our method on general scientific floating-point
datasets and on applications relying on the HDF5 library and
the MPI protocol. Many such applications can benefit from
good compression performance in real time while operating
on small-middle size datasets. While we note that the per-
cent of time cuSZ spends in codebook generation becomes
smaller as the input data size grows, compression for small-
and medium-sized datasets on the scale of tens to hundreds
of MB is a problem space that must be explored to yield high
speeds for real-time applications.

3.1 Example applications

HDF5 is a data management and storage framework im-
plemented as the combination of a model, a library, and a
file format [7]. HDF5 data are organized in a hierarchical
fashion where groups contain other groups or datasets, and
datasets contain raw data. HDF5 chunking breaks a dataset
into smaller partitions, or chunks, stored separately on disk.
HDF5 chunking presents an attractive alternative to con-
tiguous storage for applications that operate on only sub-
sets of data at a time. When chunks are written to disk or
loaded from disk, I/O filters, such as compression, can be
implemented to operate on each individual chunk. Chunk
compression reduces data footprint as well as disk I/O time
[5, 9]. Since chunks have a maximum size of 4 GB and most

often are on the scale of kilobytes to megabytes, compres-
sion filters must be able to perform well on small datasets.
The cost of codebook creation in cuSZ can be prohibitive in
the adoption of cuSZ as a compression filter for HDF5 since
chunks are relatively small inputs for compression. Table 2
suggests that reducing the codebook generation time can
significantly improve the performance of HDF5, leading to
up to 80% faster compression and thus, less computationally-
intensive HDF5 writes and reads from disk.
MPI applications’ performance is often limited by com-

munication costs. Data compression has been proven an
efficient mechanism to limit data transfer overhead and im-
prove the utilization of the interconnect bandwidth [5, 23].
Data sent via messages typically are in the range of kilo-
bytes to megabytes in size, meaning that compressors must
perform well on small data sizes. Compression introduces
its own overhead in addition to communication, thus for
scalable applications, minimizing communication overhead
and compression overhead are crucial for high performance.

3.2 Problem Formulation

We formulate the research problem as follows. Given a dataset
𝑇 , whose data points’ original values are denoted as 𝑥𝑖 , and
whose set of quantization codes is denoted as 𝑄 (𝑇 ), our ob-
jective is to develop a fast pre-computed codebook scheme
for 𝑄 (𝑇 ). This scheme should allow for quantization code
compression ratios close to using an optimal Huffman code-
book while improving the performance of cuSZ.

Compression ratio,CR, is defined as the ratio of the original

raw data size to the compressed data size: |𝑇 |
|𝑇 ′ |

, where 𝑇 ′

denotes the decompressed data; |𝑇 | and |𝑇 ′ | represent the
raw data size and compressed data size, respectively. The

compression throughput is defined as |𝑇 |
𝜏𝐶 (𝑇 )

, where 𝜏𝐶 (𝑇 )
refers to the compression time of the raw dataset.

Specifically, our pre-computed codebook compressor should
address two important objectives: minimizing the compres-
sion ratio difference between the optimal and pre-computed
Huffman codebook and maximizing throughput, which are
formulated as Formula (1) and Formula (2), respectively.

min |𝐶𝑅𝑐𝑢𝑠𝑡𝑜𝑚 −𝐶𝑅𝑝𝑟𝑒−𝑐𝑜𝑚𝑝𝑢𝑡𝑒𝑑 |

𝑠 .𝑡 . |𝑥𝑖 − 𝑥
′
𝑖 | ≤ 𝜖,∀𝑥𝑖 ∈ 𝑇,with error bound 𝜖

(1)

max (
|𝑇 |

𝜏𝐶 (𝑇 )
)

𝑠 .𝑡 . |𝑥𝑖 − 𝑥
′
𝑖 | ≤ 𝜖,∀𝑥𝑖 ∈ 𝑇,with error bound 𝜖

(2)

4 DESIGN

4.1 Overview

In order to avoid the runtime cost of Huffman codebook gen-
eration, we propose building a dictionary of pre-computed
Huffman codebooks and selecting at compression time a
łbest-fitž codebook for the input data. The pre-computed
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from zero will benefit from shorter encoding lengths while
codes closer to zero suffer from longer encoding lengths.

To generate a final Huffman codebook for the dictionary,
we first select one of the three distributions, divide the PDF
into as many regions as there are quantization codes (typ-
ically between 512-2048) to create a histogram, then feed
the histogram as input to the Huffman coding algorithm to
generate a codebook. This process is repeated for different
values of 𝑆 , resulting in a dictionary of codebooks.

4.3 Tree Selection Criterion

Given a set of codebooks, the compressor must select the
one that fits best the quantization codes of the data being
compressed. The selection criterion should have the follow-
ing qualities: 1) it should identify a codebook that yields
the optimal or close-to-optimal compression ratio for the
input data, 2) it should rely on some data inherent to the
pre-created codebooks, and 3) it should be faster to compute
than the codebook generation algorithm. Here, we examine
three selection criteria: Shannon’s entropy, cross entropy, and
KullbackśLeibler (KL) divergence.
Shannon’s Entropy gives the optimal average number

of bits to encode a random variable from a given probability
distribution. For an 𝑛 bin histogram and relative frequency
𝑝𝑖 for each bin 𝑖 , entropy 𝐻 is defined in Eq. 7.

𝐻 = −

𝑛∑︁

𝑖=1

𝑝𝑖 log2 𝑝𝑖 (7)

Using Shannon’s entropy as selection criterion requires
computing, at compression, the entropy of the quantization
codes’ distribution for the input data. The result is then com-
pared against the entropy of all pre-computed codebooks,
and the codebook with the closest entropy is selected. Increas-
ing the scale factor 𝑆 when creating pre-computed codebooks
increases the entropy of the distribution.
Cross Entropy is closely related to Shannon’s entropy

since it gives an average number of bits to encode a vari-
able, with the key difference being that the coding scheme is
optimized for a different distribution. That is, for an 𝑛 bin his-
togram, relative frequency 𝑝𝑖 for the dataset being encoded,
and relative frequency 𝑞𝑖 for the pre-computed codebook’s
distribution, cross entropy 𝐶𝐸 is defined in Eq. 8.

𝐶𝐸 = −

𝑛∑︁

𝑖=1

𝑝𝑖 log2 𝑞𝑖 (8)

This criterion accounts for the distribution of both the input
data and pre-computed codebook, unlike entropy alone. As
such, cross entropy can discriminate a łbest-fitž codebook
relative to the input data. When 𝑞(𝑥) = 𝑝 (𝑥), cross entropy
becomes entropy, providing a lower bound for the average
number of bits to encode the data.

To select a codebook using cross entropy, cross entropy
is first calculated based on the histograms of the input data
quantization codes and the codebook’s input histogram. Then,
the codebook yielding the smallest cross entropy is selected
for Huffman encoding.

KLDivergence, also called relative cross entropy, is closely
related to cross entropy since it measures the similarity be-
tween two distributions. If two distributions are identical,
their KL divergence is zero. For an 𝑛 bin histogram, relative
frequency 𝑝𝑖 for the dataset being encoded, and relative fre-
quency 𝑞𝑖 for the pre-computed codebook’s distribution, KL
divergence 𝐾𝐿 is defined in Eq. 9.

𝐾𝐿 = −

𝑛∑︁

𝑖=1

𝑝𝑖 log2
𝑞𝑖

𝑝𝑖
(9)

KL divergence is often used in machine learning applications
as a loss function and can be applied here as a measure of
compressibility "loss". Note that KL divergence is not a metric
due to its asymmetry and is dependent on the reference
distribution.
KL divergence yields a nearly identical shape to cross

entropy when varying the entropy of the codebooks. As
such, the minimum KL divergence corresponds to the same
codebook as the minimum cross entropy. Both of these find a
codebook that minimizes the reduction in compression ratio
from using a custom Huffman codebook, but KL divergence
requires one additional division and prevents the logarithm
calculation beforehand. Using cross entropy, each dictionary
key can hold the log2 𝑞𝑖 terms instead of only the 𝑞𝑖 terms for
a codebook, further offloading runtime computation. Since
cross entropy is less computationally costly, we use cross
entropy over KL divergence as the selection criterion.
Example: Fig. 4 compares using entropy and cross en-

tropy as selection criteria for CESM and NWChem. The other
three datasets exhibit similar behavior and their plots are
omitted for space. We generated 100 codebooks with varying
𝑆 , thus varying the entropy from approximately 0 to 7. The
optimal compression ratio when using a custom codebook is
plotted in green while pre-computed codebook compression
ratios are plotted in red. Cross entropy, plotted in blue, can
yield a global minimum value that coincides with the high
compression ratio regions of the plots.

If Shannon’s entropy were the selection criteria, the code-
book with the closest entropy to the quantization code his-
togram entropy (plotted as black lines in Fig. 4) does coin-
cide with the high compression ratio regions for CESM and
NWChem at these error bounds. However, if the dictionary
does not have enough codebook entries, the nearest entropy
codebook may reduce the compression ratio compared to
cross entropy selection. For example, if we had a dictionary
of two Cauchy-based codebooks with entropies of 1.7 and 4.0,
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suggest that for very lower entropy histograms (average bit-
length is less than 1.09), run-length encoding (RLE) can yield
higher compression ratios with comparable performance.
Huffman coding, in contrast with RLE, requires a codebook
generation phase, which is the primary focus of our work.
Additionally, Huffman coding yields higher compression
ratios compared to RLE for quantization code histograms
with entropy larger than 1.09.

Zhang et al. [20] implement a pre-computed Huffman
codebook method for cuSZ’s prediction and quantization.
Their method targets FPGA and uses one pre-computed code-
book, created from the average histogram of several scientific
datasets. If the codebook does not lead to sufficiently high
compression ratios, online codebook generation is performed.
Our design differs in a few ways: 1) We use a dictionary of
codebooks based on a variety of common probability dis-
tributions, 2) As the R2R error decreases, they report more
significant compression ratio degradation (5.1-10.7% less)
compared to the Cauchy and Laplace codebooks in our dic-
tionary (approx. 4% less), 3) Online codebook generation can
still occur, while our design relies completely on offline code-
book generation, 4) The target platforms differ. Abali et al.
[1] patented a general method of precomputing codebooks
using a table storing the length of each symbol’s encoding.
At runtime, the dataset’s values are assigned symbols with
the corresponding length of each entry in the table and the
overall bits required using each precomputed codebook is
calculated. Their work relies on a sorting step after histogram
generation and before selecting a table entry, a process that
has additional overhead on GPU. Additionally, they do not
perform a GPU- or cuSZ-specific design space exploration.
Our work leverages properties of cuSZ quantization codes
specifically, and we evaluate how to size the dictionary and
quantify compression ratio degradation. The selection crite-
ria between the patent and our work also differs since they
calculate predicted bit length while we use cross entropy.

7 CONCLUSION

In this work, we have designed and evaluated a pre-computed
Huffman codebook scheme to offload codebook generation
during cuSZ compression. Using a dictionary of pre-computed
codebooks, we can calculate the cross entropy of a quantiza-
tion code distribution to select a best-fit codebook for Huff-
man encoding. Our evaluation on the A100 GPU suggests the
following: 1) Cauchy, Laplace, and Gaussian distributions
can be leveraged to create a codebook dictionary, typically
limiting compression ratio degradation to less than 4%, while
achieving up to 5× total compression time speedup on MB-
scale datasets over baseline cuSZ. 2) HDF5 chunking with
compression filters can enjoy a performance speedup over
cuSZ of nearly 9×. Speedup benefits are multiplied by the

number of chunks written to or read from disk. 3) MPI com-
munication time with our design has a speedup of 1.4-16.2×
compared to baseline cuSZ speedup of 0.25-14.3× over using
no compression prior to sending a message.
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