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to (e.g., with Huffman encoding as Deflate [9]) remove both spatial

and frequency redundancy.

On one hand, multi-byte data such as long integers and floating-

point numbers are common as input to lossless compression [26,

37, 46]. However, the classic LZSS compression only takes a single

byte as the input unit, ignoring the data characteristics of different

data types. Using multiple bytes as units in LZSS can improve both

compression throughput (due to fewer symbols to process) and

ratio (due to longer repeated patterns).

On the other hand, more and more applications are being im-

plemented on the GPU due to its high performance and energy

efficiency [12], resulting in multiple critical use cases of GPU com-

pression. For example, GPU compression can speed up GPU-CPU

data transfers [45]. It can also reduce GPU memory footprint to

support larger input in deep learning [21]. However, it is chal-

lenging to parallelize LZSS on GPUs due to its strong data depen-

dency [36]. Simply chunking data and distributing them to different

GPU threads would cause warp divergence [47].

CULZSS [31] is a state-of-the-art open-source GPU LZSS com-

pressor. It can achieve relatively higher compression throughput

on the GPU than the CPU solution [13]. However, CULZSS faces

several critical issues: 1 It cannot handle multi-byte data, and sim-

ply modifying its algorithm to accommodate multi-byte input may

result in a significant drop in compression ratio. 2 It lacks tuning of

parameters such as block size and sliding window size for different

GPU architectures. 3 Its encoding process is performed on the

CPU, which introduces high CPU-GPU data movement overhead.

To solve the above issues, we propose a highly optimized LZSS

compression for multi-byte data on modern GPUs (called gpuLZ
1).

Specifically, we deeply analyze CULZSS and identify its perfor-

mance issues. Based on these issues, we propose twomain algorithm-

level optimizations and a series of performance optimizations. These

optimizations can improve compression throughput and ratio si-

multaneously. To the best of our knowledge, this is the first work

that optimizes LZSS compression for multi-byte data on GPUs.

The main contributions of this paper are summarized as follows.

• We develop a highly efficient LZSS compression on GPUs for

multi-byte data. We perform an in-depth analysis of CULZSS

and investigate its main performance issues.

• We optimize the prefix sum from one pass to two passes and fuse

multiple kernels (e.g., matching and local prefix sum) to reduce

data movement between shared memory and global memory.

• We propose a pattern-matching method for multi-byte data,

which can reduce computational complexity and explore longer

repeated patterns.

• Wepropose a data partitioningmethod that can adapt to different

GPU architectures to maximize shared memory utilization.

• We evaluate gpuLZ on six datasets with NVIDIAA100 andA4000

GPUs. The evaluation demonstrates that gpuLZ outperforms

CULZSS by up to 272.1× in compression throughput with no

degradation of compression ratio (even 20.6% improvement).

In §2, we present the background about CUDA architecture,

LZSS algorithm, GPU implementations of LZSS, and their issues. In

§3, we present the design of gpuLZ with our algorithm-level and

architectural performance optimizations. In §4, we evaluate gpuLZ

1The code is available at https://github.com/hipdac-lab/GPULZ.

and compare it with other GPU LZ compression. In §5, we conclude

the paper and discuss our future work.

2 BACKGROUND AND MOTIVATION

In this section, we present the background of CUDA architecture,

LZSS algorithm, and its state-of-the-art GPU implementations.

2.1 CUDA Architecture

CUDA is a parallel computing platform and API that allows the soft-

ware to use NVIDIA GPUs for general-purpose processing. Thread

is the basic programmable unit for GPU programmers to use mas-

sive numbers of CUDA cores. CUDA threads are organized into

three levels, grid, block, and thread. Specifically, a group of 32

threads is called a warp. All threads in the same warp will execute

the same instruction. However, if different threads in a warp follow

different control paths, some threads are masked from performing

any useful work. This situation is called warp divergence, which is

one of the fundamental factors that limit the performance of GPUs.

Multiple warps are combined to form a thread block, and a set of

thread blocks form a thread grid.

Regarding the CUDA memory hierarchy, the largest and slow-

est memory is called the global memory, which is accessible by

all threads. The next layer is shared memory, which is a fast and

programmable cache. All the threads in the same thread block

have access to the same shared memory. Lastly, the fastest layer is

the thread-private register to each thread. To achieve good perfor-

mance, CUDA programmers must effectively utilize the memory

subsystem. For example, when threads in a warp request contigu-

ous global-memory locations, these requests can be aggregated into

a single transaction (called coalesced memory access); non-coalesced

memory access will cause a significant performance slowdown.

2.2 LZSS

LZSS is a variant of LZ77 [48], the first algorithm in the LZ com-

pression family. LZSS has the same fundamental idea as other LZ

algorithms: search through a sliding window for the longest pos-

sible sub-sequence match and encode all identified matches. To

clearly explain the LZSS algorithm, we introduce some basic con-

cepts as follows.

• Input stream is the sequence of bytes to be compressed.

• Symbol is the single-/multi-byte unit of the input stream.

• Look-ahead buffer is the byte sequence from the coding posi-

tion to the end of the input stream.

• Coding position is the byte position in the input stream cur-

rently encoded in the look-ahead buffer.

• Sliding window is a buffer (of size𝑊 ), which is the number of

bytes from the coding position backward. The window is empty

at the beginning, then grows to size𝑊 as the input stream is

processed, and “slides” along with the coding position.

• Pointer contains two numbers: the first one is the length of the

match, and the second one is the starting offset. The starting

offset is the count of bytes from the coding position back to the

window, and the length is the number of bytes to read forward

from the starting offset.

• Literal represents the current byte if there is no match.
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compressed data back to the global buffer, incurring multiple data

movements between shared memory and global memory.

To solve this issue, we propose an optimization called two-pass

prefix sum. It includes both a local prefix sum and a global prefix

sum. The design is shown in Figure 5. Specifically, the local prefix

sum calculates the offset for each compressed symbol within each

data chunk/thread block. Here we adopt an optimized two-sweep

prefix-sum algorithm that fits GPU well [3]. It includes up-sweep

and down-sweep processes, detailed in §3.3.2.

After we get the compressed size of each data chunk from the

local prefix sum, we can calculate the offset of each compressed

chunk through a global prefix sum across data chunks. Compared

with the single-pass prefix sum, our proposed two-pass prefix sum

only needs to store the size of each compressed data chunk instead

of the size of each compressed symbol, which significantly reduces

the amount of data written to and read from the global memory

(e.g., by at least 𝐶 times, where 𝐶 is the number of symbols per

data chunk). Moreover, our two-pass prefix sum can also reduce

space complexity and the global memory footprint. Note that to

avoid moving the match result back and forth between the shared

and global memories for the local prefix sum, we propose to fuse

the local prefix-sum computation into the matching kernel. Thus,

we can perform the local prefix-sum computation directly on the

matching result stored in the shared memory. This can also reduce

the global memory footprint.

After the local prefix sum, each GPU thread encodes symbols

based on the calculated local offsets and the found matches, similar

to the CPU sequential encoding in LZSS, as mentioned in §2.2. Note

that since this encoding is performed at the thread-block level, no

grid-level synchronization is needed. As a result, the encoding can

be further fused with the matching and local prefix sum steps to

form Kernel I. It is also worth noting that compared with CULZSS,

our encoding enables massive GPU threads, which maximizes the

parallelism and encoding throughput.

3.2.3 Multi-byte Matching Approach. CULZSS only performs the

matching step on a single-byte basis, which leads to a decrease

in compression throughput and a potential loss of compression

ratio. This is because, for datasets based on multi-byte symbols,

single-byte matching would lose the characteristics of a specific

data structure. To this end, we propose a novel multi-byte matching

approach that finds matches based on symbols instead of bytes.

This strategy has two advantages: 1 Searching for matches based

on symbols is less expensive than searching for matches based on

bytes since there are far fewer symbols than bytes, which increases

compression throughput. 2 It can bring potentially higher com-

pression ratios because each match can contain more bytes. We use

𝑆 to denote the symbol length in the following discussion.

However, the potential gain in compression ratio is not guaran-

teed, especially when the match length is generally short. Therefore,

to maximize the chance of increasing the compression ratio with

our multi-byte matching approach, we propose to adaptively select

the symbol length and increase the sliding window size. For exam-

ple, assuming that the input data type is int32, by default, gpuLZ

adopt the 4-byte symbol length and the sliding window size of 128.

Our approach is to adapt the symbol length (ranging from 1 to 4)

and the sliding window size (ranging from 32 to 2552) to achieve the

best trade-off between the compression ratio and the throughput.

After studying the impacts of symbol length 𝑆 and sliding win-

dow size𝑊 on various datasets (detailed in §4.2), we propose a

lightweight parameter selection approach. Specifically, assuming

the datasets contain multiple fields that are the input to gpuLZ at

one time, we monitor the average compression ratio with the multi-

byte matching strategy (default). 1 When the average compression

ratio is relatively low (for instance, lower than 1.5), we switch back

to single-byte matching, considering that the multi-byte matching

is not effective under low compression ratio circumstances (will be

illustrated in §4.2). This is because the multi-byte matching results

in a smaller number of repeated patterns and ignores byte-level

repeated patterns. 2 When the average compression ratio is high,

we keep using multi-byte matching, considering that multi-byte

matching has a significant improvement in compression ratio over

single-byte matching. On the other hand, for𝑊 , we enlarge it to

𝑆 times when we use the multi-byte matching strategy since the

multi-byte matching can bring a speedup of about 𝑆 times over the

single-byte matching, which will offset the higher time complexity

brought by a larger sliding window size.

In addition, we provide another option that allows users to set dif-

ferent sliding window sizes, e.g., 32/64/128/255 as level 1-4. A higher

level will bring a higher compression ratio but lower throughput.

The user can decide the level based on their needs. For example, if

compression throughput is a priority, users should select level 1; if

the compression ratio is a priority, users should select level 4.

3.3 Details of gpuLZ and Its Implementation

Finally, we introduce our architectural performance optimizations

with some implementation details. We describe these details follow-

ing our compression workflow. We first introduce the data partition

and then describe the kernel details.

3.3.1 Data Partition. First, we divide the input data into multiple

blocks and then divide each block into multiple chunks. We launch

a GPU kernel for each data block and map each data chunk to one

GPU thread block in the kernel. Our data partition strategy is il-

lustrated in Figure 6. The reasons for performing a two-level data

partition are as follows: 1 Data block: GPUs have limited memory

capacity (e.g., 16 GBs for an NVIDIA A4000 GPU), so partitioning

data into blocks allows the GPU to process datasets that are larger

than its memory space. 2 Data chunk: As aforementioned, the en-

coding step requires iterating over the found matches and encoding

the matches that are not covered by previous matches, introducing

data dependencies and sequential execution. Thus, data partition-

ing can enforce matches not across different chunks, increasing the

encoding parallelism.

Data block size: CULZSS divides the input data into many small

blocks (e.g., 1 MB) such that it overlaps CPU encoding with GPU

matching as much as possible. However, this very small block sig-

nificantly limits the GPU resource utilization and overall compu-

tational efficiency. In contrast, since our design does not involve

the CPU for encoding, we can use a relatively large block size to

2Note that we set the maximum𝑊 to 255 because we only use one byte to save the
sliding window size and reserve 0 for no match found.
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Table 1: Compression ratio of gpuLZ. Note that some fields are noted as “n/a” due to out of the limited shared memory.

chunk size: 2048 chunk size: 4096 chunk size: 8192 chunk size: 16384

window size ↓ 1 byte 2 bytes 4 bytes 1 byte 2 bytes 4 bytes 1 byte 2 bytes 4 bytes 1 byte 2 bytes 4 bytes

hurr 32 3.14 3.77 3.58 3.18 3.84 3.66 n/a 3.88 3.70 n/a n/a 3.72

quant 64 3.79 4.39 4.05 3.86 4.50 4.18 n/a 4.56 4.25 n/a n/a 4.28

128 4.39 4.91 4.44 4.51 5.09 4.64 n/a 5.18 4.75 n/a n/a 4.81

255 4.89 5.32 4.78 5.07 5.59 5.15 n/a 5.73 5.36 n/a n/a 5.47

hacc 32 1.55 1.67 1.59 1.55 1.68 1.60 n/a 1.68 1.61 n/a n/a 1.61

quant 64 1.71 1.82 1.71 1.72 1.84 1.73 n/a 1.85 1.74 n/a n/a 1.75

128 1.87 1.97 1.83 1.88 2.00 1.86 n/a 2.02 1.88 n/a n/a 1.89

255 2.01 2.12 1.92 2.03 2.18 1.99 n/a 2.20 2.03 n/a n/a 2.05

nyx 32 3.97 5.07 4.80 4.04 5.20 4.95 n/a 5.27 5.02 n/a n/a 5.06

quant 64 5.06 6.18 5.73 5.19 6.42 6.00 n/a 6.54 6.14 n/a n/a 6.21

128 6.14 7.19 6.52 6.36 7.57 6.99 n/a 7.79 7.25 n/a n/a 7.38

255 7.08 8.03 7.11 7.46 8.65 7.94 n/a 9.01 8.42 n/a n/a 8.64

tpch 32 1.31 1.25 1.29 1.32 1.26 1.30 n/a 1.26 1.30 n/a n/a 1.30

int32 64 1.37 1.30 1.34 1.38 1.31 1.35 n/a 1.31 1.35 n/a n/a 1.36

128 1.43 1.34 1.38 1.44 1.35 1.39 n/a 1.36 1.40 n/a n/a 1.41

255 1.50 1.38 1.41 1.51 1.39 1.43 n/a 1.40 1.44 n/a n/a 1.45

tpch 32 1.55 1.58 1.46 1.56 1.59 1.47 n/a 1.60 1.48 n/a n/a 1.48

string 64 2.02 1.96 1.72 2.04 1.99 1.76 n/a 2.01 1.78 n/a n/a 1.79

128 2.57 2.43 2.03 2.62 2.50 2.12 n/a 2.54 2.17 n/a n/a 2.20

255 3.08 2.84 2.27 3.19 3.00 2.47 n/a 3.09 2.58 n/a n/a 2.64

rtm 32 2.45 2.72 2.88 2.47 2.75 2.91 n/a 2.77 2.93 n/a n/a 2.94

float32 64 2.59 2.80 2.92 2.61 2.83 2.96 n/a 2.85 2.98 n/a n/a 2.99

128 2.66 2.84 2.94 2.69 2.88 2.99 n/a 2.89 3.01 n/a n/a 3.02

255 2.69 2.85 2.97 2.72 2.90 3.02 n/a 2.92 3.05 n/a n/a 3.07

Baselines. We compare gpuLZwith two baselines: 1 CULZSS:

CULZSS is the state-of-the-art GPU implementation (open-source) [7]

of LZSS, but it uses the GPU to find matches and the CPU to encode

matches. 2 nvCOMP’s LZ4: LZ4 is similar to LZSS but uses a partic-

ular data format to achieve portability. We use the state-of-the-art

GPU implementation (closed-source) of LZ4 from nvCOMP [27].

We use the latest nvCOMP 2.6.0.

Evaluation metrics. We focus on evaluating and analyzing GPU-

based LZ compressors on two main metrics. 1 Compression ratio is

one of the most commonly used metrics in compression research.

It can be calculated as the ratio of the original data size and recon-

structed data size. Higher compression ratios mean denser informa-

tion aggregation against the original data and faster data transfer.

2 Compression throughput is the primary consideration when using

a GPU-based lossy compressor instead of a CPU-based one. It can

be calculated as the ratio of original data size to compression/de-

compression time. Higher throughput means faster compression

and more significant benefits of using compression.

4.2 Impacts of Parameters 𝐶,𝑊 , and 𝑆

First, we evaluate the impacts of parameters 𝐶 ,𝑊 , and 𝑆 . We con-

duct the experiments on both the A100 and A4000 platforms. The

compression ratio is shown in Table 1, and the compression through-

put is shown in Table 2. Specifically, we choose the data chunk sizes

(i.e.,𝐶) of 2048, 4096, 8192, and 16,384. The data chunk size directly

decides the shared memory size we utilize in our design. Because

the shared memory is part of the L1 cache. As a result, we can

observe the impact of the trade-off between shared memory and

L1 cache on the overall throughput. Note that some fields in the

table are empty because of the limited shared memory. The sliding

window size𝑊 will directly decide the time complexity. The longer

the sliding window is, the higher the time complexity will be. It

will also potentially increase the compression ratio. Moreover, we

introduce multi-byte symbols into the LZSS algorithm to explore

the potential compression ratio and throughput gains. To this end,

we select three symbol lengths (i.e., 𝑆): 1, 2, and 4 bytes.

First, we focus on the impact of 𝐶 . As mentioned before, we

partition the data into chunks to allow LZSS to execute in parallel.

However, due to the independence of each data chunk, the com-

pression ratio would drop slightly because the match does not span

the boundaries of data chunks, leading to the limited match length.

The evaluation result also proves this, as illustrated in Table 1. The

compression ratio increases as the data chunk size increases in

all test cases. The average improvement is 1.02×. However, as the

data chunk size increases, the compression throughput decreases

in almost all test cases. This proves that a larger L1 cache is better

for compression throughput than utilization of shared memory,

at least in the range of feasible data chunk sizes of gpuLZ. With

smaller data chunk size, the compression throughput is improved

by 1.33× on average. Note that the compression throughput drops

significantly with larger data chunk sizes. For example, on the 4-

byte nyx-quantization dataset, the compression throughput drops

from 19.05 to 18.76 when the data chunk size changes from 2048 to

4096. At the same time, it drops from 14.67 to 8.36 when the data

chunk size changes from 8192 to 16,384. This is because when the

data chunk size is 16,384, the shared memory size is close to the

hardware’s limit, resulting in a fairly small L1 cache size and fur-

ther impacting the overall throughput. This phenomenon is more

obvious when the data chunk size is bigger. Note that A100 has a

higher speedup than A4000 when the block size is large because

A100 has larger L1 cache (192 KB/SM) than A4000 (128 KB/SM).

Next, we explore the impact of𝑊 . On the one hand, as analyzed

before, a larger sliding window brings a potentially longer match,

increasing the compression ratio. Table 1 shows that the ratio of

compression ratio to the sliding window size is near linearly in
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Table 2: Compression throughput of gpuLZ on both A100 (blue) and A4000 (gray) GPUs. The red bars show the performance gain when scaling from A4000 to A100.

chunk size: 2048 chunk size: 4096 chunk size: 8192 chunk size: 16384

window size ↓ 1 byte 2 bytes 4 bytes 1 byte 2 bytes 4 bytes 1 byte 2 bytes 4 bytes 1 byte 2 bytes 4 bytes

hurr 32 8.1 4.9
1.7×

14.9 9.6
1.6×

29.0 18.1
1.6×

6.9 3.1
2.2×

14.8 8.4
1.8×

28.0 17.4
1.6× n/a 11.3 4.4

2.6×
26.6 13.3

2.0× n/a n/a 16.0 7.6
2.1×

quant 64 4.6 2.9
1.6×

8.9 5.6
1.6×

17.5 11.2
1.6×

4.5 2.2
2.0×

8.6 5.3
1.6×

17.2 11.0
1.6× n/a 7.4 3.1

2.4×
16.6 9.2

1.8× n/a n/a 11.8 5.6
2.1×

128 2.5 1.6
1.6×

4.9 3.1
1.6×

11.0 6.7
1.6×

2.4 1.3
1.8×

4.7 2.9
1.6×

10.1 6.3
1.6× n/a 4.3 2.0

2.2×
9.5 5.7

1.7× n/a n/a 7.4 3.7
2.0×

255 1.4 0.9
1.6×

2.8 1.8
1.6×

7.0 4.4
1.6×

1.3 0.8
1.7×

2.6 1.6
1.6×

5.7 3.6
1.6× n/a 2.3 1.1

2.1×
5.3 3.3

1.6× n/a n/a 4.3 2.3
1.9×

hacc 32 7.4 4.2
1.8×

13.8 8.5
1.6×

29.0 18.1
1.6×

5.8 2.6
2.2×

13.1 7.5
1.7×

27.5 15.5
1.8× n/a 9.3 3.4

2.7×
24.6 10.6

2.3× n/a n/a 14.5 6.1
2.4×

quant 64 4.5 2.8
1.6×

8.2 5.3
1.5×

19.2 11.4
1.7×

4.1 2.1
2.0×

8.2 5.1
1.6×

19.1 11.4
1.7× n/a 6.6 2.7

2.4×
17.4 8.4

2.1× n/a n/a 11.1 5.3
2.1×

128 2.6 1.7
1.5×

4.8 3.1
1.6×

12.4 6.3
2.0×

2.6 1.4
1.9×

4.7 3.0
1.5×

11.1 6.7
1.6× n/a 4.2 2.0

2.1×
11.1 6.0

1.8× n/a n/a 7.9 3.6
2.2×

255 1.5 1.0
1.6×

2.7 1.8
1.5×

7.4 4.4
1.7×

1.5 0.8
1.8×

2.7 1.7
1.6×

6.7 3.9
1.7× n/a 2.5 1.2

2.1×
6.0 3.5

1.7× n/a n/a 4.9 2.5
2.0×

nyx 32 9.5 6.0
1.6×

15.7 10.1
1.5×

30.1 19.1
1.6×

7.5 4.0
1.9×

15.8 9.1
1.7×

30.3 18.8
1.6× n/a 12.4 5.6

2.2×
29.2 14.7

2.0× n/a n/a 18.1 8.4
2.2×

quant 64 5.7 3.6
1.6×

9.4 6.2
1.5×

19.8 11.6
1.7×

5.4 2.8
1.9×

9.3 6.2
1.5×

18.0 11.4
1.6× n/a 8.1 3.8

2.2×
17.9 10.8

1.7× n/a n/a 12.9 6.3
2.0×

128 3.1 1.9
1.6×

5.5 3.6
1.5×

11.3 7.1
1.6×

3.1 1.7
1.9×

5.9 3.4
1.7×

10.3 6.8
1.5× n/a 5.0 2.5

2.0×
10.2 6.5

1.6× n/a n/a 8.7 4.6
1.9×

255 1.8 1.0
1.7×

3.6 2.1
1.7×

6.9 4.9
1.4×

1.7 0.9
1.8×

3.2 1.9
1.7×

6.6 4.1
1.6× n/a 3.1 1.4

2.2×
6.3 3.9

1.6× n/a n/a 5.3 2.8
1.9×

tpch 32 7.1 3.9
1.8×

12.1 8.3
1.5×

25.4 14.9
1.7×

5.2 2.3
2.3×

11.7 6.2
1.9×

21.4 13.5
1.6× n/a 7.7 3.1

2.5×
19.4 9.3

2.1× n/a n/a 10.5 5.0
2.1×

int32 64 4.4 2.7
1.6×

7.9 5.1
1.5×

16.3 10.2
1.6×

3.8 1.7
2.2×

7.5 4.5
1.7×

14.6 9.8
1.5× n/a 5.9 2.4

2.5×
14.2 7.1

2.0× n/a n/a 8.2 4.2
2.0×

128 2.4 1.6
1.5×

4.8 3.0
1.6×

10.2 6.3
1.6×

2.2 1.1
2.0×

4.5 2.8
1.6×

9.2 5.6
1.7× n/a 3.8 1.7

2.3×
8.4 5.0

1.7× n/a n/a 6.4 3.1
2.1×

255 1.3 0.9
1.6×

2.8 1.7
1.6×

6.7 4.0
1.7×

1.2 0.7
1.8×

2.4 1.6
1.5×

5.8 3.5
1.7× n/a 2.1 1.0

2.1×
5.0 3.1

1.6× n/a n/a 3.8 2.0
1.9×

tpch 32 7.1 4.2
1.7×

12.5 8.0
1.6×

22.9 13.8
1.7×

5.3 2.5
2.2×

11.4 6.2
1.8×

21.1 12.6
1.7× n/a 8.0 3.5

2.3×
19.0 8.4

2.3× n/a n/a 10.0 4.8
2.1×

string 64 4.7 3.1
1.5×

8.4 5.2
1.6×

15.2 9.5
1.6×

4.2 2.0
2.1×

7.6 5.1
1.5×

15.6 9.2
1.7× n/a 6.3 2.9

2.2×
14.0 6.8

2.0× n/a n/a 8.2 4.1
2.0×

128 2.4 1.7
1.4×

4.8 3.3
1.5×

10.7 6.0
1.8×

2.6 1.3
2.0×

4.7 3.1
1.5×

9.4 5.7
1.7× n/a 4.0 2.0

2.0×
8.2 4.8

1.7× n/a n/a 5.7 3.5
1.6×

255 1.4 0.9
1.5×

2.6 1.8
1.4×

6.9 3.7
1.8×

1.4 0.8
1.8×

2.6 1.7
1.5×

6.1 3.3
1.8× n/a 2.3 1.2

1.9×
4.7 3.3

1.4× n/a n/a 3.7 2.3
1.6×

rtm 32 7.3 4.2
1.7×

14.3 9.0
1.6×

28.4 17.6
1.6×

6.1 2.8
2.2×

13.9 7.5
1.8×

28.6 17.2
1.7× n/a 11.2 3.9

2.9×
26.6 13.1

2.0× n/a n/a 16.2 7.4
2.2×

float32 64 4.5 2.9
1.6×

9.3 5.5
1.7×

17.7 11.2
1.6×

3.9 2.2
1.8×

8.3 5.1
1.6×

17.4 10.9
1.6× n/a 7.0 3.0

2.3×
16.8 9.1

1.8× n/a n/a 12.4 5.5
2.2×

128 2.5 1.8
1.4×

4.9 3.4
1.4×

10.8 6.8
1.6×

2.4 1.4
1.7×

4.7 3.1
1.5×

10.0 6.4
1.6× n/a 4.2 1.9

2.2×
9.6 5.6

1.7× n/a n/a 7.5 3.7
2.1×

255 1.4 1.0
1.4×

3.1 2.0
1.5×

8.1 4.8
1.7×

1.3 0.8
1.6×

3.1 1.8
1.7×

6.1 3.8
1.6× n/a 2.6 1.3

2.0×
5.8 3.3

1.8× n/a n/a 4.5 2.6
1.7×

almost all datasets. For example, on the 2-byte tpch-int32 dataset,

the compression ratio is 1.26, 1.31, 1.35, and 1.39 when the sliding

window size is 32, 64, 128, and 255, respectively. Moreover, the

overall compression ratio improvement by extending the sliding

window size from 32 to 255 is 1.4×. On the other hand, a larger

sliding window incurs more operations per thread, decreasing the

compression throughput. The average speedup when we change

the sliding window size from 255 to 32 is 3.9×. Compared with

the relatively small increase in compression ratio, the throughput

decreases dramatically as the sliding window size doubles. However,

we find gpuLZ highly stable in throughput across different datasets

under the same configuration (i.e., 𝐶 ,𝑊 , and 𝑆). For example, the

throughput of 𝐶 = 2048,𝑊 = 32, and 𝑆 = 2 is 9.57 GB/s, 8.49 GB/s,

10.14 GB/s, 8.3 GB/s, 7.96 GB/s, and 9 GB/s on A4000 on {hurr, hacc,

nyx}-quant, tpch-{int32, string}, and rtm datasets, respectively.

Finally, we discuss the impact of the symbol length 𝑆 . As men-

tioned, the multi-byte symbol length can introduce a potential com-

pression ratio improvement and increase the compression through-

put due to longer matches and fewer symbols to process. Table 1

shows that the compression ratio improvement is not determined

as we expected. It has different patterns for different datasets. For

example, on the three uint16 quantization-code datasets, the com-

pression ratio reaches the peak at 𝑆 = 2, which is the same as

the length of uint16. However, on the int32 tpch-int32 dataset, the

compression ratio is optimal at 𝑆 = 1, which is different from the

length of int32. This is because the number of repeated patterns is

relatively smaller in the tpch-int32 dataset, as indicated by the low

compression ratio. Thus, using a 1-byte symbol (i.e., 𝑆 = 1) may

detect more byte-level repeated patterns and achieve a higher com-

pression ratio than using a 4-byte symbol. On the utf-8 tpch-string

dataset and the float32 rtm dataset, the best compression ratio is

achieved at 𝑆 = 1 and 𝑆 = 4, respectively, which is the same as the

unit length of their data types.

Regarding throughput, the impact of the symbol length is more

obvious; that is, longer symbol results in higher throughput. The

average throughput improvement is 4.5× when we change 𝑆 from 1

to 4. Combined with the above observation regarding compression

ratio, we find that 𝑆 = 2 has both a higher compression ratio and

throughput than 𝑆 = 1 in some cases. For example, on the hurr-

quantization dataset with any𝑊 and 𝐶 , 𝑆 = 2 can always lead to a

better compression ratio and throughput than 𝑆 = 1. Note that this

observation can be generalized to all LZ compressors.

4.3 Evaluation on Compression Ratio

Next, we compare the compression ratio of gpuLZ with CULZSS

and nvCOMP’s LZ4, as shown in Figure 8. Note that in the figure,

we use “gpulz” to denote the default configuration (𝐶 = 2048, 𝑆 = 2,

and𝑊 = 128) and “gpulz-best” to denote the best compression ratio

from all settings. The figure shows that compared with CULZSS,

gpuLZ achieves a similar compression ratio on all datasets because
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For comparison, nvCOMP’s LZ4 has an average decompression

throughput of 21.1 GB/s on A4000.

4.5 Use-case of gpuLZ

Finally, we apply gpuLZ to cuSZ (a state-of-the-art GPU lossy

compressor for scientific data) due to its high performance on the

quantization-code datasets to improve the compression ratio. Note

that the original cuSZ only has a Huffman encoding [16], whereas

the improved cuSZ includes gpuLZ before the Huffman encoding.

We evaluate the original cuSZ and the improved cuSZ on the A100

platform under the relative error bound 1e-2. Besides Hurricane,

NYX, and RTM, we also include one more dataset from SDRBench,

i.e., CESM (climate simulation) [5].

Table 3: Comparison of compression ratio and throughput (GB/s) between
original cuSZ and improved cuSZ (with gpuLZ) on A100 platform.

Dataset cuSZ cuSZ w/ gpuLZ

CR THR CR THR

CESM 22.6 12.0 43.2 2.7
Hurricane 24.3 31.9 29.1 5.9
Nyx 30.1 87.2 74.8 10.4
RTM 28.6 49.2 249.8 7.2

Table 3 shows that the improved cuSZ obtains an improvement

of 1.9× ∼ 8.7× in compression ratio with a slightly lower com-

pression throughput. We note that the improved cuSZ has higher

compression ratio improvements on larger error bounds and higher

dimensional datasets (e.g. 3D Hurricane and RTM), since the quan-

tization code generated by cuSZ in these cases has more spatial

redundancy, thus benefiting gpuLZ. Enabling higher compression

ratios is critical for many HPC applications using lossy compression

(rather than lossless compression). We also note that some CPU

lossy compressors with multi-threading support such as SZ [38]

and ZFP [23] can also achieve compression throughputs of about

2∼4 GB/s on 32 cores [11], but their overall throughput is limited

by moving uncompressed data from the GPU to the CPU; in com-

parison, the time of moving compressed data (with hundreds of

compression ratios) with the improved cuSZ is much lower.

5 CONCLUSION AND FUTURE WORK

In this paper, we propose a series of optimizations for one of the

most important lossless compression algorithms LZSS for multi-

byte data on GPUs. Specifically, we develop a newmethod for multi-

byte pattern matching, optimize the prefix-sum operation, and fuse

multiple GPU kernels, thereby improving both compression ratio

and throughput (due to lower computational time complexity, less

data movement, and potentially longer matches). gpuLZ achieves

up to 272.1× speedup and up to 1.4× higher compression ratio over

state-of-the-art solutions.

In the future, we plan to evaluate gpuLZ on more multi-byte

datasets. We will attempt to develop an analytical model for search-

ing the optimal parameter combination for different datasets. In

addition, we will integrate gpuLZ into more data-intensive applica-

tions running on different parallel and distributed systems.
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