Check for
Updates

A Brain-inspired Approach for Malware Detection using
Sub-semantic Hardware Features

Maryam Parsa
mparsa@gmu.edu
Department of Electrical and
Computer Engineering
George Mason University
Fairfax, Virginia, USA

ABSTRACT

Despite significant efforts to enhance the resilience of computer
systems against malware attacks, the abundance of exploitable
vulnerabilities remains a significant challenge. While preventing
compromises is difficult, traditional signature-based static anal-
ysis techniques are susceptible to bypassing through metamor-
phic/polymorphic malware or zero-day exploits. Dynamic detec-
tion techniques, particularly those utilizing machine learning (ML),
have the potential to identify previously unseen signatures by mon-
itoring program behavior. However, classical ML models are power
and resource intensive and may not be suitable for devices with
limited budgets. This constraint creates a challenging tradeoff be-
tween security and resource utilization, which cannot be fully ad-
dressed through model compression and pruning. In contrast, neu-
romorphic architectures offer a promising solution for low-power
brain-inspired systems. In this work, we explore the novel use of
neuromorphic architectures for malware detection. We accomplish
this by encoding sub-semantic micro-architecture level features in
the spiking domain and proposing a Spiking Neural Network (SNN)
architecture for hardware-aware malware detection. Our results
demonstrate promising malware detection performance with an
89% F1-score. Ultimately, this work advocates that neuromorphic
architectures, due to their low power consumption, represent a
promising candidate for malware detection, especially for energy-
constraint processors in IoT and Edge devices.

CCS CONCEPTS

« Computing methodologies — Artificial intelligence; Artifi-
cial intelligence; « Security and privacy — Systems security.

KEYWORDS

Neuromorphic Computing, Malware Detection, Computer Security

ACM Reference Format:

Maryam Parsa, Khaled N. Khasawneh, and Thsen Alouani. 2023. A Brain-
inspired Approach for Malware Detection using Sub-semantic Hardware
Features. In Proceedings of the Great Lakes Symposium on VLSI 2023 (GLSVLSI
’23), June 5-7, 2023, Knoxville, TN, USA. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3583781.3590293

GLSVLSI 23, June 5-7, 2023, Knoxville, TN, USA
© 2023 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0125-2/23/06.
https://doi.org/10.1145/3583781.3590293

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Khaled N. Khasawneh
kkhasawn@gmu.edu
Department of Electrical and
Computer Engineering
George Mason University
Fairfax, Virginia, USA

139

Ihsen Alouani
i.alouani@qub.ac.uk
Center for Secure Information
Technologies (CSIT)
Queen’s University Belfast
Belfast, UK

1 INTRODUCTION

In today’s computing world, where data and artificial intelligence
play an ever-increasing role in our daily lives, malware poses one
of the most dangerous threats to modern society [2, 11]. Over the
past two decades, hardware security has become an increasingly
pressing concern due to the globalization of the semiconductor sup-
ply chain and the proliferation of connected smart infrastructures
and computing edge devices. According to McAfee’s COVID-19
threat report, the total number of malware increased by 1,902 per-
cent over the four quarters of 2020. Additionally, an average of 375
new threats were reported per minute [39]. Malware detection in
a timely manner is crucial not only for preventing its spread to a
large number of systems and edge devices, but also for mitigating
its potential impact. Classical methods such as signature-based [10],
heuristic-based [3], dynamic binary instrumentation [1], and infor-
mation flow tracking [16] approaches mostly fall short in detecting
various types of new and sophisticated generations of malware,
introduce considerable overhead, and allow attackers to bypass
them and remain undetected [23].

Various Deep Neural Networks (DNNs) [9] have been proposed
to detect malware using static and dynamic analysis. These ap-
proaches are applied in multiple contexts such as advanced persis-
tent threat (APT) attacks [43], and sandboxing-based malware de-
tection [11]. More recently, Hardware Malware Detector (HMD) are
introduced to make systems more resilient to malware attacks. Low-
level sub-semantic hardware features such as memory reference
patterns, and architectural state information can be used for online
malware detection [19]. While these approaches generally show
great promise in detecting malware, their high power consumption
and latency pose a significant challenge for energy-constraint de-
vices. These techniques demand access to vast amounts of data and
computational resources during training [11].

Neuromorphic computing, as a promising alternative for DNNs
in resource constrained environments, is inspired by the low-power
computation in biological brains [33, 37, 40]. In this novel non
Von Neumann architecture, Spiking Neural Networks (SNNs) are
the building blocks of algorithmic learning and hardware imple-
mentation. With the goal of reducing computational complexity
and latency in detecting malware and motivated by the low power
consumption of the neuromorphic chips, our key objective is to
seek an answer for the following question: Can neuromorphic
architecture learn from hardware sub-semantic features to
detect malware?. We show in section 4 a successful implementa-
tion of SNNs that can detect malware using sub-semantic hardware


https://doi.org/10.1145/3583781.3590293
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1145/3583781.3590293
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3583781.3590293&domain=pdf&date_stamp=2023-06-05

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

features with promising performance compared to a multi-Layer
Perceptron (MLP) based HMD.

2 BACKGROUND & RELATED WORKS

2.1 Sub-semantic Hardware features using
hardware performance counters

Modern microprocessors rely on Hardware Performance Counters
(HPC) as a vital feature, enabling the monitoring and analysis of
microarchitectural events that occur during the execution of soft-
ware applications These specialized registers are designed to keep
track of hardware events, such as cache hits and misses, branch mis-
predictions, and other microarchitectural activities. Table 1 shows
the typical HPC events available under Linux Perf tool for Intel
Haswell processors [7].

The primary objective of HPC is to provide developers with a
detailed insight into the performance characteristics of their soft-
ware applications, enabling them to identify potential bottlenecks
and optimize their code accordingly [28]. By analyzing the data
gathered by HPC, developers can optimize their code for a specific
microarchitecture, leading to improved performance and reduced
power consumption. Nonetheless, the use of HPC is not limited to
performance optimization alone. HPC are also increasingly being
employed in security-related applications, such as detecting soft-
ware malware [19, 23], detecting firmware modifications [5], and
detecting hardware trojans [45].

2.2 Spiking Neural Networks

SNNs are the third generation of neural networks, inspired by
the human brain’s event-based communication scheme. This bio-
inspired computation provides biologically-plausible deep learning
and has the potential to bridge the energy-efficiency gap between
the human brain and supercomputers executing complex deep learn-
ing applications. Recent advances in neuromorphic architectures,
such as IBM’s TrueNorth [30] and Intel’s Loihi [6], have shown the
promise of SNNs for energy-efficient computing.

Output spikes

Integration: v
the neuron membrane v,
potential integrates the
input spikes

Rate Encoding:
the information is encoded

as the mean firing rate

ENEN
L

:

—Time window— T

FEF

Figure 1: Overview of the functionality of an SNN, with a
focus on the rate encoding of the information and the inte-
gration of the spikes into the membrane potential.

Figure 1 demonstrates how SNNs typically operate. The input
information is encoded to spike representation. While delay-based
and latency-based coding schemes are possible, the most commonly
adopted mechanism for encoding input information in SNNs is the
rate encoding [36]. In rate encoding, the intensity of activation
corresponds to the mean firing rate over a specific time window.

140

Maryam Parsa, Khaled N. Khasawneh, & Ihsen Alouani

bus-cycles

branch-instructions

cpu-cycles

cpu-clock

cpu-migrations

dummy

L1-dcache-store-misses

LLC-load-misses

LLC-prefetch-misses

dTLB-store-misses

branch-load-misses

node-store-misses

instructions

branch-misses

task-clock

minor-faults

emulation-faults

L1-dcache-prefetch-misses

LLC-stores

dTLB-loads

iTLB-loads

node-loads

node-prefetches

cache-references

page-faults

major-faults

Li-dcache-loads

L1-icache-load-misses

LLC-store-misses

dTLB-load-misses

iTLB-load-misses

node-load-misses

node-prefetch-misses

cache-misses

ref-cycles

context-switches

alignment-faults

L1-dcache-load-misses

LLC-loads

LLC-prefetches

dTLB-stores

branch-loads

node-stores

Li1-dcache-stores

Table 1: List of HPC events using PERF tool

This time window represents the observation period during which
the SNNs receives the same input. A wider time window allows
more time for the spikes to propagate towards the output, but it
also incurs higher latency." When an incoming spike s; arrives at
the input of the neuron, it is multiplied by its associated synaptic
weight w; and integrated into the membrane potential V, following
Equation 1.

1)

In a Leaky-Integrate-and-Fire (LIF) [8] spiking neuron model,
an output spike is emitted and the membrane potential is reset
when it exceeds the threshold voltage V;j. This mechanism allows
information to be propagated to the output. For example, in rate
encoding for image classification, the firing rate of the output spike
train determines the probability of the associated class. A higher
firing rate corresponds to a higher output probability. Due to the
non-differentiability of the loss function [38] in SNNs, the standard
backpropagation method in DNNs cannot be directly applied. To
address this challenge, two possibilities exist. The first involves
training a corresponding DNNs using standard backpropagation
and then converting it to the spiking version [29]. However, this
conversion process is slow and usually results in some loss of ac-
curacy. Alternatively, the SNN derivatives can be approximated,
and learning can be based on temporal information in the spiking
domain [44]. In our work, we adopt the latter option.

3 DATASET & FEATURE COLLECTION

3.1 Dataset

Our data collection involved gathering HPC data from 52 benign
applications and 57 malware applications. The benign applications
consisted of the mibench benchmark suite [14], along with com-
mon Linux programs such as browsers, text editors, and word pro-
cessors. As for the malware applications, we obtained them from
virus-total.com [42], and they included Linux ELFs, Python scripts,
Perl scripts, and Bash scripts designed to carry out malicious work-
loads/activities. The dataset was divided evenly into 3-folds, which
are training, validation, and testing. We use 3-fold cross-validation
in our experiments to get accurate results, i.e., eliminate bias. Fur-
thermore, the malware types and the benign application types were
distributed evenly and randomly across the folds to ensure that the
datasets are not biased.



A Brain-inspired Approach for Malware Detection using Sub-semantic Hardware Features

3.2 Features Collection

To collect low-level HPC data dynamically, we used a machine
equipped with an Intel Haswell Core i5-4590 CPU, running Ubuntu
14.04 with Linux 4.4 Kernel. All security and firewall services were
disabled to ensure that malware runs freely. Multiple methods
exist for capturing HPC data, including direct reading of Model-
specific Registers (MSRs), kernel module-based sampled collection,
or utilizing various Linux utilities like Perf, PAPI, and Perfctr. In
our study, we opted for Perf, which leverages the perf event open
function to measure multiple events simultaneously [7].

4 INITIAL RESULTS & DISCUSSION
4.1 Baseline-HMD

HMDs use low-level features to classify malware as a computational
anomaly at run-time. We trained our baseline HMD on a multi-layer
perception (MLP) neural network using the features described in
Section 3. The MLP consists of a single hidden layer that has the
number of neurons equal to the number of input features (39 neu-
rons). We used the Sigmoid as an activation function. The rationale
for selecting neural networks to train our baseline HMD is that it
has the highest performance in detecting malware [17, 20, 21, 24—
26, 32].

The training set was used to train our baseline HMD and the
testing data set was used to evaluate its detection performance.
Table 2 shows the baseline HMD detection performance in classi-
fying malware and benign programs using the following metrics:
accuracy (how many programs the baseline HMD correctly labeled
out of all programs), sensitivity (how many malware the baseline
HMD correctly classified out of all programs that were labeled
as malware), specificity (how many benign programs the baseline
HMD correctly classified out of all programs that were labeled as
benign), precision (how many of those who were labeled as mal-
ware are actually malware), and FI-score (the harmonic mean of
the precision and sensitivity). The results show that the baseline
HMD achieves high performance in detecting malware across all
performance metrics.

Table 2: Baseline HMD detection performance

[ Accuracy [ Sensitivity [ Specificity [ Precision [ F1-Score ]
[ 939% [ 752% [ 973% | 882% | 941% |

4.2 Neuromorphic HMD

Our experiments for the neuromorphic HMD were conducted us-
ing the Norse Python library [35], which is an extension of Py-
Torch providing primitives for bio-inspired neural computation.
This framework enables us to train and execute neural networks in
the spiking domain. We designed a three-layer SNNs architecture,
consisting of 39 input neurons that correspond to the hardware fea-
tures, 50 hidden neurons, and 2 output neurons. In our experiments,
we employed the LIF neuron model and used the Adam optimizer
with surrogate gradient as the cross entropy loss, a learning rate of
0.01, and trained for 20 epochs. As explained in Section 2.2, we rate-
encoded the data outlined in Section 3 as a Poisson spike train [15],

141

GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

consisting of a large number of time steps where the probability of
generating a spike at each time-step is equal to the input value.

Figure 2 illustrates the changes in test accuracy and loss per
epoch for our neuromorphic malware detection approach. Addi-
tionally, we compared the accuracy, sensitivity, specificity, precision,
and F-1 score (described in Section 4.1 of neuromorphic HMD with
conventional HMD, which is depicted in Figure 3. SNN’s results
are comparable to ANN performance, while having slightly lower
sensitivity.

90

80

—— Test accuracy
50
0.7
—— Loss
0.6

Figure 2: Neuromorphic loss and accuracy during the training
of Neuromorphic HMD.

il

Accuracy Sensitivity Specificity Precision F-1score

H Conventional HMUD  ® Neuromorphic HMD

Figure 3: Detection Performance of Neuromorphic vs con-
ventional HMDs

5 CONCLUSION AND FUTURE WORK

This paper explores the feasibility of utilizing neuromorphic archi-
tectures to detect malware using sub-semantic hardware features
extracted from hardware performance counters. Our initial findings
indicate that the neuromorphic HMD can achieve comparable per-
formance to traditional HMD. However, we anticipate significant
improvements in terms of energy efficiency and latency, due to the
asynchronous aspect of SNNs. We believe that these architectures
represent a promising alternative to conventional ML for security
applications, especially for resource and energy-limited devices
such as IoT and the Edge.



GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

As immediate next step, we are planning to study and estimate
energy and latency usage of neuromorphic vs traditional HMD.
Additionally, we will be exploring various neuromorphic algorithms
such as evolutionary and Bayesian learning [34, 40, 41] and study
the impacts of the learning approach in detecting malware in terms
of accuracy and energy efficiency. We will simulate and physically
deploy the trained spiking neural network on a neuromorphic FPGA
and study the feasibility of using neuromorphic HMD based on
Perf tool on Intel’s neuromorphic chip, Loihi. Furthermore, we
will evaluate the robustness of neuromorphic and spiking neural
networks based HMD’s against adversarial attacks [4, 12, 13, 22, 27,

31],

i.e, evasive malware [18, 23].

ACKNOWLEDGMENT

The work in this paper is partially supported by National Science
Foundation grants CCF-2212427 and CNS-2155002, gift from Intel
Neuromorphic Research Community (INRC), and by EdgeAI KDT-
JU European project (101097300).

REFERENCES

(1]

[10

[11]

[12]

[13]

[14]

(15

[16]

[17

(18]

[19

Najwa Aaraj, Anand Raghunathan, and Niraj K Jha. 2008. Dynamic binary
instrumentation-based framework for malware defense. In DIMVA.

Omer Aslan Aslan and Refik Samet. 2020. A comprehensive review on malware
detection approaches. IEEE Access 8 (2020), 6249-6271.

Zahra Bazrafshan, Hashem Hashemi, Seyed Mehdi Hazrati Fard, and Ali Hamzeh.
2013. A survey on heuristic malware detection techniques. In The 5th Conference
on Information and Knowledge Technology. IEEE, 113-120.

Farnaz Behnia, Ali Mirzaeian, Mohammad Sabokrou, Saj Manoj, Tinoosh Mohs-
enin, Khaled N Khasawneh, Liang Zhao, Houman Homayoun, and Avesta Sasan.
2020. Code-bridged classifier (cbc): A low or negative overhead defense for
making a cnn classifier robust against adversarial attacks. In ISQED.

W Lloyd Bircher and Lizy K John. 2007. Complete system power estimation: A
trickle-down approach based on performance events. In 2007 ieee international
symposium on performance analysis of systems & software. IEEE, 158-168.

M. Davies et al. 2018. Loihi: A Neuromorphic Manycore Processor with On-Chip
Learning. IEEE Micro 38, 1 (2018), 82-99.

Arnaldo Carvalho De Melo. 2010. The new linux’perf’tools. In Slides from Linux
Kongress, Vol. 18. 1-42.

Peter U Diehl and Matthew Cook. 2015. Unsupervised learning of digit recogni-
tion using spike-timing-dependent plasticity. Frontiers in computational neuro-
science 9 (2015), 99.

Aeryn Dunmore, Julian Jang-Jaccard, Fariza Sabrian, and Jin Kwak. 2023. Gen-
erative Adversarial Networks for Malware Detection: a Survey. arXiv preprint
arXiv:2302.08558 (2023).

Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. 2008.
A survey on automated dynamic malware-analysis techniques and tools. ACM
computing surveys (CSUR) 44, 2 (2008), 1-42.

M Gopinath and Sibi Chakkaravarthy Sethuraman. 2023. A comprehensive survey
on deep learning based malware detection techniques. Computer Science Review
47 (2023), 100529.

Amira Guesmi, Thsen Alouani, Khaled N Khasawneh, Mouna Baklouti, Tarek
Frikha, Mohamed Abid, and Nael Abu-Ghazaleh. 2021. Defensive approximation:
securing cnns using approximate computing. In ASPLOS.

Amira Guesmi, Khaled N Khasawneh, Nael Abu-Ghazaleh, and Thsen Alouani.
2022. ROOM: Adversarial Machine Learning Attacks Under Real-Time Con-
straints. In IJCNN.

Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. 2001. MiBench: A free, commercially representative
embedded benchmark suite. In WWC-4.

David Heeger et al. 2000. Poisson model of spike generation. Handout, University
of Standford 5, 1-13 (2000), 76.

Wei Hu, Armaiti Ardeshiricham, and Ryan Kastner. 2021. Hardware information
flow tracking. ACM Computing Surveys (CSUR) 54, 4 (2021), 1-39.

Md Shohidul Islam, Thsen Alouani, and Khaled N Khasawneh. 2021. Enhancing
hardware malware detectors security through voltage over-scaling. In 2021 5th
ACM SIGARCH Workshop on Cognitive Architectures.

Md Shohidul Islam, Ihsen Alouani, and Khaled N Khasawneh. 2023. Stochastic-
HMDs: Adversarial-Resilient Hardware Malware Detectors via Undervolting. In
DAC.

Md Shohidul Islam, Khaled N Khasawneh, Nael Abu-Ghazaleh, Dmitry Pono-
marev, and Lei Yu. 2021. Efficient hardware malware detectors that are resilient

142

[20

[21

™
2

&
=

&
2

[29

(30]

[31

[32

(34

[35

[36

@
=

[38

(39]

[40]

[41

[42

S
&

[44

[45

Maryam Parsa, Khaled N. Khasawneh, & Ihsen Alouani

to adversarial evasion. IEEE Trans. Comput. (2021).

Md Shohidul Islam, Abraham Peedikayil Kuruvila, Kanad Basu, and Khaled N
Khasawneh. 2020. Nd-hmds: Non-differentiable hardware malware detectors
against evasive transient execution attacks. In ICCD.

Md Shohidul Islam, Behnam Omidi, and Khaled N Khasawneh. 2021. Monotonic-
hmds: Exploiting monotonic features to defend against evasive malware. In
ISQED.

Shohidul Islam, Thsen Alouani, and Khaled N Khasawneh. 2021. Lower Voltage
for Higher Security: Using Voltage Overscaling to Secure Deep Neural Networks.
In ICCAD.

Khaled N Khasawneh, Nael Abu-Ghazaleh, Dmitry Ponomarev, and Lei Yu. 2017.
RHMD: evasion-resilient hardware malware detectors. In MICRO.

Khaled N Khasawneh, Nael B Abu-Ghazaleh, Dmitry Ponomarev, and Lei Yu.
2018. Adversarial evasion-resilient hardware malware detectors. In ICCAD.
Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. 2015. Ensemble learning for low-level hardware-supported
malware detection. In RAID.

Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. 2018. EnsembleHMD: Accurate hardware malware detectors
with specialized ensemble classifiers. IEEE TDSC (2018).

Hosein Mohammadi Makrani, Hossein Sayadi, Najmeh Nazari, Khaled N Kha-
sawneh, Avesta Sasan, Setareh Rafatirad, and Houman Homayoun. 2021. Cloak
& co-locate: Adversarial railroading of resource sharing-based attacks on the
cloud. In SEED.

Maria Malik, Avesta Sasan, Rajiv Joshi, Setareh Rafatirah, and Houman Homay-
oun. 2016. Characterizing Hadoop applications on microservers for performance
and energy efficiency optimizations. In ISPASS.

Riccardo Massa, Alberto Marchisio, Maurizio Martina, and Muhammad Shafique.
2020. An Efficient Spiking Neural Network for Recognizing Gestures with a DVS
Camera on the Loihi Neuromorphic Processor. In IJCNN.

Paul A. Merolla et al. 2014. A million spiking-neuron integrated circuit with a
scalable communication network and interface. Science (2014).

Neha Nagarkar, Khaled Khasawneh, Setareh Rafatirad, Avesta Sasan, Houman
Homayoun, and Sai Manoj Pudukotai Dinakarrao. 2021. Energy-Efficient and
Adversarially Robust Machine Learning with Selective Dynamic Band Filtering.
In GLSVLSL

Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael Abu-
Ghazaleh, and Dmitry Ponomarev. 2016. Hardware-based malware detection
using low-level architectural features. IEEE Trans. Comput. (2016).

Maryam Parsa, John P Mitchell, Catherine D Schuman, Robert M Patton,
Thomas E Potok, and Kaushik Roy. 2020. Bayesian multi-objective hyperpa-
rameter optimization for accurate, fast, and efficient neural network accelerator
design. Frontiers in neuroscience 14 (2020), 667.

Maryam Parsa, Catherine Schuman, Nitin Rathi, Amir Ziabari, Derek Rose,
J Parker Mitchell, J Travis Johnston, Bill Kay, Steven Young, and Kaushik Roy.
2021. Accurate and Accelerated Neuromorphic Network Design Leveraging
A Bayesian Hyperparameter Pareto Optimization Approach. In International
Conference on Neuromorphic Systems 2021. 1-8.

Christian Pehle and Jens Egholm Pedersen. 2021. Norse - A deep learning library for
spiking neural networks. https://doi.org/10.5281/zenodo.4422025 Documentation:
https://norse.ai/docs/.

Filip Ponulak and Andrzej Kasinski. 2011. Introduction to spiking neural net-
works: Information processing, learning and applications. Acta neurobiologiae
experimentalis (2011).

Kaushik Roy, Akhilesh Jaiswal, and Priyadarshini Panda. 2019. Towards spike-
based machine intelligence with neuromorphic computing. Nature (2019).
Bodo Riickauer et al. 2019. Closing the Accuracy Gap in an Event-Based Visual
Recognition Task. CoRR (2019).

Raj Samani. 2020. McAfee covid-19 report reveals pandemic threat evolu-
tion. https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-covid-
19-report-reveals- pandemic- threat-evolution/

Catherine D Schuman, Shruti R Kulkarni, Maryam Parsa, ] Parker Mitchell,
Prasanna Date, and Bill Kay. 2022. Opportunities for neuromorphic computing
algorithms and applications. Nature Computational Science 2, 1 (2022), 10-19.
Catherine D Schuman, ] Parker Mitchell, Robert M Patton, Thomas E Potok, and
James S Plank. 2020. Evolutionary optimization for neuromorphic systems. In
Proceedings of the Neuro-inspired Computational Elements Workshop. 1-9.
Gaurav Sood. 2021. virustotal: R Client for the virustotal APL. R package version
0.2.2.

Colin Tankard. 2011. Advanced persistent threats and how to monitor and deter
them. Network security 2011, 8 (2011), 16-19.

Johannes C. Thiele, Olivier Bichler, and Antoine Dupret. 2020. SpikeGrad: An
ANN-equivalent Computation Model for Implementing Backpropagation with
Spikes. In International Conference on Learning Representations.

Theodore Winograd, Hassan Salmani, Hamid Mahmoodi, Kris Gaj, and Houman
Homayoun. 2016. Hybrid STT-CMOS designs for reverse-engineering prevention.
In DAC.


https://doi.org/10.5281/zenodo.4422025
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-covid-19-report-reveals-pandemic-threat-evolution/
https://www.mcafee.com/blogs/other-blogs/mcafee-labs/mcafee-covid-19-report-reveals-pandemic-threat-evolution/

	Abstract
	1 Introduction
	2 Background & Related Works
	2.1 Sub-semantic Hardware features using hardware performance counters
	2.2 Spiking Neural Networks

	3 Dataset & feature collection
	3.1 Dataset
	3.2 Features Collection

	4 Initial Results & Discussion
	4.1 Baseline-HMD
	4.2 Neuromorphic HMD

	5 Conclusion and Future Work
	References



