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ABSTRACT

Despite significant efforts to enhance the resilience of computer
systems against malware attacks, the abundance of exploitable
vulnerabilities remains a significant challenge. While preventing
compromises is difficult, traditional signature-based static anal-
ysis techniques are susceptible to bypassing through metamor-
phic/polymorphic malware or zero-day exploits. Dynamic detec-
tion techniques, particularly those utilizing machine learning (ML),
have the potential to identify previously unseen signatures by mon-
itoring program behavior. However, classical ML models are power
and resource intensive and may not be suitable for devices with
limited budgets. This constraint creates a challenging tradeoff be-
tween security and resource utilization, which cannot be fully ad-
dressed through model compression and pruning. In contrast, neu-
romorphic architectures offer a promising solution for low-power
brain-inspired systems. In this work, we explore the novel use of
neuromorphic architectures for malware detection. We accomplish
this by encoding sub-semantic micro-architecture level features in
the spiking domain and proposing a Spiking Neural Network (SNN)
architecture for hardware-aware malware detection. Our results
demonstrate promising malware detection performance with an
89% F1-score. Ultimately, this work advocates that neuromorphic
architectures, due to their low power consumption, represent a
promising candidate for malware detection, especially for energy-
constraint processors in IoT and Edge devices.
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1 INTRODUCTION

In today’s computing world, where data and artificial intelligence
play an ever-increasing role in our daily lives, malware poses one
of the most dangerous threats to modern society [2, 11]. Over the
past two decades, hardware security has become an increasingly
pressing concern due to the globalization of the semiconductor sup-
ply chain and the proliferation of connected smart infrastructures
and computing edge devices. According to McAfee’s COVID-19
threat report, the total number of malware increased by 1,902 per-
cent over the four quarters of 2020. Additionally, an average of 375
new threats were reported per minute [39]. Malware detection in
a timely manner is crucial not only for preventing its spread to a
large number of systems and edge devices, but also for mitigating
its potential impact. Classical methods such as signature-based [10],
heuristic-based [3], dynamic binary instrumentation [1], and infor-
mation flow tracking [16] approaches mostly fall short in detecting
various types of new and sophisticated generations of malware,
introduce considerable overhead, and allow attackers to bypass
them and remain undetected [23].

Various Deep Neural Networks (DNNs) [9] have been proposed
to detect malware using static and dynamic analysis. These ap-
proaches are applied in multiple contexts such as advanced persis-
tent threat (APT) attacks [43], and sandboxing-based malware de-
tection [11]. More recently, Hardware Malware Detector (HMD) are
introduced to make systems more resilient to malware attacks. Low-
level sub-semantic hardware features such as memory reference
patterns, and architectural state information can be used for online
malware detection [19]. While these approaches generally show
great promise in detecting malware, their high power consumption
and latency pose a significant challenge for energy-constraint de-
vices. These techniques demand access to vast amounts of data and
computational resources during training [11].

Neuromorphic computing, as a promising alternative for DNNs
in resource constrained environments, is inspired by the low-power
computation in biological brains [33, 37, 40]. In this novel non
Von Neumann architecture, Spiking Neural Networks (SNNs) are
the building blocks of algorithmic learning and hardware imple-
mentation. With the goal of reducing computational complexity
and latency in detecting malware and motivated by the low power
consumption of the neuromorphic chips, our key objective is to
seek an answer for the following question: Can neuromorphic
architecture learn from hardware sub-semantic features to
detect malware?. We show in section 4 a successful implementa-
tion of SNNs that can detect malware using sub-semantic hardware
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features with promising performance compared to a multi-Layer
Perceptron (MLP) based HMD.

2 BACKGROUND & RELATED WORKS

2.1 Sub-semantic Hardware features using
hardware performance counters

Modern microprocessors rely on Hardware Performance Counters
(HPC) as a vital feature, enabling the monitoring and analysis of
microarchitectural events that occur during the execution of soft-
ware applications These specialized registers are designed to keep
track of hardware events, such as cache hits and misses, branch mis-
predictions, and other microarchitectural activities. Table 1 shows
the typical HPC events available under Linux Perf tool for Intel
Haswell processors [7].

The primary objective of HPC is to provide developers with a
detailed insight into the performance characteristics of their soft-
ware applications, enabling them to identify potential bottlenecks
and optimize their code accordingly [28]. By analyzing the data
gathered by HPC, developers can optimize their code for a specific
microarchitecture, leading to improved performance and reduced
power consumption. Nonetheless, the use of HPC is not limited to
performance optimization alone. HPC are also increasingly being
employed in security-related applications, such as detecting soft-
ware malware [19, 23], detecting firmware modifications [5], and
detecting hardware trojans [45].

2.2 Spiking Neural Networks

SNNs are the third generation of neural networks, inspired by
the human brain’s event-based communication scheme. This bio-
inspired computation provides biologically-plausible deep learning
and has the potential to bridge the energy-efficiency gap between
the human brain and supercomputers executing complex deep learn-
ing applications. Recent advances in neuromorphic architectures,
such as IBM’s TrueNorth [30] and Intel’s Loihi [6], have shown the
promise of SNNs for energy-efficient computing.
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Figure 1: Overview of the functionality of an SNN, with a
focus on the rate encoding of the information and the inte-
gration of the spikes into the membrane potential.

Figure 1 demonstrates how SNNs typically operate. The input
information is encoded to spike representation. While delay-based
and latency-based coding schemes are possible, the most commonly
adopted mechanism for encoding input information in SNNs is the
rate encoding [36]. In rate encoding, the intensity of activation
corresponds to the mean firing rate over a specific time window.
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bus-cycles

branch-instructions

cpu-cycles

cpu-clock

cpu-migrations

dummy

L1-dcache-store-misses

LLC-load-misses

LLC-prefetch-misses

dTLB-store-misses

branch-load-misses

node-store-misses

instructions

branch-misses

task-clock

minor-faults

emulation-faults

L1-dcache-prefetch-misses

LLC-stores

dTLB-loads

iTLB-loads

node-loads

node-prefetches

cache-references

page-faults

major-faults

Li-dcache-loads

L1-icache-load-misses

LLC-store-misses

dTLB-load-misses

iTLB-load-misses

node-load-misses

node-prefetch-misses

cache-misses

ref-cycles

context-switches

alignment-faults

L1-dcache-load-misses

LLC-loads

LLC-prefetches

dTLB-stores

branch-loads

node-stores

Li1-dcache-stores

Table 1: List of HPC events using PERF tool

This time window represents the observation period during which
the SNNs receives the same input. A wider time window allows
more time for the spikes to propagate towards the output, but it
also incurs higher latency." When an incoming spike s; arrives at
the input of the neuron, it is multiplied by its associated synaptic
weight w; and integrated into the membrane potential V, following
Equation 1.

1)

In a Leaky-Integrate-and-Fire (LIF) [8] spiking neuron model,
an output spike is emitted and the membrane potential is reset
when it exceeds the threshold voltage V;j. This mechanism allows
information to be propagated to the output. For example, in rate
encoding for image classification, the firing rate of the output spike
train determines the probability of the associated class. A higher
firing rate corresponds to a higher output probability. Due to the
non-differentiability of the loss function [38] in SNNs, the standard
backpropagation method in DNNs cannot be directly applied. To
address this challenge, two possibilities exist. The first involves
training a corresponding DNNs using standard backpropagation
and then converting it to the spiking version [29]. However, this
conversion process is slow and usually results in some loss of ac-
curacy. Alternatively, the SNN derivatives can be approximated,
and learning can be based on temporal information in the spiking
domain [44]. In our work, we adopt the latter option.

3 DATASET & FEATURE COLLECTION

3.1 Dataset

Our data collection involved gathering HPC data from 52 benign
applications and 57 malware applications. The benign applications
consisted of the mibench benchmark suite [14], along with com-
mon Linux programs such as browsers, text editors, and word pro-
cessors. As for the malware applications, we obtained them from
virus-total.com [42], and they included Linux ELFs, Python scripts,
Perl scripts, and Bash scripts designed to carry out malicious work-
loads/activities. The dataset was divided evenly into 3-folds, which
are training, validation, and testing. We use 3-fold cross-validation
in our experiments to get accurate results, i.e., eliminate bias. Fur-
thermore, the malware types and the benign application types were
distributed evenly and randomly across the folds to ensure that the
datasets are not biased.
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3.2 Features Collection

To collect low-level HPC data dynamically, we used a machine
equipped with an Intel Haswell Core i5-4590 CPU, running Ubuntu
14.04 with Linux 4.4 Kernel. All security and firewall services were
disabled to ensure that malware runs freely. Multiple methods
exist for capturing HPC data, including direct reading of Model-
specific Registers (MSRs), kernel module-based sampled collection,
or utilizing various Linux utilities like Perf, PAPI, and Perfctr. In
our study, we opted for Perf, which leverages the perf event open
function to measure multiple events simultaneously [7].

4 INITIAL RESULTS & DISCUSSION
4.1 Baseline-HMD

HMDs use low-level features to classify malware as a computational
anomaly at run-time. We trained our baseline HMD on a multi-layer
perception (MLP) neural network using the features described in
Section 3. The MLP consists of a single hidden layer that has the
number of neurons equal to the number of input features (39 neu-
rons). We used the Sigmoid as an activation function. The rationale
for selecting neural networks to train our baseline HMD is that it
has the highest performance in detecting malware [17, 20, 21, 24—
26, 32].

The training set was used to train our baseline HMD and the
testing data set was used to evaluate its detection performance.
Table 2 shows the baseline HMD detection performance in classi-
fying malware and benign programs using the following metrics:
accuracy (how many programs the baseline HMD correctly labeled
out of all programs), sensitivity (how many malware the baseline
HMD correctly classified out of all programs that were labeled
as malware), specificity (how many benign programs the baseline
HMD correctly classified out of all programs that were labeled as
benign), precision (how many of those who were labeled as mal-
ware are actually malware), and FI-score (the harmonic mean of
the precision and sensitivity). The results show that the baseline
HMD achieves high performance in detecting malware across all
performance metrics.

Table 2: Baseline HMD detection performance

[ Accuracy [ Sensitivity [ Specificity [ Precision [ F1-Score ]
[ 939% [ 752% [ 973% | 882% | 941% |

4.2 Neuromorphic HMD

Our experiments for the neuromorphic HMD were conducted us-
ing the Norse Python library [35], which is an extension of Py-
Torch providing primitives for bio-inspired neural computation.
This framework enables us to train and execute neural networks in
the spiking domain. We designed a three-layer SNNs architecture,
consisting of 39 input neurons that correspond to the hardware fea-
tures, 50 hidden neurons, and 2 output neurons. In our experiments,
we employed the LIF neuron model and used the Adam optimizer
with surrogate gradient as the cross entropy loss, a learning rate of
0.01, and trained for 20 epochs. As explained in Section 2.2, we rate-
encoded the data outlined in Section 3 as a Poisson spike train [15],
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consisting of a large number of time steps where the probability of
generating a spike at each time-step is equal to the input value.

Figure 2 illustrates the changes in test accuracy and loss per
epoch for our neuromorphic malware detection approach. Addi-
tionally, we compared the accuracy, sensitivity, specificity, precision,
and F-1 score (described in Section 4.1 of neuromorphic HMD with
conventional HMD, which is depicted in Figure 3. SNN’s results
are comparable to ANN performance, while having slightly lower
sensitivity.

90

80

—— Test accuracy
50
0.7
—— Loss
0.6

Figure 2: Neuromorphic loss and accuracy during the training
of Neuromorphic HMD.

il

Accuracy Sensitivity Specificity Precision F-1score

H Conventional HMUD  ® Neuromorphic HMD

Figure 3: Detection Performance of Neuromorphic vs con-
ventional HMDs

5 CONCLUSION AND FUTURE WORK

This paper explores the feasibility of utilizing neuromorphic archi-
tectures to detect malware using sub-semantic hardware features
extracted from hardware performance counters. Our initial findings
indicate that the neuromorphic HMD can achieve comparable per-
formance to traditional HMD. However, we anticipate significant
improvements in terms of energy efficiency and latency, due to the
asynchronous aspect of SNNs. We believe that these architectures
represent a promising alternative to conventional ML for security
applications, especially for resource and energy-limited devices
such as IoT and the Edge.



GLSVLSI ’23, June 5-7, 2023, Knoxville, TN, USA

As immediate next step, we are planning to study and estimate
energy and latency usage of neuromorphic vs traditional HMD.
Additionally, we will be exploring various neuromorphic algorithms
such as evolutionary and Bayesian learning [34, 40, 41] and study
the impacts of the learning approach in detecting malware in terms
of accuracy and energy efficiency. We will simulate and physically
deploy the trained spiking neural network on a neuromorphic FPGA
and study the feasibility of using neuromorphic HMD based on
Perf tool on Intel’s neuromorphic chip, Loihi. Furthermore, we
will evaluate the robustness of neuromorphic and spiking neural
networks based HMD’s against adversarial attacks [4, 12, 13, 22, 27,

31],

i.e, evasive malware [18, 23].
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