
Constructive Approximation (2023) 57:489–520
https://doi.org/10.1007/s00365-022-09590-5

Optimal Recovery from Inaccurate Data in Hilbert Spaces:
Regularize, But What of the Parameter?

Simon Foucart1 · Chunyang Liao1

Received: 5 November 2021 / Revised: 7 March 2022 / Accepted: 11 March 2022 /
Published online: 14 October 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
In Optimal Recovery, the task of learning a function from observational data is tack-
led deterministically by adopting a worst-case perspective tied to an explicit model
assumption made on the functions to be learned. Working in the framework of Hilbert
spaces, this article considers a model assumption based on approximability. It also
incorporates observational inaccuracies modeled via additive errors bounded in �2.
Earlier works have demonstrated that regularization provides algorithms that are opti-
mal in this situation, but did not fully identify the desired hyperparameter. This article
fills the gap in both a local scenario and a global scenario. In the local scenario, which
amounts to the determination of Chebyshev centers, the semidefinite recipe of Beck
and Eldar (legitimately valid in the complex setting only) is complemented by a more
direct approach, with the proviso that the observational functionals have orthonormal
representers. In the said approach, the desired parameter is the solution to an equa-
tion that can be resolved via standard methods. In the global scenario, where linear
algorithms rule, the parameter elusive in the works of Micchelli et al. is found as
the byproduct of a semidefinite program. Additionally and quite surprisingly, in case
of observational functionals with orthonormal representers, it is established that any
regularization parameter is optimal.
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1 Introduction

1.1 Background on Optimal Recovery

This article is concerned with a central problem in Data Science, namely: a function
f is acquired through point evaluations

yi = f (x (i)), i = 1, . . . ,m, (1)

and these data should be used to learn f—or to recover it, with the terminology
preferred in this article. Importantly, the evaluation points x (1), . . . , x (m) are con-
sidered fixed entities in our scenario: They cannot be chosen in a favorable way, as
in information-based complexity [18], nor do they occur as independent realizations
of a random variable, as in statistical learning theory [13]. In particular, without an
underlying probability distribution, the performance of the recovery process cannot
be assessed via generalization error. Instead, it is assessed via a notion of worst-case
error, central to the theory of Optimal Recovery [17].

To outline this theory, we make the framework slightly more abstract. Precisely,
given a normed space F , the unknown function is replaced by an element f ∈ F .
This element is accessible only through a priori information expressing an educated
belief about f and a posteriori information akin to (1). In other words, our partial
knowledge about f is summed up via

• The fact that f ∈ K for a subset K of F called a model set;
• The observational data yi = λi ( f ), i = 1, . . . ,m, for some linear func-
tionals λ1, . . . , λm ∈ F∗ making up the observation map � : g ∈ F �→
[λ1(g); . . . ; λm(g)] ∈ R

m .

We wish to approximate f by some ̂f ∈ F produced using this partial knowledge
of f . Since the error ‖ f − ̂f ‖ involves the unknown f , which is only accessible via
f ∈ K and�( f ) = y, we take a worst-case perspective leading to the local worst-case
error

lwce(y, ̂f ) := sup
f ∈K

�( f )=y

‖ f − ̂f ‖. (2)

Our objective consists in finding an element ̂f that minimizes lwce(y, ̂f ). Such an
̂f can be described, almost tautologically, as a center of a smallest ball containing
K∩�−1({y}). It is called a Chebyshev center of this set of model- and data-consistent
elements. This remark, however, does not come with any practical construction of a
Chebyshev center.
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The term local was used above to make a distinction with the global worst-case
error of a recovery map �(= �K) : Rm → F , defined as

gwce(�) := sup
y∈�(K)

lwce(y,�(y)) = sup
f ∈K

‖ f − �(�( f ))‖. (3)

The minimal value of gwce(�) is called the intrinsic error (of the observation map
� over the model set K) and the maps � that achieve this minimal value are called
globally optimal recovery maps. Our objective consists in constructing such maps—
of course, the map that assigns to y a Chebyshev center of K ∩ �−1({y}) is one
of them, but it may be impractical. By contrast, for model sets that are convex and
symmetric, the existence of linear maps among the set of globally optimal recovery
maps is guaranteed by fundamental results from Optimal Recovery in at least two
settings: when F is a Hilbert space and when F is an arbitrary normed space but the
full recovery of f gives way to the recovery of a quantity of interest Q( f ), Q being
a linear functional. We refer the readers to Foucart, [9, Chapter 9] for details.

1.2 The Specific Problem

The problem solved in this article is a quintessential Optimal Recovery problem—
its specificity lies in the particular model set and in the incorporation of errors in
the observation process. The underlying normed space F is a Hilbert space and is
therefore denoted by H from now on. Reproducing kernel Hilbert spaces, whose usage
is widespread in Data Science [22], are of particular interest as point evaluations of
type (1) make perfect sense there.

Concerning the model set, we concentrate on an approximation-based choice that
is increasingly scrutinized, see, e.g., Maday et al. [14], DeVore et al. [6], and Cohen
et al. [5]. Depending on a linear subspace V of H and on a parameter ε > 0, it takes
the form

K = { f ∈ H : dist( f ,V) ≤ ε}.

Binev et al. [2] completely solved the Optimal Recovery problem with exact data in
this situation (locally and globally). Precisely, they showed that the solution ̂f to

minimize
f ∈H dist( f ,V) s.to �( f ) = y, (4)

which clearly belongs to the model- and data-consistent set K ∩ �−1({y}), turns
out to be its Chebyshev center. Moreover, with PV and PV⊥ denoting the orthogo-
nal projectors onto V and onto the orthogonal complement V⊥ of V , the fact that
dist( f ,V) = ‖ f − PV f ‖ = ‖PV⊥ f ‖ makes the optimization program (4) tractable.
It can actually be seen that � : y �→ ̂f is a linear map. This is a significant advantage
because � can then be precomputed in an offline stage knowing only V and � and the
program (4) need not be solved afresh for each new data y ∈ R

m arriving in an online
stage.
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Concerning the observation process, instead of exact data y = �( f ) ∈ R
m , it is

now assumed that

y = �( f ) + e ∈ R
m

for some unknown error vector e ∈ R
m . This error vector is not modeled as random

noise but through the deterministic �2-bound ‖e‖2 ≤ η. Although other �p-norms can
the considered for the optimal recovery of Q( f0) when Q is a linear functional on
an arbitrary normed space F (see Ettehad and Foucart [8]), here the arguments rely
critically onRm being endowed with the �2-norm. This �2-norm, as well as the Hilbert
norm on H and any other Hilbert norm, will simply be written as ‖ · ‖, hoping that the
correct setting is clear from the context.

For our specific problem, the worst-case recovery errors (2) and (3) need to be
adjusted. The local worst-case recovery error at y for ̂f becomes

lwce(y, ̂f ) = sup
‖PV⊥ f ‖≤ε

‖�( f )−y‖≤η

‖ f − ̂f ‖.

As for the global worst-case error of � : Rm → H , it reads

gwce(�) = sup
‖PV⊥ f ‖≤ε

‖e‖≤η

‖ f − �(�( f ) + e)‖.

Note that both worst-case errors are infinite if one can find a nonzero h in V ∩ ker(�).
Indeed, the element ft := f + th, t ∈ R, obeys ‖PV⊥ ft‖ = ‖PV⊥ f ‖ ≤ ε and
‖y − �( ft )‖ = ‖y − �( f )‖ ≤ η, so for instance lwce(y, ̂f ) ≥ supt∈R ‖ ft − ̂f ‖ =
+∞. Thus, we always make the assumption that

V ∩ ker(�) = {0}. (5)

We keep in mind that the latter forces n := dim(V) ≤ m, as can be seen by dimension
arguments. With �∗ denoting the Hermitian adjoint of �, another assumption that we
sometimes make reads

��∗ = IdRm . (6)

This is not extremely stringent: Assuming the surjectivity of � is quite natural,
otherwise certain observations need not be collected; then the map � can be pre-
processed into another map ˜� satisfying ˜�˜�∗ = IdRm by setting ˜� = (��∗)−1/2�.
Incidentally, if u1, . . . , um ∈ H represent the Riesz representers of the observation
functionals λ1, . . . , λm ∈ H∗, characterized by 〈ui , f 〉 = λi ( f ) for all f ∈ H , then
the assumption (6) is equivalent to the orthonormality of the system (u1, . . . , um). In
a reproducing kernel Hilbert space with kernel K , if the λi ’s are point evaluations at
some x (i)’s, so that ui = K (·, x (i)), then (6) is equivalent to K (x (i), x ( j)) = δi, j for
all i, j = 1, . . . ,m. This occurs, e.g., for the Paley–Wiener space of functions with
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Fourier transform supported on [−π, π ] when the evaluations points come from an
integer grid, since the kernel is given by K (x, x ′) = sinc(π(x − x ′)), x, x ′ ∈ R.

Notation From now on, we only deal with finite-dimensional Hilbert spaces.1 For
a self-adjoint operator T defined on such a Hilbert space H , we write λmin(T ) and
λmax(T )—not to be confused with the observation functionals—to denote its smallest
and largest eigenvalues. We write T � 0 (respectively, T � 0) to mean that T is pos-
itive semidefinite (respectively, positive definite), i.e., that 〈T f , f 〉 ≥ 0 (respectively,
〈T f , f 〉 > 0) for all nonzero f ∈ H , which is equivalent to the fact that λmin(T ) ≥ 0
(respectively, λmin(T ) > 0). Throughout the article, we also make heavy use of block
notation for linear maps to mimic a usual convention for matrices. Namely, if H1 and
H2 are Hilbert spaces, then the elements of the Hilbert space H1 × H2 are represented

by stacking elements f1 ∈ H1 and f2 ∈ H2 to form

[

f1
f2

]

∈ H1 × H2. Furthermore,

if L1 : H → H1, L2 : H → H2, L ′
1 : H1 → H , and L ′

2 : H2 → H are linear maps

between Hilbert spaces, then

[

L1

L2

]

: H → H1 × H2 and
[

L ′
1 | L ′

2

] : H1 × H2 → H

are the linear maps defined, for f ∈ H , f1 ∈ H2, and f2 ∈ H2, by

[

L1

L2

]

f =
[

L1 f
L2 f

]

and
[

L ′
1 | L ′

2

]

[

f1
f2

]

= L ′
1 f1 + L ′

2 f2.

Finally, to parallel the notation ker(L) for the null space, aka kernel, of a linear map
L , we use the notation im(L) to represent the range, aka image, of L , i.e., im(L) =
{L( f ), f ∈ dom(L)}.

1.3 Main Results

There are previous works on Optimal Recovery in Hilbert spaces in the presence of
observation error bounded in �2. Notably, Beck and Eldar [1] dealt with the local set-
ting, while [15, 16] dealt with the global setting. Theseworks underline the importance
of regularization, which is prominent in many other settings [4]. They establish that
the optimal recovery maps are obtained by solving the unconstrained program

minimize
f ∈H (1 − τ)‖PV⊥ f ‖2 + τ‖� f − y‖2 (7)

for some τ ∈ [0, 1]. It is the precise choice of this regularization parameter τ which
is the purpose of this article. We provide a complete (almost) picture of the local and
global Optimal Recovery solutions, as summarized in the four points below, three of
them being new:

L1. With H restricted here to be a complex Hilbert space, the Chebyshev center of
the set { f ∈ H : ‖PV⊥ f ‖ ≤ ε, ‖� f − y‖ ≤ η} is the minimizer of (7) for the

1 It is likely that the results are still valid in the infinite-dimensional case. However, it would then be
unclear how semidefinite programs such as (8) and (9) are solved numerically, so the infinite-dimensional
case is not given proper scrutiny in the article.
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choice τ = d�/(c� + d�), where c�, d� are solutions to the semidefinite program

minimize
c,d,t≥0

ε2c + (η2 − ‖y‖2)d + t s.to cPV⊥ + d�∗� � Id,

and

[

cPV⊥ + d�∗� | −d�∗y
−d(�∗y)∗ | t

]

� 0.

L2. Under the orthonormal observations assumption (6) butwithout the above restric-
tion on H , the Chebyshev center of the set { f ∈ H : ‖PV⊥ f ‖ ≤ ε, ‖� f − y‖ ≤
η} is the minimizer of (7) for the choice τ that satisfies

λmin((1 − τ)PV⊥ + τ�∗�) = (1 − τ)2ε2 − τ 2η2

(1 − τ)ε2 − τη2 + (1 − τ)τ (1 − 2τ)δ2
, (8)

where δ is precomputed as δ = min{‖PV⊥ f ‖ : � f = y} = min{‖� f − y‖ :
f ∈ V}. For the distinct case V = {0}, the best choice of parameter is more
simply τ = max{1 − η/‖y‖, 0}.

G1. Aglobally optimal recoverymap is provided by the linearmap sending y ∈ R
m to

the minimizer of (7) with parameter τ = d�/(c� + d�), where c�, d� are solutions
to the semidefinite program

minimize
c,d

ε2c + η2d s.to cPV⊥ + d�∗� � Id. (9)

G2. Under the orthonormal observations assumption (6), the linear map sending y ∈
R
m to the minimizer of (7) is a globally optimal recovery map for any choice of

parameter τ ∈ [0, 1].
Before entering the technicalities, a few comments are in order to put these results in
context. Item L1 is the result of Beck and Eldar [1] (see Corollary 3.2 there) adapted
to our situation. It relies on an extension of the S-lemma involving two quadratic
constraints. This extension is valid in the complex finite-dimensional setting, but not
necessarily in the real setting, hence the restriction on H (this does not preclude the
validity of the result in the real setting, though). It is worth pointing out the nonlinearity
of the map that sends y ∈ R

m to the above Chebyshev center. Incidentally, we can
safely talk about theChebyshev center, because it is knownGarkavi [11] that a bounded
set in a uniformly convex Banach space has exactly one Chebyshev center. A sketch
of the argument adapted to our situation is presented in “Appendix.”

For item L2, working with an observation map � satisfying ��∗ = IdRm allows
us to construct the Chebyshev center even in the setting of a real Hilbert space. This
is possible because our argument does not rely on the extension of the S-lemma—it
just uses the obvious implication. As for Eq. (8), it is easily solved using the bisection
method or the Newton/secant method. Moreover, it gives some insight on the value of
the optimal parameter τ . For instance, the proof reveals that τ is always between 1/2
and ε/(ε + η). When ε ≥ η, say, the optimal parameter should then satisfy τ ≥ 1/2,
which is somewhat intuitive: ε ≥ ηmeans that there is moremodel mismatch than data
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mismatch, so the regularization should penalize model fidelity less than data fidelity
by taking 1 − τ ≤ τ , i.e., τ ≥ 1/2. As an aside, we point out that, here too, the map
that sends y ∈ R

m to the Chebyshev center is not a linear map—if it was, then the
optimal parameter should be independent of y.

In contrast, the globally optimal recoverymapof itemG1 is linear. It is one of several
globally optimal recovery maps, since the locally optimal one (which is nonlinear) is
also globally optimal. However, as revealed in the reproducible2 accompanying this
article, it is in general the only regularization map that turns out to be globally optimal.
The fact that regularization produces globally optimal recovery maps was recognized
by Micchelli, who wrote in the abstract of Micchelli [16] that “the regularization
parameter must be chosen with care.” However, a recipe for selecting the parameter
was not given there, except on a specific example. The closest to a nonexhaustive search
is found in Plaskota [19, Lemma 2.6.2] for the case V = {0}, but even this result does
not translate into a numerically tractable recipe. The selection stemming from (9) does,
at least when H is finite-dimensional, which is assumed here. Semidefinite programs
can indeed be solved in matlab using CVX [12] and in Python using CVXPY [7].

Finally, a surprise arises in itemG2. Working with an observation map� satisfying
��∗ = IdRm , the latter indeed reveals that the regularization parameter does not
need to be chosen with care after all, since regularization maps are globally optimal
no matter how the parameter τ ∈ [0, 1] is chosen. The precise interpretation of the
choices τ = 0 and τ = 1 will be elucidated later.

The rest of this article is organized as follows. Section 2 gathers some auxiliary
results that are used in the proofs of the main results. Section 3 elucidates item L1 and
establishes item L2—in other words, it is concerned with local optimality. Section 4,
which is concerned with global optimality, is the place where items G1 and G2 are
proved. Lastly, a short “Appendix” containing some side information is included.

2 Technical Preparation

This section establishes (or recalls) a few results that we isolate here in order not to
disrupt the flow of subsequent arguments.

2.1 S-Lemma and S-Procedure

Loosely speaking, the S-procedure is a relaxation technique expressing the fact that
a quadratic inequality is a consequence of some quadratic constraints. In case of a
single quadratic constraint, the relaxation turns out to be exact. This result, known as
the S-lemma, can be stated as follows: given quadratic functions q0 and q1 defined on
K

N , with K = R or K = C,

[q0(x) ≤ 0 whenever q1(x) ≤ 0] ⇐⇒ [there exists a ≥ 0 : q0 ≤ aq1],

2 matlab and Python files illustrating the findings of this article are located at https://github.com/foucart/
COR.
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provided q1(̃x) < 0 for some x̃ ∈ K
N . With more than one quadratic constraint,

q1, . . . , qk , say, q0(x) ≤ 0 whenever q1(x) ≤ 0, . . . , qk(x) ≤ 0 is still a consequence
of q0 ≤ a1q1 + · · · + akqk for some a1, . . . , ak ≥ 0, but the reverse implication does
not hold anymore. There is a subtlety when k = 2, as the reverse implication holds
for K = C but not for K = R, see Pólik and Terlaky, [20, Sect. 3]. However, if the
quadratic constraints do not feature linear terms, then the reverse implication holds
for k = 2 also when K = R. Since this result of Polyak [21, Theorem 4.1] is to be
invoked later, we state it formally below.

Theorem 1 Suppose that N ≥ 3 and that quadratic functions q0, q1, q2 on R
N take

the form qi (x) = 〈Ai x, x〉 + αi for symmetric matrices A0, A1, A2 ∈ R
N×N and

scalars α0, α1, α2 ∈ R. Then [q0(x) ≤ 0 whenever q1(x) ≤ 0 and q2(x) ≤ 0] ⇐⇒
[there exist a1, a2 ≥ 0 : q0 ≤ a1q1 + a2q2], provided q1(̃x) < 0 and q2(̃x) < 0 for
some x̃ ∈ R

N and b1A1 + b2A2 � 0 for some b1, b2 ∈ R.

2.2 Regularization

In this subsection, we take a closer look at the regularization program (7). The result
below shows that its solution depends linearly on y ∈ R

m . In fact, the result covers
a slightly more general program and the linearity claim follows by taking R = PV⊥ ,
r = 0, S = �, and s = y.

Proposition 2 Let R, S be linear maps from H into Hilbert spaces HR, HS and let
r ∈ HR, s ∈ HS. For τ ∈ (0, 1), the optimization program

minimize
f ∈H (1 − τ)‖R f − r‖2 + τ‖S f − s‖2 (10)

has solutions fτ ∈ H characterized by

(

(1 − τ)R∗R + τ S∗S
)

fτ = (1 − τ)R∗r + τ S∗s. (11)

Moreover, if ker(R) ∩ ker(S) = {0}, then fτ is uniquely given by

fτ = (

(1 − τ)R∗R + τ S∗S
)−1(

(1 − τ)R∗r + τ S∗s
)

. (12)

Proof The program (10) can be interpreted as a standard least squares problem, namely
as

minimize
f ∈H

∥

∥

∥

∥

[√
1 − τ R√

τ S

]

f −
[√

1 − τr√
τ s

]∥

∥

∥

∥

2

.

According to the normal equations, its solutions fτ are characterized by

[√
1 − τ R√

τ S

]∗ [√
1 − τ R√

τ S

]

fτ =
[√

1 − τ R√
τ S

]∗ [√
1 − τr√

τ s

]

,

123



Constructive Approximation (2023) 57:489–520 497

which is a rewriting of (11). Next, if ker(R) ∩ ker(S) = {0}, then

〈((1 − τ)R∗R + τ S∗S) f , f 〉 = (1 − τ)‖R f ‖2 + τ‖S f ‖2 ≥ 0,

with equality only possible when f ∈ ker(R) ∩ ker(S), i.e., f = 0. This shows that
(1− τ)R∗R+ τ S∗S is positive definite, and hence invertible, which allows us to write
(12) as a consequence of (11).

Expression (12) is not always the most convenient one. Under extra conditions on
R and S, we shall see that fτ , τ ∈ [0, 1], can in fact be expressed as the convex
combination fτ = (1− τ) f0 + τ f1. The elements f0 and f1 should be interpreted3 as

f0 = argmin
f ∈H

‖S f − s‖ s.to R f = r ,

f1 = argmin
f ∈H

‖R f − r‖ s.to S f = s.

The requirements that r ∈ im(R) and s ∈ im(S) need to be imposed for f0 and f1 to
even exist and the condition ker(R) ∩ ker(S) = {0} easily guarantees that f0 and f1
are unique. They obey

R f0 = r , S∗(S f0 − s) ∈ ker(R)⊥, S f1 = s, R∗(R f1 − r) ∈ ker(S)⊥. (13)

For instance, the identity R f0 = r reflects the constraint in the optimization
program defining f0, while S∗(S f0 − s) ∈ ker(R)⊥ is obtained by expanding
‖S( f0 + tu) − s‖2 ≥ ‖S( f0) − s‖2 around t = 0 for any u ∈ ker(R). At this point,
we are ready to establish our claim under extra conditions on R and S, namely that
they are orthogonal projectors. These conditions will be in place when the observation
map satisfies ��∗ = IdRm . Indeed, in view of ‖w‖2 = 〈w,��∗w〉 = ‖�∗w‖2 for
any w ∈ R

m , the regularization program (7) also reads

minimize
f ∈H (1 − τ)‖PV⊥ f ‖2 + τ‖�∗� f − �∗y‖2,

where both PV⊥ and �∗� are orthogonal projectors. The result below will then be
applied with R = PV⊥ , r = 0, S = �∗�, and s = �∗y.

Proposition 3 Let R, S be two orthogonal projectors on H such that ker(R)∩ker(S) =
{0} and let r ∈ im(R), s ∈ im(S). For τ ∈ [0, 1], the solution fτ to the optimization
program

minimize
f ∈H (1 − τ)‖R f − r‖2 + τ‖S f − s‖2 (14)

3 Intuitively, the solution to the program (10) written as the minimization of ‖R f −r‖2+(τ/(1−τ))‖S f −
s‖2 becomes, as τ → 1, the minimizer of ‖R f − r‖2 subject to ‖S f − s‖2 = 0. This explains the
interpretation of f1. A similar argument explains the interpretation of f0.
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satisfies

fτ = (1 − τ) f0 + τ f1. (15)

Moreover, one has

‖R fτ − r‖ = τ‖ f1 − f0‖ and ‖S fτ − s‖ = (1 − τ)‖ f1 − f0‖. (16)

Proof Taking the extra conditions on R and S into account, the identities (13) read

R f0 = r , S f0 − s ∈ im(R), S f1 = s, R f1 − r ∈ im(S). (17)

The third and second identities now imply that

〈S( f0 − f1), (R − S)( f0 − f1)〉 = 〈S f0 − s, R( f0 − f1)〉 − 〈S f0 − s, S( f0 − f1)〉
= 〈S f0 − s, f0 − f1〉 − 〈S f0 − s, f0 − f1〉
= 0. (18)

In a similar fashion, by exchanging the roles of R and S, and in turn of f0 and f1,
the first and fourth identities in (17) imply that 〈R( f1 − f0), (S − R)( f1 − f0)〉 = 0,
i.e., 〈R( f0 − f1), (R − S)( f0 − f1)〉 = 0. Subtracting (18) from the latter yields
‖(R− S)( f0− f1)‖2 = 0, in other words R( f0− f1) = S( f0− f1). Then, the element
h := f0 − f1 − R( f0 − f1) = f0 − f1 − S( f0 − f1) belongs to ker(R) ∩ ker(S), so
that h = 0. In summary, we have established that

R( f0 − f1) = S( f0 − f1) = f0 − f1. (19)

From here, we can deduce the two parts of the proposition. For the first part, we notice
that (19) yields R f1 + S f0 = R f0 + S f1, and in turn

(

(1 − τ)R + τ S
)(

(1 − τ) f0 + τ f1
) = (1 − τ)2R f0 + (1 − τ)τ (R f1 + S f0) + τ 2S f1

= (1 − τ)2R f0 + (1 − τ)τ (R f0 + S f1) + τ 2S f1

= (1 − τ)R f0 + τ S f1

= (1 − τ)r + τ s,

which shows that (1− τ) f0 + τ f1 satisfies relation (11) characterizing the minimizer
fτ of (14), so that fτ = (1 − τ) f0 + τ f1, as announced in (15). For the second part,
we now use (15) and (19) to notice that

R fτ − r = (1 − τ)R f0 + τ R f1 − R f0 = τ R( f1 − f0) = τ( f1 − f0),

so the first equality of (16) follows by taking the norm. The second equality of (16) is
derived in a similar fashion.

We complement Proposition 3 with a few additional pieces of information.
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Remark Under the assumptions of Proposition 3, the solution fτ to (14) is also solution
to

minimize
f ∈H max

{

(1 − τ)‖R f − r‖, τ‖S f − s‖}.

Indeed, at f = fτ , the squared objective function equals (1− τ)2τ 2‖ f1 − f0‖2, while
at an arbitrary f ∈ H , it satisfies

max
{

(1 − τ)2‖R f − r‖2, τ 2‖S f − s‖2} ≥ τ(1 − τ)2‖R f − r‖2 + (1 − τ)τ 2‖S f − s‖2
= (1 − τ)τ

(

(1 − τ)‖R f − r‖2 + τ‖S f − s‖2)

≥ (1 − τ)τ
(

(1 − τ)‖R fτ − r‖2 + τ‖S fτ − s‖2)

= (1 − τ)τ
(

(1 − τ)τ 2‖ f1 − f0‖2
+ τ(1 − τ)2‖ f1 − f0‖2

)

= (1 − τ)2τ 2‖ f1 − f0‖2.

In the case R = PV⊥ , r = 0, S = �∗�, and s = �∗y, the choice τ = ε/(ε + η) is
quite relevant, since the above optimization program becomes equivalent to

minimize
f ∈H max

{

1

ε
‖PV⊥ f ‖, 1

η
‖� f − y‖

}

.

Its solution is clearly in the model- and data-consistent set { f ∈ H : ‖PV⊥ f ‖ ≤
ε, ‖� f − y‖ ≤ η}. In fact, this could have been a natural guess for its Chebyshev
center, but item L2 reveals the invalidity of such a guess. Nonetheless, the special
parameter τ = ε/(ε+η)will make a reappearance in the argument leading to itemL2.

Remark The proof of Proposition 3 showcased the important identities R f0 = r ,
S f1 = s, and R( f0 − f1) = S( f0 − f1) = f0 − f1. In the case R = PV⊥ , r = 0,
S = �∗�, and s = �∗y, if �τ denotes the recovery map assigning to y ∈ R

m the
solution fτ to the regularization program (7), these identities read, when��∗ = IdRm ,

PV⊥�0 = 0, �∗��1 = �∗, PV⊥(�0 − �1) = �∗�(�0 − �1) = �0 − �1. (20)

Remark Considering again the case R = PV⊥ , r = 0, S = �∗�, and s = �∗y,
Proposition 3 implies that fτ ∈ V + im(�∗) for any τ ∈ [0, 1], given that the latter
holds for τ = 0 and for τ = 1. For τ = 0, this is because the constraint PV⊥ f = 0
of the optimization program defining f0 imposes f0 ∈ V . For τ = 1, this is a result
established, e.g., in Foucart et al. [10, Theorem 2]. The said result also provides an
efficient way to compute the solution fτ of (7) even when H is infinite dimensional,
as stated in “Appendix.”
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3 Local Optimality

Our goal in this section is to determine locally optimal recovery maps. In other words,
the section is concerned with Chebyshev centers. We start by considering the situation
of an arbitrary observation map �, but with a restriction on the space H . Next, lifting
this restriction on H , we refine the result in the particular case of an observation map
satisfying ��∗ = IdRm .

3.1 Arbitrary Observations

In this subsection, we reproduce a result from Beck and Eldar [1], albeit with different
notation, and explain how it implies the statement of item L1. The result in question,
namely Corollary 3.2, relies on the S-procedure with two constraints, and as such
cannot be claimed in the real setting.

Theorem 4 Let H , HR, HS be complex Hilbert spaces, R : H → HR, S : H →
HS be linear maps, and r ∈ HR, s ∈ HS. Suppose the existence of ˜f ∈ H such
that ‖R ˜f − r‖ < ε and ‖S ˜f − s‖ < η and the existence of τ ∈ [0, 1] such that
(1 − τ)R∗R + τ S∗S is positive definite. Then, the Chebyshev center of { f ∈ H :
‖R f − r‖ ≤ ε, ‖S f − s‖ ≤ η} equals f� = (

c�R∗R + d�S∗S
)−1

(c�R∗r + d�S∗s),
where c�, d� are solutions to

minimize
c,d,t≥0

(

ε2 − ‖r‖2
)

c +
(

η2 − ‖s‖2
)

d + t s.to cR∗R + dS∗S � Id,

and

[

cR∗R + dS∗S | −cR∗r − dS∗s
−c(R∗r)∗ − d(S∗s)∗ | t

]

� 0.

The statement made in item L1 is of course derived by taking R = PV⊥ , r = 0,
S = �, and s = y. Theorem 4 is indeed applicable, as ˜f = ( f0 + f1)/2 satisfies
the strict feasibility conditions, while the positive definiteness condition is not only
fulfilled for some τ ∈ [0, 1], but for all τ ∈ (0, 1), since 〈((1−τ)PV⊥+τ�∗�) f , f 〉 =
(1 − τ)‖PV⊥ f ‖2 + τ‖� f ‖2 ≥ 0, with equality only possible if f ∈ V ∩ ker(�),
i.e., if f = 0 thanks to assumption (5). We also note that, by virtue of (12), the
element f� defined above is nothing else than the regularized solution with parameter
τ = d�/(c� + d�).

3.2 Orthonormal Observations

In this subsection, we place ourselves in the situation of an observation map satisfying
��∗ = IdRm andwe provide a proof of the statements made itemL2. In fact, we prove
some slightly more general results and L2 follows by taking R = PV⊥ , r = 0, S =
�∗�, and s = �∗y.Note thatwemust separate the caseswhere R = Id (corresponding
to V = {0}) and where R is a proper orthogonal projector (corresponding to V �=
{0}). We emphasize that, in each of these two cases, the optimal parameter τ� is not
independent of y. Therefore, in view of (15) and of the linear dependence of f0 and
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f1 on y, the regularized solution fτ� does not depend linearly on y. In other words, the
locally optimal recovery map is not a linear map. The following two simple lemmas
will be used to deal with both cases.

Lemma 5 Let R, S be linear maps from H into Hilbert spaces HR, HS and let r ∈ HR,
s ∈ HS. Given f� ∈ H, let

h� ∈ argmax
h∈H

‖h‖ s.to

{‖R f� − r + Rh‖ ≤ ε,

‖S f� − s + Sh‖ ≤ η.

If the orthogonality conditions

〈R∗(R f� − r), h�〉 = 0 and 〈S∗(S f� − s), h�〉 = 0 (21)

are fulfilled, then f� is the Chebyshev center of the set { f ∈ H : ‖R f − r‖ ≤
ε, ‖S f − s‖ ≤ η}, i.e., for any g ∈ H,

sup
‖R f −r‖≤ε
‖S f −s‖≤η

‖ f − g‖ ≥ sup
‖R f−r‖≤ε
‖S f −s‖≤η

‖ f − f�‖. (22)

Proof First, writing f = f� + h, we easily see that the right-hand side of (22) reduces
to ‖h�‖. Second, let us remark that the orthogonality conditions guarantee that f± :=
f� ± h� both satisfy ‖R f± − r‖ ≤ ε and ‖S f± − s‖ ≤ η. For instance, we have

‖R f± − r‖2 = ‖R f� − r ± Rh�‖2 = ‖R f� − r‖2 + ‖Rh�‖2
= ‖R f� − r + Rh�‖2 ≤ ε2, (23)

where the latter inequality reflects the feasibility of h�. Therefore, the left-hand side
of (22) is bounded below by

max± ‖ f± − g‖ ≥ 1

2

(‖ f+ − g‖ + ‖ f− − g‖) ≥ 1

2
‖( f+ − g) − ( f− − g)‖

= 1

2
‖2h�‖ = ‖h�‖, (24)

i.e., by the right-hand side of (22).

The next lemma somehow relates to the S-procedure. However, it does not involve
the coveted (and usually invalid) equivalence, but only the straightforward implication.

Lemma 6 Let R, S be linear maps from H into Hilbert spaces HR, HS and let r ∈ HR,
s ∈ HS. Given f� ∈ H and h� ∈ H, suppose that

‖R f� − r + Rh�‖2 = ε2 and ‖S f� − s + Sh�‖2 = η2, (25)
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and that there exist a, b ≥ 0 such that

aR∗R + bS∗S � Id (26)

as well as

aR∗(R f� − r) + bS∗(S f� − s) + (aR∗R + bS∗S)h� = h�. (27)

Then, one has

h� ∈ argmax
h∈H

‖h‖ s.to

{‖R f� − r + Rh‖ ≤ ε,

‖S f� − s + Sh‖ ≤ η.
(28)

Proof By writing the variable in the optimization program (28) as h = h� + g, the
constraints on h transform into constraints on g. Thanks to (25), the latter constraints
read

〈R∗Rg, g〉 + 2〈R∗(R f� − r + Rh�), g〉 ≤ 0 and

〈S∗Sg, g〉 + 2〈S∗(S f� − s + Sh�), g〉 ≤ 0.

Combining these constraints—specifically, multiplying the first by a, the second by
b, and summing—implies that

0 ≥ 〈(aR∗R + bS∗S)g, g〉 + 2〈aR∗(R f� − r) + bS∗(S f� − s)

+ (aR∗R + bS∗S)h�, g〉
≥ 〈g, g〉 + 2〈h�, g〉,

where (26) and (27) were exploited in the last step. In other words, one has 0 ≥
‖h� + g‖2 − ‖h�‖2, i.e., ‖h‖2 ≤ ‖h�‖2, under the constraints on h, proving that h� is
indeed a maximizer in (28).

3.2.1 The Case R = Id

As mentioned earlier, the case R = Id corresponds to the choice V = {0}, i.e., to a
model set K being an origin-centered ball in H , and to regularizations being classical
Tikhonov regularizations. The arguments are slightly less involved here than for the
case R �= Id. Here is the main result.

Theorem 7 Let S be an orthogonal projector on H with ker(S) �= {0} and let r ∈ H,
s ∈ im(S). The solution fτ� to the regularization program (14) with parameter

τ� = max

{

1 − η

‖Sr − s‖ , 0

}

is the Chebyshev center of the set { f ∈ H : ‖ f − r‖ ≤ ε, ‖S f − s‖ ≤ η}.
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Proof Before separating two cases, we remark that ‖Sr − s‖ ≤ ε + η is implicitly
assumed for the above set to be nonempty.Now,wefirst consider the case‖Sr−s‖ > η.
Defining f� := fτ� with τ� = 1−η/‖Sr − s‖ ∈ (0, 1), our objective is to find h� ∈ H
and a, b ≥ 0 for which conditions (25), (26), and (27) of Lemma 6 are fulfilled, so
that h� is a maximizer appearing in Lemma 5, and then to verify that the orthogonality
conditions (21) hold, so that f� is indeed the required Chebyshev center. We take any
h� ∈ ker(S), with a normalization to be decided later, and a = 1, b = τ�/(1 − τ�).
In this way, since R = Id, condition (26) is automatic, and condition (27) follows
from the characterization (11) written here as (1− τ�)( f� − r) = −τ�(S f� − s). This
characterization also allows us to deduce (21) only from 〈S f�−s, h�〉 = 0,which holds
because the spaces im(S) and ker(S) are orthogonal. The remaining condition (25)
now reads ‖ f� − r‖2 + ‖h�‖2 = ε2 and ‖S f� − s‖2 = η2. Recalling from Proposition
3 that f� = (1 − τ�) f0 + τ� f1, while taking into account that f0 = r here and that
f1 = f0 + S( f1 − f0) = r + s − Sr thanks to (19), we have f� − r = τ�(s − Sr) and
S f� − s = −(1 − τ�)(s − Sr). Thus, condition (25) reads

τ 2� ‖s − Sr‖2 + ‖h�‖2 = ε2 and (1 − τ�)
2‖s − Sr‖2 = η2.

The latter is justified by our choice of τ�, while the former can simply be achieved
by normalizing h�, so long as ε ≥ τ�‖s − Sr‖, i.e., ε ≥ ‖s − Sr‖ − η, which is our
implicit assumption for nonemptiness of the set under consideration.

Next, we consider the case ‖Sr − s‖ ≤ η. We note that this implies that r belongs
to the set { f ∈ H : ‖ f − r‖ ≤ ε, ‖S f − s‖ ≤ η}—we are going to show that r is
actually the Chebyshev center of this set. In other words, since r = f0, this means
that fτ� with τ� = 0 is the Chebyshev center. To this end, we shall establish that, for
any g ∈ H ,

sup
‖ f −r‖≤ε
‖S f −s‖≤η

‖ f − g‖ ≥ sup
‖ f −r‖≤ε
‖S f −s‖≤η

‖ f − r‖.

On the one hand, the right-hand side is obviously bounded above by ε. On the other
hand, selecting h ∈ ker(S)with ‖h‖ = ε, we define f± := r±h to obtain ‖ f± −r‖ =
‖h‖ = ε and ‖S f± − s‖ = ‖Sr − s‖ ≤ η. Thus, the left-hand side is bounded below
by

max± ‖ f± − g‖ ≥ 1

2
‖ f+ − g‖ + 1

2
‖ f− − g‖

≥ 1

2
‖( f+ − g) − ( f− − g)‖ = 1

2
‖2h‖ = ε.

This proves that the left-hand side is larger than or equal to the right-hand side, as
required.
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3.2.2 The Case R �= Id

We now assume that R is a proper orthogonal projector, i.e., that R �= Id, which
corresponds to the caseV �= {0}. Themain result is stated below. To apply it in practice,
the optimal parameter τ needs to be computed by solving an equation involving the
smallest eigenvalue of a self-adjoint operator dependingon τ . This canbedoneusing an
all-purpose routine. We could also devise our own bisection method, Newton method
(since the derivative dλmin/dτ is accessible, see “Appendix”), or secant method.

Theorem 8 Let R �= Id, S �= Id be two orthogonal projectors on H such that ker(R)∩
ker(S) = {0} and let r ∈ im(R), s ∈ im(S). Consider τ� to be a (often unique) τ

between 1/2 and ε/(ε + η) such that

λmin((1 − τ)R + τ S) − (1 − τ)2ε2 − τ 2η2

(1 − τ)ε2 − τη2 + (1 − τ)τ (1 − 2τ)δ2
= 0, (29)

where δ is precomputed as δ = min{‖R f −r‖ : S f = s} = min{‖S f −s‖ : R f = r}.
Then, the solution fτ� of the regularization program (14) with parameter τ� is the
Chebyshev center of the set { f ∈ H : ‖R f − r‖ ≤ ε, ‖S f − s‖ ≤ η}.
Remark If there is no observation error, i.e., if η = 0, then the parameter solving
equation (29) is τ� = 1. In case R = PV⊥ , r = 0, S = �∗�, and s = �∗y, this means
that the Chebyshev center is f1 = argmin ‖PV⊥ f ‖ s.to � f = y and we thus retrieve
the result of Binev et al. [2].

The proof of Theorem 8 requires an additional result that gives information about
the norms of the projections Rh and Sh when h is an eigenvector of the positive
semidefinite operator (1 − τ)R + τ S. This result will be applied for the eigenvector
associated with the smallest eigenvalue.

Lemma 9 Let R, S be two orthogonal projectors on H. For τ ∈ (0, 1), let h ∈ H be
an eigenvector of (1 − τ)R + τ S corresponding to an eigenvalue λ �= 1/2. Then

‖Rh‖2 = (τ − λ)λ

(1 − τ)(1 − 2λ)
‖h‖2 and ‖Sh‖2 = (1 − τ − λ)λ

τ(1 − 2λ)
‖h‖2. (30)

Proof We notice, on the one hand, that

(1 − τ)‖Rh‖2 + τ‖Sh‖2 = (1 − τ)〈Rh, h〉 + τ 〈Sh, h〉 = 〈((1 − τ)R + τ S)h, h〉
= λ‖h‖2, (31)

and, on the other hand, that

(1 − τ)2‖Rh‖2 − τ 2‖Sh‖2
= 〈(1 − τ)Rh + τ Sh, (1 − τ)Rh − τ Sh〉
= 〈λh, (1 − τ)Rh − τ Sh〉
= λ(1 − τ)‖Rh‖2 − λτ‖Sh‖2.
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Rearranging the latter yields

(1 − τ)(1 − τ − λ)‖Rh‖2 − τ(τ − λ)‖Sh‖2 = 0. (32)

Together, equations (31) and (32) form a two-by-two linear system in the unknowns
‖Rh‖2 and ‖Sh‖2 with determinant −(1 − τ)τ (1 − 2λ) �= 0. Its solutions are easily
verified to be the ones given in (30).

Remark Because ‖Rh‖2, ‖Sh‖2, and ‖h‖2 are all nonnegative, Lemma 9 implicitly
guarantees that τ −λ and 1−τ −λ have the same sign as 1−2λ �= 0. These quantities
are nonnegative when R �= Id, S �= Id, and λ is the smallest eigenvalue—the case of
application of the lemma. Indeed, taking f ∈ ker(R)with ‖ f ‖ = 1 (which is possible
because R �= Id), one has

λmin := λmin((1 − τ)R + τ S) ≤ ‖(1 − τ)R f + τ S f ‖ = τ‖S f ‖ ≤ τ,

i.e., τ − λmin ≥ 0. The inequality λmin ≤ 1 − τ , i.e., 1 − τ − λmin ≥ 0, is obtained
in a similar fashion. These inequalities sum up to give 1 − 2λmin ≥ 0. The latter is in
fact (strictly) positive when τ �= 1/2, since either τ or 1 − τ is smaller than 1/2, so
that λmin < 1/2.

With the above result at hand, we are ready to fully justify the main result of this
subsection.

Proof of Theorem 8 Let us temporarily take for granted the existence of a solution τ�

to (29). Defining f� := fτ� , our objective is again to find h� ∈ H and a, b ≥ 0 for
which conditions (25), (26), and (27) of Lemma6 are fulfilled, so that h� is amaximizer
appearing inLemma5, and then to verify that the orthogonality conditions (21) hold, so
that f� is indeed the required Chebyshev center. Writing λ� := λmin((1−τ�)R+τ�S),
we chooseh� to be a (so far unnormalized) eigenvector of (1−τ�)R+τ�S corresponding
to the eigenvalueλ�. Setting a := (1−τ�)/λ� and b := τ�/λ�, conditions (26) is swiftly
verified, since RR∗ = R, SS∗ = S, and

aR + bS = (1 − τ�)R + τ�S

λmin((1 − τ�)R + τ�S)
� Id.

Then, the characterization (11) of the regularization solution f�, written as

(1 − τ�)R( f� − r) = −τ�S( f� − s), (33)

allows us to validate condition (27) via

aR( f� − r) + bS( f� − s) + (aR + bS)h�

= 1

λ�

(

(1 − τ�)R( f� − r)+τ�S( f� − s)+((1 − τ�)R + τ�S)h�

)

= 1

λ�

(

0 + λ�h�

) = h�.
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The orthogonality conditions (21) are also swiftly verified: The second one follows
from the first one because R∗(R f� − r) = R( f� − r) and S∗(S f� − s) = S( f� − s)
are proportional, see (33); the first one holds because, while h� is an eigenvector of
(1 − τ�)R + τ�S corresponding to its smallest eigenvalue, R( f� − r) = −τ�/(1 −
τ�)S( f� − s) is an eigenvector corresponding to the largest eigenvalue (i.e., to one),
since it is invariant when applying both R and S. Thus, it remains to verify that the
two conditions of (25) are fulfilled. In view of the orthogonality conditions (21), they
read

‖R f� − r‖2 + ‖Rh�‖2 = ε2 and ‖S f� − s‖2 + ‖Sh�‖2 = η2. (34)

Now, invoking Proposition 3, as well as Lemma 9, the two conditions of (25) become

τ 2� δ2 + (τ� − λ�)λ�

(1 − τ�)(1 − 2λ�)
‖h�‖2 = ε2 (35)

(1 − τ�)
2δ2 + (1 − τ� − λ�)λ�

τ�(1 − 2λ�)
‖h�‖2 = η2. (36)

After some simplification work, starting by forming the combinations (1 − τ�)
2 ×

(35) − τ 2� ×(36) and (1 − τ� − λ�)(1 − τ�) × (35) − (τ� − λ�)(τ�)×(36), these two
conditions are seen to be equivalent to

‖h�‖2 = 1 − 2λ�

(2τ� − 1)λ2�

(

(1 − τ�)
2ε2 − τ 2� η2

)

, (37)

λ� = (1 − τ�)
2ε2 − τ 2� η2

(1 − τ�)ε2 − τ�η2 + (1 − τ�)τ�(1 − 2τ�)δ2
. (38)

These two conditions can be fulfilled: the latter is the condition that defined τ�, i.e.,
(29), while the former is simply guaranteed by properly normalizing the eigenvector
h�.

Before establishing the existence τ�, we point out that its uniqueness holds when
f0 �= f1, i.e., when there is no f ∈ H such that R f = r and S f = s—such an f
would solve the regularization program for any τ ∈ [0, 1]. Indeed, if τ �= τ ′ were
two solutions to (29), then the previous argument would imply that fτ and fτ ′ are
both Chebyshev centers, and by uniqueness of the Chebyshev center, this could only
happen if fτ = fτ ′ , so that f0 = f1 by (15). Now, for the existence of τ�, it will be
justified by the fact that the function

θ : τ �→ λmin((1 − τ)R + τ S) − (1 − τ)2ε2 − τ 2η2

(1 − τ)ε2 − τη2 + (1 − τ)τ (1 − 2τ)δ2

is continuous between 1/2 and ε/(ε + η) and takes values of different signs there. To
see the difference in sign, notice that λmin((1 − τ)R + τ S) ∈ [0, 1/2] by the remark
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after Lemma 9—this is where the assumption R �= Id is critical—so that

θ

(

1

2

)

≤ 1

2
− 1

2
≤ 0 and θ

(

ε

ε + η

)

≥ 0 − 0 ≥ 0.

To see the continuity, we need the continuity of the smallest eigenvalue as a function
of τ and the nonvanishing of the denominator (1− τ)ε2 − τη2 + (1− τ)τ (1− 2τ)δ2

between 1/2 and ε/(ε+η). The former is a consequence ofWeyl’s inequality, yielding

|λmin((1 − τ)R + τ S) − λmin((1 − τ ′)R + τ ′S)|
≤ ‖((1 − τ)R + τ S) − ((1 − τ ′)R + τ ′S)‖ = |τ − τ ′| ‖R − S‖.

The latter is less immediate. We start by exploiting the minimizing property of fτ to
write

(1 − τ)ε2 + τη2 ≥ (1 − τ)‖R fτ − r‖2 + τ‖S fτ − s‖2 = (1 − τ)τδ2,

where the last equality relied on ‖R fτ − r‖ = τ‖ f1 − f0‖ and ‖S fτ − s‖ = (1 −
τ)‖ f1 − f0‖, see (16), together with the fact that ‖ f1 − f0‖ = δ. Therefore, if the
denominator vanished for some τ ∈ (0, 1) \ {1/2}, we would have

0 = (1 − τ)ε2 − τη2

1 − 2τ
+ (1 − τ)τδ2

≤ (1 − τ)ε2 − τη2

1 − 2τ
+ (1 − τ)ε2 + τη2 = 2(1 − τ)2ε2 − 2τ 2η2

1 − 2τ

=
(

(1 − τ)ε + τη
)(

(1 − τ)ε − τη
)

1/2 − τ
= (

(1 − τ)ε + τη
)(

ε + η
)ε/(ε + η) − τ

1/2 − τ
.

This would force ε/(ε + η) − τ and 1/2 − τ to have the same sign, contrary to the
assumption that τ runs between 1/2 and ε/(ε + η). Thus, the nonvanishing of the
denominator is explained, concluding the proof.

Remark The above arguments contain the value of the minimal local worst-case error,
i.e., of the Chebyshev radius of the set C = { f ∈ H : ‖R f − r‖ ≤ ε, ‖S f − s‖ ≤ η}.
Indeed, we recall from the proof of Lemma 5 that this radius equals ‖h�‖, whose value
was derived in (37). This expression can be simplified with the help of (38) by noticing
that

1 − 2λ�

λ�

= (2τ� − 1)
(1 − τ�)ε

2 + τ�η
2 − (1 − τ�)τ�δ

2

(1 − τ�)2ε2 − τ 2� η2
.

As a consequence, we deduce that the Chebyshev radius satisfies

radius(C)2 = 1 − τ�

λ�

ε2 + τ�

λ�

η2 − (1 − τ�)τ�

λ�

δ2, λ� := λmin((1 − τ�)R + τ�S).

123



508 Constructive Approximation (2023) 57:489–520

4 Global Optimality

Our goal in this section is to uncover some favorable globally optimal recoverymaps—
favorable in the sense that they are linear maps.We start by considering the situation of
an arbitrary observation map � before moving to the particular case where it satisfies
��∗ = IdRm .

4.1 Arbitrary Observations

In this subsection, we first recall a standard lower bound for the global worst-case
error. This lower bound, already exploited, e.g., in Micchelli [16], shall be expressed
as the minimal value of a certain semidefinite program. This expression will allow us
to demonstrate that the lower bound is achieved by the regularization map

�τ : y ∈ R
m �→ argmin

f ∈H
(1 − τ)‖PV⊥ f ‖2 + τ‖� f − y‖2

for someparameter τ ∈ (0, 1) to be explicitly determined.Here is a precise formulation
of the result.

Theorem 10 Given the approximability set K = { f ∈ H : dist( f ,V) ≤ ε} and the
uncertainty set E = {e ∈ R

m : ‖e‖ ≤ η}, define τ� := d�/(c� + d�) where c�, d� ≥ 0
are solutions to

minimize
c,d≥0

cε2 + dη2 s.to cPV⊥ + d�∗� � Id.

Then, the regularization map �τ� is a globally optimal recovery map over K and E ,
i.e.,

gwce(�τ�) = inf
�:Rm→H

gwce(�). (39)

The proof relies on three lemmas given below, the first of which introducing the
said lower bound.

Lemma 11 For any recovery map � : Rm → H, one has gwce(�) ≥ lb, where

lb := sup
‖PV⊥h‖≤ε

‖�h‖≤η

‖h‖.

Proof As a reminder, the global worst-case error of � is defined by

gwce(�) = sup
‖PV⊥ f ‖≤ε

‖e‖≤η

‖ f − �(� f + e)‖.
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For any h ∈ H such that ‖PV⊥h‖ ≤ ε and ‖�h‖ ≤ η, since f± = ±h satisfies
‖PV⊥ f±‖ ≤ ε and e± = ∓�h satisfies ‖e±‖ ≤ η, we have

gwce(�) ≥ max± ‖ f± − �(� f± + e±)‖

= max± ‖ f± − �(0)‖ ≥ 1

2
‖ f+ − �(0)‖ + 1

2
‖ f− − �(0)‖

≥ 1

2
‖( f+ − �(0)) − ( f− − �(0))‖ = 1

2
‖2h‖ = ‖h‖.

Taking the supremum over h leads to the required inequality gwce(�) ≥ lb.

The second lemma expresses the square of the lower bound as the minimal value
of a semidefinite program. In passing, the square of the global worst-case error of a
linear recovery map is also related to the minimal value of a semidefinite program.

Lemma 12 One has

lb2 = min
c,d≥0

cε2 + dη2 s.to cPV⊥ + d�∗� � Id. (40)

Moreover, if a recovery map � : Rm → H is linear, one also has

gwce(�)2 ≤ min
c,d≥0

cε2 + dη2

s.to

[

cPV⊥ | 0
0 | d IdRm

]

�
[

Id − �∗�∗
�∗

]

[

Id − �� | �
]

. (41)

Proof The first semidefinite characterization is based on the version of the S-procedure
stated in Theorem 1. Precisely, we write the square of the lower bound as

lb2 = sup
h

‖h‖2s.to ‖PV⊥h‖2 ≤ ε2 and ‖�h‖2 ≤ η2

= inf
γ

γ s.to ‖h‖2 ≤ γ whenever ‖PV⊥h‖2 ≤ ε2 and ‖�h‖2 ≤ η2

= inf
γ

γ s.to ∃ c, d ≥ 0 : ‖h‖2 − γ ≤ c
(‖PV⊥h‖2 − ε2

) + d
(‖�h‖2 − η2

)

for all h ∈ H

= inf
γ

c,d≥0

γ s.to c〈PV⊥h, h〉 + d〈�∗�h, h〉 − 〈h, h〉 + γ − cε2 − dη2 ≥ 0 for all h ∈ H .

The validity of Theorem 1 is ensured by the facts that ‖PV⊥˜h‖2−ε2 < 0 and ‖�˜h‖2−
η2 < 0 for˜h = 0 and that PV⊥+�∗� � 0.Note that the resulting constraint decouples
as 〈cPV⊥h + d�∗�h − h, h〉 ≥ 0 for all h ∈ H , i.e., cPV⊥ + d�∗� − Id � 0, and
γ − cε2 − dη2 ≥ 0. Taking the minimal value of γ under the latter constraint, namely
cε2 + dη2, leads to the expression of lb2 given in (40).
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As for (41), we start by remarking that the linearity of the recovery map � allows
us to write

gwce(�)2 = sup
f ,e

‖ f − �� f − �e‖2 s.to ‖PV⊥ f ‖2 ≤ ε2 and ‖e‖2 ≤ η2

= inf
γ

γ s.to ‖ f − �� f − �e‖2 ≤ γ whenever ‖PV⊥ f ‖2

≤ ε2 and ‖e‖2 ≤ η2.

The latter constraint can be expressed in terms of the combined variable v =
[

f
−e

]

∈
H × R

m as

∥

∥

∥

[

Id − �� | �
]

v

∥

∥

∥

2 ≤ γ whenever
∥

∥

∥

[

PV⊥ | 0] v

∥

∥

∥

2 ≤ ε2

and
∥

∥

∥

[

0 | IdRm
]

v

∥

∥

∥

2 ≤ η2. (42)

Although the proviso of Theorem 1 is not fulfilled here, constraint (42) is still a
consequence of (but is not equivalent to) the existence of c, d ≥ 0 such that

∥

∥

∥

[

Id − �� | �
]

v

∥

∥

∥

2 − γ

≤ c
(∥

∥

∥

[

PV⊥ | 0] v

∥

∥

∥

2 − ε2
)

+d
(∥

∥

∥

[

0 | IdRm
]

v

∥

∥

∥

2 − η2
)

for all v ∈ H × R
m .

The latter can also bewritten as the existence of c, d ≥ 0 such that, for all v ∈ H×R
m ,

〈(

c
[

PV⊥ | 0]∗ [

PV⊥ | 0] + d
[

0 | IdRm
]∗ [

0 | IdRm
]

− [

Id − �� | �
]∗ [

Id − �� | �
]

)

v, v
〉

+γ − cε2 − dη2 ≥ 0.

Therefore, we obtain the inequality (instead of the equality)

gwce(�)2 ≤ inf
γ

c,d≥0

γ

s.to c

[

PV⊥ | 0
0 | 0

]

+ d

[

0 | 0
0 | IdRm

]

−
[

Id − �∗�∗
�∗

]

[

Id − �� | �
] � 0

and γ − cε2 − dη2 ≥ 0.

The variable γ can be eliminated from this optimization program by assigning it the
value cε2 + dη2, thus arriving at the semidefinite program announced in (41).
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The third and final lemma relates the constraints in (40) and (41): While the con-
straint in (41) with any regularization map �τ implies the constraint in (40), see
“Appendix,” we need the partial converse that the constraint in (40) implies the con-
straint in (41) for a specific regularization map �τ .

Lemma 13 If cPV⊥ + d�∗� � Id, then setting τ = d/(c + d) yields

[

cPV⊥ | 0
0 | d IdRm

]

�
[

Id − �∗�∗
τ

�∗
τ

]

[

Id − �τ� | �τ

]

.

Proof We recall from Proposition 2 adapted to the current situation that, for any τ ∈
(0, 1),

�τ = (

(1 − τ)PV⊥ + τ�∗�
)−1

(τ�∗), hence Id − �τ�

= (

(1 − τ)PV⊥ + τ�∗�
)−1

((1 − τ)PV⊥).

We now notice that the hypothesis cPV⊥ + d�∗� � Id is equivalent to λmin(cPV⊥ +
d�∗�) ≥ 1. With our particular choice of τ , this reads λmin((1− τ)PV⊥ + τ�∗�) ≥
1/(c + d). It follows that

λmax
(

((1 − τ)PV⊥ + τ�∗�)−1) = 1

λmin((1 − τ)PV⊥ + τ�∗�)
≤ c + d.

The inverse appearing above can be written as

(

(1 − τ)PV⊥ + τ�∗�
)−1 [√

1 − τ PV⊥ | √
τ�∗]

[√
1 − τ PV⊥√

τ�

]

(

(1 − τ)PV⊥ + τ�∗�
)−1

,

and since AB and BA always have the same nonzero eigenvalues, we derive that

λmax

([√
1 − τ PV⊥√

τ�

]

(

(1 − τ)PV⊥ + τ�∗�
)−2 [√

1 − τ PV⊥ | √
τ�∗]

)

≤ c + d.

Writing the latter as

[√
1 − τ PV⊥√

τ�

]

(

(1 − τ)PV⊥ + τ�∗�
)−2 [√

1 − τ PV⊥ | √
τ�∗] � (c + d)Id

and multiplying on both sides by

[√
1 − τ PV⊥ | 0

0 | √
τ IdRm

]

yields

[

(1 − τ)PV⊥
τ�

]

(

(1 − τ)PV⊥ + τ�∗�
)−2 [

(1 − τ)PV⊥ | τ�∗]

� (c + d)

[

(1 − τ)PV⊥ | 0
0 | τ IdRm

]

.
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Taking the expressions of �τ and Id − �τ� into account, we conclude that

[

Id − �∗�∗
τ

�∗
τ

]

[

Id − �τ� | �τ

] �
[

cPV⊥ | 0
0 | d IdRm

]

,

as announced.

With the above three lemmas at hand, the main result of this subsection follows
easily.

Proof of Theorem 10 SinceLemma11 guarantees that inf{gwce(�),� : Rm → H} ≥
lb, we only need to show that gwce(�τ�) ≤ lb. By the first part of Lemma 12, we have
lb2 = c�ε

2 + d�η
2 with c� and d� satisfying c�PV⊥ + d���∗ � Id. By Lemma 13,

the latter implies that

[

c�PV⊥ | 0
0 | d�IdRm

]

�
[

Id − �∗�∗
τ�

�∗
τ�

]

[

Id − �τ�� | �τ�

]

.

By the second part of Lemma 12, it follows that gwce(�τ�)
2 ≤ c�ε

2 + d�η
2 = lb2,

which is the required inequality.

Remark When V = {0}, so that PV⊥ = Id, we obtain c� = 1 and d� = 0, resulting
in a minimal global worst-case error equal to ε and achieved for the regularization
map �0 = 0. This result can be seen directly from gwce(�) ≥ sup{‖h‖ : ‖h‖ ≤
ε, ‖�h‖ ≤ η} = ε for any � : Rm → H , while gwce(�0) = sup{‖ f ‖ : ‖ f ‖ ≤ ε} =
ε.

4.2 Orthonormal Observations

In this subsection,we demonstrate that the use of orthonormal observations guarantees,
rather unexpectedly, that regularization provides optimal recovery maps even without
a careful parameter selection. The main result reads as follows.

Theorem 14 Given the approximability set K = { f ∈ H : dist( f ,V) ≤ ε} and the
uncertainty set E = {e ∈ R

m : ‖e‖ ≤ η}, if ��∗ = IdRm , then all the regularization
maps �τ are optimal recovery maps, i.e., for all τ ∈ [0, 1],

gwce(�τ ) = inf
�:Rm→H

gwce(�). (43)

The proof strategy consists in establishing that the constraints in (40) and in (41)
with � = �τ are in fact equivalent for any τ ∈ [0, 1]. This yields the inequality
gwce(�τ ) ≤ lb, which proves the required result, given that lb was introduced as
a lower bound on gwce(�) for every �. While the constraint in (41) implies the
constraint in (40) for any observationmap� (see “Appendix”), the reverse implication
relies on the fact that��∗ = IdRm , e.g., via the identity�τ = (1−τ)�0+τ�1 derived
in Proposition 3. The following realization is also a crucial point of our argument.
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Lemma 15 Assume that ��∗ = IdRm . For c, d ≥ 0, let h be an eigenvector of
cPV⊥ + d�∗� associated with an eigenvalue λ. For any τ ∈ [0, 1], one has
• if λ �= c + d, then

(Id − �∗�∗
τ )h = c

λ
PV⊥h and �∗�∗

τh = d

λ
�∗�h;

• if λ = c + d, then

(Id − �∗�∗
τ )h = (1 − τ)h and �∗�∗

τh = τh.

Proof Multiplying the eigenequation defining h on the left by �∗�∗
τ , we obtain

c�∗�∗
τ PV⊥h + d�∗�∗

τ�
∗�h = λ�∗�∗

τh. (44)

According to (20), we have �∗
0PV⊥ = 0, �∗

1PV⊥ = �∗
1 − �∗

0, �∗
1�

∗� = �, and
�∗

0�
∗� = �∗

0 − �∗
1 + �. Thus, relation (44) specified to τ = 0 and to τ = 1 yields

d�∗�∗
0h − d�∗�∗

1h + d�∗�h = λ�∗�∗
0h, (45)

c�∗�∗
1h − c�∗�∗

0h + d�∗�h = λ�∗�∗
1h. (46)

Subtracting (46) from (45) yields (c+d)(�∗�∗
0h−�∗�∗

1h) = λ(�∗�∗
0h−�∗�∗

1h).
Therefore, we derive that �∗�∗

0h = �∗�∗
1h provided λ �= c + d. In this case, Eqs.

(45)–(46) reduce to�∗�∗
0h = �∗�∗

1h = (d/λ)�∗�h. In view of�τ = (1− τ)�0 +
τ�1, we arrive at �∗�∗

τh = (d/λ)�∗�h for any τ ∈ [0, 1]. The relation (Id −
�∗�∗

τ )h = (c/λ)PV⊥h follows from the eigenequation rewritten as (c/λ)PV⊥h +
(d/λ)�∗�h = h.

It remains to deal with the case λ = c + d. Notice that this case is not vacuous, as
it is equivalent to h ∈ V⊥ ∩ im(�∗�), which is nontrivial by a dimension argument
involving assumption (5). To see this equivalence, notice that h ∈ V⊥ ∩ im(�∗�)

clearly implies cPV⊥h + d�∗�h = (c + d)h, while the latter eigenequation forces
c‖PV⊥h‖2 + d‖�∗�h‖2 = (c + d)‖h‖2, hence ‖PV⊥h‖2 = ‖h‖2 and ‖�∗�h‖2 =
‖h‖2, i.e., h ∈ V⊥ and h ∈ im(�∗�). We now consider such an eigenvector h
associated with the eigenvalue c + d: in view of h ∈ V⊥ ∩ im(�∗�), we remark that
�∗

0h = �∗
0PV⊥h = 0 and that �∗

1h = �∗
1�

∗�h = �h. We deduce that �∗�∗
τh =

(1−τ)�∗�∗
0h+τ�∗�∗

1h = τ�∗�h = τh and in turn that (Id−�∗�∗
τ )h = (1−τ)h.

We are now ready to establish the main result of this subsection.

Proof of Theorem 14 Let τ ∈ [0, 1] be fixed throughout. As announced earlier, our
objective is to establish that, thanks to��∗ = IdRm , the condition cPV⊥ +d�∗� � Id
implies the condition

[

cPV⊥ | 0
0 | d IdRm

]

�
[

Id − �∗�∗
τ

�∗
τ

]

[

Id − �τ� | �τ

]

,

123



514 Constructive Approximation (2023) 57:489–520

or equivalently the condition

[

cPV⊥ | 0
0 | d�∗�

]

�
[

Id − �∗�∗
τ

�∗�∗
τ

]

[

Id − �τ� | �τ�
]

.

The equivalence of these conditions is seen as follows: The former implies the latter

by multiplying on the left by

[

Id | 0
0 | �∗

]

and on the right by

[

Id | 0
0 | �

]

, while the

latter implies the former under the assumption ��∗ = IdRm by multiplying on the

left by

[

Id | 0
0 | �

]

and on the right by

[

Id | 0
0 | �∗

]

. As a matter of fact, according to a

classical result about Schur complements, see, e.g., [3, Sect. A.5.5], the latter is further
equivalent to

⎡

⎣

Id | Id − �τ� | �τ�

Id − �∗�∗
τ | cPV⊥ | 0

�∗�∗
τ | 0 | d�∗�

⎤

⎦ � 0.

Thus, considering f , g, h ∈ H , our objective is to prove the nonnegativity of the inner
product

ip :=
〈

⎡

⎣

Id | Id − �τ� | �τ�

Id − �∗�∗
τ | cPV⊥ | 0

�∗�∗
τ | 0 | d�∗�

⎤

⎦

⎡

⎣

f
g
h

⎤

⎦ ,

⎡

⎣

f
g
h

⎤

⎦

〉

= 〈 f , f 〉 + c〈PV⊥g, g〉 + d〈�∗�h, h〉 + 2〈(Id − �∗�∗
τ ) f , g〉 + 2〈�∗�∗

τ f , h〉.

Let us decompose f , g, and h as f = f ′ + f ′′, g = g′ + g′′, and h = h′ + h′′,
where f ′, g′, and h′ belong to the space H ′ spanned by eigenvectors of cPV⊥ +d�∗�
corresponding to eigenvalues λ �= c + d and where f ′′, g′′, and h′′ belong to the
eigenspace H ′′ of cPV⊥ + d�∗� corresponding to the eigenvalue λ = c + d, i.e.,
H ′′ = V⊥ ∩ im(�∗�). We take notice of the fact that the spaces H ′ and H ′′ are
orthogonal. With this decomposition, the above inner product becomes

ip = ip′ + ip′′ + ip′′′,

where we have set

ip′ = 〈 f ′, f ′〉 + c〈PV⊥g′, g′〉 + d〈�∗�h,′ h′〉 + 2〈(Id − �∗�∗
τ ) f

′, g′〉
+ 2〈�∗�∗

τ f ′, h′〉,
ip′′ = 〈 f ′′, f ′′〉 + c〈PV⊥g′′, g′′〉 + d〈�∗�h′′, h′′〉 + 2〈(Id − �∗�∗

τ ) f
′′, g′′〉

+ 2〈�∗�∗
τ f ′′, h′′〉,

ip′′′ = 2〈 f ′, f ′′〉 + 2〈PV⊥g′, g′′〉 + 2〈�∗�h′, h′′〉
+ 2〈(Id − �∗�∗

τ ) f
′, g′′〉 + 2〈�∗�∗

τ f ′, h′′〉
+ 2〈(Id − �∗�∗

τ ) f
′′, g′〉 + 2〈�∗�∗

τ f ′′, h′〉.
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Wefirst remark that the terms in ip′′′ are all zero: first, it is clear that 〈 f ′, f ′′〉 = 0; then,
one has 〈PV⊥g′, g′′〉 = 〈g′, PV⊥g′′〉 = 〈g′, g′′〉 = 0 and 〈�∗�h′, h′′〉 = 0 is obtained
similarly; next, Lemma 15 ensures that 〈(Id − �∗�∗

τ ) f
′′, g′〉 = (1 − τ)〈 f ′′, g′〉 = 0

and 〈�∗�∗
τ f ′′, h′〉 = 0 is obtained similarly; last, writing f ′ = ∑

i fi where the
fi ∈ H ′ are orthogonal eigenvectors of cPV⊥ + d�∗� corresponding to eigenvalues
λi < c + d, we derive from Lemma 15 that

〈(Id − �∗�∗
τ ) f

′, g′′〉 =
∑

i

c

λi
〈PV⊥ fi , g

′′〉

=
∑

i

c

λi
〈 fi , PV⊥g′′〉 =

∑

i

c

λi
〈 fi , g′′〉 = 0,

and 〈�∗�∗
τ f ′, h′′〉 = 0 is obtained similarly. As a result, we have ip′′′ = 0.

We now turn to the quantity ip′. Exploiting Lemma 15 again, we write

ip′ = 〈 f ′, f ′〉 + c〈PV⊥g′, g′〉 + d〈�∗�h,′ h′〉 + 2

〈

∑

i

c

λi
PV⊥ fi , g

′
〉

+ 2

〈

∑

i

d

λi
�∗� fi , h

′
〉

= 〈 f ′, f ′〉 + c

(

〈PV⊥g′, PV⊥g′〉 + 2

〈

∑

i

1

λi
PV⊥ fi , PV⊥g′

〉)

+ d

(

〈�∗�h′,�∗�h′〉 + 2

〈

∑

i

1

λi
�∗� fi ,�

∗�h′
〉)

= 〈 f ′, f ′〉 + c

(∥

∥

∥

∥

PV⊥g′ +
∑

i

1

λi
PV⊥ fi

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∑

i

1

λi
PV⊥ fi

∥

∥

∥

∥

2)

+ d

(∥

∥

∥

∥

�∗�h′ +
∑

i

1

λi
�∗� fi

∥

∥

∥

∥

2

−
∥

∥

∥

∥

∑

i

1

λi
�∗� fi

∥

∥

∥

∥

2)

.

At this point, we can bound ip′ from below as

ip′ ≥ 〈 f ′, f ′〉 −
(

c

∥

∥

∥

∥

PV⊥
(
∑

i

1

λi
fi
)

∥

∥

∥

∥

2

+ d

∥

∥

∥

∥

�∗�
(
∑

i

1

λi
fi
)

∥

∥

∥

∥

2)

= 〈 f ′, f ′〉 −
〈

(

cPV⊥ + d�∗�
)(

∑

i

1

λi
fi
)

,
(
∑

i

1

λi
fi
)

〉

=
∑

i

‖ fi‖2 −
〈

∑

i

fi ,
∑

i

1

λi
fi

〉

=
∑

i

‖ fi‖2
(

1 − 1

λi

)

.

This shows that ip′ ≥ 0 since the condition cPV⊥ + d�∗� � Id ensures that λi ≥ 1
for every i .

123



516 Constructive Approximation (2023) 57:489–520

Finally, Lemma 15 also helps us to bound the quantity ip′′ from below according
to

ip′′ = ‖ f ′′‖2 + c‖g′′‖2 + d‖h′′‖2 + 2(1 − τ)〈 f ′′, g′′〉 + 2τ 〈 f ′′, h′′〉
= (1 − τ)

(‖ f ′′‖2 + 2〈 f ′′, g′′〉) + τ
(‖ f ′′‖2 + 2〈 f ′′, h′′〉) + c‖g′′‖2 + d‖h′′‖2

≥ −(1 − τ)‖g′′‖2 − τ‖h′′‖2 + c‖g′′‖2 + d‖h′′‖2.

This allows us to obtain ip′′ ≥ 0 since the condition cPV⊥ + d�∗� � Id ensures that
c ≥ 1 and d ≥ 1. Altogether, we have shown that ip = ip′ + ip′′ + ip′′′ ≥ 0, which
concludes the proof.

Remark The value of theminimal global worst-case error can, in general, be computed
by solving the semidefinite program (40) characterizing the lower bound lb. In the
case where ��∗ = IdRm , it can also be computed without resorting to semidefinite
programming. Precisely, if τ� denotes the (unique) τ between 1/2 and ε/(ε + η) such
that

λmin((1 − τ)PV⊥ + τ�∗�) = (1 − τ)2ε2 − τ 2η2

(1 − τ)ε2 − τη2
(47)

and if λ� denotes λmin((1− τ�)PV⊥ + τ��
∗�), then we claim that, for any τ ∈ [0, 1],

gwce(�τ )
2 = 1 − τ�

λ�

ε2 + τ�

λ�

η2.

Indeed, since we now know that the global worst-case error gwce(�τ ) equals its lower
bound lb independently of τ ∈ [0, 1] and since c� := (1− τ�)/λ� and d� := τ�/λ� are
feasible for the semidefinite program (40) characterizing lb, we obtain

gwce(�τ )
2 ≤ 1 − τ�

λ�

ε2 + τ�

λ�

η2. (48)

Moreover, going back to the proof of Theorem 8, we recognize that the choice of
τ� here corresponds to the instance y = 0 there. This instance comes with f� being
equal to zero and with h� being equal to a properly normalized eigenvector of (1 −
τ�)PV⊥ + τ��

∗� corresponding to the eigenvalue λ�. The identities (34) now read
‖PV⊥h�‖2 = ε2 and ‖�∗�h�‖2 = η2, i.e., ‖�h�‖2 = η2. Setting f = h� and
e = −�h�, which satisfy ‖PV⊥ f ‖ = ε and ‖e‖ = η, the very definition of the global
worst-case error yields
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gwce(�τ )
2 ≥ ‖ f − �τ(� f + e)‖2 = ‖h�‖2

= 1

λ�

〈(

(1 − τ�)PV⊥ + τ��
∗�

)

h�, h�

〉

= 1 − τ�

λ�

‖PV⊥h�‖2 + τ�

λ�

‖�∗�h�‖2

= 1 − τ�

λ�

ε2 + τ�

λ�

η2. (49)

Together, inequalities (48) and (49) justify our claim about the value of the global
worst-case error. In passing, it is worth noticing that the above argument reveals that
f = h� and e = −�h� are extremal in the defining expression for the global worst-
case error of the regularization map �τ independently of the parameter τ ∈ [0, 1].

Appendix

This additional section collects justifications for a few facts that were mentioned but
not explained in the main text. These facts are: the uniqueness of a Chebyshev center
for the model- and data-consistent set (see p. 1.3), the efficient computation of the
solution to (7) when ��∗ = IdRm (see p. 2.2), the form of Newton method when
solving Eq. (29) (see p. 8), and the reason why the constraint in (41) always implies
the constraint in (40) (see pp. 4.1 and 4.2).

Uniqueness of the Chebyshev Center

Let ̂f1, ̂f2 be two Chebyshev centers, i.e., minimizers of max{‖ f − g‖ : ‖PV⊥g‖ ≤
ε, ‖�g − y‖ ≤ η} and let μ be the value of the minimum. Consider g ∈ H such that
‖(̂f1 + ̂f2)/2− g‖ = max{‖(̂f1 + ̂f2)/2− g‖ : ‖PV⊥g‖ ≤ ε, ‖�g − y‖ ≤ η}. Then

μ ≤ ‖(̂f1 + ̂f2)/2 − g‖ ≤ 1

2
‖̂f1 − g‖ + 1

2
‖̂f2 − g‖

≤ 1

2
max{‖̂f1 − g‖ : ‖PV⊥g‖ ≤ ε, ‖�g − y‖ ≤ η}

+ 1

2
max{‖̂f2 − g‖ : ‖PV⊥g‖ ≤ ε, ‖�g − y‖ ≤ η}

= 1

2
μ + 1

2
μ = μ.

Thus, equality must hold all the way through. This implies that ̂f1 − g = ̂f2 − g, i.e.,
that ̂f1 = ̂f2, as expected.

Computation of the Regularized Solution

Let (v1, . . . , vn) be a basis for V and let u1, . . . , um denote the Riesz representers of
the observation functionals λ1, . . . , λm , which form an orthonormal basis for im(�∗)

123



518 Constructive Approximation (2023) 57:489–520

under the assumption that ��∗ = IdRm . With C ∈ R
m×n representing the cross-

Gramian with entries 〈ui , v j 〉 = λi (v j ), the solution to the regularization program (7)
is given, even when H is infinite dimensional, by

fτ = τ

m
∑

i=1

aiui +
n

∑

j=1

b jv j ,

where the coefficient vectors a ∈ R
m and b ∈ R

n are computed according to

b = (

C�C
)−1

C�y and a = y − Cb.

This is fairly easy to see for τ = 0 and it has been established in Foucart, Liao,
Shahrampour, and Wang [10, Theorem 2] for τ = 1, so the general result follows
from Proposition 3. Alternatively, it can be obtained by replicating the steps from the
proof of the case τ = 1 with minor changes.

NewtonMethod

Equation (29) takes the form F(τ ) = 0, where

F(τ ) = λmin((1 − τ)R + τ S) − (1 − τ)2ε2 − τ 2η2

(1 − τ)ε2 − τη2 + (1 − τ)τ (1 − 2τ)δ2
.

Newton method produces a sequence (τk)k≥0 converging to a solution using the recur-
sion

τk+1 = τk − F(τk)

F ′(τk)
, k ≥ 0. (50)

In order to apply this method, we need the ability to compute the derivative of F with
respect to τ . Setting λmin = λmin((1 − τ)R + τ S), this essentially reduces to the
computation of dλmin/dτ , which is performed via the argument below. Note that the
argument is not rigorous, as we take for granted the differentiability of the eigenvalue
λmin and of a normalized eigenvector h associated with it. However, nothing prevents
us from applying the scheme (50) using the expression for dλmin/dτ given in (51)
below and agree that a solution has been found if the output τK satisfies F(τK ) < ι

for some prescribed tolerance ι > 0. Now, the argument starts from the identities

((1 − τ)R + τ S)h = λminh and 〈h, h〉 = 1,

which we differentiate to obtain

(S − R)h + ((1 − τ)R + τ S)
dh

dτ
= dλmin

dτ
h + λmin

dh

dτ
and 2

〈

h,
dh

dτ

〉

= 0.
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By taking the inner product with h in the first identity and using the second identity,
we derive

〈(S − R)h, h〉 = dλmin

dτ
, i.e.,

dλmin

dτ
= ‖Sh‖2 − ‖Rh‖2.

According to Lemma 9, this expression can be transformed, after some work, into

dλmin

dτ
= 1 − 2τ

τ(1 − τ)

λmin(1 − λmin)

1 − 2λmin
. (51)

Relation Between Semidefinite Constraints

Suppose that the constraint in (41) holds for a regularization map �τ . In view of the
expressions

�τ = (

(1 − τ)PV⊥ + τ�∗�
)−1

(τ�∗) and

Id − �τ� = (

(1 − τ)PV⊥ + τ�∗�
)−1

((1 − τ)PV⊥),

this constraint also reads
[

cPV⊥ | 0
0 | d IdRm

]

�
[

(1 − τ)PV⊥
τ�

]

(

(1 − τ)PV⊥ + τ�∗�
)−2 [

(1 − τ)PV⊥ | τ�∗] .

Multiplying on the left by
[

PV⊥ | �∗] and on the right by

[

PV⊥
�

]

yields

cPV⊥ + d�∗�
� ((1 − τ)PV⊥ + τ�∗�)

(

(1 − τ)PV⊥ + τ�∗�
)−2

((1 − τ)PV⊥ + τ�∗�) = Id.

This is the constraint in (40).
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