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ABSTRACT: The rhodium(II)-catalyzed reaction of a model alkenyl-donor/acceptor N-sulfonyltriazole with a wide selection of furans is re-
ported. This investigation unearthed a range of structurally diverse carbocyclic and ring opened products, in good to excellent yields. The prod-
ucts obtained are proposed to arise selectively via cyclopropanation or zwitterionic rearrangement pathways, which are highly dependent on

both structural and electronic features of the furan substrate.

The use of vinylogous rhodium metallocarbenes as three-carbon
synthons is a proven strategy for the synthesis of complex carbon
ring systems via formal [4 + 3] and [3 + 2] cycloadditions."* An early
example of this type of reactivity is the rhodium-catalyzed reaction
of furans 1 with vinyldiazoacetates 2 to form [4+3] cycloadducts 3,
which often competes with furan ring opening to form 4 (Scheme
1). Inrecent years, considerable interest has been shown in accessing
the carbenes from N-sulfonyl-1,2,3-triazoles, which act as masked di-
azo functions, alleviating the need to isolate the decomposition-
prone alkenyl-diazo moiety.”"° Despite the high level of interest in
N-sulfonyltriazole derived metallocarbene chemistry,'""* few meth-
ods have been reported of their utilization in cycloaddition reactions
for the construction of carbocyclic systems.' One explanation for
this observation is that donor/acceptor metallocarbenes derived

Scheme 1. Reactions of vinylogous rhodium(II) carbenes with furans.
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from N-sulfonyltriazoles contain a nucleophilic sulfonyl imine,
which often becomes incorporated into the reaction to form hetero-
cycles. This is especially true for the reaction of N-sulfonyltriazoles
S§ with furans 1, which can generate products derived from sulfonyl
imine participation (e.g,, 6 and 7) as well as furan ring opening to
form the dienes 8.°> Therefore, a combination of competing reac-
tion modes, from both the N-sulfonyltriazole and furan has caused
the cycloaddition methodology for carbocycle construction to re-
main underdeveloped.** In order to build the utility of the reaction
between N-sulfonyltriazoles and furans to generate carbocyclic
products, we have conducted a systematic study to understand the
controlling influences for the variety of potential products that can
be formed.
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To address this issue, a study to understand the nuances of this
reaction was undertaken using 4-(cyclohexenyl)-N-(mesyl)-1H-
1,2,3-triazole (9) as a reaction probe (Scheme 2). Previous studies
have tended to focus on electron-rich furans, but it was anticipated
that carbocycle formation would be more likely to occur when elec-
tron-deficient furans were used. As a point of reference, the reaction
with 2-methylfuran (10) was examined and this resulted in the clean
formation of the ring-opened triene 11. This type of product is con-
sidered to be formed by attack at C2 of the furan to form a zwitteri-
onic intermediate, which then undergoes ring opening."

Scheme 2. Generation of a triene is preferred from 2-methylfuran.
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The next experiments examined electron-deficient furans. The
reaction with 3-bromofuran (12) resulted in an unexpected out-
come (Scheme 3). The reaction did not proceed smoothly, but the
major product was the dialdehyde 13, isolated in 28% yield. This
product is also proposed to be derived from the initially formed tri-
ene 14, which underwent a 67 electrocyclization to form 18, fol-
lowed by an elimination to form 16 and imine hydrolysis to form 13.

Scheme 3. Unexpected dialdehyde from 3-bromofuran.
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When the reaction was conducted with furans containing a strong
electron-withdrawing group (17a-c), the chemistry was quite differ-
ent (Scheme 4). In this case, the [4+3] cycloadducts 18a-c were
cleanly formed as single diastereomers in good yield. The [4+3] cy-
cloadducts are established products from the reactions of vinylcar-
benes with dienes and are considered to be generated by a cyclopro-

panation followed by a Cope rearrangement.””’

Scheme 4. Electron-poor furans prefer carbocycle formation.
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Having established a clear distinction between electron-rich and
electron-deficient furans, the study was then extended to fused furan
derivatives (Scheme ). In the case of electron-rich fused furans 19a
and 19b, trienes were the major product (20a,b). This would sug-
gest that the reactions are proceeding through zwitterionic interme-
diates

Scheme 5. Reaction with electron rich fused furans
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Extension of the chemistry to electron-deficient fused furans (i.e.
21) resulted in the [3+2] cycloaddition product 22 in 53% yield
(Scheme 6). Cyclopentene products related to 22, have previously
been accessed under rhodium catalysis from vinyl ethers with vi-
nyldiazoacetates as the carbene source.”®” The formation of 22,
from an electron-deficient furan may suggest a different mechanism
to the former, which involves partial zwitterion character, but ulti-
mately results in cyclopentene synthesis.

Scheme 6. Reaction with electron deficient fused furans
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The formation of several distinct products from the reaction of
the cyclohexyl iminocarbene with furans can be rationalized as
shown in Scheme 7. Cyclopropanations of donor/acceptor carbenes
like those of form 23 are considered to be a concerted, but highly
asynchronous process as illustrated with the hypothetical transition
states 24 and 25. Depending on the functionality on the furan ring,
the zwitterionic intermediates 25 and 26 can be preferentially
formed instead of the cyclopropane 28, leading to a variety of differ-
ent products. Even though in principle, the zwitterionic intermedi-
ates could be generated from ring-opening of an initially formed
furanocyclopropane, the preponderance of evidence suggests that
they are formed in competition to cyclopropanation.*® If electron-
donating groups are present on the furan rings, the zwitterionic in-
termediates are strongly preferred, as this sufficiently stabilizes the
build-up of positive charge on the furan ring. The asynchronous cy-
clopropanation can initiate at either the alpha or beta positions of the
furan, which is governed by steric and electronic effects. The alpha
position of the furan is generally preferred (24), because it is the po-
sition more prone to electrophilic attack, but when the furan is 2,5-
disubstited then attack at the beta position is favored (25).” The
side products could be derived from fully formed zwitterionic inter-
mediates 26 and 27 or from rhodium-bound zwitterionic structure,
analogous to 24 and 25.

Previous studies on the reaction of N-sulfonyltriazoles with furans
have tended to use either furan or alkylfurans as substrates, giving
products derived from zwitterionic intermediates. In the case of



furan or 2-alkylfurans, the zwitterionic intermediate 26 is favored,
and thus the ring-opened diene 29 is preferentially formed (Scheme
7). In the case of 2,5-disubstituted furans, the zwitterionic interme-
diate 27 is favored, which leads to the formation of the hemiaminal
30, which then ring-opens to the pyrrole 31.”° Previous studies have
also reported the formation of the formal aromatic substitution
products related to 32 or 33, which are likely formed by a proton
transfer reaction from 26 or 27.3"%

In the current study, furans with electron-withdrawing substitu-
ents have been used, which lead to other possible reaction outcomes,
because the zwitterionic intermediates are not highly favored. The
reaction with 3-carboethoxyfuran (17a) led to smooth formation of
the [4+3] cycloadduct 18a, by analogy to 34. The reaction is highly

diastereoselective because it proceeds by a cyclopropanation to form
28 followed by a Cope rearrangement, a well-established reaction
for vinyldiazoacetates and N-sulfonyltriazoles.”'® In the case of
furanocyclohexenone, the initial electrophilic attack occurs at the al-
pha position, leading to the formation of the [3+2] cycloadduct 35.
When the electron-withdrawing character of the furan is attenuated,
then the diene 29 is produced. The formation of three types of prod-
ucts, 29, 32 and 35, derived from zwitterioinic intermediates involv-
ing initial attack at C2 is indicative that these products may not be
derived from the fully formed zwitterionic intermediate 26. Instead,
the rhodium bound zwitterionic structure analogous to 24 may be
involved, especially in the formation of 35, which is observed in fu-
ran systems with electron-withdrawing groups that would not be
ideally suited to stabilize the positive charge in 26.

Scheme 7. Plausible mechanisms for the formation of the observed reaction product classes.
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One of the more unexpected outcomes of this study is the clean
formation of the [4+3] cycloadduct 18a from the reaction with 3-
carboethoxy furan (17a). From a steric and electronic perspective,
initial attack at the C2 position of the furan would have been ex-
pected, but this typically results in side products derived from the
zwitterionic intermediate such as the diene 29. Either the ester
group effectively limited charge build-up during the C2 attack, or C3
attack preferentially occurred. In order to study which process was
occurring, the experimental design took advantage of the fact that
initial C2- versus C3-attack would be expected to produce opposite
asymmetric induction - as illustrated in Scheme 8. This effect has
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been previously observed in the reactions of aryl- and vinyldiazoace-
tates with furans.’ Even though the chiral catalyst ensures only one
face of the carbene is susceptible to attack (Si face in the model illus-
trated here), either enantiomer of the cyclopropane, 36 or ent-36,
can be formed depending on the initial position of attack. The sub-
sequent Cope rearrangement of the cyclopropane generates a spe-
cific enantiomer of [4+3] cycloadduct, 37 or ent-37.

The most well-established chiral catalyst for enantioselective re-
actions of aryl N-sulfonyltriazoles is Rho(S-NTTL)4, which routinely
causes the Si face of the carbene to be preferentially attacked.'****
Therefore, the asymmetric induction generated in the reaction of



carboethoxyfuran 17a with N-sulfonyltriazole 9 using Rha(S-
NTTL),was examined. The Rho(S-NTTL)4-catalyzed reaction gen-
erated the [4+3] cycloadduct 37 in 59% yeld and 88% ee (Scheme
9). The absolute configuration of 37 was established by X-ray crys-
tallography. This result is consistent with a reaction occurring at the
Si face of the carbene with preferential attack occurring at the alpha
position of the furan. Therefore, in this case, the electron withdraw-
ing group on the furan disfavors the involvement of zwitterionic in-
termediates, leading to clean formation of the cyclopropane and sub-
sequent Cope rearrangement to form 37.

Scheme 8. Analysis of furan asymmetric induction.
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Scheme 9. Rhz(S-NTTL)4-induced asymmetric induction.
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In conclusion, this study substantially expands and bridges histor-
ical work in the area of rhodium(II) metallocarbene transformations
of furans, with the use of N-sulfonyl-1,2,3-triazole carbene precur-
sors. The results demonstrate that multiple types of products can be
formed, and the outcome is strongly dependent on the functionality
of the furan. The cyclopropanation step is concerted asynchronous
with a considerable build-up of zwitterionic character during the
course of these reactions. If the functionality present favors the zwit-
terionic structure, then the cyclopropanation can be interrupted and
side products can be formed. Different types of side product can be
generated depending on whether the asynchronous cyclopropana-
tion started at the alpha- or beta-position of the furan. These studies
demonstrate the controlling factors in the reactions of furans with N-
sulfonyltriazoles, which will enable the selection of appropriate sub-
strates for predictable transformations.
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