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Abstract

One major way that people engage in adaptive problem solving is by imitating others’ solutions. Prominent
simulation models have found imperfect imitation advantageous, but the interactions between copying amount and
other prevalent aspects of social learning strategies have been underexplored. Here, we explore the consequences
for a group when its members engage in strategies with different degrees of copying, solving search problems of
varying complexity, in different network topologies that affect the solutions visible to each member. Using a
computational model of collective problem solving, we demonstrate that the advantage of partial copying is robust
across these conditions, arising from its ability to maintain diversity. Partial copying delays convergence generally
but especially in globally connected networks, which are typically associated with diversity loss, allowing more
exploration of a problem space. We show that a moderate amount of diversity maintenance is optimal and strategies
can be adjusted to find that sweet spot.
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Significance Statement

Collaboration is a defining characteristic of human society, as is diversity of thought. We use an idealized
computational model of collaboration during collective problem solving to examine the effect that partial
copying has on the efficiency of a group to find solutions. Additionally, we examine how the effect of copying
is modulated by the structure of the network of collaboration and how collaboration influences the diversity of
solutions. Our finding that, under a broad range of conditions, collaboration preserves and perhaps even
produces diversity is counter-intuitive and has applications to empirical and theoretical study of collaboration,
collective intelligence, and evolutionary search. Particularly surprising is the result that highly-connected
networks preserve diversity when copying is partial; in prior modeling work, these global networks had been
linked to diversity loss. Crucially, we show that partial copying affects the diversity of solutions in the
population of learners and that regardless of how diversity is achieved, there is a sweet spot of diversity that
offers a population the optimal benefits of learning. As the complexity of a problem increases, the ideal level
of diversity also increases. This research supports future work studying more strategies to influence solution
diversity, but more broadly, informs how we as humans should approach collective problem solving—
collaborating with others with a wide diversity of perspectives, whose ideas may differ greatly from our own.

Introduction

There are two major ways that people engage in adaptive
problem solving: copying the solutions of others and trial-
and-error individual learning. Individual learners most often
search locally among similar solutions, retaining parts of their
solution that work well while exploring other options.
Making large changes is risky and could result in an under-
performing solution. However, although it can result in large
changes, fully copying known better-performing solutions
guarantees improving one’s standing. Perfect imitation is an
easy, quick way to improve solutions, mitigating some of the
risk and effort of individual learning. By approaching the
problem collectively, the group benefits from the search
efforts of every individual, exploring more of the problem
space than any one individual would be able to. The ad-
vantages of imitation are well-documented in both empirical
work (Derex and Boyd, 2016; Mason and Watts, 2012;
Mason et al., 2008; Wisdom et al., 2013; Wisdom and
Goldstone, 2011) and computer simulations (Barkoczi and
Galesic, 2016; Csaszar and Siggelkow, 2010; Fang et al.,
2010; Lazer and Friedman, 2007; Rendell et al., 2010; Posen
et al., 2013; Posen and Martignoni, 2018), but, especially in
empirical work, it is not always emphasized when subjects’
imitation is perfect or imperfect; full or partial.

Within empirical work, imperfect imitation is often
present even when it is not the focus of the study or a pa-
rameter under direct manipulation (Derex and Boyd, 2016;
Mason et al., 2008; Wisdom and Goldstone, 2011; Wisdom
etal., 2013). Some of these studies have shown that imitation
facilitates productive innovation (Derex and Boyd, 2016;
Wisdom and Goldstone, 2011). This result seems counter-
intuitive; when many in the population are copying each
other, one would assume solution diversity would quickly

decline. One reason that diversity is instead preserved and
promoted is that humans are not perfect imitators. We copy
erroneously (Caldwell et al., 2016), adapt information from
others (Derex et al., 2015), and we do not copy completely
(Posen and Martignoni, 2018)—through partial, imperfect
copying, we collectively innovate. Despite these findings,
only a few prominent simulations have directly manipulated
copying amount. These studies found that partial copying can
outperform full copying (Posen et al., 2013; Posen and
Martignoni, 2018) and found what amount of copying im-
parts the greatest benefit under different conditions (Csaszar
and Siggelkow, 2010).

The ability to maintain diversity of solutions across the
group over time is a common explanatory measure for the
performance of social learning strategies (Derex and Boyd,
2016; Fang et al., 2010; Gomez and Lazer, 2019; Lazer and
Friedman, 2007; Mason and Watts, 2012; Posen et al., 2013).
Is the population focusing and settling on just a few good
solutions, or are they spread out over the solution space,
searching for better solutions? Diversity maintenance has
been shown to be closely correlated to group fitness in genetic
algorithms (Burke et al., 2004), but the ways in which dif-
ferent components of social learning strategies affect di-
versity is an active area of study.

One of the key ways to indirectly manipulate diversity and
improve performance is by embedding learners in a network
that determines with whom they may collaborate. Several
empirical studies have found that when people interact in
groups with access to only a few others’ solutions, they
outperform groups in which anyone can exchange solutions
with anyone else (Derex and Boyd, 2016; Wisdom et al.,
2013), a result that has been replicated via simulation (Derex
and Boyd, 2016; Fang et al., 2010; Lazer and Friedman,
2007, Nahum et al, 2015). In groups with global
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communication, where anyone can collaborate with anyone
else in the group, information about good solutions spreads
quickly, but this efficiency tends to cause the group to
bandwagon (Goldstone et al., 2013), where individuals adopt
the best solution found so far and abandon search for more
optimal solutions. Limiting communication slows down
information flow and, consequently, diversity loss (Derex and
Boyd, 2016; Fang et al., 2010; Lazer and Friedman, 2007;
Mason et al., 2008; Nahum et al., 2015), and can prevent the
group from converging on a sub-optimal solution.

Additionally, the complexity and size of the search space
affects the performance of globally and locally connected
networks (Barkoczi et al., 2016; Goldstone et al., 2013).
Although the interactions between task difficulty and net-
work topology have been thoroughly studied (Barkoczi and
Galesic, 2016; Fang et al., 2010; Goldstone et al., 2013;
Lazer and Friedman, 2007; Mason et al., 2008; Nahum
et al., 2015), these studies did not examine the effects that
the amount of copying had in their results.

In the current work, we seek to address the following
outstanding questions. First, how does partial copying interact
with task difficulty and network topology to affect a group’s
performance and diversity maintenance? To fully characterize
the behavior of each condition and the interactions between
strategy elements, we study the learning choice dynamics and
the diversity over time for each combination of copying
condition and network topology across task difficulty. Second,
we seek to better understand the relationship between diversity
and performance. To do so, we define a metric that captures the
overall diversity maintenance of a condition.

In what follows, we first show that partial copying is more
successful than full copying regardless of network topology
and that this advantage increases with problem difficulty. To
understand why this is the case, we then consider the dynamics
of the learning process over time and find that partial copying
prolongs learning of both types (individual and social),
maintains more diversity for longer, and modifies the effect of
network topology on the timing and speed of convergence. In
our last set of experiments, we analyze the diversity of various
strategies and find that the success of a strategy depends, in
large part, on how much diversity it is able to maintain
overall—a moderate amount of diversity imparts the best
performance. Further, we show that as problems become more
difficult, successful strategies maintain more diversity. Finally,
given our analysis of how strategy elements interact to affect
diversity, we suggest how strategies may be adjusted to find
optimal diversity and thus, performance.

Methods

Problem space

Following previous work (Barkoczi and Galesic, 2016;
Csaszar and Siggelkow, 2010; Fang et al., 2010; Lazer and

Friedman, 2007), we model social learning using a group of
100 agents exploring a problem space, searching for ways to
improve their solutions and, in turn, group-level performance.
We calculate the group performance at any given time step as
the average score of the population’s solutions at that time step.
To create a problem space for the population to explore, we use
the NK model (Kauffman and Levin, 1987; Kauffman and
Weinberger, 1989), a tunably rugged landscape determined by
the number of components () that make up solutions and the
number of epistatic interactions between those components
(K). We represent the solutions in the environment as bit
strings of length N = 15 (for a total of 2'° possible solutions).
These bit strings are the solutions which agents seek to im-
prove and each permutation of N bits has an assigned score
determined by the NK function. When K = 0, each individual
bit independently determines a contribution to the solution’s
overall score: S | N;. The score contributions N are chosen
randomly from a uniform distribution over [0, 1). This is the
simplest problem space because it contains a single optimum
and the closer a solution is to this optimum the better its score
is. When K > 0, the contribution of a specific bit also depends
on the values of the K following bits. For bits at the end of the
bit string, we wrap around to the beginning to continue as-
signing the “following” bits they are interdependent with. Each
configuration of a group of interdependent bits has an asso-
ciated score contribution, again randomly assigned, and the
total score is the sum of the contributions from each group of
bits: Z;\LJ(M|Ni,M+1,...,M+k). See Supplemental Figure 1
for an example of score calculation. As K increases, the
problem space becomes more complex and there can be many
local optima obscuring the single global optimum. When X is
at its highest possible value (K = N — 1), the problem space is
effectively random. In this way, the parameter K determines
the “ruggedness” of the problem space, and we vary K sys-
tematically between 0 and its highest value, N — 1 = 14.

We normalize scores to run between 0 and 1, with 0
corresponding to the worst possible solution and 1 corre-
sponding to the best solution as determined by an ex-
haustive search of the landscape. Following previous work
(Barkoczi and Galesic, 2016; Lazer and Friedman, 2007),
we elevate the scores to the power of 8. In NK landscapes,
there may be many solutions with scores near 1, making it
hard to distinguish between global and local optima. Ele-
vating the scores to the power of eight accentuates per-
formance differences among solutions in the upper range of
payoffs. Finally, due to the variability of different instan-
tiations of each problem space, each condition that we report
on in this paper was tested using the same set of 1000
randomly generated problem spaces.

Social and individual learning

To navigate these problem spaces, agents engage in social
and individual learning. For each problem, the group starts
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with initially random solutions and associated scores. At
each time step of the simulation, individuals observe the
solution and score of one randomly chosen neighbor from
their network of collaborators as determined by the network
topology. If the neighbor has a better-scoring solution than
the individual, the individual copies some number of bits
from the neighbor’s solution, depending on the copying
condition. If the alternative solution is not better scoring, the
individual attempts to learn on its own by “flipping” one
random bit in its own solution. It keeps the change only if it
improves the score of its solution, abandoning it otherwise
and not learning that trial. Derex et al. (2015) found that
compared to individuals who had access to others’ solutions
and scores, individual learners with no access to social
information made more conservative changes to their so-
lutions, as they did not know how to improve. When one
can see another’s solution and score, they know whether
that solution outperforms their own and may feel more
confident copying more of the solution. This asymmetry
between asocial and social learning is reflected in our
learning strategies—individual learners may only modify
one bit, while social learners may modify more than one bit.

This social learning strategy is similar to the one used by
Barkoczi and Galesic (2016), except we manipulate the
number of bits that are copied when agents attempt social
learning. In most previous studies, when an individual was
copying from a better-performing neighbor, they adopted
100% of that neighbor’s solution. We also consider cases
where the individual adopts the better individual’s solution
only partially. In the first set of experiments, we compare
partial copying, where the individual copies each bit from
their better neighbor’s solution with a 50% probability, to
full copying, where they copy 100% of the solution. We
then systematically explore the amount of copying across
the full range, from 1 to 15 bits. In a follow-up experiment,
we examine a condition where we again vary the number of
bits copied from 1 to 15, but the rest of the bits that are not
copied are set to a random bit value.

Communication network

We connect individuals through a communication network that
determines who can copy from whom. In addition to manipu-
lating the problem complexity and the amount of copying, we
follow others in manipulating the structure of this collaboration
network (Derex and Boyd, 2016; Fang et al., 2010; Lazer and
Friedman, 2007; Mason et al., 2008; Mason and Watts, 2012).
Manipulating the network of collaborations effectively alters the
efficiency of information spread in that group. In this paper, we
focus our in-depth analysis on the two extremes of efficiency:
global groups, in which every member is connected to every
other member in the group (i.e., highest efficiency of information
spread), and local groups, in which individuals are geographi-
cally distributed on a 1D ring and each individual only has access

to solutions from their two immediate neighbors (i.e., lowest
efficiency of information spread). However, because networks of
collaboration in the real world are likely to fall somewhere in
between these two extremes (Watts and Strogatz, 1998), we
examine the consistency of our results in three other more re-
alistic network topology conditions. First, we examine group
performance across the full spectrum of local to global con-
nectivity from individuals being connected to two adjacent
agents in the local case, to 99 in the global case (Supplemental
Figure 2).

Second, we examine group performance across networks
where we systematically vary the in-degree and out-degree of
communication between communities. We first randomly di-
vide the population of 100 individuals into five communities (¢
= 5) of 20 individuals each. We follow Girvan and Newman
(2002) in connecting vertex pairs with probability P; for vertices
belonging to the same community and probability P, for ver-
tices belonging to different communities. Once P; is defined, the
remaining probability is split between the rest of the commu-
nities in the group, P, = (1 — P;)/(c — 1). To achieve a random
network in which individuals are as likely to be connected to
others in their community as those outside their community, we
set P,=P,= 1/c=02. When P; =1, P, = 0, and the com-
munities are completely isolated from each other. We omit this
condition as it is not easily compared to our other networks,
which are all connected graphs of 100 nodes. We focus on four
networks where P; = 0.2, 0.8, 0.95, and 0.9875, representing a
spectrum from a random network to a highly clustered network.

Lastly, we verify our conclusions further on two networks
with scale-free and small-world properties (Supplemental
Figure 4). The results from all of these varied network
structures fall within the extremes of the local and global
cases, on which we focus the majority of our analysis.

Results

Partial copying is advantageous across task difficulty,
regardless of network topology

Prior studies have found that network topology affects group
performance, demonstrating that groups in local networks
outperform those in global networks (Derex and Boyd, 2016;
Fang et al., 2010; Lazer and Friedman, 2007; Nahum et al.,
2015), particularly in difficult problem spaces (Barkoczi
et al., 2016; Goldstone et al., 2013; Mason et al., 2008),
but these studies only considered full copying. It is unclear if
the topology effects would remain across different copying
conditions. To uncover the possible interactions between
copying amount, network topology, and task difficulty, we
study the final group performance for four conditions across
two dimensions of interest: amount of copying (full or partial)
and connectivity of the group (global or local) (Figure 1). We
calculate the final group performance as the average score of
all solutions in the group after 2500 learning trials. For the


https://journals.sagepub.com/doi/suppl/10.1177/26339137221081849
https://journals.sagepub.com/doi/suppl/10.1177/26339137221081849
https://journals.sagepub.com/doi/suppl/10.1177/26339137221081849
https://journals.sagepub.com/doi/suppl/10.1177/26339137221081849

Campbell et al.

1.01 @&

0.9
I+ Te
5 N )
£ 0.8 ’.\\.
5 ]
5
o 0.7
o
3
206
5 0.
2 —e— Full/Global
& 057 Full/Local

-@- Partial/Global
0.41 -e- Ppartial/Local

T T T T T T T T

0 2 4 6 8 10 12 14
Problem difficulty (K)

Figure 1. Final group performance across problem difficulty
while varying groups across four combinations on two
dimensions: topology (local or global) and copying (full or partial).
Each point represents performance of the group of 100 individuals
after 2500 learning steps, averaged over 1000 repetitions.
Dashed lines represent partial copying conditions; solid lines
represent full copying conditions. Shaded area represents standard
error around the mean. Partial copying results in better group
performance than full copying across group connectedness
conditions and task difficulties. Although local outperforms global
consistently in the full copy conditions, the effect of topology is
not as pronounced in the partial copying condition. Also, the
dominant topology depends on task difficulty.

easiest problem difficulty, K = 0, all conditions reach the
global optimum. As K increases, all conditions suffer worse
performance, but the partial copying conditions consistently
outperform full copying. This advantage only increases as the
problem spaces become progressively more rugged. Con-
sistent with a prior study (Posen et al., 2013), we find that
imperfect imitation improves performance outcomes. Ad-
ditionally, we demonstrate that this result is robust to changes
in task difficulty and network topology.

When copying is full, our results are consistent with previous
findings that local groups consistently outperform global groups
across task difficulty (Barkoczi et al., 2016; Derex and Boyd,
2016; Fang et al., 2010; Goldstone et al., 2013; Lazer and
Friedman, 2007; Mason et al., 2008; Nahum et al., 2015).
However, we also find that which of these topologies performs
best depends on the problem difficulty. When copying is
partial, the effect of network topology is significantly smaller
and more complicated, interacting with problem difficulty.
The advantage of local groups largely disappears in spaces of
moderate difficulty (K between 4 and 7), while global groups
have an advantage in the most difficult and random problem
spaces (K > 10). As we systematically vary the group
connectivity from local to global (see Supplemental Figure
2), in these most difficult problem spaces, the performance of
partial copying increases gradually with connectivity. When
copying is full, the advantage of local groups is lost when
only a few more neighbor connections are added. The in-
sights gained from this simulation experiment are also
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Figure 2. Final group performance across problem difficulty
while varying groups across eight combinations on two
dimensions: amount of clustering as determined by in-group
probability (ranging from a random graph to a highly clustered
graph) and copying (full or partial). We maintain a fixed number
(c = 5) of equally-sized communities and vary the in-group
probability from 0.2, which is a graph with no communities, to
0.9875, which is a highly clustered graph. Each point represents
performance of the group of 100 individuals after 2500 learning
steps, averaged over 1000 repetitions. Dashed lines represent
partial copying conditions; solid lines represent full copying
conditions. Shaded area represents standard error around the
mean. Above the plot is an example of an adjacency matrix and
network visualization for each clustering condition. As the in-
group probability increases, connections within communities
visually become more dense while connections between
communities become more sparse. The results from Figure |
are validated in these more realistic network topologies. Namely,
the advantage of partial over full copying is robust regardless of the
community structure.

consistent across different population sizes and problem
dimensionalities (see Supplemental Figure 3).

The advantage of partial copying is robust across
more redlistic network types

Because more realistic networks of communication are
likely to fall somewhere in between local and global net-
works, we now compare partial copying to full copying
across networks with varying degrees of clustering in
distinct communities (Figure 2). Community structure is a
common property in real-world networks, and describes
networks where there are many connections within mem-
bers of a community and few connections between
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communities. The results for these networks are consistent
with our findings from the local and global topologies. In
what follows, we highlight the main insights from these
additional experiments.

First, across all copying conditions and all community
topology conditions, we observe that groups perform best in
easier problems (low Ks), and the performance drops
gradually as problem difficulty (K) increases. Second, the
partial copying conditions consistently outperform the full
copying conditions. Third, the advantage of partial copying
increases with problem difficulty. All three of these obser-
vations are consistent with the insights gained from the local
and global topology experiments from the previous section.

Additionally, from the previous experiment we learned
that, in the full copying condition, the local networks out-
perform the global networks. The results from the community
networks are consistent with this insight as well: the more
isolated communities outperform the more interconnected
communities. We also had observed that in the partial
copying condition for difficult tasks, the pattern is reversed:
the global networks outperform the local ones. This again is
replicated in the community structure experiments. The
networks with more interconnected communities outperform
the networks with more isolated communities for difficult
problems in the partial copying condition.

The advantage of partial copying is again seen when we
compare the performance of full and partial copying for
network structures with scale-free and small-world prop-
erties (Supplemental Figure 4). Partial copying results in the
highest performance for both network types. Importantly,
the results from all of these additional more realistic net-
work topologies fall within the extremes shown by the local
and global networks in Figure 1. For this reason, we focus
the remainder of our in-depth analysis on just those two
extreme conditions.

A clear tortoise—hare social learning pattern for full
copying; a more complicated pattern for partial
copying

A common pitfall for social learning strategies is premature
convergence upon local optima. A strategy may lead a
group to improve rapidly at first, only to get stuck on a sub-
optimal peak and be unable to improve for the rest of the
duration of the search. Does partial copying succeed over
full copying because it is able to avoid this and keep im-
proving longer before converging? To answer this, we plot
the average score of solutions over time for each group for
one intermediate problem difficulty, K = 6 (Figure 3). In line
with our hypothesis, the two partial copying groups con-
verge much later and more gradually than the full copying
groups, for which convergence happens abruptly. When
copying a solution on a local peak, a full copy is guaranteed
to trap the copier on that same peak, while a partial copy can
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Figure 3. Group performance over time. Each trace represents
group performance over time, averaged over 1000 repetitions,
for all combinations of full or partial copying, and global or local
topology conditions. Shaded area is within perceptible thickness
and represents standard error around the mean. Time shown
on a log scale because most of the learning occurs in the initial
period. For simplicity, we only visualize an intermediate problem
difficulty (K = 6). Full copying shows the expected tortoise-hare
social learning pattern: global topologies improve fast but get
stuck early, while local topologies improve slower but also delay
getting stuck, and thereby outperform the global condition. The
pattern for partial copying is not as simple as the classic tortoise-
hare: the local group in this case starts improving faster than the
global, but the global changes from slower to faster
improvement dynamically during search.

put the copier in a new area of the problem space instead,
allowing for further exploration of solutions and delaying
convergence.

Groups with the same network topology share charac-
teristics in their patterns of improvement, despite differ-
ences in convergence due to copying amount. In the full
copying condition, our results reflect the tortoise-hare
pattern typical of local and global groups adapting in
rugged fitness spaces (Nahum et al., 2015). In reference to
the fable of the tortoise and the hare, the local group
(tortoise) improves slowly but steadily, eventually over-
taking the global group (hare), which improves rapidly
initially but stops short on a sub-optimal solution. In fact,
both local groups are characterized by steady improvement,
due to the inefficiency of local networks, although the
partial copying group improves more slowly. In contrast, the
global groups’ patterns are both marked by a period of rapid,
significant improvement, but the timing of this spike is
delayed for the partial copying group. For local and global
groups, partial copying suppresses or delays improvement
compared to full copying in the same topology. Because of
this, when copying is partial, the local group is faster ini-
tially (opposite to the full copy case). It gets overtaken once
the global group picks up speed, but eventually improves
past the global group. Delayed or suppressed copying rates
could explain the slower initial improvement among partial
copiers, and prolonged learning generally could explain
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why they improve past full copiers in the end. To test our
idea, we consider the dynamics of the learning choices in the
population over time.

Partial copiers take more opportunities to learn than
full copiers and spend the initial transient exploring
the problem space

To explain why partial copying outperforms full copying,
regardless of network topology, we examine the learning
choices in the populations over time. Recall that agents
have three options on each learning trial: they copy if a
randomly chosen neighbor has a better solution than they
do, attempt individual learning if not, and abandon indi-
vidual learning if it does not generate a better solution than
what they had originally. In the context of the explore-
exploit trade-off, individual learning is more exploratory
while copying others is exploitation of their good solu-
tions. In Figure 4, we examine the proportion of the
population that is copying (Figure 4(a)) and learning
(Figure 4(b)) at each time step. The full copying groups
cease both types of learning sooner than the partial copying
groups, which take more opportunities to improve their
solutions, corresponding to continued improvement late in
the simulation.

Partial copying increases the proportion that is copying
later in the simulation and modifies the timing and extent
of peak copying (Figure 4(a)). In global networks, com-
pared to the full copying condition which has an early,
significant peak in copying, the partial condition reaches a
lower peak much later. In local networks, compared to the
full copying condition which has an early but small peak,
the partial condition reaches a higher proportion of
copying only slightly later. In both of these cases, partial
copying delays the peak of copying, regardless of the
network topology, although the delay is more significant
for global groups. The effect of partial copying on the
height of the copying peak is modified by network to-
pology, however. Partial copying reduces the height of
peak copying in global networks but increases it in local
networks.

Additionally, the partial copying groups have higher
proportions of individual learning throughout the simulation
(Figure 4(b)). The full copying conditions start at a lower
proportion of learning and decrease steadily. Both partial
copying conditions start at a higher proportion and decrease
more slowly, especially in the global condition, which loses
learners the slowest initially. However, the proportion
learning in global/partial plummets suddenly around the
same time that copying peaks in this condition. Only partial/
global shows this distinct learning pattern. The reason for
this and for the delayed peaks in copying proportion im-
parted by partial copying have to do with the solution di-
versity in the group, which we consider next.
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Figure 4. Learning choice dynamics (K = 6). (a) Proportion of
individuals in the population that copied a neighbor. Note that in
the partial conditions, it is not guaranteed that copying will
improve an individual’s score. (b) Proportion of individuals in the
population that learned individually. Each trace represents
group performance over time, averaged over 1000 repetitions,
for all combinations of full or partial copying, and global or local
topology conditions. The uncertainty is within the perceivable
thickness. The proportions in the figures do not sum to |; aside
from copying or individually learning, individuals could also
abandon learning that trial if neither copying nor individual
learning resulted in an improvement. The learning choices of the
group offer insight into their rates of improvement over time,
leading to their eventual final performance.

How much individuals copy has a larger effect on
diversity than network topology

The performance of many social learning strategies can be at
least partly explained by their ability to maintain solution
diversity, as this prevents premature convergence on sub-
optimal peaks (Derex and Boyd, 2016; Fang et al., 2010;
Lazer and Friedman, 2007; Mason et al., 2008; Nahum
et al., 2015). Strategies that keep the population spread out
over many solutions allow for greater search of the problem
space, increasing the likelihood of finding strong solutions
before convergence. Because partial copiers spend the
initial transient exploring solutions, we expect the diversity
maintenance of the partial copying strategies to be high.
This is supported by Figure 5, which shows the diversity,
measured as the proportion of unique solutions in the group,
over time for each condition (see Supplemental Figure 5 for
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Figure 5. Diversity over time (K = 6). Each trace represents the
proportion of unique solutions in the population over time,
averaged over 1000 repetitions, for full and partial, global and local
conditions. The uncertainty is within the perceivable thickness. The
partial conditions maintain more population diversity than the full
copying conditions overall, regardless of the network topology.

results using Hamming distance to measure diversity).
Partial copying groups maintain higher levels of diversity
than full copying groups, regardless of their network to-
pology. Consequently, they explore more of the problem
space and increase the chance of finding rare, high-scoring
solutions to exploit. The ability of partial copying to
maintain diversity is also what delays group copying
(Figure 4(a)); when diversity is high, average performance
is low, and few are lucky enough to have a better neighbor to
copy from until diversity wanes.

The partial copying conditions lose diversity the slowest
initially, regardless of network topology, because of the two-
way interaction between partial copying and diversity. Partial
copying is risky because it does not guarantee improvement.
Especially combining two dissimilar solutions carries acute
risk (Csaszar and Siggelkow, 2010) but can produce a so-
lution in an entirely new part of the problem space, increasing
solution diversity. It is more likely that any two solutions will
be dissimilar when diversity is high, as at the beginning of the
simulation. In this way, diversity and partial copying influ-
ence each other; partial copying generates more solution
diversity when diversity is higher, which in turn keeps di-
versity high. The inverse is also true: as the population ex-
ploits solutions and diversity naturally diminishes, partial
copying aids convergence, and learning declines. The so-
lutions being combined are more similar when diversity is
low, so partial copying makes limited changes; the new
solution will not be far from the better solution that was
copied from. This is an idea first discussed conceptually by
Goldstone et al. (2013). This hypothesis is supported by the
accelerating rate of diversity loss in the partial groups in both
network topologies as the simulation progresses. Diversity
loss slows again at the end as individuals gradually move
from clustering around local optima to converging on the best
solution found so far by the population.

How much individuals copy modifies effect on
diversity: global networks lose diversity when copying
is full, but maintain it when copying is partial

It is significant that partial/global maintains the most di-
versity of the conditions in the initial transient, although it
eventually falls below partial/local at the end of the sim-
ulation (Figure 5). In previous works, global networks were
associated with diversity /oss (Derex and Boyd, 2016; Fang
et al., 2010; Lazer and Friedman, 2007; Mason et al., 2008;
Nahum et al., 2015), as we see in the full/global condition.
Why does partial copying cause global networks to hold on
to diversity even more than the local networks initially?

As we have discussed, partial copying is diversifying
when solution diversity is high, and conforming when it is
low. The network structure adds another explanatory layer
to this theory. In local networks, diversity decreases
gradually; individuals repeatedly copy from the same few
others, and solutions in a local area start to resemble each
other. However, reaching conformity throughout the social
network takes time due to local networks’ inefficiency of
information spread. This is why partial/local is the slowest
and last condition to converge, retaining more diversity than
partial/global at the very end of the simulation.

The situation is different in global networks. When copying
is partial, global groups maintain more solution diversity than
local groups. Because an individual can copy from any other
individual, the solutions produced via partial copying in a
global network are more diverse than in a local network, where
similar solutions are more often combined. This is surprising;
many theories (Derex and Boyd, 2016; Fang et al., 2010; Lazer
and Friedman, 2007; Mason et al., 2008; Nahum et al., 2015)
would suggest that global networks produce less diversity,
because all solutions end up emulating the best solution in the
group. Although partial copying suppresses this tendency
initially, once diversity decreases, partial copying becomes
more effective in propagating good solutions and the group
benefits from the efficiency of its global network, converging
faster than partial/local.

Recombining solutions results in good, robust
performance across copying amount, but is
outperformed by copying with noise for higher
copying amounts

Where most simulation studies have modeled copying as
taking 100% of a neighbor’s solution (Barkoczi and Galesic,
2016; Fang et al., 2010; Lazer and Friedman, 2007; Rendell
et al., 2010), humans are likely to vary how much they copy,
effectively recombining two partial solutions (Derex et al.,
2015; Posen and Martignoni, 2018). One prior study inves-
tigated how much individuals should copy to maximize
performance, but did not manipulate network topology
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Figure 6. Comparing performance of recombining solutions
(standard partial copying) and copying with noise (K = 6). Each
point represents final group performance after 2500 learning
steps, averaged over 1000 repetitions, for local and global
conditions, and for copying conditions where individuals copy a
number of bits from | to |5 and, in the noise condition only,
replace the rest of the solution with random bits. Dashed lines
denote recombination while solid lines with stars denote
copying with noise. Shaded area represents standard error
around the mean and is within perceivable thickness.
Recombination gives the best performance for low copying
amounts; copying with noise gives the best performance for
moderate to high copying amounts.

(Csaszar and Siggelkow, 2010). We have demonstrated that
strategies where individuals copy 50% of a neighbor’s solution
outperform strategies where the individual is forced to copy
entire solutions, but how much copying is best for a group and
how does this optimal amount change with network con-
nectivity? Further, we suggest that the success of partial
copying is due to recombination of useful parts of two so-
lutions. However, could it simply be due to the noise added by
recombining solutions? To answer these questions, we sys-
tematically vary the number of bits that an individual copies for
local and global groups and compare two copying conditions:
recombining solutions and copying with noise (Figure 6).
What we have been calling partial copying amounts to re-
combining part of a better solution with one’s own solution.
Here we compare this original strategy of recombining so-
lutions with one where individuals copy with noise—they
combine part of a better solution with random bits.

To find what amount of copying imparts the greatest
benefit, we consider only the recombination condition. In the
global groups, copying a single bit imparts the greatest
benefit and each additional bit copied leads to a slight de-
crease in performance. Copying a single bit introduces a
mixture of good existing solutions, but as more bits are
copied, there is a destruction of combinations of bits that
previously worked well. In the local groups, there is a similar
effect, except that copying a few more bits is useful. This is
because of the high similarity of solutions in the local region
of the social network; recombining solutions does not cause
as much disruption as in the global condition.

However, does the improved performance come from
recombination or simply from added noise? To answer this
question, we compare the performance during recombination
and during copying with noise. Recombining solutions has
more consistent performance across copying amount than
copying with noise, which performs poorly at low copying
amounts. When only a few bits are copied (1—4 in the global
case; 1-7 in the local case), recombination is the best strategy
because the solutions produced in the noise condition are too
random. This is the first example of a case where too much
diversity can hurt performance. However, when more bits are
copied from the better neighbor (5-13 in the global case; 8—
15 in the local case), discarding the current solution for
random bits is the better strategy.

It is also interesting to note that network topology has a
noticeable effect on the role of recombination in relation to
mere added noise. In local groups, recombination outper-
forms noise for a broader range of bits copied than in global
groups. This suggests that recombination plays a more
important role in local groups than it does in global groups.
The point at which adding noise becomes optimal is at fewer
bits for global (5 bits) than for local (8 bits). The perfor-
mance of recombining solutions is stable in this range, but
the performance of copying with noise in the global con-
dition increases much more steeply with each additional bit
copied than in the local condition.

Copying fewer bits and copying with noise both
generate diversity

We have begun to see that diversity may be a key ex-
planatory component of the performance of different
strategies. Before fully investigating the relationship be-
tween diversity and performance, we first examine how
our conditions interact to affect diversity. Figure 7 shows
how the network structure, amount of copying, and
copying strategy (i.e., recombining solutions or adding
noise) influence the average diversity of the population.
We calculate the average diversity for each condition as a
negative log weighted average of the diversity across all
time steps, so that measures in the initial transient have
more impact on the average (see Supplemental Note 1).
The results reveal two main patterns. First, diversity de-
creases monotonically with increasing copying amount.
Second, noise is associated with higher diversity in gen-
eral, which was expected since copying with noise gen-
erates highly diverse solutions.

An intermediary level of diversity maintenance
produces the best group performance

Although diversity maintenance is instrumental in the success
of partial copying, we found that performance suffers when
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Figure 7. Average diversity associated with number of bits
copied (K = 6). Each point represents the negative log weighted
average of the diversity over time, averaged over 1000
repetitions, for global and local, recombination and noise
conditions. The uncertainty is within the perceivable thickness.
Copying fewer bits and copying with noise are both associated
with high diversity, while copying more fully decreases diversity.

there is too much diversity, as when solutions are combined
with noise. Conversely, in Figure 5, the full copying conditions
lost diversity immediately and also had worse performance.
There seems to be a correlation between performance and
diversity, but how exactly are they related? To study this
relationship, we plot the average diversity for local and global,
recombination and copying with noise conditions, through the
full range of copying 1-15 bits, against each condition’s final
performance (Figure 8) (see Supplemental Figure 6 for
Hamming distance results). Thus, average diversity is not
independently manipulated, but rather varies as a function of
the number of bits copied. The most striking result is that all
conditions show an inverted U-shape. A moderate amount of
diversity is most correlated with high performance. Too little
diversity typically indicates that the population converged on a
sub-optimal solution. Full copying tends to create this situation
and, indeed, the under-performing, low-diversity points to the
left capture conditions where copying is relatively full. Con-
trarily, too much diversity indicates that good solutions were
never propagated or exploited, a problem the noise conditions
face. In general, we conclude that the average diversity of a
population is a good predictor of their collective performance,
and this relationship still holds for other values of K. As K
increases, the curve shifts to the right (see Supplemental Figure
7), suggesting that more diversity is needed to succeed in more
complex problems. We investigate this claim further in the next
section.

More difficult problems necessitate greater
diversity maintenance
We test our hypothesis from the last section by investigating

if the diversity associated with the best performance in-
creases with task difficulty (see Supplemental Figure 8 for
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Figure 8. Final performance associated with differing amounts of
diversity (K = 6). Each point represents the final performance
and diversity associated with a certain number of bits copied,
averaged over 1000 repetitions, for global and local,
recombination and noise conditions. Point size represents
copying amount such that larger points denote more bits copied
and smaller points denote fewer bits copied. The left-most, largest
points represent the full copying conditions. Each successive
point to the right visually decreases in size and corresponds to
copying | fewer bits, such that each condition has 15 points
covering the full range from copying all |5 bits to copying only |.
There is a clear relationship between diversity and performance,
such that both too little and too much diversity lead to poor
performance. A moderate amount of diversity imparts the best
performance outcomes.

Hamming distance results). To find the optimal diversity, we
first use a Gaussian filter to smooth the curved relationship
between performance and diversity (as in Figure 8) for
several values of K (see Supplemental Figure 9 for a vi-
sualization of the Gaussian smoothing). We then find the
maximum final performance of the smoothed data for each
condition, and finally the associated diversity. In Figure 9,
for each of the four combinations of network topology and
copying strategy and for K = 2, 4, 6, and 8, we plot this
optimal diversity. The results confirm that there is a mono-
tonic relation between increasing K and optimal diversity for
all four conditions. To do well in more difficult problems,
populations must maintain greater overall solution diversity.

Discussion

Across several different ways of manipulating a collective
problem-solving situation, from partial to full copying, from
combining existing solutions to randomly modifying a
single solution, and from locally to globally connected
agents, we found a single underlying factor that unifies and
systematizes the results—diversity of solutions. The ex-
planatory power of diversity is shown by the largely
overlapping lines in Figure 8. Furthermore, there is a
systematic, monotonically increasing relation between
problem difficulty and the optimal level of diversity.
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Figure 9. Optimal diversity across problem difficulty. Each point
represents the diversity associated with the amount of copying
that produced the maximum final performance, averaged over
1000 repetitions, for global and local, recombination and noise
conditions. The data was smoothed with a Gaussian filter prior
to finding the maximum final performance and associated
diversity. The optimal diversity increases monotonically with
problem difficulty.

Throughout our analysis, we characterized how the different
conditions affect diversity so that strategic and environmental
components of social learning strategies may be intelligently
assembled to promote optimal group performance. In general,
we found that the diversity maintained by a strategy decreases as
more bits are copied. Therefore, varying the number of bits
copied offers a promising approach to achieving high-
performing diversity. For example, copying with noise can
generate excessive diversity that hurts performance; copying
more bits and consequently adding less noise can mitigate this.
Additionally, we found that global networks, when combined
with partial copying, maintain diversity but still converge more
rapidly than local networks. This feature would be desirable for
problems with shorter time horizons.

Although we only analyzed in depth the diversity of
populations in the two extreme network conditions, using
more realistic networks with varying levels of community
structure, we demonstrated that there is a robust interaction
between clustering and copying structure. We saw a general
advantage for more clustered communities when agents fully
copy, but an advantage for less clustered communities when
agents partially copy. This is consistent with there being an
optimal level of diversity for solving problems. This optimal
level can be achieved by combining partial copying, which
increases diversity, with less clustering, which decreases
diversity; or by combining full copying, which decreases
diversity, with more clustering, which increases diversity.

Our work draws from and contributes to several different
areas of study within social learning. First, we strengthen the
recommendation for varying the degree of copying when
modeling social learning, as we have shown that partial copying
improves group performance considerably and is a common
human behavior. Empirical work has shown that humans
choose to copy partially (Derex et al, 2015; Posen and

Martignoni, 2018), even though it is risky compared to the
improvement guaranteed by fully copying a better solution.
Why accept the risks of partial copying? Rogers’ paradox
(Rogers, 1988) describes performance deficits when there are
too many individuals perfectly imitating others. The social
learners exploit good solutions but contribute no new infor-
mation, stalling innovation. Confirming the paradox, Rendell
et al. (2010) showed that when social learners group together
and copy each other, performance degrades in these local groups
as they all quickly converge to the same sub-optimal solution.
Adaptation of others’ solutions, that is, partial copying, is one
strategy that resolves this paradox. Wisdom and Goldstone
(2010) found that individuals do cluster around similar solu-
tions, but innovations are introduced by individuals adapting
those solutions. By collaborating locally, the solutions available
from peers are more likely to be compatible with the focal
individual’s solution, allowing them to adapt others’ solutions
with less risk. Corroborating these findings, Miu et al. (2018)
showed that collective improvement is achieved mostly through
small, iterative tweaks of the best solution and less commonly,
radical innovations of that solution. Yet, aside from a couple of
notable exceptions (Csaszar and Siggelkow, 2010; Posen et al.,
2013; Posen and Martignoni, 2018), most simulations have
modeled copying as full or have had noisy copying (Fang et al.,
2010; Goldstone et al.,, 2013; Lazer and Friedman, 2007,
Rendell et al., 2010), which we have shown behaves differently
than partial copying.

The second area we contribute to is the study of solution
diversity during social learning. While others have mostly
looked at diversity over time (Bernstein et al., 2018; Curran,
O’Riordan and Sorensen, 2007; Fang et al., 2010; Goldstone
et al., 2013; Lazer and Friedman, 2007; Posen et al., 2013),
we additionally studied the overall diversity maintenance of
each of our conditions and uncovered strong relationships
between diversity, task difficulty, and performance.

Lastly, our finding that global networks can preserve
diversity is contrary to many theories that would say that
more globally connected networks increase conformity
(Derex and Boyd, 2016; Fang et al.,, 2010; Lazer and
Friedman, 2007; Mason et al., 2008; Nahum et al.,
2015). However, when copying is partial, global net-
works uniquely facilitate the combination of disparate so-
lutions, resulting in novel, highly diverse solutions.

Our results, in combination with important empirical findings,
promise several interesting avenues for future work. One pos-
sible extension to the current work would be to allow individuals
to adjust their social learning strategy based on cues from the
environment. This is a well-established behavioral flexibility in
humans (Derex et al., 2015; Heyes, 2016; Kendal et al., 2018;
Laland, 2004; Rendell et al., 2011; Wisdom et al., 2013) and was
a common approach among the top strategies in a simulated
tournament of social learning strategies (Rendell et al., 2010). For
example, while we fix the number of bits that can be changed via
social or individual learning, it would be interesting to allow the
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amount copied or changed be influenced by additional envi-
ronmental and social cues. It is well-documented that social
learners are more influenced by higher performing solutions
(Derex and Boyd, 2016; Derex et al., 2015; Heyes, 2016;
Wisdom et al., 2013) and that both types of learners are more
likely to make extensive changes to their solutions when the
fitness landscape of the task is simple (Derex et al.,
2015). Particularly interesting given our results would
be to allow agents to dynamically adjust the amount they
are copying based on the population’s diversity. This
would also be highly applicable to research on diversity-
guided evolutionary algorithms (Ursem, 2002). Ulti-
mately, the results from our simulations allow us to
make a concrete theoretical prediction: if learners are
allowed to select how much to copy, and if the per-
formance of the group has an effect on selection, then
given the overall benefits of partial copying to group
performance, we would expect partial copying to
emerge naturally over time among learners.

Another direction of future study could be investigating the
claim that the quality of knowledge is more important than the
quantity (Posen et al., 2013). While we show that a moderate
amount of diversity leads to peak performance, it could be that
this quantity is correlated with the preservation of useful
knowledge. There are many established measures of diversity
(Burke et al., 2004; Curran et al., 2007), some which may
potentially be adapted to better capture the quality of diversity.

The majority of the work in social learning has been focused
on three key questions: who individuals should copy from, when
they should copy, and what behaviors they should copy (Kendal
etal., 2018; Laland, 2004; Rendell et al., 2011). Here, we suggest
one more, how much to copy. The inclusion of this question has
broad implications for metacognitive social learning strategies
(Heyes, 2016). If members of a group have different solutions, it
may be worthwhile to share and combine ideas and start to
narrow down options. If; instead, the group is becoming an echo
chamber, copying less to increase the diversity of ideas may be
beneficial. Our results highlight that diversity can be highly
indicative of the success of a strategy, and further that partial
copying can be finely adjusted to offer robust and predictable
improvements to diversity and, in tumn, group performance
outcomes.
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Barkoczi and Galesic’s (2016) model and their original
model (Table A2), and important similarities and differ-
ences between our results and Barkoczi and Galesic’s
results (Table A3).
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Table Al. Model parameters.

Parameter

Interpretation Value(s) Justification

Population size

How many agents make up a
population

100 (50, 150 in Supplemental Figure 3) Following Barkoczi and Galesic
(2016)

N

The length of bit string solutions |5 (8, 12 in Supplemental Figure 3)  Following Barkoczi and Galesic

(2016)

The number of epistatic
interactions between bits

0 through 14, but focusing on K=6 for Real-world problems vary widely in
most analyses difficulty, and we wanted to

thoroughly evaluate the
performance of partial copying
across task difficulty. We focus on
K=6 for analyzing behavior over
time because it determines a
landscape that is complex without
being too random

Simulation length/number of time 2500
steps

Most prior studies only ran
simulations for short time lengths,
we are interested additionally in
the long run performance

Repetitions

How many times the same 1000
condition is rerun, we then

average over the repetitions

Following Barkoczi and Galesic
(2016)

Copying amount

Probability of copying each
individual bit from another
solution

Partial copying: 0.5, also varied
through 1/N (copying | bit) to |
(full copy)

Empirical work has demonstrated
that humans are not perfect
imitators; when given the option to
partially copy, we do so

Neighborhood size

How many adjacent agents each  Neighborhood size of 2 in the local We focus our analysis on two

(network individual is connected to case; 99 in the global case (we extremes of network connectivity,
topology) examine the full range from local to  which differ greatly in efficiency of
global in Supplemental Figure 2) information spread
Community The probability that any two P, = [0.2, 0.8, 0.95, 0.9875] Our method of generating these

clustering (in-
group prob.)

vertices in the same community
will be connected

networks is similar to the method
of Girvan and Newman (2002).
These four networks range from a
random network to a highly
clustered network, covering an
appropriate variety of clustering in
between

Small-world graph:
average degree

How many adjacent neighbors 4
each agent is connected to

Following Luhmann and Rajaram
(2015)

Small-world graph:
rewiring
probability

The probability of rewiring each 0.1

edge

Following Luhmann and Rajaram
(2015)

Scale-free graph:
alpha

Probability of adding a new node 0.41
connected to an existing node
(chosen randomly according to
in-degree distribution)

Following Bollobas, Borgs, Chayes
and Riordan (2003), who identified
parameters that define a scale-free
network that mimics the observed
power laws for the web graph

(continued)
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Table Al. (continued)

Parameter

Interpretation Value(s) Justification

Scale-free graph:
beta

Probability of adding an edge 0.54 Following Bollobas et al. (2003)
between two nodes

Scale-free graph:
gamma

Probability of adding a new node 0.05 Following Bollobas et al. (2003)
connected to an existing node
(chosen randomly according to
out-degree distribution)

Scale-free graph:
delta;,

Bias for choosing nodes from in- 0.2 Following Bollobas et al. (2003)
degree distribution

Scale-free graph:
delta,,,

Bias for choosing nodes from out- 0 Following Bollobas et al. (2003)
degree distribution

Table A2. Model design similarities and differences between our model and Barkoczi and Galesic’s (2016) model.

Population size

We follow Barkoczi and Galesic in fixing the population size to 100 agents for all main experiments, but we
additionally study populations of size 50 and 150 in Supplemental Figure 3.

N (solution length)

We follow Barkoczi and Galesic in fixing the solution length to 15, but additionally study solution length 8 and 12
in Supplemental Figure 3.

K (problem
complexity)

Barkoczi and Galesic only examine landscapes where K=0 and K=7; we vary K through every possible value from
K=0 to K=14.

t (time steps)

We differ in that Barkoczi and Galesic ran simulations for 200 timesteps, while we ran them for 2500 timesteps,
which was the point at which all conditions stopped improving.

Repetitions

We follow Barkoczi and Galesic in running simulations for 1000 repetitions.

Social learning
strategy

Our social learning strategy differs from that of Barkoczi and Galesic in that agents only observe the solution of |
other agent each time step, instead of looking at the solutions of 3 or 9 other agents—two conditions that the
authors examined. They also compared two strategies where agents either attempted to copy from the best
performing agent they observed, or attempted to copy the most frequent solution they observed. Our models
are similar in that agents would only copy from their chosen neighbor if that neighbor had a better-scoring
solution. If the alternative solution was not better than their own, they attempted individual learning in which
they flipped a single random bit, keeping the change only if it granted an improvement.

Copying amount

Barkoczi and Galesic only considered perfect, full copying. We additionally consider partial copying conditions
throughout the full range of copying a single bit to copying all bits.

Network connectivity In addition to the global and local networks we examine here, Barkoczi and Galesic examined eight other

network structures that cover the spectrum from local to global. We instead vary the number of adjacent
agents individuals are connected to through the full range, look at one random network and 3 with varying
amounts of clustering in communities, a Watts-Strogatz small-world network, and a scale-free network.

Table A3. Comparison of relevant results from this and Barkoczi and Galesic’s (2016) work.

Both models show that all strategies perform well in simple problem spaces

Barkoczi and Galesic find that social learning strategies modify the effect of network structure. We find that copying amount can also
modify the effect of network structure, such that full copying in global networks leads to diversity loss, but partial copying in global
networks leads to high diversity maintenance.
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