
Received: 1 December 2022 Revised: 20 April 2023 Accepted: 24 May 2023

DOI: 10.1002/nme.7306

SHORT COMMUN I CAT I ON

Neural network representation of time integrators

Rainald Löhner1 Harbir Antil2

1Center for Computational Fluid
Dynamics and Department of Physics,
George Mason University, Fairfax,
Virginia, USA
2Center for Mathematics and Artificial
Intelligence and Department of
Mathematical Sciences, George Mason
University, Fairfax, Virginia, USA

Correspondence
Rainald Löhner, Center for
Computational Fluid Dynamics and
Department of Physics, George Mason
University, Fairfax, VA, USA.
Email: rlohner@gmu.edu

Funding information
Air Force Office of Scientific Research,
Grant/Award Number: FA9550-22-1-0248;
National Science Foundation,
Grant/Award Number: DMS-2110263

Abstract
Deep neural network (DNN) architectures are constructed that are the exact
equivalent of explicit Runge–Kutta schemes for numerical time integration. The
network weights and biases are given, that is, no training is needed. In this way,
the only task left for physics-based integrators is the DNN approximation of the
right-hand side. This allows to clearly delineate the approximation estimates for
right-hand side errors and time integration errors. The architecture required for
the integration of a simplemass-damper-stiffness case is included as an example.

KEYWORD S

deep neural networks, Runge–Kutta, numerical integration

1 INTRODUCTION

Considerable effort is currently being devoted to neural nets, and in particular so-called deep neural nets (DNNs). DNNs
have been shown to be very good for sorting problems (e.g., image recognition) or games (e.g., chess). Their use as ordinary
or partial differential equation (PDE) solvers is the subject of much speculation, with many variants such as Residual
DNNs,1 Physically Inspired NNs (PINNs),2 Numerically Inspired NNs (NINNs), Nudging NNs (NUNNs),3 Fractional
DNNs4,5 and others being explored at present. The current situation is somewhat reminiscent of previous attempts to
use general, easy-to-use tools from other fields to solve ordinary or partial differential equations. Examples include the
“discoveries” that one could use MS Excel to solve ODEs,6,7 Simulink for some simple PDEs,8,9 cellular automata for
ODEs and PDEs,10,11 and ResNets for ODEs.12

When solving time-dependent ODEs or PDEs, the resulting system is given by:

u
,t = r(u, t),

where u is the (scalar or vector) unknown, r the (possibly nonlinear) right-hand-side and t time. The system can be
integrated via explicit Runge–Kutta (RK) schemes which are of the form:

un+1 = un + Δt bi ri,
ri = r(tn + ciΔt, un + Δt aij rj), i = 1, s, j = 1, s − 1.

Int J Numer Methods Eng. 2023;1–7. wileyonlinelibrary.com/journal/nme © 2023 John Wiley & Sons, Ltd. 1

https://orcid.org/0000-0003-0083-5131
http://wileyonlinelibrary.com/journal/NME
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fnme.7306&domain=pdf&date_stamp=2023-06-06

2 LÖHNER and ANTIL

Any particular RK method is defined by the number of stages s and the coefficients aij, 1 ≤ j < i ≤ s, bi, i = 1, s and
ci, i = 2, s.

Given that attempts are being made to replace time integrators by DNNs, one might ask: how should the archi-
tecture of the DNNs be in order to obtain the optimal time integration properties of RK schemes? This would
clarify:

- The minimum number of layers required for DNNs;
- The minimum width required for DNNs;
- The weights and biases required;
- The overall efficiency of DNNs versus other alternatives; and
- Approximation properties of DNNs.

The remainder of the paper is organized as follows: Section 2 describes the standard neural network architectures.
Section 3 establishes that standard polynomials can be represented by the activation functions. Section 4 which illustrates
how DNNs can be built that result in standard time integrators. The architecture required for the integration of a simple
mass-damper-stiffness case is included as an example in Section 5.

2 NEURAL NET ARCHITECTURES

A general DNN configuration consists of L number of hidden layers along with one input and one output layer. Each
hidden layer, the input layer and the output layer have K, N and J number of neurons, respectively. The input-to-output
sequence of such a DNN may be written as follows.

Input: G1
k = g

(N∑
n=1

w1
knMn + [bias]1k

)
, k = 1,K1

, (1a)

Hidden: Gl
k = g

⎛⎜⎜⎝
Kl−1∑
m=1

wl
kmG

l−1
m + [bias]lk

⎞⎟⎟⎠ , k = 1,Kl
, l = 2,L, (1b)

Output: BCj = 𝜙

(KL∑
m=1

wL
jmG

L
m

)
, j = 1, J, (1c)

whereM is the input vector, 𝜙(x), g(x) activation functions,w the weights and bias the biases. Typical activation functions
for 𝜙(x), g(x) include:

- Heaviside: HS(x) = 1 for x ≥ 0, 𝜙(x) = 0 for x < 0,
- Logistic: LG(x) = 1∕(1 + exp(−x)),
- ReLU: ReLU(x) = max{0, x},
- HypTan: HTAN(x) = tanh(x).

Functions that do not have an “activation behavior” but that have proven useful include:

- Constant: CO(x) = 1,
- Linear: LI(x) = x.

3 POLYNOMIAL FUNCTIONS IN 1-D

Let us now consider how to represent local polynomial functions via DNNs. An important question pertains to the
activation functions used. In typical DNNs, these are “switched on” when the input value crosses a threshold.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7306 by G
eorge M

ason U
niversity, W

iley O
nline Library on [05/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

LÖHNER and ANTIL 3

3.1 Constant function

Let us try to approximate the constant function y(x) = 1 viaDNNs. The simplestway to accomplish this via “true activation
functions” with just one neuron would be via:

DNNc ∶ y(x) = HS(x − x∞),

where x∞ is a very large value. An alternative is to use two neurons as follows:

DNNc2 ∶ y(x) = HS(x + 𝜖) +HS(−x),

where 𝜖 would be of the order of machine roundoff. Note that the desire to “activate” (which is seen as a requirement of
general DNNs) in this case has a negative effect, prompting the need for either very large or small numbers—something
that may lead to slow convergence of “learning” or numerical instabilities. A far better alternative would have been the
use of the constant activation function CO(x).

3.2 Linear function

Let us try to approximate the linear function y(x) = x via DNNs and “true activation functions”. The obvious candidate
would be ReLU(x). But as it has to work for all values of x one can either use ReLU(x) + HS(x)

DNNl ∶ y(x) = ReLU(x − x∞) + x∞ ⋅HS(x − x∞),

or:

DNNl2 ∶ y(x) = ReLU(x + 𝜖) − ReLU(−x).

As before, the desire to “activate” has a negative effect, prompting the need for either very large or small numbers. A far
better alternative would have been the use of the linear activation function LI(x).

In DNNs, one usually refrains from using higher order functions, trying to leverage the generality of lower order or
differentiable activation functions.

3.3 Higher order polynomial functions in 1-D

Consider now the polynomial

y(x) = ajxj, j ≥ 2.

The aim is to construct a DNN that would mirror this polynomial using the usual activation functions. Given that DNNs
only act in an additivemanner, this is not possible. The usual recourse is to approximate it by a series of linear functions.13
Another option is to transform to logarithmic variables, add, and then transform back—but this would imply a major
change in network architecture and functions. Consider

f (x) =
d∑
j=1
ajxj,

where aj are free coefficients and xj the spatial coordinates in each dimension j. Note that only additions and “weights”
(aj) are required, so the usual ReLU and HS functions should be able to reproduce this function. But how many neurons
are required? Borrowing from simplex (linear) finite element shape functions, one would have to build a linear function
for each face of the ball of elements (patch) surrounding a point. This implies a considerable number of neurons for higher
dimensional spaces. We refer to.14-16

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7306 by G
eorge M

ason U
niversity, W

iley O
nline Library on [05/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

4 LÖHNER and ANTIL

4 EXPLICIT TIMESTEPPING FOR ODES

Consider the typical scalar ODE of the form:

u
,t = r(u, t).

Explicit time integration schemes take the right-hand-side r at a known time t (or at several known times), and predict
the unknown u at some time in the future based on it. The simplest such scheme is the forward Euler scheme, given by:

un+1 = un + Δt r(tn,un).

Given that the function r(u, t) is arbitrary, we will assume that a DNN has been constructed for it. We will denote this
approximation of r(u, t) as DNNr. Note that in the scalar case this DNN has two inputs (u, t) and one output (r(u, t)). In
order to obtain a complete DNN for the forward Euler scheme, we need to enlarge DNNr by the “pass-through” value of
u. As was shown above, this can be accomplished with one layer of 2 ReLU functions, or via one identity function. We
will denote this DNN as DNNI in the sequel. The final DNN, shown in Figure 1 can then be denoted as:

un+1 = DNNI(un) + ΔtDNNr(tn,un).

In this and the subsequent figures we have highlighted the “important” or “essential” DNNr for r(u, t). The gen-
eralization to higher order schemes is given by the family of explicit Runge–Kutta (RK) methods, which may be
expressed as:

un+1 = un + Δt bi ri,
ri = r(tn + ciΔt, un + Δt aij rj), i = 1, s, j = 1, s − 1.

Any particular RK method is defined by the number of stages s and the coefficients aij, 1 ≤ j < i ≤ s, bi, i = 1, s and
ci, i = 2, s. These coefficients are usually arranged in a table known as a Butcher tableau (see Butcher)17:

r1 r2 … rs−1 rs

0
c2 a21
c3 a31 a32
⋮ ⋮ ⋮ ⋱

cs as1 as2 … as,s−1
b1 b2 … bs−1 bs

The two-step (second order) RK scheme is given by:

r1 r2

0
1∕2 1∕2

0 1

.

F IGURE 1 DNN for RK1 (Forward Euler) scheme.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7306 by G
eorge M

ason U
niversity, W

iley O
nline Library on [05/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

LÖHNER and ANTIL 5

For clarity, let us write the scheme out explicitly:

- Step 1: un+1∕2 = un + Δt
2
r(un, tn),

- Step 2: un+1 = un + Δt r(un+1∕2, tn+1∕2).

The DNN architecture required for this time integration scheme is shown in Figure 2.
The classic fourth order RK scheme is given by:

r1 r2 r3 r4

0
1∕2 1∕2
1∕2 0 1∕2
1 0 0 1

1∕6 1∕3 1∕3 1∕6

.

For clarity, let us write the scheme out explicitly:

- Step 1: un+1∕4 = un + Δt
2
r(un, tn),

- Step 2: un+1∕3 = un + Δt
2
r(un+1∕4, tn+1∕2),

- Step 3: un+1∕2 = un + Δtr(un+1∕3, tn+1∕2),
- Step 4: un+1 = un+

Δt
6

[
r(un, tn) + 2r(un+1∕4, tn+1∕2) + 2r(un+1∕3, tn+1∕2) + r(un+1∕2, tn+1)

]
.

The DNN architecture required for this time integration scheme is shown in Figure 3.
Observe that schemes of this kind require the storage of several copies of the unknown/right hand side, as the final

result requires ri, i = 1, s. Furthermore, as each right-hand side possibly requires the information of all previous right-hand
sides of the timestep, the resulting neural net architecture deepens.

F IGURE 2 DNN for RK2 scheme.

F IGURE 3 DNN for RK4 scheme.

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7306 by G
eorge M

ason U
niversity, W

iley O
nline Library on [05/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

6 LÖHNER and ANTIL

F IGURE 4 DNN for mass-damper-stiffness system.

5 EXAMPLE: MASS-DAMPER-STIFFNESS SYSTEM

Consider the simple mass-damper-stiffness system common to structural mechanics, given by the scalar ODE:

m ⋅ x
,tt + d ⋅ x

,t + c ⋅ x = 0,

wherem, d, c, x denote the mass, damping, stiffness and displacement respectively. The ODE may be re-written as a first
order ODE via:

x
,t = v , v

,t = − d
m
v − c

m
x.

The resulting DNNr is shown in Figure 4.

6 CONCLUSIONS AND OUTLOOK

Deepneural network (DNN) architectureswere constructed that are the exact equivalent of explicit Runge–Kutta schemes
for numerical time integration. The network weights and biases are given, that is, no training is needed. In this way,
the only task left for physics-based integrators is the DNN approximation of the right-hand side. This allows to clearly
delineate the approximation estimates for right-hand side errors and time integration errors.

As the explicit Runge–Kutta schemes require the information of all previous right-hand sides of the timestep, the
resulting neural net architecture depth is proportional to the number of stages—and hence to the integration order of the
scheme.

As the DNN for the approximation of the right-hand side may already be “deep”, that is, with several hidden layers,
the final DNN for high-order ODE integration many be considerable.

ACKNOWLEDGMENTS
This work is partially supported by NSF grant DMS-2110263 and the Air Force Office of Scientific Research under Award
No: FA9550-22-1-0248.

DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.

ORCID
Rainald Löhner https://orcid.org/0000-0003-0083-5131

REFERENCES
1. Haber E, Ruthotto L. Stable architectures for deep neural networks. Inverse Probl. 2018;34(1):014004. doi:10.1088/1361-6420/aa9a90
2. Raissi M, Perdikaris P, Karniadakis GE. Physics-informed neural networks: a deep learning framework for solving forward and inverse

problems involving nonlinear partial differential equations. J Comput Phys. 2019;378:686-707.
3. Antil H, Löhner R, Price R. NINNs: Nudging Induced Neural Networks. Tech. Rep. Cornell University; 2022. arXiv:2203.07947[cs,math].
4. Antil H, Khatri R, Löhner R, Verma D. Fractional deep neural network via constrained optimization. Mach Learn Sci Technol.

2020;2(1):015003. doi:10.1088/2632-2153/aba8e7

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7306 by G
eorge M

ason U
niversity, W

iley O
nline Library on [05/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://orcid.org/0000-0003-0083-5131
https://orcid.org/0000-0003-0083-5131
http://info:doi/10.1088/1361-6420/aa9a90
http://info:doi/10.1088/2632-2153/aba8e7

LÖHNER and ANTIL 7

5. Antil H, Elman HC, Onwunta A, Verma D. Novel deep neural networks for solving Bayesian statistical inverse problems. arXiv preprint,
arXiv:2102.03974. 2021.

6. Leon BS, Ulfig R, Blanchard J. Neural network theory. Comput Appl Eng Educ. 1996;4(2):117-125.
7. Huseynov S.Methodology of Laboratory Workshops on Computer Modeling with Programming in Microsoft Excel Visual Basic for Applica-

tions. IEEE; 2013:1-5.
8. Gran RJ. Creating simulations. Numerical Computing with Simulink. Vol I. Society for Industrial and Applied Mathematics (SIAM); 2007.
9. Shampine LF, Reichelt MW, Kierzenka JA. Solving index-1 DAEs in MATLAB and Simulink. SIAM Rev. 1999;41(3):538-552.
10. Wolfram S, Gad-el-Hak M. A new kind of science. Appl Mech Rev. 2003;56(2):B18-B19.
11. Wolfram S. Cellular automata as models of complexity. Nature. 1984;311(5985):419-424.
12. Chen RTQ, Rubanova Y, Bettencourt J, Duvenaud DK. Neural ordinary differential equations. In: Bengio S, Wallach H, Larochelle H,

Grauman K, Cesa-Bianchi N, Garnett R, eds. Advances in Neural Information Processing Systems. Vol 31. Curran Associates, Inc.; 2018.
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf

13. Yarotsky D. Error bounds for approximations with deep ReLU networks. Neural Netw. 2017;94:103-114.
14. He J, Li L, Xu J, Zheng C. ReLU deep neural networks and linear finite elements. arXiv preprint, arXiv:1807.03973. 2018.
15. Petersen PC. Neural Network Theory. University of Vienna; 2020.
16. DeVore R, Hanin B, Petrova G. Neural network approximation. Acta Numer. 2021;30:327-444.
17. Butcher JC. Numerical Methods for Ordinary Differential Equations. John Wiley & Sons; 2003.

How to cite this article: Löhner R, Antil H. Neural network representation of time integrators. Int J Numer
Methods Eng. 2023;1-7. doi: 10.1002/nme.7306

 10970207, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nm

e.7306 by G
eorge M

ason U
niversity, W

iley O
nline Library on [05/07/2023]. See the Term

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline Library for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons License

https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf

	Neural network representation of time integrators
	1 INTRODUCTION
	2 NEURAL NET ARCHITECTURES
	3 POLYNOMIAL FUNCTIONS IN 1-D
	3.1 Constant function
	3.2 Linear function
	3.3 Higher order polynomial functions in 1-D

	4 EXPLICIT TIMESTEPPING FOR ODES
	5 EXAMPLE: MASS-DAMPER-STIFFNESS SYSTEM
	6 CONCLUSIONS AND OUTLOOK

	ACKNOWLEDGMENTS
	DATA AVAILABILITY STATEMENT
	ORCID
	REFERENCES

