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Abstract. We present a new algorithm for infinite-dimensional optimization with general
constraints, called ALESQP. In short, ALESQP is an augmented Lagrangian method that penal-
izes inequality constraints and solves equality-constrained nonlinear optimization subproblems at
every iteration. The subproblems are solved using a matrix-free trust-region sequential quadratic
programming (SQP) method that takes advantage of iterative, i.e., inexact linear solvers, and is suit-
able for large-scale applications. A key feature of ALESQP is a constraint decomposition strategy
that allows it to exploit problem-specific variable scalings and inner products. We analyze con-
vergence of ALESQP under different assumptions. We show that strong accumulation points are
stationary. Consequently, in finite dimensions ALESQP converges to a stationary point. In infinite
dimensions we establish that weak accumulation points are feasible in many practical situations.
Under additional assumptions we show that weak accumulation points are stationary. We present
several infinite-dimensional examples where ALESQP shows remarkable discretization-independent
performance in all of its iterative components, requiring a modest number of iterations to meet con-
straint tolerances at the level of machine precision. Also, we demonstrate a fully matrix-free solution
of an infinite-dimensional problem with nonlinear inequality constraints.
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1. Introduction. In this paper, we develop a provably convergent algorithm for
solving optimization problems of the form

(1.1) min f(z) subject to g(z)=0, Txe€ QC’i,
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where X and Y are real Banach spaces, Z is a real Hilbert space, f : X — R,
g: X =Y, and T : X — Z is a linear operator. Moreover, the sets C1,...,Cp,
are nonempty, closed, and convex, where C; C Z for ¢ = 1,...,m. The optimization
problem (1.1) encompasses many finite-dimensional and infinite-dimensional nonlin-
ear optimization problems. Our proposed algorithm employs m individual augmented
Lagrangian penalties to handle the constraints Tz € C; for i = 1,...,m. The result-
ing subproblems are equality constrained and can be solved efficiently using modern
sequential quadratic programming (SQP) methods. By separately penalizing the con-
straints Tz € C;, for ¢ = 1, ..., m, our algorithm increases the augmented Lagrangian
penalty parameters according to the associated infeasibility of the current iterate,
adapting the ith penalty parameter to the specific scaling of the constraint Tz € C;.
We call the proposed algorithm the augmented Lagrangian equality-constrained SQP
(ALESQP) method.

To motivate (1.1) and ALESQP, we note that optimization problems constrained
by partial differential equations (PDEs) can be written in the form (1.1), where
x = (u,z) is split into state u and control z variables and the equality constraint
g(x) = 0 represents the governing PDE. For such problems, it is often difficult to prove
regularity of multipliers, especially when constraints of the type Tz € C; are enforced
on the PDE solution [10, 22, 31]. As a result, nonlinear programming methods devel-
oped in finite dimensions often exhibit mesh dependence when applied to discretiza-
tions of such problems. More specifically, their algorithmic performance degrades with
refinement of the PDE discretization—in other words, with increasing problem size.
We tackle this particular challenge by deriving and analyzing ALESQP in an infinite-
dimensional setting. A common approach to solving PDE-constrained optimization
problems is to reformulate (1.1), with the aforementioned splitting « = (u, 2), by
eliminating the PDE solution variable u. When the PDE is nonlinear, this approach
requires a nonlinear solver, e.g., a Newton-type iteration, to solve the PDE and eval-
uate the objective function at every optimization iteration. In contrast, optimization
formulation (1.1) allows us to maintain the PDE as an explicit constraint. In doing
so, ALESQP does not require an accurate solution of the equality constraint g(x) = 0
until convergence, and, in fact, it balances the PDE solution accuracy with other
feasibility and optimality metrics as the algorithm iterates. This further allows us
to approximately solve equality-constrained subproblems using inexact matrix-free
SQP methods that take advantage of iterative linear system solves [19, 20] and mesh
adaptivity [47].

The augmented Lagrangian method, or the method of multipliers, was originally
introduced in [21, 34] for finite-dimensional, equality-constrained optimization and
subsequently extended and analyzed by numerous authors; see [6, 36, 37, 38]. Aug-
mented Lagrangian also serves as the backbone of numerous successful numerical
optimization software packages. For example, the MINOS solver uses an augmented
Lagrangian penalty for linearized equality constraints and solves linearly constrained
subproblems, the LANCELOT solver employs an augmented Lagrangian penalty for
equality constraints and solves bound-constrained subproblems [14], and the AL-
GENCAN solver has the ability to use augmented Lagrangian penalties to handle
both equality and inequality constraints [8]. The ALESQP method is closely re-
lated to two existing augmented Lagrangian approaches: LANCELOT and sequential
equality-constrained optimization (SECO) [7]. Our approach generalizes the prob-
lem formulation of SECO and solves a sequence of penalized equality-constrained
subproblems. An important addition to the SECO algorithm is in the use of multi-
ple augmented Lagrangian penalties to handle disparate inequality constraint scalings.
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The general mechanics of the ALESQP algorithm are borrowed from the LANCELOT
solver described in [12], including the penalty parameter and multiplier update pro-
cedures, with extensions to support multiple penalties. A principal difference be-
tween ALESQP and both SECO and LANCELOT is that we prove convergence
for infinite-dimensional problems. This advance enables discretization-independent
performance of ALESQP on such problems, including mesh-based discretizations.
Notably, we observe mesh-independent performance in all iterative components of
ALESQP, including the augmented Lagrangian iteration, its SQP subproblem solver,
and SQP’s quadratic optimization solver.

In contrast to the extensive body of work on augmented Lagrangian methods
and software for the solution of finite-dimensional optimization problems, there has
been little work on solving general infinite-dimensional optimization problems using
the augmented Lagrangian. For instance, the references [4, 5, 23, 24, 26] are limited
to specific convex optimization problems, treat only finite-dimensional constraints, or
require strong assumptions and therefore do not support the solution of the general
problem (1.1). In addition, the augmented Lagrangian SQP methods developed in [25,
43, 44] add an additional SQP step to the augmented Lagrangian algorithm to acceler-
ate the convergence of the Lagrange multiplier estimates. However, these methods ap-
ply only to equality-constrained optimization problems. Only recently Borgens, Kan-
zow, and Steck [9] introduced and analyzed a generally applicable infinite-dimensional
augmented Lagrangian method. There are four major differences between ALESQP
and the method presented in [9]. First, we consider a different problem formulation,
with an emphasis on maintaining the explicit constraint g(x) = 0. In the context of
PDE-constrained optimization, where g(z) = 0 encompasses the PDE constraint, this
choice crucially enables an inexact and therefore efficient solution of the governing
PDE, through rigorous use of iterative linear solvers [19] and mesh adaptivity [47].
Second, we treat all constraints of the type Tx € C; in a unified fashion, through mul-
tiple penalties and the corresponding multiplier and penalty updates, and we solve
equality-constrained subproblems. In contrast, due to strong regularity assumptions
on the constraint function in [9] (complete continuity of the mapping G [9, Assump.
5.1]), certain inequality constraints must be treated implicitly, as part of the subprob-
lem, while others are penalized using the augmented Lagrangian. Third, we provide a
complete algorithmic framework, with a discussion of methods that are chosen specif-
ically for their suitability as ALESQP subproblem solvers. We demonstrate excellent
performance on a variety of infinite-dimensional problems, with nearly constant iter-
ation counts in all algorithmic components of the ALESQP framework, independent
of problem size. Fourth, we do not employ a multiplier safeguard (also used in, e.g.,
[2, 8]). Rather, we use the multiplier update from LANCELOT; see [12].

The remainder of the paper is organized as follows. In sections 2 and 3 we in-
troduce the notation and describe the assumptions on (1.1), recalling the associated
optimality conditions. In sections 4 and 5 we introduce the augmented Lagrangian al-
gorithm and prove asymptotic stationarity and asymptotic feasibility of the generated
sequence of iterates. We build on these results and show that, under additional as-
sumptions, weak accumulation points of the sequence of iterates are stationary points
for (1.1). In section 6 we extend the augmented Lagrangian formulation to handle
nonlinear constraint operators 7. In section 7 we briefly discuss the remaining com-
ponents of the ALESQP framework, including the SQP algorithm and its subroutines.
We conclude with a variety of numerical results including statistical estimation and
PDE-constrained optimization in section 8.
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2. Notation. Given a Banach space (X, || - || x), we denote the topological dual
space of X by X* and the associated dual pairing by (-,-)x+ x. If X is a Hilbert
space, we denote by (-,-)x the inner product on X and we assume that || - || x is the
usual norm on X. We denote by B[)f for p > 0 the closed norm ball on X with radius
p. For two Banach spaces X and Y, we denote the space of bounded linear operators
that map X into Y by £(X,Y"). For a closed, convex subset C of the Banach space
X, we denote the projection of a point z € X onto C by P¢(z) and the distance from
x to C by do(x). That is, Po(z) and deo(x) satisfy

do(r) :==min ||z —y|x = ||z — Pe()]|x.
yeC

In addition, we denote the normal cone to C' at the point x € C by
Ne(x) ={ e X" |(\y—a)x-x <0 VyeC}

with No(x) = (0 if z € C. Finally, we denote convergence with respect to the weak
topology by —, convergence with respect to the weak* topology by —*, and conver-
gence with respect to the norm topology by —.

3. Problem formulation and assumptions. Let X and Y be real Banach
spaces and let Z be a real Hilbert space. To simplify the presentation, we will associate
Z* with Z. Given the problem data f : X - R, g: X - Y, T € £(X,Z) and a
nonempty, closed, and convex set C' C Z, we consider the optimization problem

(3.1) I%l)l(l f(z) subject to g(x)=0, TzeC.
xT

When f and g are Fréchet differentiable, we say that ¥ € X is a first-order stationary
point of (3.1) if there exists ¢ € Y such that

(3.2) —(f'(@)+ g (x)*¢) e T*"Nc(TZ) and g(z)=0.
Note that this presumes T'Z € C since the normal cone is empty otherwise.

Remark 3.1 (Banach space valued constraints). As in [9], we could consider the
case where Z is a real Banach space that is densely embedded in a real Hilbert space.
However, this would complicate the presentation with little added benefit.

To prove convergence of our algorithm, we will require the following assumptions
on the objective function f, the constraint operators g and T, and the constraint
set C. In our subsequent analysis, we will explicitly state when each assumption is
required. Assumptions (A0) (feasibility) and (A1) (differentiability) will be required
throughout, whereas (A2), (A3), and (A4) will only be required to prove convergence.

Assumption 3.2 (Regularity of problem data).

0) There exists Z € X such that g(z) =0 and Tz € C.

1) The functions f and g are continuously Fréchet differentiable.

The adjoint operator T* is injective.

The functions f and ||g(-)||y are weakly lower semicontinuous.

There exist C; C Z for ¢ = 1,...,m that are nonempty, closed, and convex
for which C =C1n---NC,, # 0 and {C4,...,C,} is boundedly regular in
the sense that

3

(A
(A
(A2
(A
(A4

O —

_}{1&)( dci (T:L'k) —0 - dc(Txk) —0

i=1,...,

as k — oo for every bounded sequence {z} C X.
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Remark 3.3 (assumption (A2)). Recall that the operator T is surjective if and
only if T* is injective and the range of T™* is norm-closed [39, Thm. 4.15]. As a
consequence, assumption (A2) is satisfied if T is surjective. In addition, recall that
T* is injective if and only if the kernel of T* is trivial, i.e., ker T* :={z € Z|T*z =
0} = {0}

4. Augmented Lagrangian with explicit equality constraints. To develop
the augmented Lagrangian portion of our algorithm, we recall that (3.1) is equivalent
to the equality-constrained problem
(4.1) mi)r(l {f(z) +1c(Tz)} subject to g¢g(z) =0,

S
where Ic(y) = 0if y € C and Ic(y) = oo if y ¢ C. Here, Ic(Tx) enforces the
constraint Tz € C. Given the constraint decomposition in assumption (A4), we can
rewrite I¢c as

I = Zlci.
=1

As is typically done in augmented Lagrangian methods [38], we replace the indicator
functions I¢, (T'x) with the relaxations U;(z, A, r), where ¥; : X x Z x (0,00) — R is
defined as

(4.2) Wilw, A r) i= sup{(p, Tw)z = I¢, (1) = 5=l =A%}
m

and I, is the Fenchel conjugate of I¢,, i.e.,

I8, (1) = sup (u,2)z.
z€C;y

The augmented Lagrangian functional is given by

m

(4.3) L(z, A1y A1) o= F(@) Y Wi, A, i),
i=1

where \; € Z and r; > 0 for ¢ = 1,...,m. The function being maximized in (4.2) is
strongly concave and has the unique maximizer

(4.4) Ai(z, N\ 7) = r((r AN+ Tx) — Po, (r A+ Tx)).

Substituting A;(x, A, r) into (4.2) and rearranging terms yields the usual augmented
Lagrangian penalty function

Ui, A, r) = gell Az, A )l — o IAZ-

Motivated by [7, 12], we formulate Algorithm 4.1 using the augmented Lagran-
gian L.

Remark 4.1 (penalty parameter and multiplier update). The penalty parameter
update in Algorithm 4.1 is completely decoupled for the first Ky iterations. Here, Ky
can be taken arbitrarily large, but finite, e.g., Ko = 1000. This allows each rgk) to be
calibrated to the scaling associated with the ith constraint. The penalty parameter
and multiplier update schemes are adapted from [12, Alg. 2]. In particular, v; and
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Algorithm 4.1. Multipenalty equality-constrained augmented Lagrangian.
( 1)

Input: Initial multlpher estimates {A}7,..., )\Srll)} € Z, positive penalty parameters

{rll), L }, nonnegative null sequences {§*)} and {¢¥}, Ky € N, and posi-
tive constants {v1,...,Um}, {71, -, Ym} Wwith v < 1/2, {7'1(0)7. Tm)} {61,...,
O} with 0; <1, T, sy €4, {M1y -y} withm; > 1, 7> 1, {an,...,an} and
{B1,---,Bm}. Set 951) = min{l/ril), 6;} and Ti(l) = Ti(o) (951))‘“.
: for k=1,2,3,... do
Compute (z#),¢(*)) € X x Y* that satisfies ||g(z®)||y < 5®) and ||f'(=*))+
S T Al ® A, ) + g @) (9 e < e
30 f g ™)lly < b, 1@ M) + 2, T8 ™A, 1) 4 g/ (29) (W <
and max; do, (Tz®)) < 7, then
return z(*) as the approximate solution
end if
if k= Ky+ 1 then
n=nfori=1,...,m
end if
9: update = false
10: if k> K, and 34 such that [|A; (¢ )\(k) (k)) - )\gk)HZ > rgk)Ti(k) then
11: update = true
12:  end if
13: fori=1,...,mdo
14: if || A; (), )\(k),rgk)) - )\gk)||z > rl(k)Ti(k) or update = true then
15: (k+1) =1 ri)

K3

N —

16: 02(19 D= mln{l/r5k+1),9i}
17: (k+1) TZ( )(95k+1))“”

18: else

19:  rFD =)

20: GUH_I) mm{l/r(kﬂ) 0:}
91 i(k+1) — () (gl 1))5:

22: end if

23:if [|A (@@, A% 2 E) 1, < (r*TY then
24: AFTD = A (@, AP )
25: else

26: ARFD =\

27: end if

28: end for

29: end for

v; are used to ensure that the ith multiplier update does not grow too rapidly while
n; is used to increase the penalty parameter r;. After K, iterations, Algorithm 4.1
switches schemes and updates all penalty parameters in unison. This penalty update
scheme is a safeguard for the case in which the algorithm produces an infinite sequence
of iterations, forcing the sequence to accumulate at a feasible point (under certain
assumptions), and is typically never active in practice. By decoupling the penalty
parameter updates for the first Ky iterations, Algorithm 4.1 adaptively learns the
appropriate constraint scalings, which are generally not known a priori.

(© 2023 National Technology and Engineering Solutions of Sandia, LLC
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Remark 4.2 (subproblem tolerance sequences). In Algorithm 4.1, we update the
feasibility tolerances Ti(k) for i =1,...,m in an analogous fashion as [12, Alg. 2] using
the parameters «;, §;, and 6;. In contrast, the sequences of optimality tolerances
{e®} and equality constraint feasibility tolerances {§(*)} are only required to be
nonnegative and converge to zero. A basic choice is

SU41) { 000" if 3i such that r{* TV £

516F)  otherwise,
c(k+1) _ goe™ if 3¢ such that rgkﬂ) + rgk)7
g1 otherwise,

for 0 < d; < dgp < 1land 0 < ey < ey < 1. More complicated updating strategies are
possible. For example, adapting the tolerance sequence from [12] yields

sE+1) { 5O (gk+1)yas  if J4 such that rgkﬂ) + rfk)7 and

(6+1)
(B)(9(k+10)Bs  otherwise,
c(k+1) _ @ g+ if 34 such that rEkH) + r,gk),
B (R+1)YBe otherwise,

for positive constants 60, e, o, a., Bs, and B, where, e.g., 0+ = (max; UCH))
whereas adapting the sequences from [7] yields

D = min{5,6™, 6, || g(x (k)Hy} and
e® Y = min{ege™, &1 || f/(@®)) + ¢/ (2®) (W x-}

)

for constants do, 01, €9, €1 € (0,1).

4.1. Properties of the augmented Lagrangian. We note that the first step
in Algorithm 4.1 seeks an approximate stationary point of the equality-constrained
subproblem

(4.5) mi)r{l Ly (z) subject to g(x) =0,
zE

where Ly(x) := L(z, )\gk), . )\En),rgk),. rﬁf)). To facilitate the solution of (4.5),
we first show that the penalty function W;(-, A, r) is convex and continuously Fréchet
differentiable with Lipschitz continuous gradient.

PROPOSITION 4.3. For all A\ € Z and r > 0, the penalty function U;(-, A\, r)
is convex and continuous for i = 1,...,m. Additionally, U;(-,\,r) is continuously
Fréchet differentiable with gradient

(4.6) VUi, A\ r) =T "N (x, A\, 1),
which is Lipschitz continuous with modulus r||T||2£(X7Z).

Proof. Notice that W;(-,\,r) is the Fenchel conjugate of I () + 2| - —All%
composed with T. Therefore, W;(-,\,r) is equal to the infimal convolution of the
conjugates of I¢, and 5-||- —A||% composed with T [3, Prop. 13.21(i)], i.e

Wilw, Ar) = inf {Ic.(y) + (A Tz —y)z + 5| Tw — yl%}

. r 2
= ylené {NTz —y)z + 5Tz —yl|Z}

(© 2023 National Technology and Engineering Solutions of Sandia, LLC
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Consequently, ;(-,A\,r) is continuous convex and Fréchet differentiable with
Lipschitz continuous gradient (cf. Propositions 9.5 and 12.29 and Corollary 9.15

in [3]). O
COROLLARY 4.4. For any fivzed \; € Z and r; > 0 for i =1,...,m, the augmented
Lagrangian L(-; A1, ..., AmyT1, .-y Tm) 18 (1) weakly lower semicontinuous if f is, (ii)

convex if f is, and (iii) continuously Fréchet differentiable if f is. Moreover, in case
(iii), the derivative of L(-; A1, ..., Ay T1,---,Tm) S given by

(47) Lx(l‘,)\l, .o .,)\m,T’l, [N ,’I"m) = f’(z) + ZT*AZ(I7)\1,T’1),
=1

and if ' is Lipschitz continuous, then $0 is Ly (-, A1, .y Ay 1y vy Tm)-

Proof. By Proposition 4.3, ¥;(-, A;,r;) is convex and continuous and therefore
weakly lower semicontinuous. In addition, W;(-, A;,7;) is continuously Fréchet differ-
entiable with Lipschitz gradients. The desired results then follow from the assumed
properties of f. 0

5. Convergence theory. In the subsequent results, we consider infinite se-
quences of iterates generated by Algorithm 4.1 ignoring the stopping conditions, i.e.,

(5.1a) lga™)ly < 6.,

(5.1b) ILx' (&™) + g (@*) (W] v <,

(5.1c) ,nax de, (Tz®) < 7,

with d, = e, = 7. = 0. We denote by P; C N the set of indices k that satisfy
(5.2) 1@, A0, ) = AP 7 > 78,

We further denote by M; C N the subsets of indices for which
(5.3) AFFD = Ay (2 ® AP )

holds. For any set S C N, we denote the complement of S by S¢ := N\ S and
the cardinality of S by |S|. The set P; encapsulates the iterations for which the
penalty parameter for the ¢th constraint is increased, while the set Ml; encapsulates
the iterations for which the multipliers for the ith constraint are changed. We note
that ’I“Z(k) — oo if and only if there exists at least one j = 1,...,m such that |P;| = oo;
in this case, all penalty parameters are increased for any iteration k € P; with k > K
(see lines 9 through 22 in Algorithm 4.1). Our first result is technical and relates the
satisfaction of the constraints in C; to the multiplier updates in Algorithm 4.1.

LEMMA 5.1. Let x € X, A € Z, and r > 0 be arbitrary. Then,

1 1
(5.4) de;(Tz) < —[|Ai(2, A r) = Allz < doi(T2) + —[|Allz-

Proof. We first prove the lower bound. By definition of A;, we have that

. _ 1
dcl(Tl') = ;reucr} Hy - TxHZ < ||Tl' - PCl(T 1)‘+Tx)HZ = ;”AZ((E,)\,T‘) - )‘HZ

(© 2023 National Technology and Engineering Solutions of Sandia, LLC
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Similarly, the Lipschitz continuity (with unit modulus) of the projection operator [3,
Prop. 4.8] ensures that

1
~IAi(z, A ) = Mz < T2 = P, (T9)]| 2 + | Pe, (Tx) = P, (r A+ T)l|2
1
< do,(T2) + A1z

as desired. O

5.1. Dual convergence. In this subsection, we analyze the sequence of dual
variables {)\Z(-k)} generated by Algorithm 4.1. Our first result is motivated by Lemma
4.2 in [12] and shows that the sequence {||)\1(»k) Iz} does not grow too fast if rgk) — 0.
The second result relates the first to the asymptotic feasibility of the iterates {z(®)}.

Finally, we show that {)\Ek)} converges strongly if |P;| < oco.

LEMMA 5.2. Let {)\Ek)} be an infinite sequence of multipliers for the ith constraint
generated by Algorithm 4.1, ignoring the stopping conditions (5.1). If rgk) — 00, then

. 1 (k)
lim H>‘z ||Z:0 VOZ>’7¢,
k—oo (Tgk))a

where v; < 1/2 is defined in Algorithm 4.1.

Proof. We note that the proof of this fact is similar to the proof of [12, Lem. 4.2]
for equality-constrained augmented Lagrangian methods. If M; = {ki, ko,...} is

finite, then the result clearly holds since )\Ek) is fixed after finitely many iterations.
/\(k) _ /\(kj+1)

%

Now suppose that M; is infinite. For any k; < k < k;j41, we have that

and rgk) > rgkjﬂ). Therefore,
k ki+1 kit~ —a
it Nz < ot I < (T

The upper bound follows from line 23 in Algorithm 4.1. Since « > +;, the right-hand
side converges to zero and the desired result follows. 0

Our next lemma builds on Lemma 5.2 and provides equivalent conditions that
imply that the sequence {x(k)} is asymptotically feasible for the ith constraint.

LEMMA 5.3. Let {x(k')} be an infinite sequence of iterates generated by Algorithm
4.1, ignoring the stopping conditions (5.1), with the associated sequence of multipliers
{)\,Ek)} for the ith constraint. If rgk) — o0, then the following three conditions are
equivalent:

a) liminf de, (Tz®) = 0.

k‘ T

—00
(b) liminf 514,20, 2, ) - AP, = 0.
(¢) timinf 5 [|As(2 ), A", r(P) 2 = 0.

These equivalences remain true if the limit inferiors are replaced by limits (or equiv-
alently limit superiors).

Proof. By Lemma 5.1 with y = z(®F), \ = )\Z(»k), and r = r(k), we have that

%

(5:5)  de,(Te®) < L5 A@™ AP 7 P) = APl5 < do, (T2 ®) + L5110 2.

r
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This and Lemma 5.2 yield (a) <= (b). The implication (b) <= (c) follows from
Lemma 5.2 and the triangle and reverse triangle inequalities. ]

Before proving our main finite-termination result, we provide situations for which
the sequence of multiplier estimates converges strongly. Strong convergence will be
useful for later results as it will allow us to demonstrate that weak accumulation
points are stationary under certain assumptions.

THEOREM 5.4. Let {x(®)} be an infinite sequence of iterates generated by Algo-
rithm 4.1, zgnormg the stopping conditions (5.1), with the associated sequence of mul-
tipliers {)\ }for the ith constraint. If |M;| < co or |Pj| < oo forall j=1,...,m,
then the sequence of multipliers {)\( )} converges strongly to some \; € Z.

Proof. First note that if |[M;| < oo, then /\Z(- ) = \; is constant for all k£ > max M
and the result follows. Now, consider the case when |P;| < oo for j = 1,...,m. Let
k' = max,; maxP; +1. We will first show that {)\gk)} is Cauchy (and hence converges).
Let € > 0 be arbitrary and choose k. > k' such that

/
1— (68
(k) ¢ )

<—t 7 e
(k)
T

/ /
Such a k. exists since rgk) = rgk and G(k) GEk ) for all k > K, and {Ti(k)
strictly decreasing to zero. For any k > k. and any h € N, we have that

}ka/ is

k+h—1
AR (k) Z AU\ G)
j=k

Since k > ke, we have that ||A; (G+1) )\(J) ||z either is equal to zero or is bounded above
©) (J)

by r; > 0. Therefore, the triangle inequality ensures that
k+h—1 ‘ 4 kth—1 , h .
FECISCIIES S I E PR SR o)
ik =k i=0

!/
Since 0§k ) < 1, we have that the sum on the right-hand side of the above inequality
converges geometrically and thus

(k) (k) (k ), (k)
||>‘z('k+h) - )‘gk)”Z R 7 < T/ <e

1—(8"))8 1—@?5

Consequently, {)\Ek)} is Cauchy and hence converges strongly to some \; € Z. ]

COROLLARY 5.5. Consider the setting of Theorem 5.4. If |P;| < oo for j =
m, then

1

geeey

Ai(x(k),)\(-k) (k)) - N, i=1,...,m.
Proof. The triangle inequality ensures that

1A ® AR, 1) = Killz < 1A @@ A8, 1) = APz + 1% = APz
< Tgk)Ti(k) + A — /\E’“)HZ Vk > maxmaxP; + 1.
J
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Since rfk) is constant for all k sufficiently large and Ti( — 0, the result then follows

from Theorem 5.4. O

k)

5.2. Finite termination. In this subsection, we investigate the scenarios for
which Algorithm 4.1 terminates in a finite number of iterations. As the following
result suggests, it is uncommon for the algorithm to produce infinitely many itera-
tions without satisfying the stopping conditions (5.1). In particular, this result states
that Algorithm 4.1 will satisfy the stopping conditions (5.1) after a finite number of
iterations if there are infinitely many successful iterations (i.e., |P§| = oo) or if the
multiplier are updated infinitely often (i.e., |M;| = 0o0). In fact, this result shows that
the only case for which Algorithm 4.1 may not terminate in finitely many iterations is
if |P¢| < oo and the associated multiplier estimates are only updated a finite number
of times, i.e., |M;| < co.

THEOREM 5.6. Let {(z®), (), )\Ek),rl(k))} be an infinite sequence of iterates gen-

erated by Algorithm 4.1, ignoring the stopping conditions (5.1). Then, the sequence
satisfies

(5.6) Jim lgz®)[ly =0 and 1Ly (™) + ¢ (@®)* (W x- = 0.
—00

lim
k—o0
Consider arbitrary i € {1,...,m}. If |P§UM,| = oo, then

(5.7) ]lggo de,(Tz%)) =0, where P{UM; = {kj}724-
In particular, if |P§UM;| = oo, then
(5.8) lim inf de, (Tz®)) = 0,

k—o0

and if either |P;| < oo or |M§| < oo, then dc, (Tz™) — 0 as k — occ.

Proof. We first note that the tolerance update rules in Algorithm 4.1 ensure that

(5.9) lim 7* =0, lim 6® =0, and lim e® =0.

k—o0 k—o0 k—o0
As a result (5.6) holds. Now, let ¢ € {1,...,m} be arbitrary. By Lemma 5.1, we have
that dg, (Tz™®)) < ’/"i(k) for all k € P§ and therefore {d¢;, (Tl’(k))}ke[pg converges to zero
if |P$| = oo. In particular, if |P;| < oo, then we have that d¢, (Tz™*)) — 0 as k — oo
since dg, (Tz™®)) < Ti(k) for all k sufficiently large. Now, suppose that |P;| = co. The
multiplier update rule in Algorithm 4.1 ensures that

1 i ) ) )
(5.10) W||Ai(x(k),)\l(k)ml(k))nz < ?k) (T§k+1))% < Vm? (Tz(k))%_l Vk € M.
i L

Note that if k > Ky, then 7; is replaced by 7 in (5.10). Therefore, {dc, (T2*)}rem,
converges to zero by Lemma 5.3 if |M;| = oo since 7; < 1/2. Consequently, if |M¢| <
00, then dg,(Tz™) — 0 as k — oo since (5.10) holds for all k sufficiently large.
Combining these results, we see that (5.7) holds if |P{ UM;| = co. Finally, (5.8) is a
direct consequence of (5.7). |

Theorem 5.6 provides conditions under which Algorithm 4.1 terminates in a finite
number of iterations. However, it does not address the asymptotic satisfaction of the
first-order optimality conditions (3.2). Our next result demonstrates that the sequence
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of iterates generated by Algorithm 4.1 asymptotically satisfies (3.2) as long as (5.8)
holds.

PROPOSITION 5.7. Consider the setting of Theorem 5.6. Then the iterates satisfy

(5.11) lim sup (T*A;(z®), )\Ek),rgk))w —zM)x. x <0 VyeT HC)
k—o0
fori=1,....m

Proof. The following proof was motivated by the proof of [28, Lem. 5.2]. For the
subsequent arguments, it will be convenient to define

st = Pci((r(k))_l)\gk) +Tz®) and  t®) = A; (2, )\Ek),rl(k)).
We have that s*) € C; and t(*) € N, (s%®)) by [3, Prop. 6.46]. In addition, by [3,

Thm. 6.29], we can write
#k) _ \(0)
()

9

Tz® = + s,

Consequently, for any y € T~1(C;), we have that
(T, y —2®)x x = <t<k> Ty — ()1t = AP) = s®)

(5.12) (@, 2F) 2 — [[1®)2),

| /\

(k)

where the upper bound follows from the fact that t*) € N, (s*®). If |P;| < oo for
j =1,...,m, then Theorem 5.4 and Corollary 5.5 ensure that the upper bound in
(5.12) converges to zero since /\Ek) — X; and t*) — X;. Now, consider the case when
|P;| = co. By maximizing the quadratic form on the right-hand side of the above
equation with respect to t*), we see that

* k?
(1740 ,y —2®) e x < — INPIZ

o (k)

After passing to the limit superior, the desired result follows as a consequence of
Lemma 5.2 with o = 1/2 > ;. 0

Remark 5.8 (relation to first-order optimality conditions). Let
(5.13) e = iT*Axx(’“% AP ) 4 (F@®) + g (@0 ®).
By Theorem 5.6, we have that g(z*)) — 0 and
(G14)  —(f'@W) + g ™) ZT* D ),
where e®) — 0. If (¢®) z(*®)) . ¥ — 0, then Proposition 5.7 ensures that

(515)  limsup (—(f/(@®) + ¢/ @®)7 W),y —2®)x. x <O Vye ()

k— o0

and therefore the sequence of iterates {(z*), ((*))} asymptotically satisfies the first-
order optimality conditions (3.2), as long as (5.8) holds.
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5.3. Convergence to feasible points and asymptotic stationarity. In this
subsection, we show that weak accumulation points of the iterates {(®)} generated by
Algorithm 4.1 are nearly feasible. The assumptions required for this result follow from
standard assumptions in the convergence theory for SQP and augmented Lagrangian
methods [12, 15, 19, 20].

THEOREM 5.9. Consider the setting of Theorem 5.6 and let assumptions (Al)-
(A4) hold. Suppose there exists a weakly converging subsequence {x*)} with limit
Z € X such that

m -1
(5.16) %) = (Zri’“”) =50 = 0E (M) + g @) *)) =0,
i=1

If PSUM;| =00 foralli=1,...,m, then TZ € C. On the other hand, if there is
at least one i € {1,...,m} for which |P$UM;| < oo, then there exists t; € (0,1) with
t1+-+tm =1 and y; € C; such that

1

-
Il

In addition, the subsequence {(z*3), (ki)Y satisfies

(5.18)  limsup (—(f"(z%)) + ¢/(x*))*¢*)), y —2aF)) x. x <0 Yy e T7HO).
k— oo
Proof. Assumption (A3) and Theorem 5.6 ensure that g(z) = 0. If |[PSUM;| = oo,
then Theorem 5.6 and the weak lower semicontinuity of d¢, o T' [46, Lem. 1.5] imply
that TZ € C;. As a result, if [P UM;| = oo for all i = 1,...,m, then TZ € C. Now,
assume that there exists at least one ¢ for which [P§ UM | < oo. For such i, |P;| = oo,
which implies that rékj) — oo for all £ = 1,...,m. Lemma 5.2 then ensures that

G(kj))\ékj) — 0 for £=1,...,m. Now, by (5.14) and (5.16), we have

(5.19) (ki) Z TNy (zF9), )‘z('kj), Tl(kj))
i=1

= gWa) (e(ka) — (f/(x®)) 4 g (xFi) )¢ ki) )y = 0,

Expanding the left-hand side yields

(5.20) 69 37 A (@k) A8 8y = ki) N a0 kP (o)),

i=1 i=1

where tgkj) = Q(kj)rgkj) > 0, ti””) + e+ t,(ﬁj) =1, and szj) = (rgkj))’l)\gkj) +
Tx*i). Note that for all k; > Ky, we have tgkj) = tEKO) = {;. By assumption
(A2), we have that kerT* = {0}. Since {x(k)} converges weakly, it is bounded
and hence {Pg, (zi(kj))} is also bounded for ¢ = 1,...,m. Therefore, {Pc(zi(kj))}
has a weakly converging subsequence (that we do not relabel) with limit g; € C;
since Z is a Hilbert space and C; is closed and convex (hence, weakly closed) for
i = 1,...,m. Consequently, the sequence on the left-hand side of (5.19) converges
weakly* to T*(TZ — ), t;5;). Owing to the uniqueness of weak* limits, we have that
T*(Tz — Y, ty;) = 0 and hence (5.17) holds since ker T* = {0}. Moreover, (5.18)
follows from (5.14) and Proposition 5.7 since {(*)} is bounded. O
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The next result is a simple consequence of Theorem 5.9 that employs common
assumptions from the convergence theory for SQP (cf. [30] for more details) that
ensure the results of Theorem 5.9 hold.

COROLLARY 5.10. Suppose there exists a set Q C X such that %) € Q for all k
and for which f' and ¢' are uniformly bounded on Q2. Moreover, assume that {¢*}
is bounded. Then, any weak accumulation point of {x™)} satisfies (5.17), and (5.18)
holds for any bounded subsequence of {x(k)}. In particular, Algorithm 4.1 either
terminates in a finite number of iterations with an approximate stationary point or
produces an infinite sequence {x(’“)} for which all bounded subsequences satisfy (5.18)
and all weak accumulation points of {x®} satisfy (5.17).

Remark 5.11 (weak limits and feasibility). A consequence of Corollary 5.10 is
that if {x(k)} has a weak accumulation point, then the feasible set for optimization
problem (3.1) is nonempty. Notably, if X is reflexive and 2 is bounded, then {z(*)}
has a weakly converging subsequence. The assumption that € is bounded is used to
prove convergence of the augmented Lagrangian algorithm in [12, Assump. AS2].

Theorem 5.9 does not ensure that weak accumulation points z of {z(*)} are fea-
sible. It only shows that T'Z is an element of the convex hull of Cy U---U C,,. We
conclude this section with some common situations for which T'Z is guaranteed to
be feasible. In these cases, Algorithm 4.1 either terminates in a finite number of
iterations or generates a sequence {z(F)} that satisfies the asymptotic stationarity
condition (5.15) and whose weak accumulation points are feasible.

COROLLARY 5.12. Let the assumptions of Theorem 5.9 hold and suppose one of
the following conditions holds:

(a) m=1;

(b) Pg, is weakly continuous for i = 1,...,m;

(c) T is completely continuous;

(d) z*3) converges strongly to Z;

(e) there exists a Banach space X that is compactly embedded in X such that

{z*)} € Xy and z(Fi) —~ 7 in Xo;

(f) X is finite dimensional.

Then, {x\¥i)} satisfies the asymptotic stationarity condition (5.18) and Tz € C.

Proof. Case (a) is obvious. For cases (b)—(d), we have that 7, = P¢,(T7).
Therefore, (5.17) shows that T'Z is a fixed point of the map >, t;P¢; () and it follows
from [3, Prop. 4.34] that the fixed points of this map are exactly the set C'. Moreover,
if (e) holds, then the compact embedding of Xy in X ensures that z(*) — z in X
and the result follows from (d). Finally, if (f) holds, then (b), (c), (d), and (e) also
hold. O

Remark 5.13 (second-order optimality conditions). It may be possible to prove
strong convergence of {x(*7)} under additional conditions such as second-order op-
timality conditions. See [9], where this is done for a related augmented Lagrangian
algorithm in Banach space.

5.4. Convergence to stationary points. Theorem 5.6 gives sufficient condi-
tions for Algorithm 4.1 to terminate in a finite number of iterations. However, it does
not ensure that the sequence of iterates {z(®F)} satisfies the first-order
stationary conditions (3.2). In this subsection, we address this question. The next
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results demonstrate the limiting behavior of the sequence of iterates {x(¥)} gener-
ated by Algorithm 4.1. In particular, if a weak accumulation point of {x(k)} exists,
then that point must be a first-order stationary point. This result requires additional
regularity assumptions on the problem data f and g. In particular, we assume the
following.

Assumption 5.14 (regularity of derivatives).

(A5) The derivative of the equality-constrained Lagrangian satisfies, If z; — z in
X, —*Cin Y*, and

limsup (f'(zx) + ¢'(zx)*Ce, xk — ) x+,x <0,

k—o0

then for all y € T~1(C), the following holds:

(f'(@) + ¢'(x)"C,z — y)x-.x <limsup (f'(zx) + 9" (2x) " Tr — Y)x+ x-

k—o0
A brief discussion of assumption (A5) is in order. If X is finite dimensional, then

weak and strong convergence coincide, and therefore the continuity of f': X — X*
and ¢’ : X = L(X,Y) (assumption (A1)) ensures that

)+ 9 (@) G — fllx)+ g ()¢ and  zp — z.

Consequently, (A5) is satisfied. In infinite dimensions, it may require quite strong
assumptions to satisfy (A5). Following our next result, we provide assumptions that
ensure that assumption (A5) holds.

THEOREM 5.15. Consider the setting of Theorem 5.6 and let assumptions (Al1)-
(A5) hold. Let (z,() € X x Y* be a weak/weak* accumulation point of {(x*® ()},
If Tz € C, then T is a first-order stationary point of (3.1). That is, T satisfies (3.2).

Proof. Let {(x(Fs), (%))} denote a subsequence such that z(*3) — z and ¢ (i) —~*
¢ and suppose TZ € C. Assumption (A3) ensures that g(z) = 0. We now prove
the first condition in (3.2). Proposition 5.7, the fact that TZ € C, and the strong
convergence of {e(#1)} (see (5.13) for the definition of e(¥3)) ensure that

timsup (—(f(5) + ¢/ (249) ¢, 5 — 2 #9) . x

kj‘)OO
= limsup (—(f'(z*)) + g/(®))*¢F)) 4 e®) 7 — pFi)y o
kj—>oo
= lim sup Z(T*Ai(z(’“i), )\Z(-kj),rl(kj)), z—xzk)y, <o.
kj—}OO i=1
The result then follows from assumption (A5) and (5.15). 0

The next result provides strong assumptions on the derivatives f/ and g’ that en-
sure assumption (A5) holds. In addition, the result employs a constraint qualification
to ensure that {¢ (k)} is bounded and hence has a weakly* converging subsequence.
These are then used to show that the results of Theorem 5.9 hold. The assumptions
used in this result were motivated by [9, sect. 5].

COROLLARY 5.16. Consider the setting of Theorem 5.6, and let assumptions
(A1)—(A4) hold. Moreover, assume that f' and g satisfy the following assumptions:

(© 2023 National Technology and Engineering Solutions of Sandia, LLC



Downloaded 07/05/23 to 129.174.240.213 . Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

252 HARBIR ANTIL, DREW P. KOURI, AND DENIS RIDZAL

(A6) The derivative f': X — X* is pseudomonotone, i.e.,

zp = and limsup (f'(zx),zx —z)x+x <0
k—o00

= (f/(),e — y)x-ox < lminf (F/(e0), 20— y)xex Yy e X.

(A7) The Jacobian ¢’ : X — L£(X,Y) is sequentially weak-to-strong continuous and
g (z)* € L(Y™*, X*) is sequentially weak*-to-strong continuous for all x € X.
Then assumption (A5) holds. If, in addition,
(A8) for any bounded set D C X, the set {f'(z)|x € D} C X* is bounded,
and T is a weak accumulation point of {x™)} that satisfies the extended Robinson
constraint qualification,

(5.21) 0 € int ¢'(2)(T(C) — ),

then, T satisfies (3.2) as long as Tz € C.

Proof. The proof of this result is similar to the proof of [9, Thm. 5.4]. We
first show that assumption (A5) holds. Let zp — z in X and (, —* ¢ in Y*. By
assumption (A7), we have that ¢'(xx) — ¢'(z) and ¢'(z)* is sequentially weak*-
to-strong continuous. As a result, we have that ¢'(z)*¢x — ¢'(x)*(, which yields
9 (xk)*C — ¢'(x)*¢. Assumption (A5) then follows from assumption (A6).

Now, suppose (5.21) holds at Z and let {2(%9)} denote a subsequence of {x(*)} that
weakly converges to T with associated multiplier subsequence {¢ (’“J')}. The generalized
open mapping theorem [48, Thm. 2.1] ensures that there exists p > 0 such that

By cg'@[(T™(C) - 2)nB].

Let y(*9) € BY be a sequence of unit vectors satisfying (((%), y(*i))y. - > %||C(kj)| v
As a result of the above inclusion, we have that —py*3) € BZ and there exists a
bounded sequence {v(*s)} in T=1(C) such that

—py) = g'(2) (v — 7).

Assumption (A7) ensures that —py*) = g/ (x(Fi))(v*s) — g *:)) 4-*5) where nks) —
0. Now, for k; sufficiently large so that [n(*)||y < 2, we have that

LICE v < (¢, py) vy

(5.22) < (), =g (@) 0 2ty + 20|

Y*-

With e(*®) as defined in (5.14), we can rewrite
—g' (a®N) ) = fr (g 4 ZT*Ai(x(kj)’)\l(_kj)7T§kj)) _ (ki)
i=1

Substituting this expression into (5.22) and rearranging terms gives

BICH v+ < (f@®), 0k — 2ty v x
(5.23) T Z<T*Ai(1’(kj)v )\(kj)7r7§kj)) _ 6(kj)7v(kj) _ x(kj)>X*,X~

%
i=1
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Notice that Proposition 5.7 ensures that there exists a sequence {n(*3)} € (0, 00) such
that n(k) \, 0 and

m
Z<T*Ai($(kj), AP plhady o hs) — i)y g ¢ < (k)

i=1

since v* € T~1(C). Therefore, the right-hand side of (5.23), and hence {¢(*s)}, is
bounded by (A8) and the fact that e®) — 0. Since {¢(*4)} is bounded, it has a weakly*
convergent subsequence by the Banach—Alaoglu theorem [16, Thm. 5.18]. The desired
result then follows from Theorem 5.15. d

6. Algorithmic extensions. We now present extensions to Algorithm 4.1. Our
first extension allows us to separately penalize multiple individual constraints. The
second extension allows us to handle nonlinear constraint operators 7" in (3.1).

6.1. Finitely many linear constraints. In this subsection, we consider the
common setting in which there are finitely many constraints of the form Tz € C;,
where T; € L(X,Z;) and C; € Z; is nonempty, closed, and convex for ¢ = 1,...,m.
Here, Z; denotes a real Hilbert space for ¢ = 1,...,m. We first note that this setting
can be stated in the more general setting of (3.1) by defining

61) Z:=Z1® - ®Zpn, To:= T, ..., Tpz), and C:=Cy x - X Cp.

Consequently, it is straightforward to apply Algorithm 4.1 with 7" and C defined

above, either by treating Tx € C as a single constraint or by handling T;z € C;
individually. In particular, define

i—1 m
CZ'Z: HZJ XCZ'X H ZJ s i:l,...,m,
j=1 j=it1

where ] denotes the Cartesian product and the first and last products are void if i = 1
and ¢ = m, respectively. It is clear from the definition of C' and C; that assumption
(A4) holds. Moreover, using these definitions, we see that

m

Io(Tx) = 3 Ie/(Tx) = 3 Ie (Tix)

i=1

and hence, ¥; and A; only depend on T;z and a for : = 1,...,m. Unfortunately, T
as defined above need not satisfy assumption (A2). In particular, the adjoint operator
T*, which is given by T%z =T}z + -+ + T)5 2y, for z = (21,...,2m) and z; € Z; for
i =1,...,m, need not be injective even if T} is for ¢ = 1,...,m. Fortunately, there
are practical situations where T is in fact injective. One such situation is when the
optimization space X is a direct sum of Banach spaces. This is often the case for
optimal control problems, in which case X is typically composed of the state and
control spaces. R

Suppose there exist real Banach spaces X; and operators T; € L(X;, Z;) satisfying
(A2),i=1,...,m, for which

(6.2) X=X10---0X, and Tix =Tix; for i=1,...,m.
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In this case, T = T, @ ®T), satisfies assumption (A2). Therefore, Theorem 5.9
applies directly to problems of this type. In fact, we can show that Tz € C.

THEOREM 6.1. Consider the setting of Theorem 5.6 and let assumptions (Al)—
(A4) hold. Let X, Z, T, and C be defined as in (6.1) and (6.2), and suppose there
exists a weakly converging subsequence {x*9)} with limit z € X such that

63) Voo = () + g, (609) () =70
Ti
for i =1,...,m. Here, f,, and g, denote the partial derivatives of f and g with
respect to x;, i =1,...,m, respectively. Then, T satisfies Tx € C.
Proof. Clearly if |P$ UM;| = oo, then ﬁa?z IS a for : = 1,...,m. We assume
that at least one ¢ = 1,...,m satisfies |P;] = co. Using the product structure of the

problem, (6.3) ensures that

" k; k; k; k; , Vv (ks *
ST A AN ) = s () = (£, ™) + g2, (25)¢E0) ) =0,

Oy i i
for which the left-hand side can be expanded as

T A A ) = 1 () - P (),

%
ri s

where 2% = (pF))=1\0) L T009) gince (r*)=1A%) 5 0 by Lemma 5.2 and
ﬁzgkj) — T}%;, the sequence {zz(kj)} is bounded and hence so is {P g (zgkj )}. Further-
more, since Z; is a Hilbert space, {Pg, (zl(kj ))} has a weakly converging subsequence
(that we do not relabel) with limit g; € Ci. The injectivity of T and the uniqueness
of weak* limits then ensure that T;z; = g; € C; for i =1,...,m. a0

6.2. Nonlinear constraints. We now consider the addition of the nonlinear
constraint To(z) € Cy to (3.1). Here, Ty : X — Zy, where Zj is a real Hilbert space
and Cy C Zj is nonempty, closed, and convex. We define the penalty function ¥y
and the multiplier update functions Ay analogously to ¥; and A; for i = 1,...,m.
Additionally, we define r(()k), )\((]k), Py, and My analogously. With these definitions,
the results in section 5.1 and Theorem 5.6 hold with no modifications. In the next

theorem, we demonstrate how the result of Theorem 5.9 changes in this setting.

THEOREM 6.2. Consider the setting of Theorem 5.9. Let T € X be a weak accu-
mulation point of {x®} with associated subsequence {x*)} and suppose that there
exists o € (0,1) such that

(6.4)

m -1
glks) .— (Z rz(’f:')> 50 = (@ED)e(f (kD)) 4 g (k) k) x g,
i=0

Moreover, assume that

(A9) Ty is completely continuous and continuously Fréchet differentiable, and the
derivative Ty satisfies

Ty =z, yp —y inX = To' (zk)yr = T'o(2)y.
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If |IPSUM;| =00 for i =0,...,m, then TZ € C and To(Z) € Cy. On the other hand,
if there exists at least one i = 0,...,m for which |P$UM;| < oo, then T satisfies

(6.5) (To'(2)"(To(7) — Py (To(2))),y — T)x-x 20 Yy e T7H(O).
Finally, if x satisfies the extended Robinson constraint qualification
(6.6) 0 € int {To(Z) + Ty’ (2)(TH(C) — 7) — Co},

then Ty(Z) € Co and (5.17) holds.

Proof. If |P¢ UM;| = oo for i = 0,...,m, then the feasibility follows from the
arguments in the proof of Theorem 5.9. To prove the remaining results, suppose that
|P¢ UM;| < oo for at least one ¢ =0, ...,m. In this case, (6.4) ensures that

(6.7) 0003 T AR AP ) 4 0Ty (@) Ao, A )

— o(ks) (6<kj> — (@) +gz(x<kj>)*<<kj>)) )
and assumption (A9) and Lemma 5.2 ensure that the left-hand side of (6.7) weakly*
converges to

68) fj (T3~ ) + BTy ()" (Ty() — Py (To(@)) = 0

for g; € C;, i =1,...,m, as in Theorem 5.9. Assumption (A9) further ensures that
Jim 00 (1 (20) Ao (@), A5, 1),y — 2)) - x
= 1o(T0'(2)" (To(%) — Pcy (To(2)),y — T)x~x VyeX

and therefore Proposition 5.7 applied to the i = 1,...,m constraints combined with
(6.4) and (6.7) implies (6.5). In particular, (8%i))1=2(y — z(*3)) — 0 since {x(*4)}
converges weakly (and hence is bounded) and

~to(To'(2)"(To(2) — Pey (To(2)),y — T)x+ x
= lim 9(’“){ (T (z*k9))* A (x(kj),)\ékj),rékj)),y—33(kj)>X*7X

kj-)OO

+ <e(k,~) _ (f/(x(kj)) _"_g/(x(kj))*c(kj))’y _ x(kj)>X*)X}

IN

limsup 9% )\(k ) (k')),y — 2. x <0 VyeT 0.

k;j—00

Ms

=1
To conclude, suppose that Z satisfies (6.6); then there exists p > 0 such that
BZ C To( )+ Ty (z)(T(C) — &) — Co. In particular, for any z € BZ°, there exists
Y E T~YC) and ¢ € Cy such that z = To(z) + To'(Z)(y — Z) — . Therefore,
(To(z) = Py (To(7)), 2) 2, = (To'(2)"(To (%) = Pe, (To (%)), y — T)x- x
+ (To(2) = P, (To(2)), To(Z) = ¢)z,-
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The first term on the right-hand side is nonnegative by the above arguments and the
second term is nonnegative by [3, Thm. 3.14]. Since this holds for all z € BPZO, we
have that Ty(Z) — P, (To(Z)) = 0 and consequently Tp(Z) € Cy. Combining this with
(6.8) and the injectivity of T shows that (5.17) holds. d

Remark 6.3 (optimality of Z). Note that if TZ € C, then the variational inequal-
ity (6.5) is the first-order optimality condition for the optimization problem

. 2
min, de, (To(2))".

7. Solution of the subproblem. An important motivation for the ALESQP
method is to enable iterative, and therefore inexact, solution of linear systems in-
volving the discretizations of ¢’(x). Therefore, a good choice for the solution of the
augmented Lagrangian subproblem (4.5) is the inexact, matrix-free trust-region SQP
method [19, 30]. To provide context for some modifications related to its use with
the augmented Lagrangian, we give a short summary of the method. For this, we
assume that X and Y are Hilbert spaces and that f and g have Lipschitz continuous
derivatives. We define the SQP Lagrangian .Z : X x Y* — R for (4.5), which includes
the augmented Lagrangian,

f(:r7<) = L(I‘) + <<7g(z)>Y*,Y7

where L(x) := Li(x), and k denotes the kth augmented Lagrangian iteration. The
SQP method [19] extends the composite-step approach of [32] to rigorously handle
inexact linear system solves. In the context of (4.5), the method comprises the fol-
lowing steps at its jth iteration. We start with an iterate x;, the corresponding
Lagrange multiplier (;, a trust-region radius Aj;, and a self-adjoint approximation
of Vol (24,(;), denoted by H; = H(z;,(;), with H € £(X,X). First, to reduce
the linear infeasibility, ||¢’(x;)n + g(z;)||y, we approximately solve the quasi-normal
subproblem,

(7.1) Eélg 9" (z;)n + g(z;)||3 subject to In|lx < 0.84;,

using Powell’s dogleg method [35], where we compute the second-order (Newton) step
by iteratively solving an augmented system, subject to the stopping condition provided
in [30, eq. 34]. Second, given a solution n; of (7.1), to improve optimality we solve
the tangential subproblem,

min 3 (H;6,0)x + (W (Vo (25,¢)) + Hyjny). D) x
(7.2) fex © N -
subject to t € Range(W;), |t+n,llx <Aj,

using the projected conjugate gradient (CGLmethod with Steihaug—Toint termination
criteria [40]. In (7.2) the linear operator W; € L(X, X) represents an approximate
projection onto the null-space of ¢'(z;), ker(g¢’(z;)). Its action on a vector is given by
the solution of another augmented system, with the stopping conditions [30, eq. 37
and 39]. Third, to ensure that the trial step remains sufficiently close to ker(¢'(z;)),
i.e., maintains linearized feasibility, we additionally project the solution ftvj of (7.2)
onto ker(¢'(x;)) to compute the tangential step t;. To accomplish this, we solve an
augmented system with the stopping condition [30, eq. 41]. This yields the trial
step s; = m; +t;. Fourth, we compute the Lagrange multipliers ¢;;+1 by solving
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another augmented system, with the stopping conditions [30, eq. 43]. Finally, we
apply trust-region acceptance and update criteria; see [30, Alg. 4, Steps 3 and 4].
The aforementioned augmented systems are optimality systems of the form

& (s 757 G- G+ ()

where Rx x~ € L(X,X™") is the inverse Riesz map [18]. If the system (7.3) is solved
directly, the residual (e; e3)" is ignored. If it is solved iteratively, the size of (e; )T
can be controlled using stopping conditions of the form

lerllx- + lleally < Tllyallx, 1ballx-, [[b2lly s Aj, Tom),

where T : Ri — R, is a tolerance function specific to each step, as referenced above,
and Tpom > 0 is a chosen nominal tolerance. The SQP method adjusts linear system
tolerances based on its progress, in order to ensure global convergence under stan-
dard assumptions. A discussion of the theoretical assumptions, the nominal tolerance
choice, the Riesz map, and some modifications to the augmented system (7.3) follows.

Function-space setting. The SQP algorithm [19] requires that X and Y be Hilbert
spaces. In section 8 all numerical examples satisfy these assumptions, justifying the
application of the algorithm. However, our augmented Lagrangian algorithm and the
corresponding convergence theory are developed in the more general setting of Banach
spaces. In order to apply ALESQP in Banach space, extensions to the SQP algorithm
are necessary. For instance, different notions of Cauchy points and Cauchy decrease
conditions are needed (see [13, sect. 8.3.2]), projections onto ker(g'(x)) as discussed
previously do not apply, the objective function in (7.2) must be modified, etc. The
required extensions, while plausible, are beyond the scope of this paper.

Lipschitz continuous derivatives. In [19] it is assumed that the functions L and
g are twice continuously differentiable. This is an appropriate assumption for all
numerical examples in section 8 in the absence of the constraints Tx € C, i.e., when
L = f. Once the constraints are included, the constraint penalty terms in L render
L’ Lipschitz continuous; see Corollary 4.4. The proof of Theorem 3.5 in [19] is easily
extended to handle . with Lipschitz continuous derivatives. Specifically, the second-
order Taylor expansion used on page 1537 of [19] can be replaced with the first-order
expansion, followed by the use of Lipschitz continuity of .#’; see the Assumption
AW.1c for the composite-step algorithm analyzed in [13], and Theorem 3.1.4 in [13].

Nominal linear solver stopping tolerance. The theory in [19] permits an arbitrary
choice of the nominal tolerance o > 0. For good numerical performance, we choose
Toom = min{V§® e}, The same value is used for all augmented system solves,
i.e., the nominal tolerances 7", 7P9 7PrJ rtang and rm from [19, 30].

Implementation of the Riesz maps. The SQP algorithm is posed in Hilbert space
and therefore naturally supports the use of Riesz maps, such as Rx- x. However,
in large-scale applications the Riesz map may require an iterative solution of addi-
tional linear systems—nested within the iterative augmented system solve, or in other
components of the SQP algorithm. Inexact or variable Riesz maps are not supported
by [19]. To circumvent this challenge, in section 8 we use diagonally weighted inner
products, which are exact to within machine precision.

Preconditioning of the projected CG method. In certain applications we can accel-
erate the projected CG iteration for the solution of (7.2) by replacing the augmented
system solve that yields the constraint null-space projection with the solution of a
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related linear system. Motivated by a comment about the “perfect preconditioner”
for projected CG [17, p. 1381], we solve a system of the form

9 <B< D4 (S (B = D) )T g’(xm) ()= (3)+ ().

e 0o ) \» e:

where B(z;) € L(X,X*) approximates f'/(z;) and D;; denotes the Newton derivative
[11, Def. 2.1] of P¢, ((r (k)) 1/\(k) + T'z;). Our assumptions for the use of this system
are as follows: (i) f is twice contlnuously differentiable; (ii) X is a Hilbert space and
B is nonnegative; and (iii) (e; e2)” = (0 0)T, i.e., only a direct solve is permitted. It
is possible to relax the third assumption and allow iterative solves of (7.4). However,
this leads to two challenges, namely the derivation of stopping conditions for the
iterative solve to replace conditions [30, eq. 37 and 39] and, more importantly, the
question of efficient preconditioning of (7.4). Both are beyond the scope of this paper,
which is why we enforce the third assumption whenever (7.4) is used in section 8.

8. Applications. In this section, we demonstrate Algorithm 4.1 on three infinite-
dimensional optimization problems. Our first problem computes a probability density
function (pdf) by maximizing the Rényi entropy. The second and third problems are
optimization problems constrained by PDEs. Throughout, Q C R¢ is Lipschitz with
d = 1,2, and LP(Q), p € [1, 0], denotes the usual p-order Lebesgue space. More-
over, L% (Q) will denote the subset of nonnegative LP(2) functions. We denote by
99 the boundary of Q and by Wb*(Q) and H*(Q2) := WH2(Q) the Sobolev spaces
of weakly differentiable functions [1]. Furthermore, we denote by W,*(€) the sub-
space of W13(Q)-functions that are zero on the boundary in the trace sense, and
HE(Q) := W, (). All examples are discretized using continuous piecewise linear fi-
nite elements on regular simplicial meshes. We use diagonal Riesz map discretizations
in all components of ALESQP, associated with the function spaces X, Y, and Z. In
particular, we use the lumped mass matrix for both L?(Q2) and Hj(Q).

We choose the following parameters for Algorithm 4.1:

(a) zero initial guesses throughout, i.e., 2 =0, ¢ =0, and )\( ) = 0, for
1 =0,...,m, with the exception of the initial guess x(o) =1 for the Rényi
entropy example (due to the presence of the log function);

(b) initial SQP subproblem stopping tolerances

6@ = €9 = max {107 | Ly/ (2©) + ¢/ (=) ¢V x-, 107}

(c) the basic tolerance update (see Remark 4.2), with reduction factors dy = 0.25,
61 =0.9, ¢g = 0.25, and ¢; = 0.9;

(d) the g-feasibility, optimality, and T- feasibility stopping tolerances §, = €, =
T. = 1076, respectively;

(e) update factors n; = 5, for i = 0,1,...,m, for the augmented Lagrangian
penalties; and

(f) 7 =5, Ko =103, 6; =0.1, oy = 0.1, B; = 0.9, 7\ = 1, 1y = 105, ~; = 0.49
fort=0,1,...,m

Initial augmented Lagrangian penalty parameters. As in all augmented Lagrangian
methods, the choice of the initial penalty parameters is important for good perfor-
mance, and ALESQP is no exception. We use two general guidelines when choosing
the initial parameters. First, they should be chosen as large as possible, without
detriment to the convergence of the SQP subproblem solver. A conservative choice
is rgl) =10 for s = 0,1,...,m. This is the default choice in ALESQP. Second, they
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should be chosen so that all terms comprising the augmented Lagrangian functional
are well balanced. In our first example, the inequality constraint scaling is such
that the augmented Lagrangian terms are well balanced, and we can use the default
penalty parameter choice. In the second and third examples, the problem structure—
specifically the splitting of the variables into states and controls, combined with the
PDE nature of the equality constraint linking the states and controls—dictates a more
subtle choice, described in more detail in section 8.2.

In the presented results, AL denotes the total number of augmented Lagrangian
iterations, SQP the total number of SQP iterations, CG the total number of CG
iterations, normg the equality constraint violation ||g(Z)||y, grad-lag the norm of the
gradient of the subproblem Lagrangian ||Ly'(z) + ¢'(Z)*(||x+, and feas the constraint
violation max; d¢, (TZ). We implemented the entire ALESQP framework in MATLAB
(R2019a) and studied its performance using a single core of a 2.9 GHz Intel Core i9
processor and 32 GB of RAM. The problem instances studied here range in size from
4,225 to 524,801 optimization variables.

8.1. Maximum entropy. The purpose of this example is to demonstrate mesh
independent performance using direct and iterative linear system solves. Our maxi-
mum entropy problem seeks a pdf, x, that satisfies certain moment constraints. Let
Q=100,12 X=LrPQ),Y =R Z=L%Q), Zy =R, C = Li(Q), and Cy = [0, 1].
We solve

(8.1a) min {f(:o - pi o </Q 2(w)? dw>}

(8.1b) subject to Tz :=x >0 a.e.,

(8.1c) g1(z) == /Qx(w) dw—-1=0,
(8.1d) g2(z) == /Qx(w)w dw—p=0,

(8.1e) To(z) := o~ 'det (/Q z(W)(w—p)(w—p)" dw) <1,

where o > 0 and p € R? are given, g(x) = (g1(x), g2()), and the objective function
is the negative p-order Rényi entropy [42] with p = 2.5. Constraints (8.1b) and (8.1c)
ensure that = is a pdf, (8.1d) ensures that the expected value associated with x is
w, and (8.1e) ensures that the generalized variance [45] associated with x is smaller
than o. A straightforward computation shows that T} satisfies assumption (A9) and
therefore Theorem 6.2 applies. We use the problem data

u=(0.45,0.45) and o= %det (/ (w—p)(w—p)" dw) ~ 0.00368,
Q
where the latter is chosen so the generalized variance associated with the optimal pdf
is less than half of the generalized variance associated with the uniform density.
For our numerical results, we use the default initial penalty parameters, rél) =10
and ril) = 10, because the constraint values at the initial guess are well balanced.
In particular, |72z = 1 and |Tp(2(®)| = 2. Table 1 documents ALESQP per-

formance as the problem size grows, using direct solutions of the augmented systems
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TABLE 1
Mazimum entropy, direct solution of (7.3). ALESQP performance for varying spatial discretiza-
tion (Mesh). The AL, SQP, and CG iteration numbers are nearly mesh independent.

Mesh AL SQP CG normg grad-lag feas
64x64 8 44 249 1.36e—16 8.32e—08 2.06e—07
128x128 7 42 239 7.85e—17 1.61e—07 4.60e—07
256 % 256 7 47 246 6.23e—16 3.47e—07 8.98e—07
512x512 6 43 261 5.27e—16 9.35e—07 4.37e—07
TABLE 2

Mazimum entropy, iterative solution of (7.3). ALESQP performance for varying spatial dis-
cretization (Mesh). The AL, SQP, and CG iteration numbers are nearly mesh independent. The
tot.aug column gives the total number of MINRES iterations in augmented system solves, for the
entire run of ALESQP. The avg.aug column gives the average number of MINRES iterations per
augmented system solve. The tot.aug and avg.aug iterations vary little as the mesh is refined.

Mesh AL SQP CG normg grad-lag feas tot.aug avg.aug

64x64 8 42 222 7.78e—14 2.00e—07 5.05e—07 2969 7.9
128x128 9 47 207 4.12e—15 3.01e—07 4.21e—08 2859 7.6
256 X256 10 54 234 3.24e—16 8.72e—07 3.66e—08 3217 7.5
512x512 8 57 273 5.27e—16 9.57e—07 1.63e—07 3516 7.4

(7.3). We observe nearly mesh-independent iteration numbers for the augmented La-
grangian loop and all its iterative components. We note that for this example the
penalty parameters do not increase; e.g., for the 128 x 128 mesh the final values
are réﬂ = 10 and r§7) = 10. Table 2 documents ALESQP performance with itera-
tive augmented system solves, where we have used unpreconditioned MINRES [33]
to solve (7.3). Again, we observe nearly mesh-independent iteration numbers for the
augmented Lagrangian loop and all its iterative components. Most notably, the total
number of MINRES iterations is around 3,000, and it does not change significantly as
the mesh is refined. In other words, we have demonstrated discretization-independent
algorithmic performance of a fully matrix-free framework on an infinite-dimensional
optimization problem with nonlinear inequality constraints. Finally, we note that the
solution time for the matrix-free approach increases linearly with problem size, with
the wallclock time of 5 seconds on the smallest mesh and 358 seconds on the largest
mesh.

8.2. Semilinear elliptic PDE with control and state constraints. The
purpose of this example is to demonstrate nearly mesh-independent performance of
ALESQP on a PDE-constrained optimization problem with control and state con-
straints. From now on, we solve (7.4) to accelerate the projected CG method. As
mentioned earlier, with (7.4) we only use direct linear system solves. Additionally, we
demonstrate that ALESQP meets constraint tolerances at the level of machine preci-
sion with only marginally increased iteration counts. Let Q = (0,1)?, X = X; @ X,
with X; = H&(Q) N Co(Q) and Xo = LQ(Q)7 Y = H71(9)7 and Z; = LQ(Q) for
i =1,2,3. Here, Cy(Q) is the space of continuous functions on €2 that vanish on the
boundary 92. We consider the problem

. 1 «
(8.2a) e nin_ {f(u7z) = §||U — g2 + 2||Z||2L2(Q)} ;

(8.2b) subject to wu, <wu a.e. in €,
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(8.2¢) 2o <z< 2z, a.e. inf,

—Autu’ —z=0 inQ,
(8.2d) g(u, 2) ~={ premem

u=0 on 09,

where ug € L%(Q), 24,2 € L*(Q) with 2, < 2 a.e. in Q, u, € C(Q) with u, <0 on
08, p € {3,5}, and a > 0 is the penalty parameter, are given. Moreover, g(u,z) = 0
is the weak form of (8.2d), T\ is the compact embedding of H(Q) into L*(Q), Tp
and T are the identity operator on L2(Q), Cy :={u € Z1|us < u}, Cy := {2z €
Zy|zq < 2z}, and C3 := {z € Z3|z < zp}. One can show that the solution to
(8.2d), u € H(Q), in fact satisfies u € Cp(£2) [10]. In addition, from [31, Thm. 2.14],
we recall that the Lagrange multiplier ¢ associated with the constraint g(u,z) = 0
satisfies ¢ € WOI’S(Q) with s € [1,2). Consequently, if z,, 2, € W1*(£2), then we
can conclude that the optimal control to (8.2) satisfies 2 € W1#(€2), where W5(Q)
is compactly embedded in L?(Q). As a consequence of Theorem 6.1 and Corollary
5.12(e), any weak accumulation point in (Hg(2) N Co(£2)) & W5(Q) of the sequence
of iterates generated by Algorithm 4.1 is feasible, so long as (6.3) holds. When only
state constraints are present (i.e., z, = —o0 and 2z, = +00), Corollary 5.12(c) ensures
that the sequence of iterates generated by Algorithm 4.1 is asymptotically stationary
and accumulates at a feasible point. Moreover, if (5.21) holds (which is possible
since T71(C) = {u € H () N Co(Q) |us < u} has a nonempty interior), then any
accumulation point is stationary by Corollary 5.16.

We investigate ALESQP performance on three scenarios: (i) only control con-
straints (i.e., u, = —00), (ii) only state constraints (i.e., z, = —o0 and z, = 00), and
(iii) both control and state constraints. For our numerical studies, we set r%l) =103,
rél) = «a, and rél) = «. The choice of initial penalty parameters is important to
account for the differences in regularity and scaling of the associated multipliers.
More precisely, we use « for the control-constraint parameters to balance the con-
trol penalty term %Hz||2L2(Q) in the objective function. Additionally, we note that
the control-constraint multipliers are in L?(2) and that we expect the corresponding
penalty parameters to remain bounded. In contrast, the state-constraint multiplier
is a measure, which suggests that the sequence {||)\§k)\| 7172, is unbounded. Conse-
quently, Lemma 5.2 suggests that sequence of penalty parameters {r%k)}zozl is also
unbounded. Therefore, it is appropriate to choose a very large initial parameter, here
7’%1) = 103. In our studies, considerably larger values of 1"51) had little impact on
overall performance, including the solution of the SQP subproblems. Smaller values
delayed the convergence of the outer augmented Lagrangian loop somewhat.

The problem data in (8.2) is motivated by [9]. In particular, we set p = 3,
ug=—1,a0=1073, 2, = —10, z, = 10, and

ug(x) = f% + %min{xl + zo,min{l + z1 — xo, min{l — z1 + 22,2 — x1 — x2} } }.

For scenario (i), we replace z, = 10 by 2z, = —1, to ensure that the constraints are
active. In Table 3 we observe nearly mesh-independent performance of ALESQP
for all three scenarios. Additionally, we note that the state-constraint penalty pa-
rameter increases significantly and that the growth of the control-constraint penalty
parameters is more moderate; e.g., for the 128 x 128 mesh in scenario (iii) the final
values are r§14) = 3.12 - 109, réM) = 1.25-1071, and réM) = 6.25-1071. More-
over, if we tighten the outer stopping tolerances to 107!2, as we do later in Table 4,
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TABLE 3
Semilinear. Control: only control constraints; State: only state constraints; Control + State:
control and state constraints. ALESQP performance for varying spatial discretization (Mesh). In
all cases, we observe that the AL, SQP, and CG iterations are nearly mesh independent.

Control State Control + State
Mesh AL SQP CG AL SQP CG AL SQP CG
64x64 9 20 41 11 28 57 12 35 71
128x128 9 20 40 12 33 66 14 44 90
256 %256 9 22 45 14 40 80 16 50 102
512x512 9 22 47 16 47 95 18 60 123
TABLE 4

Semilinear (Control + State). ALESQP performance for varying stopping tolerances, €+ =
0+ = T« = tol. We observe that it is possible to achieve machine precision for all convergence

measures with a very mild increase in the iteration counts.

tol AL SQP CG normeg grad-lag feas
le—6 14 44 90 9.51e—13 7.99e—12 1.35e—08
le—8 17 46 94 9.56e—13 1.31e—13 7.43e—10
le—10 21 48 98 9.58e—13 8.66e—14 2.77e—12
le—12 25 50 102 9.67e—13 8.20e—14 2.49e—14
he final 1 1 (25) _ 108 ,(25) 10-1
the final penalty parameter values are r;” "’ = 3.91-10°, ry"’ = 6.25- 107", and
ré%) = 6.25- 107!, In other words, the state-constraint penalty continues to grow,
while the control-constraint penalties stagnate. The discrepancy between r§25) and
(25) (25)

ry  or T4 strongly underlines the need for multiple penalties.

In Table 4, we illustrate a remarkable feature of our algorithm. We consider a
fixed mesh of size 128 x 128 and vary the outer stopping tolerances, including the
T-feasibility tolerance 7.. We observe that it is possible to achieve machine precision
for all convergence measures with almost no increase in the total number of projected
CG iterations.

8.2.1. Comparisons with related methods. We provide comparisons with
related augmented Lagrangian methods, developed in [27] and [9]. We note that in
[29], these methods are shown to be competitive with Moreau—Yosida regularization.
Our first comparison is based on the semilinear optimal control example with state
constraints and a quintic nonlinear term from [27, sect. 6.1]. Specifically, we set p = 5
in (8.2d), and we set the auxiliary function data wug, fq, and up as in [27]. Here,
up € C(Q) is an upper bound on u that fulfills u; > 0 on 9. Additionally, we have
a=1,u, =—00, z, = —00, and z, = +00. The setup for our numerical simulations,
based on finite element discretizations, is similar to the finite element framework used
in [27]. We compare the numbers of outer (augmented Lagrangian) and inner (semis-
mooth Newton) iterations reported in [27] with the numbers of outer (augmented La-
grangian) and inner (smooth equality-constrained SQP) ALESQP iterations. Table 5
demonstrates that ALESQP is a competitive method for PDE-constrained optimiza-
tion problems with state constraints.

Our second comparison is based on the semilinear optimal control example with
state and control constraints and a cubic nonlinear term, studied earlier in this section.
This problem was originally studied in [9, sect. 8.1]. In [9] the authors use a five-point
finite difference discretization, while our numerical studies use finite elements. To en-
able a more direct solution comparison, we match the computational grids used in

(© 2023 National Technology and Engineering Solutions of Sandia, LLC
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TABLE 5
Comparison (state constraints). ALESQP performance in comparison with the augmented La-
grangian method from [27). The numbers of outer and inner ALESQP iterations are modest.

Aug Lagr [27] ALESQP

Mesh Outer Inner Outer Inner CG

16x16 10 21 6 7 9

32x32 9 23 2 6 10

64x64 10 27 4 8 14
128 x128 11 33 7 11 17
256 X256 12 38 11 16 26
512x512 - - 8 14 21

TABLE 6

Comparison (control and state constraints). ALESQP performance in comparison with the
augmented Lagrangian method from [9]. ALESQP is a competitive alternative.

Aug Lagr [9] ALESQP

Mesh Outer Inner Outer Inner CG

16x16 27 211 12 23 50

32x32 30 238 11 28 61

64x64 38 289 11 35 73
128x128 46 332 12 47 97
256 %256 52 370 14 49 101
512x512 - — 16 54 109

[9], i.e., change our triangular meshes to quadrilateral meshes, and change linear sim-
plicial elements to bilinear quadrilateral elements. This results in a slight change of
ALESQP iteration numbers compared to those reported in Table 3. More importantly,
there are significant algorithmic differences between the method of [9] and ALESQP.
The method of [9] solves subproblems with control inequality constraints. Specifically,
the authors use fmincon in MATLAB. In contrast, ALESQP handles all inequality
constraints through the augmented Lagrangian, and solves smooth subproblems con-
strained only by equalities, using SQP. Therefore, we expect the inner iterations in
ALESQP to be computationally cheaper compared to the inner iterations in [9]. Table
6 demonstrates that ALESQP is a competitive alternative.

8.3. Burgers’ PDE with control and state constraints. This example
showcases ALESQP in the context of dynamic optimization. Let Q = (0,1), Q :=
Ox(0,T),% :=00x(0,T), X = X;0Xs with X; = L*(0,T; H}(2)) and X, = L?(Q),
Y = L?(0,T; H-Y(Q)), and Z; = Zy = Z3 = L?(Q). We consider the problem

. 1 Q
s i frs) = el + Sl |
(8.3b) subject to u, <u a.e. in Q,
(8.3¢) 2 <2<z, ae. inQ,

Opu + udpu — V2 u—2z=0 in Q,
u=0 onX,
u(-,0) —up =0 in

(8.3d) g(u, z) :

(© 2023 National Technology and Engineering Solutions of Sandia, LLC
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TABLE 7
Burger’s equation. Control: only control constraints; State: only state constraints; Control
+ State: control and state constraints. ALESQP performance for varying spatial and temporal
discretization (Mesh). In all cases, the AL, SQP, and CG iterations are nearly mesh independent.

Control State Control 4+ State
Mesh AL SQP CG AL SQP CG AL SQP CG
64x64 10 22 86 6 28 78 11 43 135
128x128 10 25 91 8 31 89 11 54 166
256 %256 10 29 104 8 33 92 14 72 210
512x512 10 29 105 9 34 95 14 68 201

with datum ug € L?(Q), u, € C(Q) with ug(z,t) < 0 for all (z,t) € 9Q x [0,T],
Za, 2b EALQ(Q) with z, < z, a.e. in (. Moreover, g(u,z)A: 0 is the weak form of
(8.3d), T} is the embedding of L2(0,T; H}(Q)) into L?(Q), T> and T3 are the identity
operators on L?(Q), and the constraint sets @-, i = 1,2,3, are defined similarly to
the ones in section 8.2. It is unclear if the above problem fully satisfies our theory. In
principle, one may be able to use regularity arguments similar to the ones from section
8.2. However, such regularity results are not known for ¢ associated with (8.3d), and
the required study is beyond the scope of the paper. Nevertheless, we observe that
our algorithm solves this problem efficiently. We refer to [41] for regularity results
involving the control-constrained case, case (i) below.

Similar to the previous example, we test ALESQP in three different scenarios: (i)
control constraints, (ii) state constraints, and (iii) mixed constraints. For our numeri-
cal results, we set 7‘%1) =10?, rél) = a, and 7‘:(31) = a. The choice of the initial penalty
parameters is justified by the problem structure and closely follows the considerations
given in section 8.2. For ¢ € (0,1), we set ug = 1 for z € (0,1/2) and ug = 0 other-
wise, « =5 x 1072, 2z, = —1, 2, = 2, and u, = 0. Table 7 shows ALESQP iteration
counts. As in all previous examples, we observe nearly mesh-independent perfor-
mance. Similar to section 8.2 we note that the state-constraint penalty parameter
increases significantly, while the control-constraint penalty parameters increase mod-
erately; e.g., for the 128 x 128 case in scenario (iii) the final values are 7“515) =1.25-10°,

ri'® = 1.25.10°, and r§'® = 2.5. 1071,
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