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Abstract
This article develops a new algorithm named TTRISK to solve high-dimensional
risk-averse optimization problems governed by differential equations (ODEs
and/or partial differential equations [PDEs]) under uncertainty. As an example,
we focus on the so-called Conditional Value at Risk (CVaR), but the approach
is equally applicable to other coherent risk measures. Both the full and reduced
space formulations are considered. The algorithm is based on low rank ten-
sor approximations of random fields discretized using stochastic collocation.
To avoid nonsmoothness of the objective function underpinning the CVaR, we
propose an adaptive strategy to select the width parameter of the smoothed
CVaR to balance the smoothing and tensor approximation errors. Moreover,
unbiased Monte Carlo CVaR estimate can be computed by using the smoothed
CVaR as a control variate. To accelerate the computations, we introduce an
efficient preconditioner for the Karush–Kuhn–Tucker (KKT) system in the full
space formulation.The numerical experiments demonstrate that the proposed
method enables accurate CVaR optimization constrained by large-scale dis-
cretized systems. In particular, the first example consists of an elliptic PDE with
random coefficients as constraints. The second example is motivated by a realis-
tic application to devise a lockdown plan for United Kingdom under COVID-19.
The results indicate that the risk-averse framework is feasible with the tensor
approximations under tens of random variables.
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1 INTRODUCTION

Uncertainty is ubiquitous in science and engineering applications. It may arise due to noisy measurements, unknown
parameters, or unverifiable modeling assumptions. Examples include, infectious disease models for COVID-19,1 partial
differential equations (PDEs) with random coefficients, boundary conditions or right-hand sides.2-5 The control or design
optimization problems constrained by such systems must produce controls or optimal designs which are resilient to this
uncertainty. To tackle this, recently in References 5-8, the authors have created risk-averse optimization frameworks
targeting engineering applications.
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The goal of this paper is to introduce a new algorithm TTRISK which uses a Tensor Train (TT) decomposition to
solve risk averse optimization problems constrained by differential equations (ODEs and/or PDEs). Let (Ω,,P) be a
complete probability space. Let U,Y be real reflexive Banach spaces, and let Z be a real Banach space. Here Y denotes
the deterministic state space, U is the space of optimization variables (control or designs etc.) and Z is the differential
equation residual space. LetUad ⊆ U be a closed convex subset and let c ∶ Y × Uad × Ω → Z denote, for example, a partial
differential operator, then consider the equality constraint

c(y,u;𝜔) = 0, in Z, a.a. 𝜔 ∈ Ω,

where a.a. indicates “almost all" with respect to a probabilitymeasureP. The goal of this article is to consider optimization
problems of the form

min
u∈Uad

[ (y,u;𝜔)] + 𝛼(u) subject to c(y,u;𝜔) = 0, in Z, a.a. 𝜔 ∈ Ω, (1)

where u ∈ Uad is the deterministic control and y ∈ Y is the state,  is the cost of the control, 𝛼 ≥ 0 is the regulariza-
tion parameter,  is the uncertain variable objective function and is the risk-measure functional which maps random
variables to extended real numbers.

We assume that is based on expectation, that is,

[X] = inf
t∈

t[X], where t[X] ∶= E[f (X , t)], (2)

f ∶ R × RN → R and  ⊆ RN , with N ∈ N, is a closed convex set. The problem class (2) consists of a large number of
risk-measures that are of practical interest. In particular, it includes the coherent risk measures, which are sub-additive,
monotonic, translation equivariant and positive homogeneous.9,10 Notice that subadditivity and positive homogeneity
implies convexity. These risk measures have several advantages, for instance, they preserve desirable properties of the
original objective function such as convexity. In addition, in engineering or in finance applications, tail-probability events
may be rare but critical if they lead to failure of a system. It is therefore essential to minimize the risk of failure, that is,
, and obtain controls u which are resilient to uncertainty in the system.

A typical example of coherent risk measure is the conditional value-at-risk (CVaR
𝛽
), where f in (2) is given by

f (X , t) = t + (1 − 𝛽)−1(X − t)+, (3)

with  = R, 𝛽 ∈ (0, 1) is the confidence level and (x)+ = max{x, 0}. CVaR
𝛽
is also known as expected shortfall. It is origin

lies in financialmathematics,9,11 but owing toKouri12 andKouri and Surowiec,6 it is nowbeingwidely used in engineering
applications. Our work in particular, focuses onminimization problems (1) with given by CVaR

𝛽
but it can be extended

to other coherent risk measures, such as buffered probability of exceedence (BPOE), of type (2).
Notice that, since risk measures, such as CVaR

𝛽
focus on the upper tail events, the traditional sampling techniques

to solve these stochastic PDE-constrained optimization problems are often computationally expensive. More precisely,
CVaR

𝛽
captures the cost associated with rare events, but it requires more samples in order to be accurately approximated,

which leads to many differential equation solves.6 Moreover, the presence of the nonsmooth function (⋅)+ in CVaR𝛽 poses
several challenges, including, nondifferentiable cost functional, wasted Monte Carlo samples outside of the support of
(⋅)+ = max{⋅, 0}, or slowly converging polynomial and other function approximation methods.

To tackle some of these challenges,6 has proposed a smoothing of (⋅)+ which requires solving a sequence of smoothed
optimization problems using Newton-based methods. Another solution strategy is to reformulate the problem and use
interior-point methods.8 A duality-based approach has also been recently proposed in Reference 13.

In this paper we develop an efficient method to tackle the above challenges associated with minimization of CVaR
𝛽

subject to constraints given by differential equations with random inputs. We consider two formulations of (1). The
first one is the implicit approach where we remove the equality constraint c(y,u;𝜔) = 0 via a control to solution map
u → y.6,8,13 The second case is the full space approach, where we directly tackle the full problem (1) using the Lagrangian
formulation. The latter formulation appears to be new in the context of risk-averse optimization. Numerical experi-
ments demonstrate that the full formulation converges more reliably for extreme parameters, for example, large 𝛽 and
small 𝛼.
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Our framework builds rigorously on tensor decomposition methods, which emerged in the past two decades14,15
as an efficient approximation of multi-index arrays, in particular when those contain expansion coefficients of
high-dimensional functions.16,17 The idea starts from the classical separation of variables. Functions of certain structure18
or regularity19 have been shown to admit rapidly (often exponentially) convergent series, where each term is a product
of univariate functions. Later, instead of a simple sum of products, it was found more practical to consider hierarchical
separation of variables.14 A particularly simple instance of such is the Tensor Train (TT) decomposition20 that admits
efficient numerical computations. One of the most powerful algorithms of this kind is the cross approximation, as well
as its variants.21-23 Those allow one to compute a TT approximation to potentially any function, using a number of sam-
ples from the sought function that is a small multiple of the number of degrees of freedom in the tensor decomposition.
Once TT decompositions are computed, integration, differentiation and linear algebra of the original functions can be
implemented using their TT formats instead with a linear cost in the dimension.

However, irregular functions, such as the (⋅)+ function in (3), may lack an efficient TT decomposition. The main
novelty of the paper is an algorithm that is adaptive in both the TT complexity andwidth parameter in the smoothedCVaR
function, which allows one to actually alleviate the curse of dimensionality, since smooth functions do admit convergent
TT approximation. If the bias from the smoothing is still too large for a feasible TT decomposition, we can obtain an
unbiased, asymptotically exact solution with a version of Multilevel Monte Carlo methods,24 namely, we use a smoothed
solution as a control variate.25

The numerical experiments demonstrate that the stochastic risk-averse control problem can be solved with a cost that
depends at most polynomially on the dimension. This allows us to solve a realistic risk-averse ODE control problem with
20 random variables.

1.1 Outline

Section 2 and Appendix set up the relevant notation and provide the necessary background on risk-averse-optimization
and TT decomposition. In Section 3, we introduce the control-to-state map, that is, u → y, and eliminate the equality
constraints c(⋅) = 0. The resulting optimization problem (1) is only a function of the control variable u and is known as
reduced problem. A control variate correction of the problem is considered in Section 3.2. When the constraint c(⋅) is
handled directly, the resulting formulation is called full-space problem and is discussed in Section 4. This is followed by
Section 4.2 where the Gauss–Newton system for the full-space formulation is considered. Next, in Section 4.3 we consider
preconditioning strategies for this formulation. Section 5 focuses on our numerical examples, where we first consider
an optimal control problem constrained by an elliptic PDE with random coefficients. This is followed by the risk-averse
optimal control of an infectious disease model which has been recently developed to propose lockdown strategies in the
United Kingdom due to COVID-19.

2 BACKGROUND

In this section,we first provide backgroundonCVaR
𝛽
and introduce a regularized problemwithCVaR

𝛽
replaced byCVaR𝜀

𝛽

with 𝜀 > 0. This is followed by a discussion on TT decomposition. The aim of this section is to set the stage for TTRISK.

2.1 Risk-averse optimization

Let  ∶= (Ω,,P) be a complete probability space. Here,Ω is the set of outcomes, ⊂ 2Ω is the 𝜎-algebra of events, and
P ∶  → [0, 1] is an appropriate probability measure. Let X be a (scalar) random variable defined on . For example, we
will consider the objective function  in what follows. Then, the expectation of X denoted by E[X] is given by

E[X] =
∫Ω

X(𝜔)dP(𝜔).

As stated in the introduction, this paper focuses on optimization problems of type (1) where is the risk measure given
by (2). In particular, we consider the conditional value-at-risk (CVaR

𝛽
) at confidence level 𝛽, 𝛽 ∈ (0, 1) where f in (2) is
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given by (3), with  = R. CVaR
𝛽
builds on the concept of value-at-risk (VaR) at level 𝛽 ∈ (0, 1), which is the 𝛽-quantile

of a given random variable.
More precisely, let X be a random variable and let 𝛽 ∈ (0, 1) be fixed. Then, VaR

𝛽
[X] is given by

VaR
𝛽
[X] ∶= inf

t∈R

{t ∶ P[X ≤ t] ≥ 𝛽},

where P[X ≤ t] denotes the probability that the random variable X is less than or equal to t. VaR
𝛽
is unfortunately not

coherent because it violates subadditivity / convexity. This is why CVaR
𝛽
is preferred as a risk measure.

Even though now we know that coherent risk-measures can be written in the abstract form (2), however, the
one-dimensional (1D)minimization formulation of CVaR

𝛽
was first introduced by Rockafellar andUryasev in References

9,11:

CVaR
𝛽
[X] = inf

t∈R

{
t + 1

1 − 𝛽
E[(X − t)+]

}
.

Moreover, if X is a continuous random variable, then

CVaR
𝛽
[X] = E[X|X > VaR

𝛽
[X]],

which shows that CVaR
𝛽
[X] is the average of 𝛽-tail of the distribution of X . Thus, CVaR

𝛽
[X] emphasizes rare and low

probability events, especially when 𝛽 → 1.

2.2 Model problem

Our model problems are obtained by replacing in (1) by CVaR
𝛽
, that is,

min
u∈Uad

CVaR
𝛽
[ (y,u;𝜔)] + 𝛼(u) subject to c(y,u;𝜔) = 0, in Z, a.a. 𝜔 ∈ Ω, (4)

where again Uad denotes the set of admissible controls. We use (y,u) to denote the state and control, respectively. In our
setting u is always deterministic. The constraint equation c(y,u;𝜔) = 0 represents a differential equation with uncertain
coefficients, (u) is a deterministic cost function, 𝛼 is the regularization parameter, and  (y,u;𝜔) is a random variable
cost function.

Here, we make the finite dimensional noise assumption on the equality constraint.6 We assume that 𝜔 can be sampled
via a finite random vector 𝜉 ∶ Ω → Ξ instead, where Ξ ∶= 𝜉(Ω) ⊂ Rd with d ∈ N. For example, coefficients, defining the
constraint c(y,u;𝜔) = 0, may be expressed by a Karhunen–Loeve (KL) approximation of an infinite-dimensional contin-
uous random field, see (42) for an example. This allows us to redefine the probability space to (Ξ,Σ, 𝜌), where Σ = 𝜉() is
the 𝜎-algebra of regions, and 𝜌(𝜉) is the continuous probability density function such that E[X] = ∫Ξ X(𝜉)𝜌(𝜉)d𝜉. The ran-
dom variable X(𝜉) can be considered as a function of the random vector 𝜉 = (𝜉(1), … , 𝜉

(d)), belonging to the Hilbert space
 = {X(𝜉) ∶ ||X|| < ∞}, equipped with the inner product ⟨X ,Y⟩ = ∫Ξ X(𝜉)Y (𝜉)𝜌(𝜉)d𝜉 and the Euclidean norm ||X|| =√⟨X ,X⟩. Since 𝜉(1), … , 𝜉

(d) are independent randomvariables, we assume that each 𝜉(k) has a probability density function
𝜌

(k)(𝜉(k)), and that the space of functions  is isomorphic to a tensor product of spaces of univariate functions,  =  (1)
⊗

· · ·⊗  (d), where (k) = {X (k)(𝜉(k)) ∶ ||X (k)|| < ∞}, ||X (k)|| = √⟨X (k)
,X (k)⟩, ⟨X (k)

,Y (k)⟩ = ∫
R
X (k)(𝜉(k))Y (k)(𝜉(k))𝜌(k)(𝜉(k))d𝜉(k),

k = 1, … , d.
Then, (4) reads

min
u∈Uad

CVaR
𝛽
[ (y,u; 𝜉)] + 𝛼(u) subject to c(y,u; 𝜉) = 0, in Z, a.a. 𝜉 ∈ Ξ. (5)

Here and in what follows, bracketed superscripts (e.g. 𝜉(d)) denote a component, not a power or derivative.
To tackle nonsmoothness in CVaR

𝛽
, we employ a smoothing-based approach from.6 The smoothing approach is essen-

tially aimed at approximating the positive part function (⋅)+ in CVaR𝛽 by a smooth function g𝜀 ∶ R → R, which depends
on some 𝜀 > 0.Various examples of g

𝜀
are available in Reference 6 (section 4.1.1). In particular, we consider the following
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C∞-smoothing function

g
𝜀
(x) = 𝜀 log(1 + exp(x∕𝜀)), (6)

where

g′
𝜀
(x) = 1

1 + exp(−x∕𝜀)
, g′′

𝜀
(x) = 1

𝜀

(
1

exp(x∕(2𝜀)) + exp(−x∕(2𝜀))

)2

. (7)

Thus, the optimization problem for smooth CVaR𝜀
𝛽

is given by

⎧⎪⎨⎪⎩

min(u,t)∈Uad×R 
𝜀

t,𝛽[ (y,u; 𝜉)] + 𝛼(u)
subject to
c(y,u; 𝜉) = 0, in Z, a.a. 𝜉 ∈ Ξ,

, (8)

where


𝜀

t,𝛽[ (y,u; 𝜉)] ∶= t + 1
1 − 𝛽

E[g
𝜀
( (y,u; 𝜉) − t)]. (9)

For convergence analysis of (8) to (5), we refer to Reference 6.

2.3 Cartesian function space

The dimension d of the random vector 𝜉 can be arbitrarily high, for example, tens of model tuning parameters or KL
coefficients. In this case expectations as in (9) become high-dimensional integrals. Instead of a directMonte Carlo average
(which may converge too slowly), we can introduce a high-order quadrature rule (e.g. Gauss–Legendre) with n

𝜉
∈ N

points in each of the components 𝜉(1), … , 𝜉

(d) independently. However, the exponential total number of quadrature points
in all variables nd

𝜉

becomes intractable even for moderate dimensions.

2.4 TT decomposition

We circumvent this “curse of dimensionality” problem by approximating all functions depending on 𝜉 by a TT decompo-
sition,20 which admits efficient integration and differentiation.

Definition 1. A square-integrable function f (𝜉) is said to be approximated by a (functional) TT decomposition16,17
with a relative approximation error 𝜖 if there exist univariate functions F(k)(⋅) ∶ 𝜉(k) ∈ R → Rrk−1×rk , k = 1, … , d,
such that

̃f (𝜉) ∶=
r0,… ,rd∑
s0,… ,sd=1

F(1)
s0,s1 (𝜉

(1))F(2)
s1,s2 (𝜉

(2)) · · ·F(d)
sd−1,sd (𝜉

(d)), (10)

where the subscripts sk−1, sk denote elements of a matrix, and ||f − ̃f || = 𝜖||f ||. The factors F(k) are called TT cores, and the
ranges of summation indices r0, … , rd ∈ N are called TT ranks.

Without loss of generality we can let r0 = rd = 1, but the other TT ranks r1, … , rd−1 can vary depending on the
approximation error. One example is a bi-variate truncated Fourier series ̃f (𝜉(1), 𝜉(2)) =

∑r
s=−rfs(𝜉(1)) exp(is𝜉(2)).

From (10), we notice that the expectation of ̃f factorizes into univariate integrations,

E[̃f ] =
r0,… ,rd∑
s0,… ,sd=1

(
∫

F(1)
s0,s1 (𝜉

(1))𝜌(1)(𝜉(1))d𝜉(1)
)
· · ·

(
∫

F(d)
sd−1,sd (𝜉

(d))𝜌(d)(𝜉(d))d𝜉(d)
)
.
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For practical computations with (10) we introduce univariate bases {𝓁i(𝜉(k))}
n
𝜉

i=1, and the multivariate basis constructed
from a tensor product,

Li1,… ,id(𝜉) ∶= 𝓁i1(𝜉
(1)) · · ·𝓁id(𝜉

(d)).

Now we can collect the expansion coefficients of ̃f into a tensor F ∈ R
n
𝜉

×···×n
𝜉 ,

̃f (𝜉) =
n
𝜉∑

i1,… ,id=1
F(i1, … , id)Li1,… ,id(𝜉). (11)

Similarly, TT cores in (10) can be written using three-dimensional tensors F(k) ∈ R
rk−1×n𝜉×rk ,

F(k)
sk−1,sk (𝜉

(k)) =
n
𝜉∑

i=1
F(k)(sk−1, i, sk)𝓁i(𝜉(k)), k = 1, … , d. (12)

The original (discrete) TT decomposition20 was introduced for tensors,

F(i1, … , id) =
r0,… ,rd∑
s0,… ,sd=1

F(1)(s0, i1, s1) · · ·F(d)(sd−1, id, sd). (13)

Note that F contains nd
𝜉

elements, whereas storing F(1)
, … ,F(d) needs only

∑
k rk−1n𝜉rk elements. For brevity we can

define the maximal TT rank r ∶= maxk rk, which gives us a linear storage complexity of the TT decomposition,(dn𝜉r2).
If {𝓁i(𝜉(k))}

n
𝜉

i=1 is a Lagrange polynomial basis, defined by the quadrature points Ξ
(k) ∶= {𝜉(k)i } and weights {wi} such

that 𝓁i(𝜉(k)j ) = 𝛿i,j, we obtain

E[̃f ] =
∑

i1,… ,id

̃f (𝜉(1)i1
, … , 𝜉

(d)
id
)wi1 · · ·wid =

∑
i1,… ,id

F(i1, … , id)wi1 · · ·wid

=
r0,… ,rd∑
s0,… ,sd=1

(∑
i1

F(1)(s0, i1, s1)wi1

)
· · ·

(∑
id

F(d)(sd−1, id, sd)wid

)
. (14)

The summation over s0, … , sd in the right hand side can be computed recursively by multiplying only two tensors at a
time. Assuming that a partial result Rk ∈ Rr0×rk is given, we can compute

Rk+1(s0, sk+1) =
rk∑
sk=1

Rk(s0, sk)

(∑
ik+1

F(k+1)(sk, ik+1, sk+1)wik+1

)
, (15)

as a matrix product with a(n
𝜉
r2) complexity. Starting withR0 = 1 and finishing withRd = E[̃f ], we complete the entire

integration in (dn
𝜉
r2) operations.

Such a recursive sweep over TT cores is paramount to computing TT approximations of arbitrary functions, or to
solution of operator equations in the TT format. For example, the TT-Crossmethod (see Appendix A) requires (dn

𝜉
r2)

samples from a function f (𝜉) and (dn
𝜉
r3) further floating point operations to compute a TT approximation ̃f (𝜉) ≈ f (𝜉).

Similarly, linear algebra on functions can be recast to linear algebra on their TT cores with a linear complexity in the
dimension (see Appendix B).

3 REDUCED SPACE FORMULATION

This paper considers two approaches to tackle (8). In this section, we first introduce TTRISK for the so-called reduced
form of (8). To ensure that CVaR𝜀

𝛽

is a statistically unbiased estimator of CVaR
𝛽
, we introduce a control variate correction

in Section 3.2.

 10991506, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2481 by G

eorge M
ason U

niversity, W
iley O

nline Library on [05/07/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License



ANTIL et al. 7 of 29

3.1 Smoothed CVaR with TT approximations

Assume that c(y,u; 𝜉) = 0 is uniquely solvable, that is, for each u ∈ Uad there exists a unique solution mapping y(u; ⋅) ∶
Ξ → Y for P a.a 𝜉 ∈ Ξ. The resulting optimization problem (8) only depends on u and is given by

min
(u,t)∈Uad×R

{
𝔍(u, t) ∶= 

𝜀

t,𝛽[j(u; 𝜉)] + 𝛼(u)
}
, (16)

where

j(u; 𝜉) ∶=  (y(u; 𝜉),u; 𝜉). (17)

The exact expectation in CVaR𝜀
𝛽

can be approximated by a quadrature similarly to (14). We denote the total number
of quadrature points N (which is formally N = nd

𝜉

in the Cartesian formulation). However, we need to tackle the curse of
dimensionality using the TT decomposition.

Definition 2. The approximate expectationEN[f ] of a function f (𝜉) is defined asEN[f ] ∶= E[̃f ], where ̃f (𝜉) is a TT approx-
imation (10) to f (𝜉), computed using the TT-Cross algorithm as described in Appendix A, and the integration of ̃f (𝜉) is
carried out as shown in (15).

This leads to the following approximation of (16):

min
(u,t)∈ad×R

{
𝔍N(u, t) ∶= 

𝜀

t,𝛽,N[j(u; 𝜉)] + 𝛼(u)
}
, (18)

where


𝜀

t,𝛽,N[j(u; 𝜉)] ∶= t + 1
(1 − 𝛽)

EN[g𝜀(j(u; 𝜉) − t)].

However, to optimize the entire cost 𝔍N we need to calculate the first and second-order derivatives. We readily obtain
that the first-order derivatives are

∇u𝔍N(u, t) = (1 − 𝛽)−1EN[g′𝜀(j(u; 𝜉) − t)∇uj(u; 𝜉)] + 𝛼∇u(u)
∇t𝔍N(u, t) = 1 − (1 − 𝛽)−1EN[g′𝜀(j(u; 𝜉) − t)],

(19)

and the second-order derivatives are

∇uu𝔍N(u, t) = (1 − 𝛽)−1EN
[
g′′
𝜀
(j(u; 𝜉) − t)∇uj(u; 𝜉)∇uj(u; 𝜉)∗ + g′

𝜀
(j(u; 𝜉) − t)∇uuj(u; 𝜉)

]
+ 𝛼∇uu(u), (20)

∇ut𝔍N(u, t) = −(1 − 𝛽)−1EN[g′′𝜀 (j(u; 𝜉) − t)∇uj(u; 𝜉)], (21)

∇tu𝔍N(u, t) = −(1 − 𝛽)−1EN[g′′𝜀 (j(u; 𝜉) − t)∇uj(u; 𝜉)∗], (22)

∇tt𝔍N(u, t) = (1 − 𝛽)−1EN[g′′𝜀 (j(u; 𝜉) − t)]. (23)

Observe that the second derivatives of 𝔍N computed above depend on g′′𝜀 . From (7), we see that g′′
𝜀

decays rapidly away
from the interval (−𝜀, 𝜀). Consequently, the Hessian

H =

[
∇uu𝔍N ∇ut𝔍N

∇tu𝔍N ∇tt𝔍N

]
, (24)

can degenerate if g′′
𝜀

(j(u; 𝜉i) − t) = 0 for all i = 1, … ,N, since all but the (1, 1) block of H are zeros.26 (In fact, the Hes-
sian may become ill-conditioned also if g′′

𝜀

(j(u; 𝜉i) − t) is close to zero.) To circumvent this problem, we adopt a technique
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8 of 29 ANTIL et al.

similar to that used in augmented Lagrangian methods to dynamically update augmentation parameters within the
optimization problem.26,27 We start with t0 = 𝜀0 = EN[j(u0; 𝜉)]. In many cases there will be a lot of points j(u; 𝜉i) − t in a
significant support of g′′

𝜀

. During the course of Newton iterations, we decrease 𝜀 geometrically,

𝜀m+1 = 𝜇𝜀𝜀m, (25)

where 0 < 𝜇
𝜀
< 1 is a tuning factor (e.g. 𝜇

𝜀
= 1∕2). However, the next iterate tm+1 may end up far on the tail of g′′𝜀m again.

To prevent this from happening, we perform a line search, where in addition to a non-increasing residual condition1

‖‖‖‖‖‖

[
∇u𝔍N(um+1, tm+1)
∇t𝔍N(um+1, tm+1)

]‖‖‖‖‖‖
≤

‖‖‖‖‖‖

[
∇u𝔍N(um, tm)
∇t𝔍N(um, tm)

]‖‖‖‖‖‖
, (26)

where um+1 = um + h𝛿um, tm+1 = tm + h𝛿tm with a step size h > 0 and Newton directions 𝛿um, 𝛿tm, we require that

EN[exp(−|j(um+1; 𝜉) − tm+1|∕𝜀m)] > 𝜃, (27)

for some 0 < 𝜃 < 1. In the numerical experiments we have found the iterations to be robust and insensitive for 𝜃 between
10−2 and 10−1.

Proposition 1. This ensures that

∇tt𝔍N(um+1, tm+1) >
𝜃

1∕𝜇
𝜀

4𝜀m+1(1 − 𝛽)
,

stays away from zero by a fixed fraction of the maximum of g′′
𝜀m+1

(t), which is equal to 1∕(4𝜀m+1).

Proof. Firstly, note from (7) that

g′′
𝜀
(t) ≥ 1

𝜀

(
1

2 exp(|t|∕(2𝜀))
)2

= 1
4𝜀

exp
(
− |t|
𝜀

)
. (28)

Now,

∇tt𝔍N(um+1, tm+1) = (1 − 𝛽)−1EN
[
g′′
𝜀m+1

(j(um+1; 𝜉) − tm+1)
]

(from Equation 23)

≥
1

4𝜀m+1(1 − 𝛽)
EN

[
exp

(
−
|j(um+1; 𝜉) − tm+1|

𝜇
𝜀
𝜀m

)]
(by linearity of EN , (28) and (25))

= 1
4𝜀m+1(1 − 𝛽)

EN

[
exp

(
−
|j(um+1; 𝜉) − tm+1|

𝜀m

)1∕𝜇
𝜀

]

≥
1

4𝜀m+1(1 − 𝛽)

(
EN

[
exp

(
−
|j(um+1; 𝜉) − tm+1|

𝜀m

)])1∕𝜇
𝜀

(by Jensen’s inequality since 1
𝜇
𝜀

> 1)

>

1
4𝜀m+1(1 − 𝛽)

𝜃

1∕𝜇
𝜀

. (by assumption (27))

The proof is complete. ▪

If the dimension of discretized u is small, we can compute the TT-Cross approximation of ∇uj(um, 𝜉),
∇uuj(um, 𝜉), g′′𝜀m(j(um; 𝜉) − tm) and g′′𝜀m (j(um; 𝜉) − tm) directly, since evaluations of j, ∇uj and ∇uuj are available explicitly
from (17) under the unique solution mapping y(u; ⋅), compute the expectations in (19) and (20), and solve

H

[
𝛿um

𝛿tm

]
= −

[
∇u𝔍N(um, tm)
∇t𝔍N(um, tm)

]
, (28)

for the Newton directions. However, if u is large, ∇uuj(um, 𝜉) is large and dense, and its TT decomposition becomes too
expensive. In fact, even multiplying ∇uu𝔍N(u, t) by a vector in an iterative solver would require recomputation of the TT
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ANTIL et al. 9 of 29

decomposition in each iteration. To avoid this problem, we propose to replace the expectation in (20) by sampling at a
fixed point 𝜉. This gives

∇uũ𝔍N(u, t) = (1 − 𝛽)−1
[
EN[g′′𝜀 (j(u; 𝜉) − t)]∇uj(u; 𝜉)∇uj(u; 𝜉)∗

]

+ (1 − 𝛽)−1EN[g′𝜀(j(u; 𝜉) − t)]∇uuj(u; 𝜉) + 𝛼∇uu(u), (29)

and consequently a fixed-point Hessian

̃H =

[
∇uũ𝔍N ∇ut𝔍N

∇tu𝔍N ∇tt𝔍N

]
. (30)

The choice of 𝜉 is motivated by the mean value theorem. We can treat EN[g′𝜀(j(u; 𝜉) − t)∇uuj(u; 𝜉)] as an expectation of
∇uuj(u; 𝜉) alone over a probability density function 𝜌(𝜉) = (1∕C)g′

𝜀

(j(u; 𝜉) − t)𝜌(𝜉), where C ∶= EN[g′𝜀(j(u; 𝜉) − t)] is the
normalizing constant. In turn, for a linear∇uuj(u; 𝜉) it holdsE

𝜌
[∇uuj(u; 𝜉)] = ∇uuj(u;E𝜌

[𝜉]), so we can take the right-hand
side as an approximation also in a general case. This gives

𝜉 = E
𝜌
[𝜉] =

EN[g′𝜀(j(u; 𝜉) − t)𝜉]
EN[g′𝜀(j(u; 𝜉) − t)]

. (31)

We focus on ∇uuj (and hence on g′𝜀) since ∇uuj is usually the dominant part of ∇uu𝔍N . Note that the action ∇uuj(u; 𝜉) ⋅ 𝛿u
can usually be applied efficiently, since this requires the solution of one forward and one adjoint deterministic problems
at fixed 𝜉 = 𝜉. Similarly, ∇uu(u) is a sparse, and ∇uj(u; 𝜉)∇uj(u; 𝜉)∗ is a rank-1 matrix after discretization. This allows us
to solve the Newton system (28) with ̃H instead of H iteratively with fast matrix-vector products.

Lastly, if Uad is constrained, we can add the projection of the Newton direction onto Uad. To reduce the number of
projections in the step selection stage, we write the method in a Frank–Wolfe’s fashion,28 that is, we project the search
direction, ̂𝛿um ∶= ProjUad

(um + 𝛿um) − um, where ProjUad
(⋅) is the orthogonal projection onto Uad, followed by the usual

line search in um+1 = um + h ̂𝛿um. The entire procedure is summarized in Algorithm 1.

3.2 Smoothed CVaR as control variate for Monte Carlo

Assuming that g̃
𝜀

and ̃j are TT approximations to g
𝜀
and j, respectively, we can define the approximate expectation of the

exact function as the exact expectation of the approximate function, since the approximate function is a polynomial:

EN[g𝜀(j(u; 𝜉) − t)] = E[g̃
𝜀

(̃j(u; 𝜉) − t)].

Algorithm 1. TTRISK (REDUCED CASE)

Require: 𝛼, 𝛽, line search parameter 𝜃, number of iterations Imax, smoothness reduction factor 𝜇𝜀, stopping tolerance,
procedure to compute j(u, 𝜉).

1: Setm = 0, u0 = 0, t0 = 𝜀0 = EN[j(u0; 𝜉)].
2: whilem ≤ Imax and |tm − tm−1| > tol ⋅ |tm| or ‖um − um−1‖ > tol ⋅ ‖um‖ orm = 0 do
3: Approximate j(um; 𝜉),∇uj(um; 𝜉), g′𝜀m(j(um; 𝜉) − tm), g′′𝜀m(j(um; 𝜉) − tm) by TT-Cross.
4: Compute expectations in (19), (21)–(23), (29) and (31) using (14),(15).
5: Solve (28) with H or ̃H using Conjugate Gradients method.
6: Project the increment ̂𝛿um ∶= ProjUad

(um + 𝛿um) − um. ⊳ for control constraints
7: Find 0< h ≤ 1 such that (26) and (27) hold.
8: Update um+1 = um + h ̂𝛿um, tm+1 = tm + h𝛿tm, 𝜀m+1 = 𝜇𝜀𝜀m.
9: Setm = m + 1
10: end while
11: return um ≈ u, tm ≈ t,𝜀m

t,𝛽,N[j(um; 𝜉)] ≈ CVaR
𝛽
.
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10 of 29 ANTIL et al.

Using add-and-subtract trick, we can write the exact risk-measure functional as follows,

t = t + 1
1 − 𝛽

E[g̃
𝜀

(̃j(u; 𝜉) − t)] + 1
1 − 𝛽

[
E(j(u; 𝜉) − t)+ − E[g̃

𝜀

(̃j(u; 𝜉) − t)]
]
.

However, for the last term we can use a different quadrature for computing the expectation, such as Monte Carlo withM
samples. This defines a corrected smoothed functional:


𝜀,M
t,𝛽,N[j(u; 𝜉)] ∶= t + 1

(1 − 𝛽)
EN[g̃

𝜀

(̃j(u; 𝜉) − t)]

+ 1
(1 − 𝛽)

1
M

M∑
𝓁=1

[
(j(u; 𝜉𝓁) − t)+ − g̃

𝜀

(̃j(u; 𝜉𝓁) − t)
]
, (32)

where 𝜉𝓁 are i.i.d. samples from 𝜌(𝜉). The benefit of this scheme stems from the fact that if the approximation is accu-
rate, that is, var[(j(u; 𝜉) − t)+ − g̃

𝜀

(̃j(u; 𝜉) − t)] ≤ 𝛿2var[(j(u; 𝜉) − t)+] is small (where 𝛿 is the total error from the TT-Cross
(Algorithm 2) and smoothing), by the law of large numbers the variance of this estimator reads

var
[

𝜀,M
t,𝛽,N

]
≤ 𝛿

2 var[(j(u; 𝜉) − t)+]
M

≪

var[(j(u; 𝜉) − t)+]
M

,

where the latter term is the variance of the straightforward Monte Carlo approximation oft. Consequently, one needs a
much smallerM to achieve the same variance (i.e. Mean Square Error) threshold. One can say that g̃

𝜀

is used as a control
variate for variance reduction of Monte Carlo,25,29 or vice versa, that (32) is the second-level correction24,30 to the surrogate
model g̃

𝜀

. This makes𝜀,M
t,𝛽,N a statistically unbiased estimator oft.

Similarly we can correct the cost function and its gradient (19):

∇u𝔍M
N (u, t) = (1 − 𝛽)−1E[g̃′

𝜀

(̃j(u; 𝜉) − t)∇ũj(u; 𝜉)] + 𝛼∇u(u)

+ 1
(1 − 𝛽)M

M∑
𝓁=1

[
𝜃(j(u; 𝜉𝓁) − t)∇uj(u; 𝜉𝓁) − g̃′

𝜀

(̃j(u; 𝜉𝓁) − t)∇ũj(u; 𝜉𝓁)
]
, (33)

∇t𝔍M
N (u, t) = 1 − (1 − 𝛽)−1E[g̃′

𝜀

(̃j(u; 𝜉) − t)]

− 1
(1 − 𝛽)M

M∑
𝓁=1

[
𝜃(j(u; 𝜉𝓁) − t) − g̃′

𝜀

(̃j(u; 𝜉𝓁) − t)
]
, (34)

where 𝜃(t) = 1 if t ≥ 0, and 0, otherwise. These gradients can be plugged into line 4 of Algorithm 1 instead of (19). Since
the variance of the correction is expected to be small, we omit it in the Hessian, turning Algorithm 1 into a Gauss–Newton
method.

4 LAGRANGIAN CVAR FORMULATION

In this section, we first focus on the full-space formulation. This is followed by a Gauss–Newton system setup for the
problem and a preconditioning strategy for this system.

4.1 Semi-discrete formulation

As in Section 3, we let {𝜉i}Ni=1 be all nodes, and {wi}Ni=1 be all weights in the quadrature (14). Moreover, we assume a
Lagrangian basis expansion (11), and for brevity we let Li(𝜉) ∶= Li1,… ,id(𝜉) and fi ∶= ̃f (𝜉i) = F(i1, … , id). Applying this
formalism to y instead of f , and assuming that the constraint c(y,u, 𝜉) = 0 holds pointwise in 𝜉, we obtain semi-discrete
equations

c(yi,u, 𝜉i) = 0, i = 1, … ,N.
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ANTIL et al. 11 of 29

Likewise, we can introduce the smoothed CVaR with the Monte Carlo correction (cf. (32)) using the quadrature


𝜀,M
t,𝛽,N = t + (1 − 𝛽)−1

N∑
i=1
wig𝜀( (yi,u, 𝜉i) − t)

+ 1
(1 − 𝛽)M

M∑
𝓁=1

[
( (ỹ(𝜉𝓁),u, 𝜉𝓁) − t)+ − g

𝜀
( (ỹ(𝜉𝓁),u, 𝜉𝓁) − t)

]
.

Let y⃗ ∈ YN and p⃗ ∈ (Y∗)N be functions yi and pi stacked together. We introduce the Lagrangian

(y⃗,u, p⃗, t) = 
𝜀,M
t,𝛽,N + 𝛼(u) +

N∑
i=1
wi⟨pi, c(yi,u, 𝜉i)⟩.

In the differentiation, we will distinguish the components corresponding to different coefficients. This gives, for all j =
1, … ,N,

∇yj = 1
1 − 𝛽

[
wjg′𝜀( (yj,u, 𝜉j) − t)∇y (yj,u, 𝜉j) +

1
M

M∑
𝓁=1

E′
j (𝜉𝓁)

]
+ wj(∇yc)∗pj,

∇u = 𝛼∇u(u) +
N∑
i=1
wi(∇uc(yi,u, 𝜉i))∗pi, (35)

∇pj = wjc(yj,u, 𝜉j),

∇t = 1 − (1 − 𝛽)−1
[ N∑
i=1
wig′𝜀( (yi,u, 𝜉i) − t) + 1

M

M∑
𝓁=1

e′(𝜉𝓁)

]
,

where we have defined error correction shortcuts

e′(𝜉) =
[
𝜃 ( (ỹ(𝜉),u, 𝜉) − t) − g′

𝜀
( (ỹ(𝜉),u, 𝜉) − t)

]
,

E′
j (𝜉) = e′(𝜉)Lj(𝜉)∇y (ỹ(𝜉),u, 𝜉) , (36)

with 𝜃(t) = 1 for t ≥ 0 and 0 otherwise.
The second derivatives of (36) are difficult both notationally and computationally, since arbitrary points 𝜉𝓁 , leading

to nonzero Lagrangian polynomial values Lj(𝜉𝓁), produce dense matrices. However, if we assume that the correction is
small in magnitude, we can follow the arguments of Gauss–Newton methods and remove the correction derivatives in
the Hessian, as well as second derivatives of c(y,u, 𝜉) and  (y,u, 𝜉). This way we obtain (where 𝛿j,k denotes the Kronecker
delta, and [f (y,u, 𝜉)]j evaluates f (yj,u, 𝜉j))

∇yj,yk ≈ (1 − 𝛽)−1𝛿j,kwj
[
g′′
𝜀
∇y (∇y )∗ + g′

𝜀
∇yy

]
j , j, k = 1, … ,N

∇yj,pk ≈ 𝛿j,kwj(∇yc(yj,u, 𝜉j))∗, j, k = 1, … ,N

∇yj,t ≈ −(1 − 𝛽)−1wjg′′𝜀 ( (yj,u, 𝜉j) − t)∇y (yj,u, 𝜉j), j = 1, … ,N

∇u,pk ≈ (∇uc(yk,u, 𝜉k))∗wk, k = 1, … ,N
∇pj,yk ≈ 𝛿j,kwj∇yc(yj,u, 𝜉j), j, k = 1, … ,N

∇pj,u ≈ wj∇uc(yj,u, 𝜉j), j = 1, … ,N

∇t,t ≈ (1 − 𝛽)−1
N∑
i=1
wig′′𝜀 ( (yi,u, 𝜉i) − t),

∇u,u ≈ 𝛼∇uu(u),
∇pj,pk = 0,
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12 of 29 ANTIL et al.

as well as symmetric terms. For both notational and computational brevity, let us introduce

Hyt
j = −(1 − 𝛽)−1g′′

𝜀
( (yj,u, 𝜉j) − t)∇y (yj,u, 𝜉j) ∈ Y

Hyy
j = (1 − 𝛽)−1

[
g′′
𝜀
( − t)∇y (∇y )∗ + g′

𝜀
( − t)∇yy

]
j ∈ (Y ,Y )

Htt = (1 − 𝛽)−1
N∑
i=1
wig′′𝜀 ( (yi,u, 𝜉i) − t) ∈ R+.

The entire Newton KKT system can thus be written as follows,

⎡⎢⎢⎢⎢⎢⎢⎢⎣

bdiag(wjHyy
j ) 0 bdiag(wj(∇yc(yj,u, 𝜉j))∗) w⊙Hyt

0 𝛼∇uu(u) [(∇uc(yk,u, 𝜉k))∗wk] 0

bdiag(wj∇yc(yj,u, 𝜉j)) [wj∇uc(yj,u, 𝜉j)] 0 0

(w⊙Hyt)∗ 0 0 Htt

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

𝛿y⃗

𝛿u

𝛿p⃗

𝛿t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= −

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∇y⃗

∇u

∇p⃗

∇t

⎤⎥⎥⎥⎥⎥⎥⎥⎦

,

where bdiag(Hj) constructs a block-diagonal operator with H1, … ,HN along the diagonal.

4.2 Gauss–Newton system

Further simplifications of the Hessian can be introduced. First, we can note that all terms corresponding to differentiat-
ing in yj or pj first contain the quadrature weightwj. In higher dimensionswj may vary over many orders of magnitude,
and keeping them in the Hessian may render it extremely ill-conditioned. Instead, we divide the corresponding rows of
the Hessian together with the right hand side (the derivatives of ) by wj in our formulation directly. This leads to a non-
symmetric Gauss–Newton system, but a much lower condition number together with a potent preconditioner developed
below allows one to use GMRES or BiCGStab with only a few iterations.

Second, in the case of a linear-quadratic control we have (u) = 1
2
⟨u,Muu⟩, and c(y,u, 𝜉) = ĉ(y, 𝜉) + Bu. In a weakly

nonlinear case we can consider an inexact Newton method, where (u) and c(y,u, 𝜉) are approximated in this form. This
allows one to resolve (35) explicitly and plug the corresponding component u = ProjUad

((𝛼Mu)−1(−B)∗
∑N

i=1wipi) back into
the Lagrangian, reducing it to three variables (y⃗, p⃗, t). The reduced Gauss-Newton Hessian term appears:

∇pj,pk = −wjBPr(𝛼Mu)−1B∗wk, Pr = Proj′Uad

(
(𝛼Mu)−1(−B)∗

N∑
i=1
wipi

)
, (37)

where wj in the leftmost position is pending to removal as described above, and Proj′Uad
is a semi-smooth derivative of the

projector (e.g. for box constraints this is just an indicator of Uad).

Remark 1. In addition to being quadratic, the control penalty is equivalent to a (weighted) squared L2-norm in many
cases. This renders discretization of Mu spectrally close to a diagonal matrix ̃Mu; for example, one may use a standard
lumping of the finite element mass matrix. This makes the discretized Hessian (37) easy to assemble, e.g. sparse when
Mu is replaced by ̃Mu. The case of a H1-norm control penalty is more limiting, and may require a matrix-free application
ofM−1

u using, for example, a multigrid method.

The purpose of this elimination of u becomes more apparent for the solution of the Gauss–Newton system in the
TT format. An Alternating Least Squares method (cf. Appendix B) tailored to KKT systems31 requires that all solution
components are represented in the same TT decomposition.32 Since y⃗ and p⃗ have the same size, this holds naturally; the
only additional variable t is a single number that can be embedded into the same TT decomposition at a little cost. In
contrast, a (potentially large) component u needs a nontrivial padding that may inflate the TT ranks and/or make the
Hessian more ill-conditioned.
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Finally, we obtain the following linear system on the solution increments:

⎡⎢⎢⎢⎣

Hyy A∗ Hyt

A −⊗W 0
(Hyt

w )∗ 0 Htt

⎤⎥⎥⎥⎦

⎡⎢⎢⎢⎣

𝛿y⃗

𝛿p⃗

𝛿t

⎤⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣

Fy⃗
Fp⃗
Ft

⎤⎥⎥⎥⎦
, (38)

where  = BPr(𝛼Mu)−1B∗, Hyy and A are (block) diagonal matrices with Hyy
j and Aj ∶= ∇yĉ(yj, 𝜉j) on the diagonal,

W =
⎡⎢⎢⎢⎣

w1 · · · wN

· · ·
w1 · · · wN

⎤⎥⎥⎥⎦
∈ R

N×N
,

is a rank-1 matrix (after discretization), and

Hyt =
⎡⎢⎢⎢⎣

Hyt
1

⋮

Hyt
N

⎤⎥⎥⎥⎦
, Hyt

w =
⎡⎢⎢⎢⎣

Hyt
1 w1

⋮

Hyt
NwN

⎤⎥⎥⎥⎦
,

whereas the right-hand side components are

Fy⃗ =
1

1 − 𝛽

[
g′
𝜀
( (yj,u, 𝜉j) − t)∇y (yj,u, 𝜉j) +

1
wjM

M∑
𝓁=1

E′
j (𝜉𝓁) + (1 − 𝛽)A∗

j pj

]N

j=1

,

Fp⃗ =

[
ĉ(yj, 𝜉j) − 

N∑
i=1
wipi

]N

j=1

,

Ft = 1 − 1
1 − 𝛽

[ N∑
i=1
wig′𝜀( (yi,u, 𝜉i) − t) + 1

M

M∑
𝓁=1

e′(𝜉𝓁)

]
.

Having solved (38), we perform the Newton update similarly to Algorithm 1, by setting

y⃗m+1 = y⃗m + h𝛿y⃗, p⃗m+1 = p⃗m + h𝛿p⃗, tm+1 = tm + h𝛿t, and 𝜀m+1 = 𝜇𝜀𝜀m,

where the step size h > 0 is chosen ensuring (26) and (27).

Remark 2. Note that (26) is not a proper line search condition and has no theoretical guarantees to lead to a convergent
method. However, we have empirically observed in our numerical results that enforcing such a condition allowed our
method to converge. A proper line search should be based for example on the Armijo condition applied either to the cost
function (for the reduced space formulation in Section 3) or a properly designed merit function (i.e. a weighted sum of
the objective function and some norm of the constraint violation) for the full space formulation presented in this section.

Observe that the system (38) can be ill-conditioned and thus requires a good preconditioner to solve it efficiently. In
what follows, we discuss a Schur complement-based preconditioner.

4.3 Preconditioning

In this section we propose amatching strategy33 to approximate the Schur complement to the Gauss–Newtonmatrix (38).
First, since 𝛿t is a single number, we can compute the corresponding Schur complement matrix

[
Hyy −Hyt 1

Htt (H
yt
w )∗ A∗

A −⊗W

]
,
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14 of 29 ANTIL et al.

where we can denote Syy ∶= Hyy −Hyt 1
Htt (H

yt
w )∗ for brevity. Since A is a linearization of c(y,u, 𝜉) (for example, the PDE

operator), it is often invertible. In this case, the Schur complement towards the (1, 2) block of this matrix reads

S = A∗ + SyyA−1(⊗W) = A∗A−1A + SyyA−1(⊗W).

We propose a matching approximation consisting of three factors:

̃S = (A∗ + 𝜂Syy)A−1
(
A + 1

𝜂

⊗W
)
, (39)

where 𝜂 =
√||⊗W ||∕||Syy|| is the scaling constant. Note that

|| ̃S − S|| = ||𝜂Syy + A∗A−1 1
𝜂

⊗W || = (𝛼−1∕2),

which was shown31 to be small in norm compared to S for both limits 𝛼 → ∞ when ||S|| = (1), and 𝛼 → 0 when ||S|| =
(𝛼−1).

Ultimately, we obtain the following right preconditioner:

P =
⎡⎢⎢⎢⎣

0 ̃S Hyt

A −⊗W 0
0 0 Htt

⎤⎥⎥⎥⎦
. (40)

Note that this is a permuted block-triangular matrix, solving a linear system with which requires the solution of smaller
systems with Htt

,
̃S and A. In turn, the solution with ̃S requires the solution with (A∗ + 𝜂Syy) and

(
A + 1

𝜂

⊗W
)
. If the

constraints are defined by a PDE, A,A∗ and g′
𝜀

( − t)∇yy (insideHyy) are sparse matrices, whereas the remaining terms
g′′
𝜀

( − t)∇y (∇y )∗,Hyt 1
Htt

(
Hyt
w
)∗ andW are low-rankmatrices, and can be accounted for using the Sherman–Morrison

formula.

5 NUMERICAL RESULTS

In this section, we present various numerical examples to illustrate the efficiency of the proposed approach in both the
reduced and full-space formulations. This section in fact goes beyond the above theoretical presentation inmultiple ways.
In Section 5.1, we consider an optimal control problem in one spatial dimension and random coefficient. We study the
approximation error inCVAR

𝛽
due to each of the variables 𝜀,ny (spatial discretization),n𝜉 ,, d, andTT truncation tolerance.

We propose a strategy to select these parameters by equidistribution of the total error. Control variate strategy is applied to
this problem in Section 5.2. Section 5.3 focuses on the impact of the quantile 𝛽 and the 𝜀 reduction factor 𝜇

𝜀
. In Section 5.4,

we consider the two spatial dimension version of the problem and carry out a comparison between the reduced and
full space formulations. We conclude with a realistic problem in Section 5.5, where we propose a risk-averse strategy for
lockdown due to pandemics such as COVID-19.

The TTRISK (Algorithm 1) is implemented based on TT-Toolbox2, whereas for the TT-Cross (Algorithm 2) we use a
rank-adaptive implementation amen_cross_s from TT-IRT3. We run the computations using a default multithreading
in Matlab R2019b that can spawn up to 10 threads in BLAS on an Intel Xeon E5-2640 v4 CPU.

5.1 Elliptic PDE with affine coefficient

We first test the reduced formulation. Consider a PDE in one space dimension with random coefficients 𝜅.

− d
dx
𝜅(x, 𝜉)

dy
dx

= Bu, x ∈ (0, 1), 𝜉 ∼  (−
√
3,

√
3)d, (41)

y(−1) = y(1) = 0,
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ANTIL et al. 15 of 29

where (−
√
3,

√
3)d denotes the uniform distribution on [−

√
3,

√
3]d. The KL expansion of 𝜅(x, 𝜉) truncated to d terms,

𝜅(x, 𝜉) = 𝜅0(x) +
d∑
k=1

√
𝜆k𝜅k(x) ⋅ 𝜉(k), (42)

is defined by the mean 𝜅0(x) = 10 and the eigenvalue decomposition

∫
C(x, x′)𝜅k(x′)dx′ = 𝜆k𝜅k(x), 𝜆1 ≥ 𝜆2 ≥ · · · ≥ 0, (43)

of the covariance operator with the function

C(x, x′) = 𝜎2 exp
(
−(x − x′)2

2𝓁2

)
, 𝓁 = 0.25,

for x, x′ ∈ (0, 1), and 𝜉(k) ∈  (−
√
3,

√
3), so that 𝜌(k)(𝜉(k)) = 1∕(2

√
3).

We use a misfit objective function,

 (y,u; 𝜉) = 1
2
||y(u; x, 𝜉) − yd(x)||2L2(0,1), (44)

with the desired state yd(x) ≡ 1. The control u is defined on a subdomain (0.25, 0.75), and B is the identity insertion
operator:

Bu(x) =

{
u(x), x ∈ (0.25, 0.75),
0, otherwise.

The PDE is discretized using piecewise linear finite elements on a uniform grid with ny points 0 = x1 < · · · < xny = 1,
with the coefficient 𝜅(x, 𝜉) and the control u(x) discretized by collocation at the midpoints {xi+1∕2}. The random variables
𝜉

(1)
, … , 𝜉

(d) are discretized by collocation at n
𝜉
Gauss–Legendre points on the interval (−

√
3,

√
3).

We aim at estimating the total cost-error scaling. However, since the computation depends on a number of approxima-
tion parameters (𝜀, ny, n𝜉 , d, and the TT truncation tolerance), those need to be selected judiciously to obtain the optimal
total complexity. Next, we estimate the error (in CVaR) contributed by each of the parameters. This will allow us to select
the parameter values by equalizing their corresponding error estimates.

The (relative) CVaR error at given parameters is defined as

err(CVaR) =

𝜀

tm,𝛽,N
−∗

∗
, (45)

where tm is the output of Algorithm 1, and ∗ is the reference solution computed at the finest parameters 𝜀 = 3 ⋅ 10−4,
tolerance = 10−5, ny = 1025, n

𝜉
= 33, d = 10. We take the control regularization parameter 𝛼 = 10−6 and the confidence

threshold 𝛽 = 0.5. In the following figures, we vary those parameters one by one, keeping the other fixed to those reference
values.

Figure 1 shows that the error in CVaR depends almost linearly on 𝜀 (in fact the decay is slightly faster, which may be
due to particular symmetries in the solution). This is consistentwith Reference 26 (lemma 3.4.2) where a linear theoretical
convergence was established. However, the TT ranks of the logistic function derivatives grow also linearly with 1∕𝜀. This
will eventually lead to noticeable computing costs as 𝜀 decreases. It is thus crucial that the cross approximation of g′′

𝜀

uses a precomputed TT approximation of j(u, 𝜉) instead of original PDE solutions. In turn, the TT ranks of j(u, 𝜉) and
∇uj(u, 𝜉) stay almost constant near 40, andhence the number of PDE solutions is almost independent of 𝜀 in the considered
range.

In Figure 2 we vary the number of quadrature points introduced in each of the random variables 𝜉. As expected from
many previous works (see e.g. References 34-36), the approximation converges exponentially in n

𝜉
. The TT ranks stabilize

towards the value prescribed by 𝜀 in Figure 1.
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16 of 29 ANTIL et al.

F IGURE 1 Conditional value at risk error (CVaR) (45) and tensor train ranks depending on the CVaR smoothing parameter. Other
parameters: tolerance = 10−5, ny = 1025, n

𝜉
= 33, d = 10, 𝛼 = 10−6, 𝛽 = 0.5

F IGURE 2 Conditional value at risk error error (45) and tensor train ranks depending on the random variable discretization. Other
parameters: 𝜀 = 3 ⋅ 10−4, tolerance = 10−5, ny = 1025, d = 10, 𝛼 = 10−6, 𝛽 = 0.5

Figure 3 benchmarks the scheme against the relative error tolerance used for stopping both the TT-Cross Algorithm 2
and TTRISK Algorithm 1, as well as for the TT approximation. The convergence is linear except for very large values of
the threshold, when the TT-Cross may stop prematurely after an accidental drop of the iteration increment below the
threshold. The TT ranks grow logarithmically or even slower with 1∕tol, which is the enabling observation for many
applications of tensor methods.

In Figure 4 we vary the number of finite elements in the spatial discretization of (41). As expected from the second
order of consistency of the continuous linear elements, the CVaR error converges quadratically with ny. The TT ranks
stay almost constant, which shows that even the coarsest grid resembles enough qualitative features of the solution.

Lastly in this series, Figure 5 varies the dimension of the random vector 𝜉, that is, the number of terms in the KL
expansion. For the Gaussian covariance matrix of 𝜅 we observe the expected exponential convergence in d, and the sta-
bilization of the TT ranks as long as the contribution of the latter random variables (𝜉(k), … , 𝜉

(d) for k ≥ k0 with some
k0 > 1) becomes negligible compared to the (fixed) TT truncation threshold.

Equipped with the individual error estimates, we can return to estimating the total error-cost scaling. We choose all
approximation parameters (ny,n𝜉 , 𝜀, d and tolerance) such that errors predicted using the rules fitted in Figures 1–5 are
equal. Expanding the approximate solution as a Taylor series around the exact solution, we obtain that up to second-order
terms, the total error is less than five times the individual error. However, instead of varying directly the total error and
calculating all parameters accordingly, it is more convenient to vary the most discrete parameter, to estimate the corre-
sponding error contribution, and to calculate the remaining four parameters using the inverse error prediction rules. The
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ANTIL et al. 17 of 29

F I GURE 3 Conditional value at risk error error (45) and tensor train (TT) ranks depending on the TT truncation tolerance. Other
parameters: 𝜀 = 3 ⋅ 10−4, ny = 1025, n

𝜉
= 33, d = 10, 𝛼 = 10−6, 𝛽 = 0.5

F IGURE 4 Conditional value at risk error (45) and tensor train ranks depending on the spatial discretization. Other parameters:
𝜀 = 3 ⋅ 10−4, tolerance = 10−5, n

𝜉
= 33, d = 10, 𝛼 = 10−6, 𝛽 = 0.5

most discrete parameter is ny (the spatial grid size), since the number of grid intervals is restricted to a multiple of 4 to
ensure that the control subdomain is aligned to all grids considered. For each ny, this gives the estimated part of the error

errortotal
5

= 10(ny − 1)−2,

and the other parameters are selected as

𝜀 =
(errortotal

25 ⋅ 5

)0.83
, n

𝜉
=

⌈
− log

(
10errortotal

5

)⌉
,

tol = errortotal
4 ⋅ 5

, d =
⌈
−1
2
log

(errortotal
5

)⌉
.

In Figure 6 we show the TT ranks, the corresponding numbers of PDE solutions required for the TT-Cross approx-
imation of j(u, 𝜉) and ∇uj(u, 𝜉), as well as the total computing time, as functions of the actual total error for ny =
33, 65,129, 193 and 257, and the other parameters chosen as above. We observe that both complexity indicators depend
linearly on 1∕error or slower. This is to be compared with the solution of a deterministic PDE (41) with linear finite ele-
ments, which provide an error = O(n−2y ) with the computing cost = O(ny), that is, the deterministic problem scales as
cost = error−1∕2. We see that the TT solution of a high-dimensional stochastic problem contributes the same amount of
complexity.
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18 of 29 ANTIL et al.

F IGURE 5 Conditional value at risk error (45) and tensor train ranks depending on the number of terms in the Karhunen–Loeve
expansion. Other parameters: 𝜀 = 3 ⋅ 10−4, tolerance = 10−5, ny = 1025, n

𝜉
= 33, 𝛼 = 10−6, 𝛽 = 0.5

F IGURE 6 Total conditional value at risk error error (45) and computing cost with parameters d,ny,n𝜉 , tol, 𝜀 chosen to equilibrate
their individual error contributions

5.2 Control variate correction

From Figure 1 we notice that 𝜀 is the slowest in terms of convergence. In this experiment we add the Monte Carlo control
variate correction (33), (34) to the gradient of the CVaR cost function during the optimization, and to the CVaR compu-
tation (32) in the end. Note that the first terms in (32)–(34) are deterministic. Therefore, the SDs of (32)–(34) are equal
to the SDs of the correction terms only, and can be seen as errors in the Euclidean norm of the underlying probability
space. To estimate these errors numerically, we run the algorithm (using some ̃M samples of 𝜉 to compute the averages
in (32)–(34)) 16 times, which gives us 16 iid samples of (32)–(34), and compute empirical SDs of those. The ultimate cor-
rection is computed as another average of those 16 corrections, so we letM = 16 ̃M denote the total number of samples of
𝜉 from all runs of the algorithm. The SD of this ultimate result can be estimated as 1∕4th of the empirical SD computed
above.

In Figure 7 we show both the ultimate average corrections and standard deviations of the corrections estimated as
above. We see that the SDs decay with the law of large numbers, as expected. Moreover, both means and SDs decrease
linearly with 𝜀.

In multilevel Monte Carlo, the estimated SD can also be used to adapt the number of Monte Carlo samples toward
the desired error threshold by extrapolating the law of large numbers.30 However, the convergence (and error estimation)
of the TT approximation can be more complicated. Therefore, we suggest to decrease 𝜀 until the TT ranks are still man-
ageable, and then compute the control variate correction to both estimate and improve the error. This also allows us to
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Mean (Correction) std (Correction)

F IGURE 7 Solid lines: average (left) and estimated SD (right) of the correction to the cost gradient (33) and (34) depending on the
number of Monte Carlo samplesM. Dashed lines: average and SD of the correction tot (32). Spatial discretization ny = 129, other
parameters are chosen to equilibrate their individual error contributions.
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F IGURE 8 Left: number of Newton iterations for different quantiles 𝛽 and rate of decrease of 𝜀 denoted by 𝜇
𝜀
. Right: control signals for

different 𝛽. Spatial discretization ny = 129, other parameters are chosen to equilibrate their individual error contributions.

decouple the TT andMonte Carlo steps, or to reuse previously computed TT approximations of, for example, the forward
model solution.

5.3 Effect of the quantile

In the last experiment with the 1D PDE, we vary the quantile of the confidence interval in CVaR. The results are reported
in Figure 8. As 𝛽 increases, the model minimizes the cost g with higher confidence, which requires a stronger control
(see the right plot of Figure 8). However, the increasing 1∕(1 − 𝛽) term in the gradient and Hessian renders the Newton
method slower and less reliable. Recall that we start with a large 𝜀 and decrease it geometrically with Newton iterations
according to (25). This allows us to avoid getting too small values of g′′

𝜀

. The default value used in the previous experiments
was 𝜇

𝜀
= 0.5, which was a reasonable balance between the stability of the method and its convergence speed. However,

for larger 𝛽 the Newtonmethodmay break at exact machine zeros in g′′
𝜀

, leading to infinities in the solution increment. In
the left plot of Figure 8 we vary both 𝛽 and 𝜇

𝜀
independently. Dashed circles denote the experiments where the Newton

method failed to converge. We see that larger 𝛽 requires slower iterations with larger 𝜇
𝜀
. Of course, too large 𝜇

𝜀
will just

lead to unnecessarily many iterations. This means that the parameter 𝜇
𝜀
may need problem-dependent tuning, although

we believe that the observations in Figure 8 should serve as a good initial guess in a variety of cases.
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5.4 Elliptic PDE with log-normal coefficient

Now we consider a larger problem: we solve a PDE on a two-dimensional space,

−∇x ⋅ 𝜅(x, 𝜉)∇xy = Bu, x ∈ (0, 1)2, 𝜉 ∼  (0, 𝜎2I), (46)
y|
𝜕(0,1)2 = 0,

where the coefficient is a log-normal random field. Namely, we assume that

log 𝜅(x, 𝜉) =
d∑
k=1

√
𝜆k𝜅k(x) ⋅ 𝜉(k),

where 𝜉k ∼  (0, 1), the standard normally distributed random variable with 𝜌(k)(𝜉(k)) = exp(−(𝜉(k))2∕2)∕
√
2𝜋, is a KL

expansion with mean zero and coefficients 𝜆k, 𝜅k defined by the eigenvalue decomposition (43) defined by the covariance
function

C(x, x′) = 𝜎2 exp

(
−
||x − x′||22

𝓁2

)
, 𝓁 = 0.5, 𝜎

2 = 0.05,

and parametrize log 𝜅(x, 𝜉) with d = 10 terms of the KL expansion. This accounts for 98% of the variance. The objective
function is similar to (44),

 (y,u; 𝜉) = 1
2
||y(u; x, 𝜉) − yd(x)||2L2((0,1)2), yd(x) ≡ 1. (47)

The control u is defined on a disk inside the domain, and B is the identity insertion operator:

Bu(x) =

{
u(x), ||x − [0.5, 0.5]||2 ≤ 0.25,
0, otherwise.

This gives a challenging enough case of incomplete control. The PDE is discretized using piecewise linear finite elements
on a triangular grid with 1829 nodes, which is shown in Figure 9.

The random variables 𝜉(1), … , 𝜉

(d) are discretized by collocation at n
𝜉
= 9 Gauss–Hermite points.

In this test we set 𝛽 = 0.8, and correspondingly 𝜇
𝜀
= 0.7 (cf. Figure 8). The final smoothness width 𝜀 = 3 ⋅ 10−3, con-

sistent with the TT approximation error threshold tol = 10−3, the discretization, and KL truncation errors. In Figure 10
we vary the control regularization parameter 𝛼, and compare the reduced formulation introduced in Section 3, and the
Lagrangian formulation from Section 4.

We see that the TT ranks of derivatives of the sigmoid function g
𝜀
in both formulations are of the same scale. However,

since the forward model involves solving a PDE, the bottleneck is actually the computation of a surrogate of the PDE
solution: the TT approximation cost function j(u; 𝜉) in the reduced formulation, and the block TT format of 𝛿y⃗ and 𝛿p⃗ in
the Lagrangian formulation. We see that the TT ranks of the Lagrangian solution are 50% larger than those of j, which is
actually lower than a factor of 2 expected for a TT format representing two components simultaneously (𝛿y⃗ and 𝛿p⃗). We
see also that the TT ranks of j, 𝛿y⃗ and 𝛿p⃗ depend little on 𝛼.

Similarly, the number of Newton iterations in the Lagrangian formulation stays nearly constant, whereas in the
reduced formulation the number of iterations grows with log 𝛼. This is due to the KKT matrix being the exact Hessian
of the Lagrangian, whereas the reduced formulation uses only an approximate (fixed point) Hessian of j(u, 𝜉). This is
even more crucial for a large 𝛽 as we have also seen in the previous test. The imperfection of the reduced Hessian can be
seen in the growing number of Newton iterations. However, if we look at CPU times (Figure 10 right), we notice that the
time of the Lagrangian method grows rapidly with 𝛼 despite nearly constant number of Newton iterations and TT ranks.
This is due to the growth of GMRES iterations in solving Equation (38). The condition number of the KKT matrix pre-
conditioned with Equation (40) may still deteriorate with 𝛼 in the considered case of a control on a subdomain. A better
preconditioner may reduce the complexity. Nevertheless, for moderate values of 𝛼 even with the current preconditioner
the Lagrangian formulation is preferable to the reduced one.
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F I GURE 9 Mesh used to discretize Equation (46). Red points denote grid nodes belonging to the control.

F IGURE 10 Tensor train ranks (left), CPU times (hours) and numbers of Newton iterations (right) in the reduced and Lagrangian
TTRISK formulations depending on the control regularization parameter 𝛼 (as defined in (1)) in the two-dimensional partial differential
equation problem.

5.5 Infection ODEmodel

In the last example, we experiment with an epidemiological ODE model from Reference 1, which was used to estimate
the progression of COVID-19 in the United Kingdom for 90 days starting from the March 1, 2020. The model considers
population dynamics split into the following compartments:

• Susceptible (S): individuals who are not in contact with the virus at the moment.
• Exposed (E) to the virus, but not yet infectious.
• Infected SubClinical (ISC1) at the moment, but who may require hospitalizations.
• Infected SubClinical (ISC2), but recovering without any medical intervention.
• Infected Clinical (IC1), individuals in the hospital, who may decease after some time.
• Infected Clinical (IC2) in the hospital, but recovering.
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• Recovered (R) and immune to reinfections.
• Deceased (D).

Each of those categories is further stratified into five age groups: 0–19, 20–39, 40–59, 60–79, and 80+. The age group
is denoted by a subscript, for example, Ei is the number of exposed individuals in the ith age group (i = 1, … , 5),
and similarly for other compartments. Each variable of the list above, such as E = (E1, … ,E5), is thus a vector of
length 5.

On the other hand, three simplifications are in order. First, in the early stage of the pandemic the number of individuals
affected by the virus is a small fraction of the entire population. This allows us to take S constant equal to the initial
population, and exclude it from the ODE system. Similarly, R andD are terminal states in the sense that none of the other
variables depend on them. This again allows us to decouple R and D from the system of ODEs. Thus, we arrive at a linear
system involving only Exposed and Infected numbers:

d
d𝜏

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E
ISC1

ISC2

IC1

IC2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

−

⎡⎢⎢⎢⎢⎢⎢⎢⎣

− 𝜅I Au Au 0 0
𝜅 ⋅ diag(𝜌) −𝛾CI 0 0 0

𝜅 ⋅ diag(1 − 𝜌) 0 −𝛾RI 0 0
0 𝛾C ⋅ diag(𝜌′) 0 −𝜈I 0
0 𝛾C ⋅ diag(1 − 𝜌′) 0 0 −𝛾R,CI

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎢⎢⎣

E
ISC1

ISC2

IC1

IC2

⎤⎥⎥⎥⎥⎥⎥⎥⎦

= 0. (48)

Here I is the identity matrix of size 5, diag(⋅) stretches a vector into a diagonal matrix, Au = 𝜒 ⋅ diag(S) ⋅ Cu ⋅ diag
( 1
N

)
,

and the remaining variables are model parameters:

• 𝜒 : probability of contact between S and ISC individuals.
• 𝜅 = 1∕dL: transition rate of Exposed becoming SubClinical. dL is the number of days in the Exposed state.
• 𝛾C = 1∕dC: transition rate of SubClinical turning into Clinical. Similarly, dC is the number of days this transition takes.
• 𝛾R = 1∕dR: recovery rate from ISC2.
• 𝛾R,C = 1∕dR,C: recovery rate from IC2.
• 𝜈 = 1∕dD: death rate from IC1.
• 𝜌 = (𝜌1, … , 𝜌5)⊤ ∈ R5: age-dependent probabilities of Exposed turning into the first SubClinical category.
• 𝜌

′ = (𝜌′1, … , 𝜌

′
5)
⊤ ∈ R5: age-dependent probabilities of SubClinical becoming the first Clinical category.

• N = (N1, … ,N5)⊤ ∈ R5: population sizes in each age group.
• Cu ∈ R5×5: the contact matrix, which depends on the control u.

Scalar-vector operations (1∕N, 1 − 𝜌, etc.) are understood as elementwise operations.
Another parameter is the number of infected individuals on day 0 (1March)N0. It is split further across the age groups

as follows:

Nin ∶=
(
Nin
1 ,N

in
2 ,N

in
3 ,N

in
4 ,N

in
5
)
⊤ = (0.1, 0.4, 0.35, 0.1, 0.05)⊤N0

.

The ODE (48) is initialized by setting

E(0) = Nin

3
, ISC1(0) = 2

3
diag(𝜌)Nin

, ISC2(0) = 2
3
diag(1 − 𝜌)Nin

, IC1(0) = IC2(0) = 0.

The population size S = N is taken from the office of national statistics, mid 2018 estimate.
The contact matrix consists of four contributions, corresponding to people activities4:

Cu = diag(𝛼home)Chome + diag(𝛼work)Cwork + diag(𝛼school)Cschool + diag(𝛼other)Cother, (49)

 10991506, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/nla.2481 by G

eorge M
ason U

niversity, W
iley O

nline Library on [05/07/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License
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where C∗ are pre-pandemic contact matrices (for details of their estimation see Reference 1), and 𝛼∗ are coefficients of
reduction of activities introduced in March 2020. (Here ∗ stands for home, work, school, or other.) In turn, those are
constructed as follows. Firstly, we set 𝛼home = (1, … , 1), since home contacts cannot be influenced. For the remaining
activities, noting that the lockdown in the UK was called on day 17 (18th March), we set

𝛼

∗(𝜏) =

{
(1, 1, 1, 1, 1)⊤, 𝜏 < 17,
(𝛼123(1 − u∗(𝜏)), 𝛼123(1 − u∗(𝜏)), 𝛼123(1 − u∗(𝜏)), 𝛼4, 𝛼5)⊤, otherwise,

(50)

where uwork,uschool and uother are the control signals (the lockdownmeasures) thatwe are going to optimize, and 𝛼123, 𝛼4, 𝛼5
are their proportions in the corresponding age groups.

In the cost function we penalize the total fatalities and the hospital capacity exceedance. As long as (48) is solved, the
number of deaths can be calculated directly as

D(𝜏) = 𝜈
∫

𝜏

0
IC1(s)ds. (51)

Moreover, we aggregate IC =
∑5

i=1IC1i + IC2i and penalize IC exceeding 10,000. Finally, we penalize the strength of the
lockdown measures, that is, the norm of the control u(𝜏) = (uwork(𝜏),uschool(𝜏),uother(𝜏)), as well as constraining uwork ∈
[0, 0.69], uschool ∈ [0, 0.9] and uother ∈ [0, 0.59]. This gives us a deterministic cost


Det(u) = 1

2

[
D(T) +

∫

T

0
max(IC(𝜏) − 10,000, 0)d𝜏 + 𝜁

∫

T

17
||u(𝜏)||22d𝜏

]
, (52)

where T = 90 is the simulation interval, and 𝜁 is the regularization parameter.
However, optimization of (52)may bemisleading, since themodel parameters are not known in advance, and can only

be estimated. In particular, Reference 1 employed an Approximate Bayesian Computation (ABC), which used existing
observations of daily deaths and hospitalizations in theUnitedKingdom to form the likelihood, and consequently the pos-
terior probability density function. This rendersmodel parameters into randomvariables, which are distributed according
to the posterior density. In turn, this motivates a modification of (52) into a risk-averse cost function, for example, using
CVaR with 𝛽 = 0.5. More precisely, we aim to minimize


CVaR(u) = CVaR𝜀0.5

(
1
2
D(T) + 1

2∫

T

0
max(IC(𝜏) − 10,000, 0)d𝜏

)
+ 𝜁

2∫

T

17
||u(𝜏)||22d𝜏. (53)

Ideally, the expectations in CVaR need to be computed with respect to the posterior density from ABC. However, the
latter is a complicated multivariate function, which lacks an independent variable parametrization necessary to set up
the discretization and TT approximation. (A possible solution to this using optimal transport37 can be a matter of future
research.) As a proof of concept, we simplify the distribution to independent uniform, reflecting means and variances
estimated by ABC. Thus, we assume

𝜒 ∼  (0.13 − 0.03𝜎, 0.13 + 0.03𝜎), dL ∼  (1.57 − 0.42𝜎, 1.57 + 0.42𝜎), (54)
dC ∼  (2.12 − 0.80𝜎, 2.12 + 0.80𝜎), dR ∼  (1.54 − 0.40𝜎, 1.54 + 0.40𝜎),

dR,C ∼  (12.08 − 1.51𝜎, 12.08 + 1.51𝜎), dD ∼  (5.54 − 2.19𝜎, 5.54 + 2.19𝜎),
𝜌1 ∼  (0.06 − 0.03𝜎, 0.06 + 0.03𝜎), 𝜌2 ∼  (0.05 − 0.03𝜎, 0.05 + 0.03𝜎),
𝜌3 ∼  (0.08 − 0.04𝜎, 0.08 + 0.04𝜎), 𝜌4 ∼  (0.54 − 0.22𝜎, 0.54 + 0.22𝜎),
𝜌5 ∼  (0.79 − 0.14𝜎, 0.79 + 0.14𝜎), 𝜌

′
1 ∼  (0.26 − 0.23𝜎, 0.26 + 0.23𝜎),

𝜌

′
2 ∼  (0.28 − 0.25𝜎, 0.28 + 0.25𝜎), 𝜌

′
3 ∼  (0.33 − 0.27𝜎, 0.33 + 0.27𝜎),

𝜌

′
4 ∼  (0.26 − 0.11𝜎, 0.26 + 0.11𝜎), 𝜌

′
5 ∼  (0.80 − 0.13𝜎, 0.80 + 0.13𝜎),

N0 ∼  (276 − 133𝜎, 276 + 133𝜎), 𝛼123 ∼  (0.63 − 0.21𝜎, 0.63 + 0.21𝜎),
𝛼4 ∼  (0.57 − 0.23𝜎, 0.57 + 0.23𝜎), 𝛼5 ∼  (0.71 − 0.23𝜎, 0.71 + 0.23𝜎),
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24 of 29 ANTIL et al.

TABLE 1 Conditional value at risk (CVaR) optimizer behavior for different variability of random variables

𝝈  CVaR 𝜻

2
∫
T
17 ||u(𝝉)||

2
2d𝝉 t Iterations Tensor train rank (𝛁u

CVaR)

10−2 171,168 3107 158,382 16 13

10−1 289,160 3439 157,750 20 68

F IGURE 11 Control signals and predicted hospitalizations numbers for different optimization strategies. In the bottom right plot, blue
circles denote mean IC after conditional value at risk optimization, shaded area denotes 95% confidence interval.

where 𝜎 is a variance tuning parameter. That is, (54) form a random vector

𝜉 = (𝜒, dL, dC, dR, dR,C, dD, 𝜌1, 𝜌2, 𝜌3𝜌4, 𝜌5, 𝜌′1, 𝜌
′
2, 𝜌

′
3𝜌

′
4, 𝜌

′
5,N

0
, 𝛼123, 𝛼4, 𝛼5),

of dimension d = 20, the state vector is

y = (E1, … ,E5, ISC11 , … , ISC15 , ISC21 , … , ISC25 , IC11 , … , IC15 , I
C2
1 , … , IC25 ),

and the left-hand side of (48) constitutes the constraints c.
For the deterministic optimization (52) we set all variables to their means. For the stochastic optimization (53)

we discretize each variable by a 3-point Gauss–Legendre quadrature rule on the corresponding interval, and the TT
approximations are computed with relative error threshold of 10−2. The control is discretized with a Gauss–Lagrange
interpolation on [17,T] with 7 points, which makes the total dimension of the discretized control space 21. This allows
us to use the reduced optimization formulation. Moreover, since the cost contains nonsmooth functions, we abandon the
Newton scheme, resorting to the Projected Gradient Descent method with a finite difference computation of the gradient
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of (53). The ODE (48) is solved using the implicit Euler method with time step 0.1. The control regularization 𝜁 = 100
is taken from,1 and the CVaR smoothing parameter 𝜀 = 1000 corresponds to the relative width of the smoothed region
𝜀∕t < 10−2, matching the bias of the smoothed CVaR and the TT approximation error.

In Table 1 we vary 𝜎 and investigate the behavior of the reduced TT formulation for CVaR. Note that we need more
iterations and higher TT ranks for the larger variance. This is also reflected in a larger total cost, which is dominated by
the CVaR term. In Figure 11, we compare the controls computed with the two values of 𝜎, as well as the minimizer of the
deterministic cost (52). We see that a small 𝜎 yields the solution which is similar to the deterministic one. However, the
risk-averse control for a larger variance of the parameters is more conservative: it tends to be larger, hitting the constraints
at almost the entire interval except the final point, where the control stops making any influence on the system.

In the bottom right panel of Figure 11 we plot the predicted hospitalization numbers. The historic numbers are
obtained by simulating the deterministic model (using mean values of the parameters in (54)) with the control derived
from the smoothed Google daily mobility data5. We see that both optimization techniques allow one to reduce the hospi-
tal occupancy. However, the deterministic approach tends to underestimate IC compared to the mean risk-averse value.
In addition, the CVaR frameworks enables a rigorous uncertainty quantification.

6 CONCLUSION AND OUTLOOK

This paper has introduced a new algorithm called TTRISK to solve risk-averse optimization problems constrained by
differential equations (PDEs or ODEs). TTRISK can be applied to both the reduced and full-space formulations. The
article also introduces a control variate correction to get unbiased estimators. Various strategies to choose the underlying
algorithmic parameters have been outlined throughout the paper, especially in the numerics section. This is carried out
by carefully taking into account all the approximation errors.

The TT framework offers multiple advantages, for instance, our numerical examples illustrate that it can help over-
come the so-called “curse of dimensionality.” Indeed, the approach introduced here has been successfully applied to
a realistic problem, with 20 random variables, to study the propagation of COVID-19 and to devise optimal lockdown
strategies.

This article aims to initiate new research directions in the field of risk-averse optimization. There are many open
questions that one could pursue, a few examples are:

1. Convergence analysis of TTRISK in both reduced and full-space formulations.
2. Convergence analysis of TTRISK in the presence of control variate terms.
3. Convergence analysis of preconditioned Gauss-Newton method (cf. Section 4.3) for the full-space formulation.
4. The Gauss-Newton system (cf. Section 4.2) and preconditioning (cf. Section 4.3) for the full space formulation elimi-

nates the control and it considers a formulation in terms of y, p, and t. It maybe interesting to design preconditioners
which can handle control u directly in the full-space formulation.
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ENDNOTES
1See Remark 2 for further explanation of this condition.
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2https://github.com/oseledets/TT-Toolbox
3https://github.com/dolgov/TT-IRT
4Note that in this section 𝛼 is the notation from the original paper,1 not a regularization parameter.
5The historic IC differs from that in Reference 1 (figure 6). This is most likely due to imprecise reproduction of the parameters. However, the
values agree within a factor of 2, which indicates that the qualitative behavior of the model is correct.
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APPENDIX A. CROSS APPROXIMATION

Suppose f (𝜉) is defined as a minimizer of a cost function (f ). We aim at minimizing  over a TT decomposition instead
by driving∇(̃f ) = 0. However, ̃f is a product expansion in the actual degrees of freedom {F(k)}, whichmakes the problem
nonlinear even if ∇f(f ) was linear. Instead of running a generic nonlinear optimization of all TT cores simultaneously,
we can resort to the Alternating Least Squares38 and DensityMatrix Renormalization Group39,40 methods. Those alleviate
the nonlinearity issue by iterating over k = 1, … , d, solving only ∇F(k)(̃f ) = 0 in each step, similarly to the coordinate
descent method. Note that ̃f is linear in each individual factor F(k).

Applying this coordinate descent idea to the problem of interpolating a given function with a TT decomposition yields
a family of TT-Cross algorithms.21-23 Suppose we are given a procedure to evaluate a continuous function f (𝜉) at any given
𝜉. We iterate over k = 1, … , d and in each step compute F(k) by solving an interpolation condition

̃f (𝜉) = f (𝜉) ∀𝜉 ∈ 𝚵k ∶=
{(
𝜉

(1)
j , … , 𝜉

(d)
j

)
∈ R

d ∶ j = 1, … , rk−1n𝜉rk
}
, (A1)

over some carefully chosen sampling sets 𝚵k. Stretching the tensor F(k) into a vector f (k) = [F(k)(sk−1, i, sk)] ∈ R
rk−1n𝜉rk , we

can write (A1) as a linear equation F≠kf (k) = f (𝚵k), where each row of the matrix F≠k ∈ R
rk−1n𝜉rk×rk−1n𝜉rk is given by

F≠k(j, sk−1isk) =
∑

s0,… ,sk−2

F(1)
s0,s1

(
𝜉

(1)
j

)
· · ·F(k−1)

sk−2,sk−1

(
𝜉

(k−1)
j

)
⋅ 𝓁i

(
𝜉

(k)
j

)
⋅

∑
sk+1,… ,sd

F(k+1)
sk ,sk+1

(
𝜉

(k+1)
j

)
· · ·F(d)

sd−1,sd

(
𝜉

(d)
j

)
, (A2)

where 𝜉j ∈ 𝚵k, j = 1, … , rk−1n𝜉rk. To compute this efficiently in a recursive manner similar to (15), we restrict 𝚵k to the
Cartesian form

𝚵k = Ξ
<k × Ξ(k) × Ξ

>k, (A3)

for some chosen sets

Ξ
<k =

{(
𝜉

(1)
sk−1 , … , 𝜉

(k−1)
sk−1

)}rk−1
sk−1=1

, Ξ
>k =

{(
𝜉

(k+1)
sk , … , 𝜉

(d)
sk

)}rk
sk=1

,

including Ξ
<1 = Ξ

>d = ∅, and Ξ(k) = {𝜉(k)i } are the quadrature nodes associated with {𝓁i(𝜉(k))}. This allows us to write
(A2) in the form

F≠k = F
<k ⊗ 𝓁(Ξ(k))⊗ F

>k, (A4)
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where⊗ denotes the Kronecker product operator and

F
<k =

[ ∑
s0,… ,sk−2

F(1)
s0,s1

(
𝜉

(1)
j

)
· · ·F(k−1)

sk−2,sk−1

(
𝜉

(k−1)
j

)]
∈ R

rk−1×rk−1
,

(
𝜉

(1)
j , … , 𝜉

(k−1)
j

)
∈ Ξ

<k, (A5)

F
>k =

[ ∑
sk+1,… ,sd

F(k+1)
sk ,sk+1

(
𝜉

(k+1)
j

)
· · ·F(d)

sd−1,sd

(
𝜉

(d)
j

)]
∈ R

rk×rk
,

(
𝜉

(k+1)
j , … , 𝜉

(d)
j

)
∈ Ξ

>k. (A6)

Moreover, for the left and right sets Ξ
<k,Ξ>k we assume nestedness conditions

Ξ
<k+1 ⊂ Ξ

<k × Ξ(k)
, Ξ

>k−1 ⊂ Ξ(k) × Ξ
>k. (A7)

This way, given F
<k or F>k, we can continue the recursion by computing

F≤k(sk−1i, sk) =
∑
tk−1

F
<k(sk−1, tk−1)F(k)

tk−1,sk

(
𝜉

(k)
i

)
, and (A8)

F≥k(sk−1, isk) =
∑
tk

F(k)
sk−1,tk

(
𝜉

(k)
i

)
F
<k(tk, sk), (A9)

and extracting F
<k+1 and F>k−1 simply as submatrices of F≤k and F≥k, respectively. This needs (n𝜉r3) operations.

The particular elements extracted from, for example Ξ
<k × Ξ(k) (and F≤k) are chosen to ensure that F<k+1 (and hence

F≠k+1) are aswell conditioned as possible.Weuse theMaximumVolume (maxvol) algorithm41 which performs an iterative
optimization of the volume (absolute determinant) of the submatrix F

<k+1 = F≤k(≤k, ∶) over the index set ≤k = {sk−1, i}
of cardinality rk. We can apply the same algorithm to F

⊤

≥k to find an index set ≥k = {i, sk}, with cardinality #≥k = rk−1,
that provides | detF≥k(∶,≥k)| ≈ max | detF≥k(∶,)|. The recursion over the sampling sets (A7) is arranged by collecting
Ξ
<k+1 =

{
Ξ
<k(sk−1), 𝜉(k)i

}
for sk−1, i ∈ ≤k, and similarly for Ξ>k−1. The entire iteration, which we call TT-cross, is outlined

in Algorithm 2.

Algorithm 2. TT-CROSS

1: Choose initial sets Ξ
<k, k = 2,… , d, stopping threshold 𝛿>0.

2: while first iteration or ‖̃f (𝜉) − ̃fprev(𝜉)‖>𝛿‖̃f (𝜉)‖ do
3: for k = d, d − 1,… , 2, 1, 2,… , d do
4: Sample f (𝚵k), where 𝚵k is according to (A3). ⊳ (n

𝜉
r2) samples of f

5: Solve F≠kf (k) = f (𝚵k) using the matrix (A4).
6: Compute ≥k frommaxvol on (F≥k)⊤ as defined in (A9), and ≤k frommaxvol on F≤k as defined in (A8).
7: Let Ξ

>k−1 = [Ξ(k) × Ξ
>k]|≥k , Ξ<k+1 = [Ξ

<k × Ξ(k)]|≤k , and F>k−1 = F≥k(∶,≥k), F<k+1 = F≤k(≤k, ∶).
8: end for
9: end while

APPENDIX B. TENSOR TRAIN ALGEBRA

Once a TT decomposition is constructed, simple operations can be performed directly with the TT cores. Besides the
fast integration (15), additions of functions approximated by their TT formats, pointwise products and actions of linear
operators can be written in the TT format with explicitly computable TT cores, and hence a linear complexity in d.20 For
example, addition of functions ̃f (𝜉) and g̃(𝜉) defined by their TT cores {F(k)} and {G(k)} and TT ranks (r0, … , rd) and
(p0, … , pd), respectively, is realized by the TT decomposition

̃f (𝜉) + g̃(𝜉) =
r0+p0,… ,rd+pd∑
s0,… ,sd=1

H(1)
s0,s1(𝜉

(1)) · · ·H(d)
sd−1,sd (𝜉

(d)), H(k)(𝜉(k)) =

[
F(k)(𝜉(k)) 0

0 G(k)(𝜉(k))

]
.
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However, such explicit decompositions are likely to be redundant. For example, we can immediately compress H(1)

to [F(1)(𝜉(1)) G(1)(𝜉(1))], and similarly the summation over sd collapses H(d). In general, a quasi-optimal approximate
re-compression of a TT decomposition20 can be performed in (dn

𝜉
r3) operations by using truncated Singular Value

decompositions (SVD) in a recursive manner similar to (15).
Linear operators acting on multivariate functions can also be decomposed (or approximated) in a similar TT format

that enables a fast computation of their action. An operator A ∈ ( , ) with  =  (1) × · · · ×  (d) can be approximated
by a TT operator Ã of the form

Ã =
R0,… ,Rd∑
t0,… ,td=1

A(1)
t0,t1

⊗ A(2)
t1,t2

⊗ · · ·⊗ A(d)
td−1,td

, (B1)

where A(k)
tk−1,tk

∈ ( (k)
, (k)) is an operator acting on F(k)(𝜉(k)). The image Ã̃f can now be written as a TT decomposition

(Ã̃f )(𝜉) =
R0r0,… ,Rdrd∑
m0,… ,md=1

B(1)
m0,m1

(𝜉(1)) · · ·B(d)
md−1,md

(𝜉(d)), B(k)(𝜉(k)) =
[(
A(k)
tk−1,tk

F(k)
sk−1,sk

)
(𝜉(k))

]
,

where tk = mod(mk − 1,Rk) + 1, and sk = ⌊(mk − 1)∕Rk⌋ + 1. Linear equations can be solved by the Alternating Least
Squares. We iterate over k = 1, … , d, solving in each step Ã̃f = ̃bwith respect to the TT core F(k) in the representation of
̃f . Constructing a vector-function f (≠k) ∶ Rd → R

rk−1n𝜉rk with elements

f (≠k)sk−1isk
(𝜉) =

∑
s0,… ,sk−2

F(1)
s0,s1 (𝜉

(1)) · · ·F(k−1)
sk−2,sk−1 (𝜉

(k−1)) ⋅ 𝓁i(𝜉(k)) ⋅
∑

sk+1,… ,sd

F(k+1)
sk ,sk+1 (𝜉

(k+1)) · · ·F(d)
sd−1,sd (𝜉

(d)), (B2)

similarly to (A2), we can write ̃f (𝜉) = f (≠k)(𝜉)f (k), and solve a linear system

Akf (k) = bk, where Ak =
[⟨f (≠k)s ,Ãf (≠k)t ⟩] , bk =

[⟨f (≠k)s ,
̃b⟩] ,

in each step. If Ã and ̃b are given by TT decompositions, Ak and bk can be computed recurrently in the course of iteration
using matrix products similar to (A8), (A9). One full iteration over k = 1, … , d needs (dn2

𝜉

R2r2 + dn
𝜉
Rr3) operations,38

where R ∶= maxk Rk.
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