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INTRODUCTION 
Fatty acids (FAs) constitute an essential lipid class in all living 
systems, serving pivotal biological roles in various physiological 
functions and during inflammation, affecting immune response 
and apoptosis.1−3 Moreover, FAs are building blocks of many 
complex lipid structures where they are coupled via an ester, 
ether, or amide linkage to structural backbones including 
glycerol, sphingosine, and carbohydrates. The general FA 
structure consists of a carboxylic acid group and a hydrocarbon 
chain. Variations in carbon-chain length, degree of unsatura- 
tion, location and stereochemistry of unsaturation site(s), 
chain branching, and functionalization (e.g., nitration, 
hydroxylation, etc.) lead to a vast array of potential FA 
structures. The modification of lipid structure impacts both 
chemical and physical properties. Furthermore, these structural 
variations inform the physiological role of individual lipid 
molecules.1,4,5 Importantly, recent research implicates alter- 
ations in FA structure and/or composition associated with 
lipid metabolism dysregulation in numerous pathologies, 
including cancer, cardiovascular diseases, neurodegeneration, 
and diabetes.6−13 For example, long-chain saturated fatty acids 
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were identified as the toxic factor killing injured neurons and 
oligodendrocytes in the brain during inflammation.14 Con- 
sequently, analytical methods capable of accurately identifying 
and quantifying FAs in complex biological samples are needed 
in order to unravel their roles in health and disease. 

Branched-chain fatty acids (BCFAs) are a unique structural 
subset of the fatty acyl lipid class. BCFAs are known to 
dominate many bacterial lipid profiles.15−20 For example, 
BCFAs have been suggested to constitute more than 75% of 
the total fatty acid profile of Bacillus subtilis.20,15 While BCFAs 
are minor lipid components of internal mammalian tissues, 
they have been detected as major components of meibomian 
gland secretions (within the eyelid) and vernix caseosa, the 
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ABSTRACT: While various mass spectrometric approaches have 
been applied to lipid analysis, unraveling the extensive structural 
diversity of lipids remains a significant challenge. Notably, these 
approaches often fail to differentiate between isomeric lipids�a 
challenge that is particularly acute for branched-chain fatty acids 
(FAs) that often share similar (or identical) mass spectra to their 
straight-chain isomers. Here, we utilize charge-switching strategies 
that combine ligated magnesium dications with deprotonated fatty 
acid anions. Subsequent activation of these charge inverted anions 
yields mass spectra that differentiate anteiso-branched- from straight- 
chain and iso-branched-chain FA isomers with the predictable 
fragmentation enabling de novo assignment of anteiso branch points. 
The application of these charge-inversion chemistries in both gas- 
and solution-phase modalities is demonstrated to assign the position of anteiso-methyl branch-points in FAs and, with the aid of 
liquid chromatography, can be extended to de novo assignment of additional branching sites via predictable fragmentation patterns as 
methyl branching site(s) move closer to the carboxyl carbon. The gas-phase approach is shown to be compatible with top-down 
structure elucidation of complex lipids such as phosphatidylcholines, while the integration of solution-phase charge-inversion with 
reversed phase liquid chromatography enables separation and unambiguous identification of FA structures within isomeric mixtures. 
Taken together, the presented charge-switching MS-based technique, in combination with liquid chromatography, enables the 
structural identification of branched-chain FA without the requirement of authentic methyl-branched FA reference standards. 
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sebaceous wax coating human newborns.21−23 Specific short 
BCFAs, such as valproic acid, are used as a mood-stabilizing 

and antiepileptic drug but also cause neurotoxic effects and 
anticonvulsant effects related to neural tube defects, congenital 
defects, and fetal growth.24−28 Among the most common 
BCFAs are saturated FAs with a methyl group at either the 
antepenultimate or penultimate carbon, known as the anteiso- 

or iso-position, respectively. Traditionally, gas chromatogra- 
phy−mass spectrometry (GC−MS) is deployed to resolve 
BCFAs from their straight-chain isomers and to facilitate 
identification and quantitation in complex biological sam- 
ples.1,18,29−31 In general, GC−MS analysis first requires the 

conversion of FA structures to fatty acid methyl esters 
(FAMEs) to increase analyte volatility. Unfortunately, 

branched-chain fatty acid methyl esters (BCFAMEs) often 
coelute with other FAMEs, even with the use of long, highly 
polar columns.31 The problem of resolution and unambiguous 

identification is further compounded by a high degree of 
similarity in the conventional (70 eV) electron ionization (EI) 
mass spectra of isomeric FAMEs. Thus, the presence of 
structurally distinct FAs can be masked in both chromato- 
graphic and mass spectrometric dimensions that further 
hinders the detection, identification, and quantitation of 
BCFAs. Moreover, BCFAME identification is often accom- 
plished using spectral matching or via the use of retention time 
alignment, both of which require the utilization of reference 
standards that are often costly and rarely available. To 

circumvent these issues, Murphy and co-workers combined 
electron-ionization with collision-induced dissociation, dem- 

onstrating that the activation of the molecular ions of FAMEs 
gives rise to mass spectra that were much more sensitive to 

molecular structure; including the position(s) of methyl-chain 
branching.32 Brenna and co-workers have utilized this 
approach to provide detailed structure elucidation of 
branched-chain fatty acids in lipid extracts from human cell 
lines and food.18,31 Notably, this approach enables the mass 
spectrometric resolution of coeluting GC peaks and is thus 
capable of both quantitative and qualitative analyses of 

BCFAMEs without reference standards. One challenge with 
this approach is that the molecular ion abundance resulting 
from EI of FAMEs is low and can impact sensitivity. 
Alternative GC−MS approaches that can increase the 
sensitivity for the detection and identification of BCFAs rely 

upon wet-chemical derivatization strategies prior to analysis 
that are designed to promote sensitive detection and 
structurally diagnostic fragmentation upon EI. Two of the 
most successful and widely adopted examples include 4,4- 

dimethyloxazoline (DMOX) and 3-pyridylcarbinol (histor- 
ically�and incorrectly�referenced as “picolinyl”) ester 
derivatives of FAs.29,33−35 Both derivatives produce EI mass 
spectra with fragmentation patterns that can identify structural 
motifs including branching points in the acyl chain. Both 
methods require offline wet-chemical preparation prior to 
GC−MS. However, complex lipid hydrolysis of fatty acyl 
chains from complex lipid precursors results in the loss of 
valuable information regarding origin and function of BCFAs. 
Due to recent advances in electrospray-ionization mass 
spectrometry (ESI-MS) and liquid chromatography (LC) 

protocols, LC−MS is gaining wider acceptance as an 
alternative approach to the identification and quantification 
of FAs in biological extracts.1,10,14,36,37 In these protocols, free 

FA (or those liberated by hydrolysis) can be subjected to LC− 
MS directly or analysis of complex lipids can be analyzed by 

LC−MS with subsequent interrogation of the FA building 
blocks enabled by fragmentation of the precursor lipid in 
tandem mass spectrometry (MS/MS) modalities. When 
subjected to conventional low energy collision-induced 
dissociation (CID), singly deprotonated FA anions (denoted 
[FA − H]− and formed directly or as fragmentation products 
ions from complex lipids) typically results in very little 
fragmentation from dissociation of the carbon−carbon bonds 
in the acyl chain, as the dominant product ions observed 
correspond to decarboxylation (−CO2) and dehydration 
(−H2O) of the FA precursor anion.38,39 To increase the 
generation of structurally informative product ions, charge- 
inversion of FAs has been explored, often in concert with novel 
laser-based dissociation strategies like photodissociation (PD) 
and ultraviolet photodissociation (UVPD).40−45 Extending the 
radical-directed dissociation approaches for complex lipids 
developed by the Julian and Blanksby groups, the Xia group 
has identified the location(s) of methyl branching in bacterial 
glycerophospholipids, including sphingomyelins, phosphatidyl- 
cholines, and phosphatidylethanolamines.42,46−49 Recently, we 
have described the efficacy of gas-phase ion/ion charge 
inversion reactions for the identification of FA both in 
nonesterified forms and also when esterified within complex 
lipids.50−57 This strategy has significant advantages as it can 
exploit the preferred ionization and fragmentation of many 
lipids in negative ion mode while taking advantage of 
structurally selective charge-remote fragmentation in charge- 
inverted positive ions. Herein, we demonstrate the ability of 
charge-inversion ion/ion reactions combined with CID to 
differentiate isomeric BCFAs. Additionally, we present the 
development of a LC−MS/MS method that deploys 
postcolumn charge-switch derivatization to provide online 
and unambiguous discrimination of (1) nonbranched and 
branched acyl chains from isomeric methyl-branched lipid 
structures and (2) the identification of methyl chain branching 
site in saturated BCFAs. 

 
EXPERIMENTAL SECTION 

Nomenclature. Here, we adopt the shorthand notation 
recommended by Liebisch et al.58 Briefly, fatty acyl chains are 
described by the total number of carbons, as indicated before 
the colon, and the total number of double bonds, as indicated 
after the colon. When present, the methyl branch functional 
group is abbreviated as “Me”. Identified positions of methyl 
branching are shown within parentheses after the integer 
indicating the number of double bonds. For example, 13- 
methlytetradecanoic acid, commonly referred to as isopenta- 
decylic acid (iso 15:0), can be represented as FA 14:0(13Me). 
Similarly, 12-methlytetradecanoic acid, commonly referred to 
as anteisopentadecylic acid (anteiso 15:0), can be represented 
as FA 14:0(12Me). 

Materials. HPLC-grade methanol, water, and acetic acid 
solution were purchased from Fisher Scientific (Pittsburgh, 
PA). Magnesium chloride and 2,2′:6′,2″-terpyridine (Terpy) 
were purchased from Millipore-Sigma (St. Louis, MO). The 
following lipid standards were purchased from Avanti Polar 
Lipids, Inc. (Alabaster, AL): 12-methlytetradecanoic acid (FA 
14:0(12Me) or anteiso 15:0), 13-methlytetradecanoic acid (FA 
14:0(13Me) or iso 15:0), 1-palmitoyl-(12S-methylmyristoyl)- 
sn-glycero-3-phosphocholine (PC 16:0/anteiso 15:0 or PC 
16:0/14:0(12Me)), and 1-palmitoyl-(13S-methylmyristoyl)- 
sn-glycero-3-phosphocholine (PC 16:0/iso 15:0 or PC 16:0/ 
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Scheme 1. Generation of [FA − H + MgTerpy]+ Complex Cations via Ion/Ion Reaction of Singly Deprotonated FA Anions 
and Reagent Bis-Terpyridine Magnesium Dications 

 

 
 

14:0(13Me)). Pentadecanoic acid (FA 15:0) was purchased 
from Cayman Chemical (Ann Arbor, MI). 

Gas-Phase Ion/Ion Experiments. All gas-phase charge 
inversion data were collected on a Sciex QTRAP 4000 hybrid 

triple quadrupole/linear ion trap mass spectrometer (SCIEX, 
Concord, ON, Canada) with modifications analogous to those 

previously described.59 Alternately, pulsed nanoelectrospray 
ionization (nESI) allows for the sequential injection of lipid 
anions and charge inversion reagent bis-terpyridine magnesium 

dications, [MgTerpy2]2+.60 Mass spectra were produced via the 
analysis of ions using mass-selective axial ejection (MSAE).61 

Scheme 1 illustrates the generation of [FA − H + 
MgTerpy]+ complex cations. Briefly, singly deprotonated FA 
anions are transformed via gas-phase ion/ion reaction with bis- 
terpyridine magnesium dications. First, [FA − H]− were 
generated via direct negative nESI of either (1) a methanolic 
solution of fatty acid standard or (2) from the liberation fatty 
acyl carboxylate anions from a phospholipid precursor anion 
utilizing collisional activation of lipid anions in q2 via single 
frequency resonance excitation, which results in the cleavage of 
sn-1 and sn-2 ester bonds and production of singly 
deprotonated FA anions.52 Following the generation of [FA 
− H]− anions, reagent dications were mass-selected during 
transit through Q1 and transferred to q2. Together in q2, 
reagent [MgTerpy2]2+ dications and [FA − H]− anions were 
permitted to react, yielding charge-inverted [FA − H + 
MgTerpy]2+ complex cations. Next, monoisotopic isolation 
and ion trap CID of charge-inverted FA complex cations 
permit unambiguous isomeric anteiso-branched- and straight- 
chain lipid discrimination via exploitation of reproducible 
spectral patterns. 

LC−MS/MS Experiments. Lipid samples dissolved in 
methanol at ∼1 μM were placed in the autosampler of an 
Agilent 1290 Infinity II LC System (Santa Clara, CA). One 
microliter of lipid solution was injected onto an Ascentis 
Express C18-HPLC column (150 mm × 3 mm, 2.7 μm) at 25 
°C. The mobile phase A was methanol, and mobile phase B 
was 97/3 Water/MeOH with 15 mM acetic acid (v/v). To 
achieve separation, a gradient beginning with 80% B and 
increasing to 88% B over 73 min at a flow rate of 0.2 mL min−1 
was used. At 74 min, the mobile phase composition was 
returned to and held at initial conditions for a total of 11 min 
to re-equilibrate the column. The total run time was 85 min. 
The postcolumn eluent was combined with a methanolic 
solution of [MgTerpy2]2+ (100 μM) via a syringe pump and T- 
junction prior to infusion into the mass spectrometer to 

facilitate the formation of [FA − H + MgTerpy]+ cations. To 
make the solution of [MgTerpy2]2+, equimolar amounts of 
magnesium chloride and 2,2′:6′,2″-terpyridine were first 
combined and dissolved in methanol, before dilution prior to 
analysis. 

Mass spectra were recorded using an Agilent 6495C triple 
quadrupole mass spectrometer (Santa Clara, CA) equipped 
with a Jet Stream ESI source. All mass spectra reported here 
are the result of 30−50 scan averages. The instrument was 
operated in positive ion mode. Product ion scans were 
collected using a normalized collision energy (CE) of 55 eV. 
Nitrogen served as the sheath, drying, and collision gases. MS 
parameters were optimized and set as drying gas temperature 
at 150 °C, dry gas flow rate at 15 L min−1, sheath gas 
temperature at 225 °C, sheath gas flow rate at 11 L min−1, 
nebulizer pressure at 30 psi, capillary voltage at 3500 V, and 
nozzle voltage at 1500 V. 

 
RESULTS AND DISCUSSION 

Saturated Straight-Chain and Branched Lipid Anal- 
ysis Using Ion/Ion Chemistry. Saturated and branched FA 
anions undergo charge inversion when subjected to mutual 
storage with [MgTerpy2]2+ reagent dications in the high- 
pressure collision cell q2. As a result of the ion/ion reaction, 
singly deprotonated FA anions are transformed to [FA − H + 
MgTerpy]+ cations (Supporting Information Figure S1). 
Figure 1 shows the ion trap CID spectra of a series of [FA 
− H + MgTerpy]+ ions derived from straight-chain FA 15:0 
and two branched-chain variants, 13-methyltetradecanoic acid 
(FA 14:0(13Me)) and 12-methyltetradecanoic acid (FA 
14:0(12Me)). The CID spectrum of [FA 15:0 − H + 
MgTerpy]+ displays an uninterrupted series of product ions 
between m/z 315 and 468 with 14 Da spacings, noting that 
product ion relative abundance generally decreases as carbon− 
carbon fragmentation approaches the methyl end of aliphatic 
chain (Figure 1A). Collisional activation of the charge-inverted 
FA 14:0(12Me) ion, as shown in Figure 1B, contains a series of 
product ions spaced at 14 Da apart and generated via carbon− 
carbon bond cleavage beginning at C2−C3 (m/z 315) and 
ending at C12−C13 (m/z 468). Importantly, as fragmentation 
approaches the methyl branching site, a dramatic suppression 
in product ion relative abundance is observed, as highlighted 
with the low abundance product ion observed at m/z 454. 
Flanking the methyl branching site, carbon−carbon bond 
cleavage generates more highly abundant product ions, as 
indicated with the product ions observed at m/z 440 and m/z 
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Figure 1. Ion-trap CID of [M − H + MgTerpy]+ derived from the gas 
phase ion/ion reaction of [MgTerpy2]2+ with the [M − H]− anions, 
where M = (A) FA 15:0, (B) FA 14:0(12Me), and (C) FA 
14:0(13Me). 

 

 
468 (Figure 1B). In comparison, Figure 1C displays the CID 
spectrum of [FA 14:0(13Me) − H + MgTerpy]+. Notably 
absent in the product ion spectrum of the charge inverted FA 
14:0(13Me) ion is an abundant product ion at m/z 468. 
However, the product ion spectra of [FA 14:0(13Me) − H + 
MgTerpy]+ (Figure 1C) and [FA 15:0 − H + MgTerpy]+ 
(Figure 1A) are nearly identical, with only subtle differences in 
relative product ion abundances observed. Thus, the anteiso 
isomer can be distinguished from straight-chain and iso 
isomers, but the latter cannot be distinguished from each 
other. Therefore, other methods must be used to distinguish 
the latter two isomers. 

The development of a top-down shotgun-MS method 
utilizing gas phase ion/ion charge inversion chemistry provides 

near-complete glycerophospholipid (GPL) structural identi- 
fication as described previously.52 To date, few approaches are 
capable of discerning methyl-branching site in complex lipid 
structures. We report an MSn experiment involving ion/ion 
chemistry to facilitate the assignment of the GPL headgroup 
and fatty acyl composition, identification of the presence of 
anteiso methyl branching position in saturated acyl chains, and, 
in some cases, assignment of fatty acyl sn-position. To 
demonstrate this approach, we examined synthetic phospha- 
tidylcholines (PCs), including PC 16:0/14:0(12Me) and PC 
16:0/14:0(13Me). Briefly, as ionization of PCs in negative ion 
mode relies on the formation of an adduct ion (e.g., [M + X]− 
where X = Cl or CH3CO2), direct negative nESI of PC 16:0/ 
14:0(12Me) resulted in the generation of abundant [PC + 
CH3CO2]− precursor anions. Next, CID of mass-selected [PC 
16:0/14:0(12Me) + CH3CO2]− (m/z 778) generated 
demethylated PC product anions (i.e., [PC 16:0/14:0(12Me) 
− CH3]−) detected at m/z 704. The product ion spectrum of 
[PC 16:0/14:0(12Me) + CH3CO2]− (m/z 778) displayed in 
Figure S2 ultimately permits the identification of the polar 
headgroup. To release FA anions from the GPL precursors, 
subsequent ion-trap CID of the [PC 16:0/14:0(12Me) − 
CH3]− was employed, as detailed in Figure 2A. The greater 
abundance of the sn-2 [14:0(12Me) − H]− fragment ion (m/z 
241) relative to the sn-1 [16:0 − H]− (m/z 255) is in good 
agreement with previous observations and suggests preferential 
formation of the carboxylate anion from the sn-2 acyl 
substituent.62 Importantly for unknown lipids, fatty acyl 

chain regiochemical assignments based only on relative 
abundances of the carboxylate anions alone are insufficient 
without calibrating to standards and should be made with 
caution.63 However, it can provide a useful guide to the 
dominant regiochemistry, i.e., the most abundant regioisomer. 

To generate charge-inverted FA complex cations, all MS3 
product ions, including [FA − H]− anions, were allowed to 
react with [MgTerpy2]2+ dications. The ion/ion reaction 

mostly resulted in the formation of [FA − H + MgTerpy]+ 
complex cations (Figure 2B). Subsequent interrogation of the 

charge-inverted 14:0(12Me) complex cation permits the 
unambiguous assignment of methyl branching site in an the 
same fashion as described above (Figure 2C). Employing an 

identical MSn and ion/ion approach, isomeric PC 16:0/ 
14:0(13Me) was examined, noting that the MS2, MS3, and 
ion/ion product ion spectra are identical to those described for 
PC 16:0/14:0(12Me). However, in the case of PC 16:0/ 
14:0(13Me), collisional activation of the MgTerpy derivative 
of FA 14:0(13Me) generates a CID spectrum distinguishable 
from that of FA 14:0(12Me) derived from PC 16:0/ 
14:0(12Me) (c.f. Figure 2C,D). Importantly, the CID spectra 

of charge-inverted-branched FAs derived from nonesterified 
FAs or from complex GPL precursor anions are identical, 
meaning that this workflow can be utilized to examine a diverse 

range of branched lipid species. Moreover, as all GPL classes 
can be ionized in negative ion mode, fatty acyl anions can be 
liberated from any GPL precursor anion regardless of 
headgroup composition using low-energy CID. Thus, the 
developed gas-phase ion/ion chemistry can be applied to 
unravel GPL structure, including methyl branching position, 
independent of the polar headgroup present, further high- 
lighting the versatility of ion/ion platforms. 

Charge-Switching and LC−MS/MS of Synthetic- 
Branched Fatty Acids. While effective, the inherent 
complexity of the cellular lipidome can complicate lipid 
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Figure 2. Sequence of MS events used to interrogate the molecular structures of the phosphatidylcholine isomers, PC 16:0/14:0(12Me) and PC 
16:0/14:0(13Me). (A) Ion-trap CID spectrum of [PC 16:0/14:0(12Me) − CH3]− (m/z 704). (B) Charge inversion spectrum generated via the 
gas-phase ion/ion reaction between product ions generated from CID of the [PC − CH3]− precursor ion as shown in (A) and [MgTerpy2]2+ 
reagent dications. Ion-trap CID product ion spectrum following monoisotopic mass selection and collisional activation of the branched FA complex 
cation at m/z 498, derived from (C) PC 16:0/14:0(12Me) and (D) PC 16:0/14:0(13Me). 

identification, especially when utilizing a shotgun approach, as 
multiple isomers can be present in a single sample. Moreover, 
the extensive fragmentation pattern observed upon CID of 
charge-switched FAs only further complicates accurate 
identification, particularly in the case of complex mixture 
analysis. While the ion/ion approach described above can 
confidently distinguish anteiso- and iso-branched lipid isomers, 
this approach is useful only when the straight-chain isomer is 
not present. As the CID spectra of charge-switched iso- and 
straight-chain lipid isomers are nearly identical, structural 
assignments in the absence of an anteiso-branched lipid isomer 
can be ambiguous. To circumvent the shortcomings of the 
shotgun ion/ion approach, an alternate LC−MS/MS strategy 
utilizing postcolumn wet-chemical charge-switch derivatization 
was developed. Importantly, the presented LC−MS/MS 
charge-switching strategy not only enhances mixture analysis 
performance but also eliminates ambiguities in the assignment 
of isomeric saturated FA structures. Specifically, this platform 
includes reversed phase liquid chromatography (RPLC) 
interfaced with a commercially available triple quadrupole 
mass spectrometer. The experimental set up is depicted in 
Figure 3A. As a first step, [FA − H + MgTerpy]+ complex 
cations were first generated in solution. To do so, MgCl2, 
2,2′:6′,2″-terpyridine, and a synthetic FA standard were 
combined in a methanolic solution at room temperature. 
Next, the methanolic solution was infused directly into the 
mass spectrometer. Upon ESI, abundant charge-switched FA 
anions were observed. Notably, the MS/MS spectra of 
[14:0(12Me) − H + MgTerpy]+ (m/z 498) and [14:0(13Me) 

− H + MgTerpy]+ (m/z 498) obtained on the triple 
quadrupole mass spectrometer following condensed-phased 
FA derivatization (Figure S3) are identical to those obtained 
utilizing the gas-phase ion/ion approach described previously 
for nonesterified FA structures. 

Chromatography coupled with mass spectrometry is a well- 
established means of overcoming the associated challenges 
with shotgun-MS experiments, providing improved resolution 
of molecular species. In our approach, the lipid sample was first 
separated by RPLC. Using a C18 column with the above- 
described gradient (see the LC−MS/MS Experiments 
section), a synthetic standard of 14:0(12Me) eluted ca. 1 
min earlier than isomeric 14:0(13Me), as shown in Figure 3B. 
Importantly, excellent chromatographic resolution of straight- 
chain FA 15:0 from the two branched-chain variants was 
achieved, as FA 15:0 eluted nearly 3 min after isomeric 
14:0(13Me) (Figure 3B). Although branched-chain FAs are 
known to elute earlier than their straight-chain isomers on 
reversed-phase columns, the elution order may not be 
sufficient for structural assignment in a complex mixture, 
especially if unknown branched points are present. As 
described before, the MS/MS spectra of underivatized (i.e., 
singly deprotonated FA anions) saturated and branched FA 
isomers are identical, leading to ambiguous FA identification in 
the absence of authentic reference standards. 

In turn, postcolumn charge-switch derivatization was utilized 
to enhance structural information obtained from fragmentation 
experiments. Briefly, the introduction of bis-terpyridine 
magnesium complex dications as the derivatization reagent 
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Figure 3. (A) Illustrative schematic of postcolumn charge-switching LC−MS/MS method. (B) EIC of m/z 241 without FA derivatization (i.e., 
negative ion mode). (C) EIC of m/z 498 with FA derivatization (i.e., positive ion mode). 

 

 

via a postcolumn tee injunction (Figure 3A) facilitated the 
formation of charge-switched [FA − H + MgTerpy]+ ions from 
chromatographically resolved FA structures. The extracted ion 
chromatograms (EICs) of the charge-switched FA products 
(m/z 498) in Figure 3C denote that the slight shift in retention 
time (c.f. Figure 3B,C) is attributed to the increase in dead 
time associated with the tee junction setup. Figure 3C displays 
three abundant peaks, corresponding to the charge-switched 
postcolumn derivatization FA products. The first two eluting 
analytes correspond to the charge-switched FA 14:0(12Me) 
(RT = 40.0 min) and 14:0(13Me) (RT = 41.0 min) products. 
Last to elute is the straight-chain FA 15:0 (RT = 44.3 min). 
Based on these results, methyl-branched FA isomers can be 
distinguished from not only each other but also their straight- 
chain counterparts based on retention time. 

The LC−MS/MS spectra of postcolumn derivatized FAs 
15:0, 14:0(12Me), and 14:0(13Me) are shown in Figure 4 and 
display key diagnostic fragmentation patterns analogous to 
those described before utilizing the gas-phase ion/ion 
approach. Specifically, the product ion observed at m/z 468 
serves as a diagnostic signature of anteiso-methyl-chain 
branching. The indicator product ion at m/z 468 is readily 
observed in the LC−MS/MS spectrum of charge-switched FA 
14:0(12Me), as shown with Figure 4A, and is notably 
suppressed in the LC−MS/MS spectra of charge-switched 
FA 14:0(13Me) (Figure 4B) and FA 15:0 (Figure 4C) 
structures, respectively. We note that, while the product ion 
spectra of the saturated straight-chain FA 15:0 and iso- 
branched FA 14:0(13Me) are nearly identical, excellent 
chromatographic separation of these isomers prior to MS/ 
MS affords unambiguous FA identification via retention time 
matching utilizing authentic straight-chain FA reference 
standards, which are readily available from a surplus of 

commercial vendors. Therefore, the combination of LC and 
postcolumn charge-switch derivatization can readily distinguish 
saturated straight-chain and methyl-branched FA isomers with 
detailed structural information on methyl branching sites for 
respective FA structures. Lastly, noting that fragmentation 
patterns observed utilizing the presented online LC charge- 
switching approach are predictable, reproducible, and depend- 
ent on saturated FA structure, methyl branching assignments 
could be made algorithmically, supporting high-throughput FA 
identification. 

 
CONCLUSIONS 

We have demonstrated two separate charge-switching 
approaches for the detailed structural identification of 
BCFAs. The first approach utilizes an entirely gas-phase 
strategy in which FA anions are transformed via charge 
inversion ion/ion reactions with magnesium bis-terpyridine 
reagent dications, yielding abundant [FA − H + MgTerpy]+ 
complex cations. Upon collisional activation, charge inverted 
BCFA complex cations fragment provide distinct diagnostic 
product ions indicative of methyl-chain branching site. 
Importantly, the presented MSn gas-phase charge inversion 
strategy can readily be extended to identify methyl-chain 
branching site on saturated fatty acyl chains esterified in 
glycerophospholipid structures. However, for shotgun ap- 
proaches, the existence of multiple isomeric species within a 
complex mixture may become problematic and hinder accurate 
BCFA identification. In addition, the gas-phase ion/ion 
reactions require specialized instrument modifications and 
highly trained personnel to conduct these analyses. Thus, to 
improve isomeric mixture analysis performance and ease of 
use, an LC−MS/MS method employing postcolumn charge- 
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Figure 4. LC−MS/MS spectra of charge-switched (A) FA 14:0- 
(12Me), (B) FA 14:0(13Me), and (C) FA 15:0. 

 

 
switching derivatization was established based on conventional 
LC and MS platforms. In this approach, BCFA isomers are 
effectively separated from each other and from their straight- 
chain counterparts. Excellent chromatographic resolution alone 
affords the accurate identification of saturated FA isomers 
based on retention time matching with authentic reference 
standards. However, given that several BCFA reference 
standards are not readily or commercially available, post- 
column charge-switch derivatization facilitated by a continual 
infusion of magnesium bis-terpyridine reagent solution and 
subsequent MS/MS affords facile identification of methyl 
branching site by exploiting the generation of significant 
indicator product ions influenced by acyl chain branching. 
Consequently, postcolumn generation of MgTerpy-adducted 
FAs permits the localization of methyl-chain branching site in 
the absence of authentic reference standards. The analysis of 
intact methyl-branched complex lipids could not be achieved 
using this configuration, as it would first require condensed- 
phase hydrolysis of ester bonds linking acyl chains to the 

glycerol backbone of complex lipids and subsequent loss of 
information on the intact structure. 

LC-based separations of branched-chain and straight-chain 
isomers of complex lipids have been demonstrated using long 
gradients.64 Future efforts will focus on combining such LC 
methodologies with ion/ion chemistries for near-complete 
structure elucidation of complex lipids with branched-chain 
structures. Developing a chemical conjugation toolbox 
combined with LC−MS/MS promises to empower further 
discovery of structural complexity within the lipidome. 
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