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Sensitivity projections for a dual-phase argon TPC optimized for light dark
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Dark matter lighter than 10 GeV /¢? encompasses a promising range of candidates. A conceptual design
for a new detector, DarkSide-LowMass, is presented, based on the DarkSide-50 detector and progress
toward DarkSide-20k, optimized for a low-threshold electron-counting measurement. Sensitivity to light
dark matter is explored for various potential energy thresholds and background rates. These studies
show that DarkSide-LowMass can achieve sensitivity to light dark matter down to the solar neutrino fog for
GeV-scale masses and significant sensitivity down to 10 MeV/c? considering the Migdal effect or
interactions with electrons. Requirements for optimizing the detector’s sensitivity are explored, as are
potential sensitivity gains from modeling and mitigating spurious electron backgrounds that may dominate
the signal at the lowest energies.

DOI: 10.1103/PhysRevD.107.112006

I. INTRODUCTION experiments [9-11] will search for WIMPs with cross
sections below which coherent elastic neutrino-nucleus

Astrophysical evidence indicates that dark matter (DM) scattering (CEyNS) from atmospheric neutrinos may

. o . , .
COI]Stl.l'lltf:S 26% oft.he Universe senergy density [1]. Many obscure DM signals, called the “neutrino fog” [12,13].
experiments have tried to detect it directly, often focused on Past experiments show that similar technology

weakly interacting massive particles (WIMPs) with mass can perform dedicated light DM searches [14—19],

2 2
between 10 GeV/c” and 10 TeV/c™ [2-8]. Planned DarkSide-50 demonstrated that a dual-phase liquid argon

time-projection chamber (LAr TPC) performing an elec-
"ds-ed @Ings.infn. it tron-counting analysis—focused on electroluminescence
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signals from ionization electrons in a gas pocket,
S2—is sensitive to DM with nuclear couplings for
1-10 GeV/c* masses [20,21] and electronic couplings
for 0.01-1 GeV/c? masses [22].

Interactions in LAr produce a comparable amount of
scintillation and ionization. While photons are detected
with ~20% efficiency and must overcome noise, the near-
perfect efficiency for extracting electrons from liquid to
gaseous argon [23], the long drift lifetime (enabled by
excellent purity achievable in LAr), and gas pocket
amplification lets each ionization electron be detected.
As aresult, the electron-counting channel accesses energies
near the work function, lower than those reached by
scintillation.

Dual-phase LAr TPCs benefit from scalability due to
LAr’s high transparency to photons and electrons; their low
temperature enables exceptional purity, as seen in DEAP-
3600’s low 222Rn concentration [24] and DarkSide-50’s
long electron drift lifetime [25]. The relatively light nucleus
also allows light DM to produce higher-energy recoils.

These properties enable dual-phase LAr TPCs to search
for light DM down to the neutrino fog with index n > 1.5.
Maximizing sensitivity requires a dedicated detector opti-
mized for electron-counting analyses by enhancing S2 and
minimizing backgrounds that produce <3 keV electron
equivalent (keV..) signals, as expected from light DM.
DarkSide-LowMass aims to employ such a detector. This
paper explores its potential sensitivity, considering 2 and
4 e~ analysis thresholds and possible background levels
and detector response models. A conceptual design is
presented in Sec. II; Sec. III describes response models,
and Sec. IV explores background scenarios. Finally, Sec. V
projects sensitivity with these models, and Sec. VI dis-
cusses potential future improvements.

II. CONCEPTUAL DETECTOR DESIGN

Based on lessons from DarkSide-50 and progress toward
DarkSide-20k [14,15,20-22,25-29], a conceptual detector
has been designed to optimize DarkSide-LowMass for low-
threshold analyses.

A. Lessons from DarkSide-50

While DarkSide-50 was designed for a high-mass
WIMP search using primary scintillation (S1) and electro-
luminescence (S2), its sensitivity to light DM elucidates
how a dual-phase LAr TPC can be optimized for an
electron-counting analysis. This channel lacks S1, thereby
losing the capacity to reject electronic recoils (ERs)
by pulse shape discrimination and to reconstruct inter-
actions’ vertical positions [30]. DarkSide-50’s sensitivity
was limited by ERs due to y rays from the photomultiplier
tubes and cryostat and § decays of trace residual %Kr
and 3°Ar in the argon extracted from underground (UAr)
[31,32]. At the lowest energies, spurious electrons (SEs),

Structural supports

TPC/Veto
______—optical barrier
____ TPC photosensors
(same at bottom)

Acrylic v 1

Depleted argon
active(fiducial)
mass:1.5(1)t

PDM Buffer Veto
(same at top)

Bath Veto

Veto photosensors

Double walled cryostat

FIG.1. Conceptual detector design: a 1.5 t dual-phase LAr TPC
in an acrylic vessel, viewed by two photosensor arrays via 10 cm
“buffer vetoes,” in a UAr “bath veto” in a cryostat, immersed in a
water tank (not shown).

not directly produced by energy depositions, dominate
<4 e~ backgrounds, imposing an effective analysis
threshold. Mitigating SEs is key to improving DarkSide-
LowMass’s sensitivity.

B. Detector description

Figure 1 shows a conceptual DarkSide-LowMass design;
Table I gives design parameters. The nested structure
isolates and vetoes against radioactivity. The detector
consists of the following elements:

(1) Depleted Argon TPC: The inner detector is a dual-
phase TPC with an active (fiducial) mass of 1.5 t(1t)
of UAr, depleted of *°Ar by cryogenic distillation
[26]. The TPC has an ultrapure acrylic vessel, as in
DEAP-3600 [33]. Transparent conductive films like
Clevios™ define anode and cathode planes; rings
coated on the walls ensure spatial uniformity of the
drift field. Electroluminescence in a | cm-thick gas
pocket at the top allows extracted electrons to be
counted. A stainless steel grid below the LAr surface
separates the drift volume from the extraction and
multiplication regions, with a 200 V/cm drift field
in the bulk and a 6.5 kV/cm electroluminescence
field in the gas pocket, building on experience from
DarkSide-50. The expected extraction efficiency
exceeds 99.9% [23].

The vessel’s inner surfaces are lined with reflector
coated with wavelength shifter like TPB (tetraphenyl
butadiene), which shifts vacuum ultraviolet (VUV)
photons emitted by argon to ~420 nm. Two planes
of photodetector modules (PDMs) with 100% opti-
cal coverage, mounted 10 cm above and below the

112006-4
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TABLE I. Conceptual detector design parameters.

Parameter Value
TPC active LAr mass 15t
TPC fiducial LAr mass 1t
TPC fiducial cylindrical radius 45 cm
TPC height 111 cm
TPC diameter 110 cm
TPC PDM number 864
TPC PDM peak efficiency 40%
TPC gas pocket thickness 1 cm
TPC electroluminescence field 6.5 kV/cm
TPC drift field 200 V/cm
Acrylic vessel mass 0.144 t
PDM dimensions 5x5cm?
PDM butter veto thickness 10 cm
PDM buffer veto total mass 03t
Bath veto UAr mass 45t
Bath veto minimum thickness 28 cm
Cryostat inner height 215 cm
Cryostat inner diameter 170 cm
Cryostat wall thickness 0.5 cm
Ti support structure total mass 0.1t

TPC, detect this light. Each PDM is a 5 x 5 cm?
array of silicon photomultipliers (SiPMs) based on
Ref. [34], readout by cryogenic preamplifiers de-
veloped for DarkSide-20k [35]. Titanium structural
supports hold the TPC and optical planes; titanium
allows them to be radiopure and lightweight, reduc-
ing their impact on the vetoes and background
budget. This system is immersed in a UAr bath
held in a double-walled, 170 cm diameter stainless
steel cryostat.

For these studies, the TPC has equal diameter and
height in order to maximize the path that external y
rays must traverse before reaching the fiducial vol-
ume. This design also balances the inability to fiduci-
alize along the vertical axis against the longer electron
drift time in a taller TPC, which requires longer veto
windows and higher voltages. Considering possible
effects of drift time on SEs (see Sec. IV G), other
designs may be motivated by future work.

(2) y-ray vetoes: The TPC is surrounded by two vetoes.
These instrumented LAr volumes provide passive
buffers and anticoincidence signals when y rays
deposit energy in them before or after scattering in
the TPC.

(a) PDM buffer veto: Reflective and wavelength-
shifting foils (e.g., TPB-coated ESR and acrylic
surfaces) surround both PDM arrays and the
acrylic vessel, optically decoupling them from
the LAr bath while enhancing light collection
efficiency. The 10 cm offset between each
optical plane and the acrylic vessel serves as a
“buffer” veto for y rays emitted by the PDMs
and associated hardware. This offset allows

cm-scale spatial resolution, and larger offsets
marginally impact the background rate. Veto
scintillation is separated from S1 and S2 in
the TPC by pulse-shape and the concentration
of light in either PDM plane.

(b) Bath veto: The 4.5 t UAr in the cryostat is
instrumented with PDMs on the cryostat walls
and functions as another y-ray veto. This 28 cm
buffer uses the minimal UAr mass needed to veto
and shield against y rays from the cryostat and
render their backgrounds subdominant.

(3) Water shielding: The cryostat is in a 810 m-
diameter water tank that shields against external
radiation. If a cosmic-ray veto is needed, the tank
can be instrumented to detect Cherenkov light.

III. DETECTOR RESPONSE MODEL

The detector response model closely follows that in
Refs. [27,36]. For a nuclear recoil (NR) of energy Ejy, this
model uses the reduced energy ¢, defined as

ay Eg

(1)
with target atomic number Z, Bohr radius ag, and elemen-
tary charge e, giving a,/e? = 36.81 keV.

The number of ionization electrons that escape recombi-
nation and contribute to S2 is given by

€S.(e) |
Se(€) —i—S,l(e)I'

B NR

N — ;;‘Rln 1+ IOAJ;”;D 2)
] d

fp describes the energy partition among ionization and
other modes, cRX is a parameter describing the spatial
extent of the NR charge distribution, &; is the drift field
strength in V/cm, B parametrizes the drift field scaling, and
S, and S, are the electronic and nuclear stopping powers,

given by Zielger as [37]

723
Se - 0133W\/E,

s _ In|1. 4 1.1383¢,|
" 2(ez + 0.01321€2%1226 1 0.1959360°)

3)

where €, = 0.94¢ for argon, accounting for atomic screen-
ing effects, and A is the mass number of argon.
Reference [27] found that this model consistently gives
lower Q)® than those by Moliére [38] and by Lenz and
Jensen [39,40], making its use conservative.

For ERs, the number of electrons escaping recombina-
tion is described by the Thomas-Imel model as

e _ Cd G
Ne :ﬁln 1+8—ng3 +1, 4)
O
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FIG. 2. Ionization yield models assumed in these studies for
(top) nuclear recoils and (bottom) electronic recoils. Bands show
+16 uncertainty from the fit to constraints.

where the initial recoiling electron has been added to NER,
and p, cER, and B are model parameters.

The charge yield is defined as Q)% = N)®/E, and
QR = (NgR —1)/Eg. Nuisance parameters fp, cfy. ciy',
and p are constrained by QJF and QF® measurements
reported by ARIS [41] and SCENE [42], as well as in situ
measurements reported by DarkSide-50 [15,27]. This treat-
ment follows that in Ref. [27], constrained to energies
below 3 keV,.. Since the Thomas-Imel model is valid for
ERs in this full range, the extended model developed in
Ref. [27] is not needed here. Furthermore, B is fixed to the
central value reported by SCENE of B =0.61. Studies
varying £; between 200-1000 V /cm show that its effects
on QY®FR do not impact the projected sensitivity due to the
low recombination rate at these energies. As aresult, £4 can
be optimized based on its influence on other parameters
like v44q: such studies are left to future work. Figure 2
shows the models that best fit these constraints; Table 11
gives fixed and fit parameters.

Nonuniformities in g, as might arise from TPC com-
ponents sagging, will lower 1 e~ resolution. These effects
can be corrected using the event position, with adequate
resolution achieved with DarkSide-LowMass’s stronger
electroluminescence field. These defects may also be
minimized by adopting technology from O(10t) detectors,
which have wire grids and anode planes several times larger
than DarkSide-LowMass will have.

TABLEIL. Top: Q)® and Q}¥. Bottom: optical model param-
eters. Fixed parameters are shown with their assumed values; fit
parameters are shown with their best-fit values to external data
and the range over which they were allowed to float in sensitivity
projections.

Charge yield parameters

Bounds Modeled value Units
Ey Fixed 200 V/em
B Fixed 0.61 e
IR [0.51, 2.04] 1.02:4001 (V/em)®
s [0.35, 1.38] 0.69+092 e
R [0.55, 2.18] 1.09930 (V/em)®
p [27, 106] 5312 keV

S2 response parameters
Modeled value Units

€ph 0.27 PE/photon
Y]% 280 photon/e™
% 75 PE/e~
Oy 2.8 cm
Vgrift 0.93 mm/ps

Quenching and recombination NY® fluctuations are
modeled with a binomial function; uncertainties in this
treatment are explored by projections with no quenching
fluctuations. Binomial NER fluctuations are suppressed by a
Fano-like factor F, as in NEST [43], constrained by fits to
YAr peaks in Ref. [27]. Reference [27] assumes Gaussian
fluctuations with variance FN,-, valid for N,- > 10e".
Lacking lower-energy ER calibration, assumptions are
needed to extrapolate below 10e~. A binomial model
reflects variations of energy dissipation via ionization
and other modes, while a Gaussian model may describe
variations in energy transferred to ionization electrons.
Both models fit DarkSide-50’s 3’Ar peaks. Due to the
strong 1 e~ resolution assumed for DarkSide-LowMass,
the Gaussian model produces larger fluctuations at low
N,-, giving up to 10x stronger constraints on DM
scattering cross sections; DarkSide-50"s resolution was
dominated by spatial g, variations, where g, is the S2 gain
factor, so these models marginally impact its analysis.
Binomial fluctuations in NER suppressed by F are con-
servatively assumed in the present studies. The number of
detected photoelectrons (PEs) is drawn from a Poisson

distribution with mean g, x N .

A. Optical simulations

Optical simulations were performed with G4Ds [44],
based on GEANT4-10.0 [45]. SiPMs are assumed to be similar
to those in Refs. [29,46,47], with peak photon detection
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FIG. 3. Horizontal position resolution o,, as a function of
signal size. Between 1-15¢7, 6, is between 2-7 cm. The dark
line shows the median ., and the lighter band is the lo
confidence belt from simulation statistics.

efficiency (PDE) of 40%, including an ~88% geometrical
fill factor. Lower PDE and optical coverage can be
compensated with a stronger electroluminescence field,
increasing ¥S2.

Simulations of VUV photons generated uniformly
in the gas pocket predict a S2 light collection efficiency
of € =027 PE/photon with both PDM arrays.
Electroluminescence simulations based on Refs. [48,49]

predict a photon yield of Yf;% = 280 photon/e~. These
values give gy = €, X YE% =T5PE/e~, tuned for high 1 e~
detection efficiency and resolution, based on DarkSide-
50. By varying the gas pocket thickness and electrolu-
minescence field, g, can be varied as needed. These values
are summarized in Table II.

To estimate the horizontal position resolution, <0.3 keV
electrons are simulated uniformly in the LAr. S2 photons
are generated in the gas pocket for each extracted electron,
offset by f4if, the time required to drift electrons from the
interaction vertex to the gas pocket. The S2 pulse shape is
described in Ref. [50]. Photons that reach the PDMs are
registered as PE with probability governed by the PDE.

The position of a signal in the horizontal plane is
estimated using the barycenter method, calculated as the
PE-weighted average PDM location and corrected for the
expected radial bias near the walls. More sophisticated
algorithms can achieve better resolution, as demonstrated in
DarkSide-50 [51].

The resolution o, is defined as the rms distance between
the reconstructed and true positions. Figure 3 shows o, as
a function of S2 charge. Overall, o,, decreases for larger
signals, varying from 2-7 cm for >le~ signals. For
background simulations, a nominal resolution of o,, =
2.8 cm is assumed, though varying its value within this
range does not impact the results presented. While more
sophisticated algorithms can likely achieve better resolu-
tion, varying the size of the PDMs does not have a
significant effect.

IV. BACKGROUND MODEL PREDICTIONS

At the highest energies relevant for light DM, the primary
backgrounds include y rays from detector components,
decays from LAr radioisotopes, cosmogenic activation of
detector materials, surface backgrounds, and neutrinos. At
the lowestenergies, SEs produce the dominant backgrounds.

A. Neutrinos

CEuNS from solar and atmospheric neutrinos and the
diffuse supernova neutrino background (DSuB) pose a
currently irreducible background. Their fluxes are
modeled as in Ref. [52], summarized in Table III,
giving (498 £ 12)events/tyr between 1-50e~ (about
0.14-12 keV,, or 0.02-3.4 keV,.), dominated by ®B solar
neutrinos above 3 e~ and by "Be, pep, and Carbon-
Nitrogen-Oxygen neutrinos below. Neutrino-electron
scattering, mostly from pp neutrinos, will produce
(13.4 +0.4) events/tyr in the same N - range.

Figure 4 shows the CEUNS NR spectra. These irreduc-
ible backgrounds lead to the “neutrino fog”: the DM-
nucleon cross section below which CEvNS backgrounds
impede sensitivity [12,13]. While solar neutrinos limit
the DM search, they enable solar neutrino studies. The
fog in Figs. 9 and 11 is given for spectral indices
n = —(dlog og;/dlog MT)™!, defining the gradient of the
median spin-independent cross section og; that an experi-
ment can observe at 3o significance with exposure MT [13].

B. y-ray backgrounds

Radioisotopes emit y rays that scatter in the TPC. Assays
from DEAP-3600 [33] and DarkSide are used to estimate
the activity of all detector components. Dominant back-
grounds include x rays from the acrylic and y rays from the
PDMs, including photosensors and their hardware—mostly
from 4°K and the 28U chain (P3U to 23°Th).

Radioactive decays in all detector components were
simulated using G4DS [44]. Energy depositions were

TABLEIIl. Neutrino fluxes assumed in these studies and their
associated uncertainties. For solar neutrinos, the high metallicity
model was assumed.

Flux [1/(cm?s)] Uncertainty (%) References

pp 5.98 x 100 0.6 [53]
pep 1.44 x 10® 1 [53]
"Be 4.99 x 10° 3 [54]
B 5.25 % 10° 4 [55]
hep 7.98 x 10° 30 [53]
BN 2.78 x 108 15 [53]
150 2.05 x 108 17 [53]
g 5.29 x 10° 20 [53]
Atmospheric 10.5 20 [56]
DSuB 86 50 [57]
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FIG. 4. Coherent elastic neutrino-nucleus scattering back-
ground from all sources (pp neutrinos not visible), enlarged
for (top) 0-50 ¢~ and (bottom) 0-5 ¢~

recorded in the TPC, bath veto, and PDM buffer veto, and
the expected signals were reconstructed using the
response model. The electron drift time in the TPC was
determined by the drift speed and diffusion in Ref. [50].
Events were rejected by a multiple-scatter cut if at least
two S2 signals were separated by >4 ps. The recon-
structed position for events in the horizontal plane was
determined using the barycenter coordinates smeared by a
Gaussian to account for resolution. Varying the smearing
within the range in Fig. 3 changes the observed back-
ground rate by <10%. Events outside of the inner 1 t core
of the TPC, defined in the horizontal plane, were rejected
by a fiducial cut.

Events are rejected if more than 100 keV (50 keV) of
energy is deposited in the bath (PDM buffer) veto, within
an anticoincidence window of 73 = 1.18 ms preceding
the S2 time. The use of UAr in the vetoes allows thresholds
below the *°Ar endpoint; accounting for energy depositions
in both vetoes from y rays and *°Ar decays, a 3.54.0%
dead time is expected, depending on vg;z and the 3°Ar
activity.

Total background rates after selection cuts are shown in
Fig. 5, compared to DarkSide-50’s best-fit backgrounds
and example DM signals. Following veto cuts, the total
y-ray background rate at N.- < 12 ¢~ is below that from
solar neutrinos. No further research and development
(R&D) is needed to improve PDM radiopurity.

3

DS-50 ref!. : '\r-rnys!

E :_,-..r" :

_ lo—aacr.'.'.“ . #Ar (730100 UBQ/KG) .o
5- E +*Kr (1900100 uBg/kg).
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FIG.5. Backgrounds from y rays, *?Ar, and CEvNS, compared
to DarkSide-50. DM spectra for are shown at 2.5, 5, and
10 GeV/c? masses with spin-independent nucleon-scattering
cross section og; = 10~* cm?.

1. Effects of the PDM buffer veto

The dominant y ray background source is the photo-
electronics. Since fiducialization along the vertical axis is
not possible, low-energy x rays and y rays that preferen-
tially scatter in the first 10 cm of LAr are not mitigated by
fiducial cuts. Instead, the PDM buffer shields the TPC from
such backgrounds while still allowing those that scatter in it
to be tagged.

Figure 6 shows the energy deposited in the vetoes for
simulated y rays originating in the photoelectronics that
produced single scatters below 3 keV in the fiducial
volume. Simulations indicate that the buffer veto can
achieve a light yield >4 PE/keV, making a 50 keV
threshold realistic, and that lower thresholds only margin-
ally improve their efficiency. Since y rays can be absorbed
in inactive materials after scattering in the TPC, only 51%
are tagged by the bath veto. However, since they must pass
through the PDM buffer veto before reaching the TPC, 91%
of the y rays that penetrate the buffer and produce a
background event are tagged by it.

1Eg T 3 T [ T
PDM buffer veto =(Eth““h=' 50 keV):
Fraction above threshold = 91%,
E i--Bath wveto {E;m"h= 100 keV) s e
Fraction above threshold = 51%
o i ] i ;
2 i i i i
3
o o107
-
-
3
3
ﬁ 10
[

107

500 1000 1500 2000 2500 3000
Energy deposited in veto [keV]

FIG. 6. Energy deposited in (blue) the PDM buffer veto and
(green) bath veto for simulated y rays from the photoelectronics
with <3 keV single scatters in the TPC fiducial volume,
considering both vetoes independently.
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TABLE IV. Intemal radioisotope activities explored here, with
DarkSide-50 measurements for Ref. [25].

SSKI 39Al.
[pBq/kg]
DarkSide-50 1900 & 100 730+ 110
DS-LM 0 7.3-73

While the PDM buffer veto and TPC share instrumen-
tation, optical simulations show that pulse shape discrimi-
nation efficiently separates scintillation in the buffers from
S2, and the fraction of light concentrated in the top or
bottom PDM array allows these signals to be distinguished
from S1.

C. p-decay backgrounds

Two naturally present f emitters have been observed
in UAr: 3°Ar, which DarkSide-50 measured with
a specific activity of (0.73+0.11) mBq/kg, and ¥Kr, at
(1.9 +0.1) mBg/kg [25]. Improvements to the UAr extrac-
tion facility [58,59] are expected to completely remove 8Kr
and significantly reduce the *Ar content relative to
DarkSide-50’s measurement.

Residual *°Ar can be further suppressed using the Aria
facility [26], which will be capable of depleting 3°Ar by a
factor of 10 at a (8 =2) kg/d throughput.

Starting with an *°Ar activity comparable to DarkSide-
50’s measurement, the TPC can achieve an activity of
73 pBq/kg with one pass through Aria. With improved
UAr extraction and a second pass, this activity may be
brought as low as 7.3 pBg/kg.

Potential internal radioisotope activities are summarized
in Table IV. The effects of varying the *Ar activity on
the sensitivity to 5 GeV/c?> DM with a 2 e~ threshold are
illustrated in Fig. 7, assuming y-ray and neutrino back-
grounds as discussed above. Due to their similar f# spectra,

Threshold: 2 e v fog: n=l.5 4

1074 =

10—1!

Dark matter-nucleon oy [cm?]

[ D8-50 **Ar measu

il i
10 2x10* 10°

810 20 3040

**Ar activity [WBq/kgl

FIG.7. Median 90% C.L. upper limits and 1¢ expectation band
on 5 GeV/c? DM at varying *Ar activity.

if ¥Kr is present after purification, then Fig. 7 can be
interpreted as the total activity of ®Kr and *Ar.

D. Cosmogenic backgrounds

Cosmic-rays create backgrounds by activating detector
materials in transit and by producing prompt muon-induced
signals during operations. FLUKA [60] simulations of
muon-induced showers at Laboratori Nazionali del Gran
Sasso (LNGS) based on Ref. [61] indicate that they pose a
negligible background at comparable or greater depths,
such as at Boulby Underground Laboratory or SNOLAB.
Therefore, these backgrounds are not considered further.

The dominant cosmogenic backgrounds are from UAr
activation. Calculations are performed assuming the cos-
mic-ray neutron flux parametrized in Ref. [62]; correction
factors for different altitudes and locations are obtained
following Ref. [63]. Production rates and cross sections are
taken from measurements and calculations in Refs. [64,65]
and EXFOR [66] whenever available. Otherwise, cross
sections are from the JENDL/AN-2005 [67], TENDL [68], or
HEAD-2009 [69] libraries or computed from the cosmo [70],
YIELDX |71], and AcTIvia [72] codes.

Table V shows ¥Ar, 3’Ar, and *H yields for ship transport
from the UAr extraction site at Urania (Colorado) to Aria
(Sardinia), from Aria to LNGS or North America, and per
month outside Aria’s underground column. Atmospheric
argon has (40.4 + 5.0) uBq/kg “?Ar (73], likely orders of
magnitude lower in UAr. At sea level, it is activated by
successive neutron captures on “Ar and “'Ar and by
“Ar(a,2p)*?Ar (14 MeV threshold), at a rate 10°x lower
than 3°Ar [74]. Other isotopes have short half-lives or will be
removed by purification.

At Aria, (2.57 £0.33) pBq/kg/month of 3°Ar will be
activated in UAr stored above ground during distillation. For
long campaigns, these effects can be mitigated by storing
UArunderground. If DarkSide-LowMass runs at LNGS ora
lab comparably far from Aria, (0.86 £0.11) pBq/kg of
39Ar will be activated in transit. At North America, the yield
will be (5.73 +0.73) uBq/kg. Activated *H is separated
from argon with SAES Getters [75] and will be removed
in situ while the UAr recirculates; 3’Ar will decay away

TABLE V. Expected cosmogenically activated isotopes in UAr
after shipping from Urania to Aria, following surface exposure at
Aria, and after shipping from Aria to LNGS or North America.

39Al. 3'?Al. 3H
[uBq/kg]
Urania — Aria 147+ 1.3 806+ 73 58 +12
Aria (1 mo, surface) 2.574+0.33 294+ 39 9.0+28
Aria — LNGS 0.86+0.11 118£15 3.00£0.95
Aria — N America 573+0.73 483+64 200+63
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with a 35 day half-life. Hence, neither isotope was included
in sensitivity projections.

E. Neutrons

Radiogenic neutrons are produced by (a, n) reactions
from trace 233U, 25U, and #?Th in detector materials.
Relevant materials have (@,n) yields around 1076-1073
[76]. Such neutron backgrounds are therefore expected to
be subdominant to those from y rays from the same
isotopes. These backgrounds are, therefore, not included
in this study.

F. Surface backgrounds

The TPC’s inner surface area is 5.7 m2. During con-
struction, 222Rn progeny will deposit on surfaces exposed to
air [77], accumulating as 210pp [78]. Due to its 22.3 yr half
life, its activity will be suppressed by a factor of 2132
relative to the deposited 222Rn progeny; by cleaning
surfaces [79] and assembling the TPC in a radon-scrubbed
clean room [80], 21%Pb surface # and x-ray activity can be
reduced. Since fiducialization is only in the horizontal
plane, cathode cleanliness is particularly important.

While operating, 2?2Rn can emanate from materials and
plateout on walls, causing surface backgrounds from its
decay chain, up to 2'*Po. These isotopes are efficiently
removed from LAr with charcoal radon-traps [33,81] or
molecular sieves [82]; LAr’s cold temperature reduces the
radon outgassing [83].

Surface backgrounds can be controlled through radon
scrubbing and mitigation procedures. To determine the
activity at which they pose a significant background
contribution, the ?Rn and 2'Pb decay chains were
simulated within the inner 50 pm of the TPC walls,
following the same procedure as for y rays. Upper limits
on their activity were then set such that surface back-
grounds contribute <10% of the y-ray background rate
from TPC components.

Results from these simulations are given in Table VI,
compared with surface background rates reported by
DarkSide-50 |25] and DEAP-3600 [24]. Surface activities
obtained by other LAr DM detectors are comparable to or
below these limits. As a result, these backgrounds are not
further considered.

TABLE VL Threshold surface activities of >?Rn and 2'°Pb
decay chains needed to contribute <10% of the y-ray background
rate, Ay, compared with the activities reported by DarkSide-50
[25] and DEAP-3600 [24].

Isotope Ahr DarkSide-50 DEAP-3600
[mBq/m’]

222Rn 6.01 £0.25 . <5x 1073

210pp, 2.21 £0.05 2.51+0.01 0.26 £ 0.02

G. Spurious electron backgrounds

In DarkSide-50, SEs dominate signals below 4e-.
Leading hypotheses stipulate that they are produced by
photo- and electrochemical interactions rather than by
particles scattering in LAr. SEs are classified into two
categories based on their temporal correlation with preced-
ing progenitor events. Those within the maximum drift time
of electrons in the TPC, £3, are described in Ref. [28] and
are consistent with photoionization of detector materials.
By requiring the time between pulses to be longer than £33,
such backgrounds are removed from analysis.

At longer delays, a large fraction of SEs follow preced-
ing S2 signals by a ~5 or ~50 ms exponential lifetime, with
matching horizontal positions; a third component extends
to several seconds. The SE rate is correlated with the total
event rate and progenitors’ drift time, and it increases when
the getter used for purification is turned off. While a full
understanding of SEs requires further investigation, their
properties are consistent with impurities capturing and later
releasing drifting electrons. Similar mechanisms have been
proposed in xenon [84]. In this case, SEs may be reduced
with purer LAr, achievable with Aria and improved in situ
purification. The cold temperature of the L Ar bath may also
slow impurity diffusion. Studies of electron attachment in
LAr indicate that attachment coefficients can be decreased
by tuning the drift field strength [85,86].

With improved event reconstruction, it may also be
possible to mitigate SEs through their correlations with
progenitors. After correcting for pulse-finding efficiency,
the N .- distribution of SEs in DarkSide-50 is consistent with
a Poisson distribution, implying that SEs above 1 e~ may be
due to pileup. This explanation is supported by a pulse shape
analysis. Therefore, improved SE reconstruction with higher
N - resolution may allow pileup to be tagged, suppressing
backgrounds above 1 e™.

Due to their uncertainties, a full ex situ SE model is not
possible. For most present studies, the N - value below
which they dominate sets an analysis threshold, with 2 e~
and 4 e~ thresholds considered.

To explore effects of SEs beyond their imposition of an
N - threshold, studies will assume a model motivated by
DarkSide-50. This model assumes SEs are produced follow-
ing an ionization event where some electrons are trapped and
later released. If k 4 1 electrons are released close in time
(k = 0 corresponding to 1 &™), then they may appear as a
single S2 pulse, leading to an SE with >1 e~. Resolution
smearing, determined by ¢, and its spatial variance, may
cause them to be reconstructed with n # k electrons. The
rate of SEs with n electrons is modeled as

k+1
SE(n) = Rgl)(k; p)G(n; k+1,F m )

1 pk pk+1
P(k: p) = — P 5
(k: p) k!(k—i—l k+2) )
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FIG. 8. SE spectra scaled from DarkSide-50 using Egs. (5) and
(6), for different electron amplification factors g», excess noise
factor F, and impurity scaling factors 7. Backgrounds from other
sources are shown for comparison, assuming a 73 pBq/kg *Ar
activity.

where R is the rate per unit mass; G estimates the Gaussian
probability of reconstructing n electrons, given mean k and
standard deviation F+\/k/g,, and F accounts for excess
noise beyond PE counting statistics (e.g., from spatial g,
variations).

P(k; p) is the probability of k electrons reconstructing in
one S2, given a pileup probability p. It accounts for the
probability of two or more electrons appearing in the same
S2 window, which decreases with the exponential decay
time of captured electrons. This model is fit to DarkSide-50
data and scaled using

R o Ry;p X Lr ¥ n/Mgq,
p o L7 x n, (6)

where Ry, is the trigger rate, LTE is the maximum drift
length, Mg, is the fiducial mass, and # scales the impurity
concentration relative to DarkSide-50.

SE spectra for different parameter values are shown
in Fig. 8. The bold black curve shows a simple extrapo-
lation from DarkSide-50’s best-fit F and g,. Increasing
g» and lowering F can decrease the tails of the SE
distribution. Decreasing the impurity concentration by
10-100x further suppresses SEs, enabling thresholds as
low as 2 e~. Additional suppression of SEs with N - > 1
may be achievable with analysis cuts narrowing the
pileup window, thereby decreasing p. Such cuts will
be strengthened by improved reconstruction with higher
g, and lower F.

Calculations based on measurements in Refs. [83,87-91],
indicate that polymethyl methacrylate (or acrylic) negligibly
outgasses impurities in the 87 K LAr bath, and continuous
purification during operations will further remove impurities
that do enter the system. It is worth noting that, as impurities
are reduced, new SE sources may become dominant.

V. SENSITIVITY PROJECTIONS

DarkSide-LowMass’s sensitivity is projected for various
scenarios using the profile likelihood ratio test statistic
(defined in Eq. (11) of Ref. [92]) with the CL; technique
(following Ref. [93]) and a Neymann construction to
predict median 90% C.L. upper limits fora 1 tyr exposure.
These tests used the asymptotic approach with an Asimov
dataset, as described in Ref. [92], after confirming that it
yields indistinguishable results from generating test statistic
distributions with a toy Monte Carlo. Calculations follow
the recommendations in Ref. [52], including the standard
halo model described in Refs. [94-99].

Except where stated otherwise, all projections use
binomial quenching fluctuations, the impact of which is
illustrated in the top left panel of Fig. 9. These results
assume the validity of the screening model introduced by
Ziegleretal. |37]. As shown in Ref. [27], other models give
higher ionization yields—up to twice those predicted with
the model by Ziegler et al.—and would therefore predict
stronger limits than shown in this work. However, it cannot
be excluded that a new theoretical screening model could
result in weaker projected limits at the lowest energies
explored. A dedicated measurement campaign is needed to
resolve this issue.

Figure 7 and the top right of Fig. 9 show how lower
background rates improve sensitivity at all masses.
Conservative *Ar and SE background reductions enable
exclusion sensitivity into the neutrino fog in a 1 tyr
exposure. Alternative scenarios with further reductions in
SE and *Ar background extend this sensitivity down to
1 GeV/c% With 7.3 pBq/kg of 3°Ar, doubling the y-ray
background rate weakens limits by <10% (<20%) below
5 GeV/c? (10 GeV/c?).

Figure 10 shows rapid sensitivity growth going from 0.1
to 1 tyr exposure and modest gains extending to 2 tyr.
Longer exposures marginally improve sensitivity, as neu-
trino backgrounds limit sensitivity. These trends strengthen
at lower 3°Ar activity.

The top of Fig. 11 shows that DarkSide-LowMass can
reach competitive sensitivity in a 1 tyr exposure.

A. Improvements with the Migdal effect

Inelastic atomic effects may cause some scattering DM
to transfer additional energy to an electron in the target
atom, adding an electronic recoil and an x-ray/Auger
cascade to the nuclear recoil. This so-called Migdal effect
allows light DM to make higher-energy signals than is
possible for a pure nuclear recoil [104]. Given the pure
nuclear recoil rate dR/dEyg, the inelastic rate for produc-
ing nuclear and electronic recoil energies Eng and Egg is

d’R dR 1 dpS, (nf — Egg)

- — 7
dEm-dEER dENR 2”; dEER ’ ( )
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FIG. 9. Projected 90% C.L. upper limits on the spin-independent DM-nucleon scattering cross section for 1 tyr exposure. Top, left:
with and without binomial quenching fluctuations. Top, right: with varying thresholds and background rates. Bottom, left: including the
Migdal effect. Bottom, right: attempting to model and fit SE backgrounds [see Eq. (5)] at varying impurity concentrations relative to
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neutrino fog in LAr with index n representing the resulting impediment to a 36 DM observation is shown in shades of gray, calculated to
m, = 100 MeV/c? [13]. Current limits are shown from CRESST-III [100], DarkSide-50 [20,21], and XENONIT [16,101].

where p§ (n — Egg) is the probability of an electron with
mass m, in the (n) shell being ejected with momentum
q. = m,/2E\g/my in the nuclear rest frame, with mass

my. The total deposited energy is Eng + Egr + E,p,
where E,, (E,;=32keV, E, =03keV, and

Threshold: 2 &, 73 uBg/kg **Ar

Dark matter-nuclecn oz [cm?]
n

o 0.5 1 1.5 2 2,5 3 3.5 4 4.5 5
Exposure [tyr]

FIG. 10. Median 90% C.L. upper limit and 1 expectation band
for 5 GeV/c?> DM at varying exposure.

E,, =0.24 eV) is the binding energy of shell (nZ).
Signals are modeled as in Ref. [21], summing N2} from
Eyg with NER from Egg + E,,. This approach is
conservative, given the nonlinearity of QF®. Values of
p§, for isolated atoms are used for all three shells from
Ref. [104]. The reduced binding energy and the band
structure of the valence shell in LAr are not accounted for,
rendering this treatment conservative [105].

Significant sensitivity to DM masses as low as
30 MeV/c? can be achieved by exploiting this effect, as
illustrated in the bottom left of Fig. 9. Other effects may
give comparable reach [106].

B. Spurious electron background fits

If R&D enables SE models, then they can be included in
the profile likelihood ratio calculation, and the analysis
threshold can be lowered, recovering sensitivity. The
effects of such an analysis are explored by modeling
SEs with Eq. (5), with F =1, g, =75 PE/e™, and a total
event rate of 0.8 Hz, as estimated from simulations. The

effects of varying #, the impurity concentration relative to
DarkSide-50, are explored.
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from CRESST-1II [100], DarkSide-50 [20], and XENONIT [16]
are shown, along with DAMIC-1K [102], NEWS-G, and
SuperCDMS [103] projections.

The results of these fits with a 2 e~ threshold are shown
in the bottom right of Fig. 9. Modeling SEs may extend
sensitivity down to 200 MeV/c? masses. Kinks in the
projected exclusion curves are due to DM spectra that
closely match the SE spectrum predicted by a given #.

C. Discovery sensitivity

The bottom of Fig. 11 shows DarkSide-LowMass’s
potential for observing evidence of DM at 3¢ significance
with varying 3°Ar concentrations and analysis thresholds.
In 1 tyr, a 4e~ threshold can reach the n = 1.5 neutrino
fog above 1.7 GeV/c?, with significant sensitivity down to
0.5 GeV/c*>. A 2e™ threshold extends the reach to
0.3 GeV/c?, with masses above 0.7 GeV/c? within the
fog. Decreasing the 3°Ar activity improves sensitivity at all
Masses.

An observation rejecting the background-only hypoth-
esis at 3o significance would constitute evidence for DM,

TABLE VII. DM masses above which evidence (discovery)
contours are within the n = 1.5 solar neutrino fog at 36 (56)
significance, up to ~10 GeV/c?.

N,- threshold Ar activity 30 56
[e7] [uBg/kg] [GeV/c?]

2 73 0.60 0.68
2 73 0.68 0.79
4 7.3 1.42 1.67
4 73 1.71 212

while 56 amounts to a discovery. Table VII summarizes the
masses for which 3¢ and 5S¢ significance is reached within
the n = 1.5 neutrino fog. Evidence for DM would warrant
follow-up studies to either confirm or refute the possible
signal and to test if it can be explained by a poorly
understood background like SEs. These tests could include
searching for annual modulation in the excess and searches
with a liquid xenon TPC, where the SEs behave differently
than in LAr, or with entirely different technology with
different low-energy systematics, like SBC [107] or
SuperCDMS [103], among others. In order to detect
compelling evidence for DM, it is critical to better under-
stand SEs.

D. Electron-scattering dark matter

DarkSide-LowMass will be sensitive to DM with elec-
tronic couplings via a vector mediator with mass m,-. As in
Ref. [14], limiting cases of my > 1/a, (heavy mediator)
and my < 1/ay (light mediator) are considered, giving
DM form factors Fpy(g) of 1 or 1/(agq)?, where ay is the
Bohr radius and g is the momentum transfer. Figure 12
shows the projected 90% C.L. exclusion curves and 3o
evidence contours with 1 tyr exposure. Sensitivity to heavy
(light) mediators with cross sections down to 10~% cm?
(10* cm?) may be reached at 100 MeV/c2.

DM coupled to electrons via a dark photon with
ap = g5 /4n, where g, is the U(1), gauge coupling,
can be produced at the relic abundance through the
freeze-in mechanism if my < 1/ay and the freeze-out
mechanism if my > 1/aq [108]. Figure 12 shows the DM-
electron scattering cross section &, that gives the relic
abundance for DM of mass m, with a, = 0.5 and either
my — 0 or my =3m, for light and heavy mediators,
respectively. Away from resonances such as my = 2m,,
these curves vary little with choice of m, and ap [108].
Table VIII summarizes m, ranges for which DarkSide-
LowMass may be able to observe DM with &, predicted by
either mechanism with at least 3¢ or 5o significance.

E. Solar neutrino sensitivity

CEvNS from solar neutrinos presents an opportunity to
study solar neutrinos through a flavor-universal channel.
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[22], SENSEI [109], XENON10 [110], and XENONIT [16]. Thick lines show &, giving the relic DM abundance through freeze-in or

freeze-out production mechanisms, from Ref. [108].

This reaction was first detected by COHERENT [111,112],
enabling such studies. With a2 e~ (4 ™) threshold, an IAr
activity of 14.6 pBq/kg (7.3 pBq/kg) is required to detect
solar neutrinos with 5¢ significance in 1 tyr.

VL. IDEAS FOR FURTHER IMPROVEMENTS
AND UPGRADES

The small size and relaxed light yield requirements
afford DarkSide-LowMass the flexibility to improve its
sensitivity through design features, beyond those in the
conceptual design discussed in this paper, either as

improvements to the baseline design or as future upgrades,
pending additional R&D.

DarkSide-50 found that SEs may largely be due to
drifting electrons capturing on impurities and later being
released. Improvements in the purification system targeting
these impurities or modifications that avoid their introduc-
tion may reduce SEs, as may techniques for tagging piled-
up SEs orfitting them in data. They may also be reduced by
shortening the TPC while maintaining the same target mass
or by decreasing the total event rate in the fiducial volume.
TPB may be one impurity responsible for SEs: it is soluble
in LAr (possibly at the O(ppb)-level) [113] and has

TABLE VIII. DM masses where DM produced by freeze-in (msy < 1/ag) or freeze-out (my > 1/ay) may be observed at 3¢

(evidence) and 5o (discovery) significance.

my < 1/a, my > 1/a,
36 56 3o 56
N,- threshold [e7] *Ar activity [pBg/kg] [MeV/c?] [MeV /c?]
2 7.3 13-1000 15-1000 9-317 9-293
2 73 15-1000 16-1000 9-291 10-270
4 7.3 66404 E 27-256 27-236
4 73 .- 28-230 29-192
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O(1 ms) excited states observed in its scintillation [114].
Alternatives like the PEN wavelength shifter, VUV-
sensitive SiPMs [115,116], or Xe doping [117,118] may
therefore reduce SEs.

Doping LAr may also extend sensitivity to lower
DM masses [119,120]: additives with lower ionization
energies can increase the yield and lower the energy
threshold [121]. At higher concentrations, additives with
light nuclei—including hydrogenous photoionizing dop-
ants [122]—may offer targets with ideal kinematic cou-
pling to light DM and sensitivity to spin-dependent
interactions. Doping LAr in a second phase may be akin
to a “beam-on/beam-off” experiment for DM candidates
detectable only by the doped target. Since the dominant
low-energy backgrounds are SEs, changing the ionization
properties of the LAr with dopants may also disambiguate
instrumental noise from DM signals. DarkSide-LowMass’s
small size will afford it the flexibility for such upgrades
through a phased approach.

VII. CONCLUSION

These studies show that a tonne-scale dual-phase
LAr TPC with existing technology can reach sensitivity
to DM with nuclear couplings in the solar neutrino fog
with a 1 tyr exposure. This can be achieved with a
detector similar to DarkSide-50, scaled to a larger target
mass with available UAr further suppressed in 3°Ar by
Aria. In addition to increasing the exposure, the larger
mass enables self-shielding, using horizontal fiducializa-
tion and the PDM buffer vetoes, to further suppress y-ray
backgrounds.

Present uncertainties in modeling the ionization response
of LAr to low-energy nuclear and electronic recoils hinder
analyses at lower masses: the top left panel of Fig. 9
illustrates the effects of how ionization yield fluctuations
are modeled, while Ref. [27] shows that the choice in
nuclear recoil screening function may increase Q)% by
nearly a factor of 2 below 10 keV, relative to the model by
Ziegler et al. [37] considered in this work. New measure-
ments below 10 keV, similar to those in Refs. [41,42],
may address these uncertainties and benefit DarkSide-
LowMass.

Improved radiopurity, including low-radioactivity
SiPMs, and the y-ray veto system enable a design in which
y-ray backgrounds are subdominant to those from solar
neutrinos. The strongest factors for improving sensitivity are
further removing *°Ar, with expected gains down to
7.3 uBq/kg, and lowering the energy threshold. The rela-
tively small target mass allows its UAr to be depleted by Aria
in a feasible timescale. Little sensitivity is gained with
exposures larger than ~1 t yr, characteristic of DM searches
in the neutrino fog. Even if SEs are notreduced, the ability to
deplete *°Ar in Aria will enhance DarkSide-LowMass’s
sensitivity, and the stronger electroluminescence field
will enhance analysis capabilities for the lowest-

energy signals. While these improvements will extend
DarkSide-LowMass’s sensitivity, especially at lower
masses, this fog is already within reach for readily realizable
scenarios. More novel upgrades in a second phase of the
experiment can mitigate backgrounds to reach into the
neutrino fog for a wider range of DM masses, and they
can extend sensitivity to lighter candidates. DarkSide-
LowMass’s small size and flexible design will allow these
upgrades to be made, including possible modifications to
enhance the detectors response or decrease SE backgrounds,
if more is learned of their causes after the detector is first
commissioned.
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