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Abstract

Over the last 25 years, biology has entered the genomic era and is becoming a science of ‘big data’. Most interpretations of genomic analyses
rely on accurate functional annotations of the proteins encoded by more than 500000 genomes sequenced to date. By different estimates,
only half the predicted sequenced proteins carry an accurate functional annotation, and this percentage varies drastically between different
organismal lineages. Such a large gap in knowledge hampers all aspects of biological enterprise and, thereby, is standing in the way of genomic
biology reaching its full potential. A brainstorming meeting to address this issue funded by the National Science Foundation was held during 3-4
February 2022. Bringing together data scientists, biocurators, computational biologists and experimentalists within the same venue allowed for
a comprehensive assessment of the current state of functional annotations of protein families. Further, major issues that were obstructing the

field were identified and discussed, which ultimately allowed for the proposal of solutions on how to move forward.

Introduction

In the early 2000s, biology entered the big data era in which all
biological subdisciplines now rely heavily, both directly and
indirectly, on the generation and analysis of whole-genome
sequences (1), and we are still in the exponential phase of data
generation (2). One of the largest benefits of the availability of
sequenced genomes is the potential to elucidate the exact func-
tion of each encoded protein (3). Definitions for protein func-
tion vary and go from very broad such as the fact that a given
protein is ‘an ATPase’ or ‘a transporter’, to more specific such
as the protein belongs to a given protein family, as recently
used in the Vanni et al. study (4), to very specific where the
precise molecular function of the protein in the cell is defined.
This latter definition will be the one that we are referring to
in this work. The last 20 years have seen strong advances in
both the generation of sequence data and the development of
bioinformatic tools to predict coding sequences and regula-
tory elements, as well as to compare genomes and proteomes
on much larger scales (5). However, the necessary functional
annotations to make use of these proteomes have lost pace
with other advances and have become a major bottleneck
in our understanding of all forms of life (6-9). Even in the
best-studied model organisms such as Escherichia coli K-12
and Saccharomyces cerevisiae, or even the minimal synthetic
organism Mycoplasma JCVI-3, the latter of which contains
less than 400 genes, the functions of 20-30% of their respec-
tive encoded proteins remain unknown (7, 10, 11). Although
large advances have been made in the field of computational
functional annotation and the manually curated subset of

UniProt (Swiss-Prot) has a demonstrated error rate close to
0% for select model families, more than half of the sequenced
proteome of the bacterial domain of life has no precise func-
tion (12). This is also an acute problem for Archaea (13), as
well as certain eukaryotic taxa, including plants (14, 15). In
general, non-model organisms remain poorly annotated with
issues identified in the early days of whole-genome sequenc-
ing (16), such as limited curation resources for integrating
experimental data, pollution of databases with legacy annota-
tions, inconsistent propagation of known annotations, widely
propagated errors/overprediction due to shared superfamily
membership and high proportions of true unknowns remain-
ing unresolved (9, 17, 18). Systems and synthetic biology
approaches remain obstructed from reaching their full poten-
tial if the functions of biological parts continue to be left
unknown or unannotated (6, 19).

Organizing a brainstorming meeting on
improving protein functional annotations

To identify mechanisms to overcome this barrier, a work-
shop funded by National Science Foundation (NSF) (MoCelS-
DCL: Building a Network for Functional Annotation of Pro-
tein Families MCB-2129768) was held during 3-4 February
2022 at the Orlando Airport Marriott, FL, USA. The meet-
ing was conducted in a hybrid fashion with 27 live and 32
remote participants. Six sessions, each with four short talks,
were followed by breakout brainstorming groups (three live
and three remote) referred to as ‘breakout sessions’ and, then,
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by a general debrief led by the session organizers (see Supple-
mental Data 1 for the full program). Two pre-meeting surveys
were sent to attendees to prepare the meeting agenda (results
in Supplemental Data 2 and Supplemental Data 3). Graduate
student scribes participated by capturing discussions with the
help of Miro boards (https://miro.com/). A Slack workspace,
with a channel dedicated to each session, was used to cap-
ture interactions during the meetings and was also used as a
centralized platform through which to continue post-meeting
communications. All meetings, talks and remote discussions
were recorded. The six sessions were articulated around two
main challenges with a final goal of creating a roadmap for
efficient and accurate functional annotation of the global pro-
teome. The first challenge was how to capture, propagate and
map functional information to the correct isofunctional pro-
tein subfamilies. The second challenge was determining how
to change the culture among researchers, curators and devel-
opers to make the functional annotation of proteins part of
the Open Science movement.

Bringing together three communities to better
understand the issues at play

This meeting, one of the first that brought together three com-
munities (biocurators, experimentalists and computational
biologists) within the same venue that rarely interact in tri-
une, showed that significant technological advances to sup-
port protein functional annotation have been made; however,
these methodologies have yet to be aligned and effectively
applied across databases and communities. As discussed in
this meeting report, many different groups and consortia have
worked to develop ontologies, create machine-readable rep-
resentations of enzyme reactions and metabolic pathways,
implement high-throughput (HTP) experimental methods and
construct comparative genomic and modeling tools that, all
together, have the potential to increase the holistic knowledge
of protein function; yet many of these tools have been used
exclusively for model organisms, and therein, the acquired
knowledge is unable to flow between different research silos.
In addition, experimentalists have not traditionally been an
integral part of the biocuration cycle; because they are both
providers and users of knowledge, this creates bevies of
wasted time and resources. The field is at the stage where
synergistic collaborative community development efforts are
required to overcome the accumulated bottlenecks. The main
findings stemming from the sessions’ talks and discussions are
summarized below.

The capture of what is known, past and future

As a general introduction to the meeting, Valérie de Crécy-
Lagard (University of Florida) summarized some of the themes
emerging from the first pre-meeting survey (Supplemental
Data 2). It was very clear from the survey answers that
there is a major gap in functional annotation status and
quality between the handful of well-curated model organ-
isms (that have received sustained funding from NHGRI, NIH
and Wellcome Trust) and the hundreds of thousands of other
sequenced genomes that are dependent upon curation by spe-
cific communities or rely on automated annotation pipelines.
One measure of the extent of functional annotation is the
number of Gene Ontology (GO) annotations that have been
curated from experimental results reported in publications.

Table 1. Ten most highly annotated genomes in the GO database?

Number (%) of
experimental anno-
tations in the GO
knowledgebase

145000 (21%)
123000 (18%)
70000 (10%)

57000 (8.2%)

Organism Taxonomy

Animals (mammals)
Animals (mammals)
Plants

Animals (mammals)

Homo sapiens

Mus musculus
Arabidopsis thaliana
Rattus norvegicus

Drosophila Animals (insects) 53000 (7.7%)
melanogaster

Saccharomyces Fungi 48000 (6.9%)
cerevisiae

Danio rerio Animals (fish) 28000 (4.1%)

Caenorhabditis Animals (nematodes) 24 000 (3.9%)
elegans

Schizosaccharomyces Fungi 24000 (3.9%)
pombe

Escherichia coli Bacteria 17000 (2.5%)

2Only annotations with experimental evidence are reported. Numbers were
obtained from the GO website, for release on 22 March 2022, exclud-
ing annotations directly to ‘protein binding’, and rounded to the nearest
thousand for readability.

Eighty-five percent of experimental GO annotations are for
genes in 10 well-studied organisms, only one of which is a
prokaryote (Table 1). The second point she emphasized was
the variability of functional annotations for the same protein
among different databases, even for proteins that had been
functionally characterized years ago (20). Experts can cap-
ture functional annotations nearly in real time in specialized
databases, but this knowledge can take years to propagate
across the more general resources that rely on professional
curators and that are used by most biologists.

Iddo Friedberg (Iowa State University) then presented the
notion that, due to a variety of incentives, experimentalists
tend to study the same proteins again and again with little
effort devoted to elucidating the functions of unannotated
proteins. For example, 30 human brain proteins account for
66% of the literature. Among the incentives driving the per-
petuation of the ‘ignorome’ (the set of proteins that are unan-
notated because they are consistently unstudied) are funding
availability, technological capabilities or skills and knowl-
edge accumulated in prominent laboratories, rather than by
the biomedical or other importance of these proteins (21).
Scientists tend to work on proteins that have already been
characterized and that have already attracted funding (22).
In summary, it appears that those proteins that generate his-
torical interest are those that are consistently accumulating
functional annotation, or, by analogy, ‘the rich get richer’
in terms of functional knowledge and the ‘poor’ are mostly
ignored.

Improvement of protein databases by including
chemistry

Alan Bridge (Swiss Institute of Bioinformatics) started the
session dedicated to capturing functional annotation knowl-
edge and did so by presenting on the UniProt knowledge base
(UniProtKB) (23), discussing the latest advances in expert
curation implemented by Swiss-Prot. UniProt is one of the
main contributors to GO curation, particularly for human
proteins, and his group is now using the GO Causal Activ-
ity Modeling framework, which allows GO annotations to
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be connected to create machine-readable models of biolog-
ical pathways/networks (24). He also discussed the switch
from a textual representation of enzyme and transport reac-
tions in UniProtKB to a machine-readable format (25), which
enhances the utility of UniProtKB and interoperability with
other databases providing curated enzyme and transport reac-
tion data including MetaCyc (26), KEGG (27), Reactome
(28), SABIO-RK (29) and BRENDA (30). He also discussed
the efforts to standardize the representation of enzyme chem-
istry and enzyme function in a collaboration between curators
at Rhea, Reactome (31) and the GO. Finally, structure predic-
tions from AlphaFold (32) have been integrated into UniProt
for all UniProtKB/Swiss-Prot entries and those of selected ref-
erence proteomes, which will accelerate efforts to understand
and predict protein functions. At the end of his talk, Alan
made a case for the creation of a single Open Enzyme Reaction
Database similar to the Open Reaction Database for organic
chemistry (33), to which existing reaction resources such as
Rhea and those cited above could contribute.

Natural language processing can improve literature
capture

Zhiyong Lu (National Library of Medicine) showcased the
use of natural language processing (NLP) and artificial intel-
ligence (Al) tools to capture knowledge on protein function
in PubMed under the current information overload, as two
to three new papers are being deposited every second in
the world’s most comprehensive biomedical literature data-
base. LitSuggest (https://www.ncbi.nlm.nih.gov/research/lit-
suggest/) builds machine learning (ML) classifiers from a
list of positive control papers (given as PubMed identifiers
(PMIDs)) that are then iteratively calibrated, as new papers
are accepted or rejected by the users (34). Another widely used
tool is PubTator (https://www.ncbi.nlm.nih.gov/research/pub-
tator/), which performs automatic concept annotation in the
biomedical literature and is particularly useful for capturing
information on proteins/genes, chemical entities or diseases
(35). Both PubTator and LitSuggest are already being used
in production pipelines by many biocuration groups includ-
ing Swiss-Prot (36), Rhea (37) and the NHGRI-EBI GWAS
catalog (38). In general, Al tools required gold standard
data sets and corpora to train their models. The Lu team
has created a semi-automated text annotation tool, TeamTat
(https://www.teamtat.org), to help create these data sets in a
more automated and collaborative fashion (33).

Biocuration resources are a limiting factor

Valerie Wood (University of Cambridge), who manages the
PomBase database (39), showed that mapping GO biologi-
cal processes to biologically informative subsets allowed to
consistently identify the percentage of proteins with unknown
biological roles (process or pathway) and to distinguish these
from unannotated proteins in any given genome. The num-
ber of unknown roles for the two model yeasts (fission yeast
and baker’s yeast) and human has remained stable at 20%
of the proteome with not much progress in the last 10 years
(7). This number is similar to what is estimated for E. coli
(9, 10) but changes drastically in non-model organisms as dis-
cussed by Valérie de Crécy-Lagard (University of Florida) in
her introduction talk. The average in most microbes is around
50% of unknowns but may reach 70% in those less well
studied (12). A recurring theme during the meeting was that
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biocurators are a limited resource with fewer than 100 full-
time equivalents (FTE) biocurators extracting gene-specific
functional information from the literature into ~40 public
databases (functional/phenotypes/interactions/pathways) and
fewer than 10% of these focusing on bacteria and plants
(Valerie Wood, personal communication). Community cura-
tion is often identified as one potential way to increase cura-
tion output. PomBase has a long history of soliciting author
curation using incentives such as recognition in ‘research spot-
lights’ and promoting the use of community curation as a data
dissemination activity in data management plans for funders
(40). High-quality standardized curation is enabled by a user-
friendly curation platform [Canto (41)], and rapid turnaround
makes data visible sometimes within days of publication.
Through these incentives, a quarter of the 300000 curated
ontology term assignments in PomBase are now provided by
the publication authors.

Sequence embeddings can help better map
proteins to families

The final talk of the session by Lucy Colwell (University
of Cambridge) reported a collaboration with Alex Bateman
[European Molecular Biology Laboratory, European Bioin-
formatics Institute (EMBL-EBI)] to show that deep learn-
ing models could be used to represent unaligned proteins
as vectors that could then be used to predict the mem-
bership in a Pfam family with high accuracy (42). Inter-
estingly, this method seems to capture different types of
information than alignment-based methods, and when the
two are combined, accuracy improves. This work has allowed
increasing the Pfam coverage of many proteins and reveals
functional similarities that cannot be detected by other
methods.

Recommendations to impose good practices and
standards at the publication steps and increase
funding for biocuration

Two major action items emerged out of the discussions in
Session 1. The first is the need to impose standards at the
publication stage for protein function identification and infor-
mation. Funding agencies must be encouraged to request
a plan for a standardized annotation of research results—
including protein functions—as part of the end of grant
reporting. One could envision a knowledge management plan
that could be part of the now mandatory data management
plans that have to be included in proposals. The American
Chemical Society (ACS) journal Biochemistry requires that
authors provide UniProt identifiers for protein sequences,
which facilitates the integration of literature and Findable
Accessible, Interoperable and Reusable (FAIR) knowledge
of protein function in UniProt and related resources (43),
but they do not request functional data. A dialogue with
publishers is required to develop user-friendly pipelines for
authors to link literature to protein sequences and functional
descriptors including ontologies such as the GO or standard-
ized chemical structure descriptors for enzyme substrates and
reactions. Schymanski and Bolton proposed a series of rec-
ommendations for the provision of FAIR chemical structure
data in journals (44), which the Journal of Cheminformatics
has since implemented (45). These recommendations could
be easily extended to cover enzyme functions and described
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using universal chemical standards such as reaction SMILES,
which are suitable for both human consumption and ML
(46,47).

The second is the necessity to improve functional anno-
tation data sharing between databases, as it is particularly
lacking between the generalist and more specialized databases
and even between different generalist databases. Community
efforts like GO have promoted the propagation of annota-
tions, but limited funding has driven some databases (e.g.
KEGG and BioCyc) to rely on subscription models that, while
highly scalable, can hamper integration and reuse of their
data (note that BioCyc data are made openly available after
2 years, thus enabling eventual reuse of BioCyc data). Sev-
eral parallel approaches are required to solve this problem: (i)
create a communication mechanism among research commu-
nities to share experiences of successful examples of functional
databases (i.e. PomBase) with equivalent communities, (ii)
increase biological domain-specific annotation databases for
key species that can attract a specific community into a qual-
ity functional annotation effort and (iii) use the federated
model to integrate databases across biological domains to
facilitate communication, harmonization and interoperability.
The mandates of the Global Biodata Coalition (https:/glob-
albiodata.org/) and of Elixir (https://elixir-europe.org/) are
important steps in the development of guidelines and rec-
ommendations to allow data standardization and to improve
functional annotation data sharing, particularly as the frame-
work to unify and capture information from a variety of
functional databases [including but not limited to UniProtKB,
GO KB, Protein Data Bank (PDB) and other more specialized
resources] is largely in place. However, the number of biocu-
rators worldwide to keep pace with information capture is
inadequate by a few orders of magnitude. For example, the
GO trackers have over 1300 tickets related to ontology and
annotation issues but less than two FTE curators to address
them, and most model organism databases have large litera-
ture curation backlogs often of up to a decade. To reach the
scale needed to correctly annotate the ever-increasing global
proteome, a combination of steps must occur, including an
increased number of biocurators, better sharing of captured
annotations between databases and increased participation
of experimentalists in the curation process. Another point of
discussion was the need for mechanisms for publishing neg-
ative data on protein function, which would prevent wasting
resources and endlessly repeating the same functional tests.
Finally, most of the proposed solutions focused on future
publications, but, to capture the backlog of published func-
tional data, several solutions were discussed. A consortium
could be formed to tackle previously published literature. This
could be done with different types of community annotation
approaches, some relying on students such as in the Commu-
nity Assessment of Community Annotation with Ontologies
(CACAO) effort (48), and others relying on experts. One
example of an expert-based effort is the use of annotation
tools from UniProt where users can link papers to UniProt
entries and provide functional information for individual
entries or in batches (49). One must not underestimate the
size of this task as, based on LitSuggest analyses (Alan Bridge,
unpublished), tens of thousands of publications remain to be
curated for enzymes in UniProt, alone. The size of this cura-
tion task is akin to what has already been captured in this
database.

Identification of isofunctional families,
mapping and propagating functional data to
isofunctional groups

The functions of all proteins across sequenced proteomes
will never be experimentally validated. The overwhelm-
ing majority of functional annotations are inferred transi-
tively, through an operation of transferring the annotation
from one protein (that has been experimentally validated)
to others (that are not characterized) using some manner of
determined sequence similarity. To give an order of mag-
nitude, as of 25 March 2022, more than 64 million pro-
teins are encoded by the ~21000 reference organisms in
UniProt (50). Around 72000 (or 0.1%) are directly linked
to some type of experimental evidence [UniProt search terms
used: ‘proteome:(reference:yes)annotation:(type:function evi-
dence:experimental)’] (accessed x date). Hence, any informa-
tion on the remaining 99.9% of proteins is inferred. Unfor-
tunately, similarity-based methods can be error-prone by the
very nature of how different functions evolve from common
ancestors, and just a few mutations can change the substrate
or chemistry of a given protein (51). Phylogenetic methods to
transfer annotations, such as the Phylogenetic Annotation and
Inference Tools (PAINT) (52) developed by the GO Consor-
tium, have been built and are used in annotation propagation,
but they are limited in the number of organisms they cur-
rently cover. Hence, a large proportion of misannotations in
databases are due to incorrect identification of functionally
equivalent subgroups within the same protein family (17).
In the last 20 years, parallel methods have been developed
to address the issue of erroneous propagation within protein
superfamilies (Figure 1).

Challenges of separating protein families into
functionally equivalent subgroups

Session 2 focused on the identification of isofunctional fam-
ilies. A talk from John Gerlt (University of Illinois) showed
how sequence similarity networks (SSNs) can be combined
with genome neighborhood diagrams to separate families into
isofunctional subgroups (53) (Figure 1A). This requires cycles
of increasing similarity cutoff changes and subsequent analy-
ses by the user to choose cutoffs that are case-dependent and
involve much trial and error. Recent developments of the tools
show how a precomputed analysis of the Radical SAM fam-
ily, one the most chemically diverse superfamilies studied to
date, can greatly facilitate the correct annotation of Radical
SAM subgroups with known functions as well as guide the
characterization of the ones that remain to be discovered (54).
Current issues of scale limit the systematic use of precomputed
SSNis for all protein families, but sequence-embedding tools
that do not rely on exhaustive pairwise comparisons were dis-
cussed or presented by three workshop participants: Claire
McWhite (Princeton University), Christian Dallago (Technical
University of Munich) and Lucie Colwell (Cambridge Univer-
sity). Such embeddings could solve the scalability problem,
and follow-up analyses triggered by the meeting discussion
are underway to explore this avenue.

Christine Orengo (University College London) presented
the FunFams platform (55) and its recent improvement by
integrating information on the multi-domain composition
of proteins. FunFams are based on the CATH evolution-
ary classification that combines structure and sequence to
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Figure 1. Different existing resources to separate isofunctional families. The top three panels show different methods based on sequence similarities to
try and identify subgroups. The bottom panel focuses on rule-based approaches. (A) SSN example from RadicalSAM.org with protein as nodes linked by
an edge if they are similar within a certain threshold that shows the separation of the members of the Radical SAM superfamily; some subgroups cannot
be separated as seen in Megaclusters 1-5; some are distinct as seen in Clusters 6-10; (B) network representation of the HIGH-signature proteins,
UspA, and PP-ATPase (HUP) Superfamily (CATH 3.40.50.620) showing available functional annotations in FunFams. The colored nodes indicate FunFams
annotated with different EC numbers, and the gray nodes indicate FunFams without any EC annotation, which includes nonenzymes [Figure from (127)];
(C) GO Phylogenetic Annotation: annotations of gains and losses of functions on ancestral nodes in the tree, based on experimental annotations (left)
lead to different function annotations of uncharacterized proteins depending on their evolutionary history (right); (D) UniRule generation platform.

group proteins into Mega, Super or Functional families
(56) (Figure 1B). Approximately 40% of protein domains
in CATH can be assigned to a FunFam having at least one
experimentally characterized relative. The majority of Fun-
Fams are functionally pure, but analysis of the distribution
of Enzyme Commission (EC) numbers within highly popu-
lated FunFams shows that the separation between families
can still be improved and that use of sequence embeddings
allows a better separation (57). Plans to integrate struc-
tures from AlphaFold 2 (58) in CATH were presented and
led to an active discussion among attendees on how good
structures predicted by AlphaFold could be used to dock/pre-
dict substrates with the final consensus being that it was
as variable as with experimentally solved structures, mainly
depending on the presence of a bound ligand in the template
structure.

Paul Thomas (University of Southern California) dis-
cussed the GO Phylogenetic Annotation Project (59), which
uses phylogenetic trees from the PANTHER protein family
database (60) to create explicit models of protein evolution
for the propagation of functional annotation of experimen-
tally validated proteins captured by the GO Consortium (61)
(Figure 1C). The strength of this system is in its use of mod-
els’ functional divergences within a protein family, identifying
clades in the family with different functions, such as different
substrate specificities of enzymes. Although the PANTHER
trees include proteins from 142 organisms sampled across
the tree of life, the focus of this effort has not necessarily

been on protein families that contain members with experi-
mentally validated GO annotations. It is therefore currently
biased toward eukaryotes in general, vertebrates in particu-
lar (Table 1). This effort has been relatively successful, with
9000 families in PANTHER annotated with models of protein
function evolution, covering 90% of human protein-coding
genes. With the pipelines in place and many years of experi-
ence applying these tools across primarily eukaryotic species,
the time seems right to expand the PAINT pipeline to include
more prokaryotic species. This would require a concerted
community effort to capture more experimental GO anno-
tations for prokaryotic proteins (62) and add many more
bacterial/archaeal species into PANTHER trees, as only 43
are included in the current set.

Maria Martin (EMBL-EBI) presented the UniRule system
used to annotate entries in UniProt by combining InterPro
signatures and taxonomy to generate annotation rules with
unique identifiers (Figure 1D) (63). To date, over 8000 rules
have been created and have allowed to automatically anno-
tate half of the proteins in UniProtKB/TrEMBL. She empha-
sized during her talk that two points were recurrent themes
throughout the whole session. First, the generation of the
rules was limited by the manual capture of the experimental
data to create the gold standard data set in UniProtKB/Swiss-
Prot. As Valerie Wood and Peter Karp stressed in the ses-
sion discussion, biocuration is massively underfunded and
funding continues to decrease with only ~3 FTE prokary-
otic biocurators at UniProt, 2.5 FTE at EcoCyc, and 2.5 at
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BioCyc—the three main resources curating microbial
function—tasked with capturing all prokaryotic functional
data from the literature. Currently, the cost of curating a paper
($200-$300) is much less than the open-access publication fee
for that paper (64). The second important point was that com-
bining different methods should greatly improve the accuracy
of functional annotation. She proposed to combine UniRules
with PANTHER-based trees, or with FunFams, particularly in
cases where the current systems fail, such as loss of function
situations or species-specific moonlighting.

The major recommendations that came out of Session
2 discussions were to (i) create a publicly available set of
precomputed data on protein families (like SSNs and phy-
logenetic trees) to save other researchers’ time and provide
a shared community resource for identifying isofunctional
groups; (ii) create an equivalent of a dictionary for isofunc-
tional families to enhance findability; (iii) build online tools
that can engage a large community in functional annotation
tasks beyond model organisms, using similar strategies to
those that have proven successful model organism databases
[e.g. Pombase (34), WormBase (65) or FlyBase (66)] and (iv)
greater biocuration capacity.

Propagation of functional annotations, challenges
and breakthroughs

Session 3 concerned the propagation of functions between
members of a protein family as well as between databases.
The session began with a talk by Gaurav Moghe (Cornell
University) that laid out the challenges of functional prop-
agation from an experimentalist’s perspective using BAHD
acyltransferases—a large plant enzyme family—as an exam-
ple (67). He discussed how different considerations such
as differences in substrate preference between duplicate
genes, promiscuity/multi-functionality, context (condition/tis-
sue) dependency of protein function, varying selection on
homologs in an orthologous group and structural features
like intrinsic disorder can influence the accuracy of functional
prediction transfer between homologs.

Francoise Thibaut-Nissen (National Library of Medicine)
then presented the National Center for Biotechnology Infor-
mation (NCBI) Prokaryotic Genome Annotation Pipeline
(PGAP) that is used to annotate all prokaryotic genomes
in RefSeq regularly. The functional annotation is performed
using a combination of domain architectures and Hidden
Markov Models from PFAM, TIGRFAM or NCBIFAM, as
well as BlastRules. To date, over 230000 RefSeq genomes
have been annotated using the PGAP pipeline, and product
names from over 15000 protein family models have been
propagated to >80% of RefSeq proteins (68). GO terms are
also being integrated into the propagated RefSeq annotations,
and future models will integrate genome context.

Peter Karp (SRI International) then presented the BioCyc
Web portal, comprising 19 000 Pathway/Genome Databases
including 60 curated ones (69). BioCyc databases include
genome, protein, reaction, pathway, metabolite and regula-
tory data, with the curated databases prioritizing the cura-
tion of protein and pathway data. He discussed an ‘inverse
approach to functional annotation’ where, instead of pre-
dicting functions for identified genes, one first predicts func-
tions that are likely to exist in an organism and then finds
genes to associate with those functions. Four strategies for
this approach, focused primarily on prokaryotic systems,

were presented: using growth data under different condi-
tions, finding transport and pathway inconsistencies, pairing
orphan protein subunits with function and studying metabolic
pathway ‘holes’ that can be identified and filled. He also
reminded the audience that around 900 EC numbers have
enzyme activities but no associated gene, a status that sug-
gests they could be solutions for some of these ‘orphan
functions’.

Finally, Christian Dallago (Technical University of Munich)
discussed work from the Rost laboratory on using techniques
derived from NLP modeling to represent sequences as embed-
dings that can be compared and are as efficient (or even more
efficient than) similarity methods to transfer GO annotations
(70). Two tools—the PredictProtein (https:/predictpro-
tein.org) (71) and Protein Embeddings (https://embed.predict-
protein.org) servers (72)—that use the embeddings approach
for predicting structural and functional properties of pro-
teins were noted. The speed and power of this technique
generated a lot of excitement and discussions throughout the
meeting.

A wide range of measures are needed to improve
the propagation of functional annotations

Several major points emerged from Session 3 discussions.
First, it was suggested that, in addition to more biocura-
tion and improved computational method development, the
generation of more experimental data in different species or
uncharacterized sub-clades of protein families would result
in a lesser need for long-ranging propagations between evo-
lutionary distant proteins and may improve prediction con-
fidence. For example, ~50% of the orthologous groups of
BAHD acyltransferases conserved across all land plants have
no characterized members (73), making their functional pre-
diction challenging and error-prone. Generating such data,
however, is a challenge, especially in multicellular eukary-
otes. National labs or centers could be tasked with developing
in vitro functional assays, assembling substrate libraries, pri-
oritizing target families/subgroups of unknown function and
soliciting community participation, like the Joint Genome
Institute (JGI) Community Science Program.

Second, it is recognized that the many methodological
advances currently happening with Al and ML are creating
many new opportunities to improve functional understand-
ing and propagation, particularly when combining ML with
mechanistic modeling approaches. Alphafold is an example
of this, combining classical mechanistic folding methods and
techniques with deep learning to greatly improve the speed
and accuracy of structure prediction. In turn, these predicted
structures provide us with a new dimension of information
to use when propagating functions. Similarly, the prediction
of phenotypes with ML, followed by the evaluation of con-
sistency between propagated annotations with those pheno-
types through mechanistic modeling, offers another potential
opportunity to enhance annotation propagation with ML and
modeling. To enable classification learning, especially in mul-
tifunctional families, it was suggested that negative data from
experiments should also be more systematically captured with
specific sets of rules in addition to positive data, since, if an
activity is lacking in a database, it is not clear whether the
missing data are due to no assay having been performed or
because the activity is demonstrably absent in that isofunc-
tional group. In some cases, such negative data can be inferred
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automatically using existing biochemical knowledge or using
taxonomic constraints (74). Further, it is vitally important
that ML and modeling approaches for supporting annotation
be applied almost continuously in real time, so curators and
experimentalists receive rapid feedback about the impact of
potential problems with their work, an effort in which KBase
is actively engaged (75).

Third, we discussed whether it is feasible to produce a uni-
fied functional descriptor for a protein of unknown function
by integrating available evidence, sometimes scattered across
different databases. For example, is it possible to predict that
‘Protein A in a given plant species has a 90% chance of per-
forming glycosylation of zeatin in roots under heat stress’,
without actually performing the experiments in that species?
Potential challenges for developing a unified model include
the dependence of function on the cellular context (which
can change between orthologs and paralogs), issues associated
with inter-database functional transfer such as missing and
unreliable information and the unresolved taxonomic scope
of protein function (how far evolutionarily can we transfer
the function between homologs?), inconsistent naming and
specificity of function descriptions. In the latter case, with-
out sufficient indication of their quality, it may be difficult to
differentiate between accurate and imprecise/incorrect anno-
tations, complicating the integration of different evidence
into a singular functional descriptor. Integrative models like
the Integrated Network and Dynamical Reasoning Assembler
(INDRA) framework (see Session 4 below), which is based
on graph-based analysis of structured databases and NLP,
attempt to address some of these challenges (76) and pro-
duce structured descriptors of protein activity. An alternative
is a ‘database of databases’ approach where users can go to a
single database that displays annotations existing for a given
protein in different databases of relevance, perhaps obtained
using different strategies. Such an approach can reduce the
need for the integration of disparate data sets into a singular
descriptor and allow for varying levels of functional reso-
lution for different protein families. Nonetheless, to enable
both approaches to operate in an automated/semi-automated
manner, consistent data provenance, gene IDs, data-sharing
frameworks and key words are needed. The BioPAX standard-
ized language for sharing pathway data (77) is an example in
this regard.

Confidence scores should be transparent, be generated
automatically with objective criteria to avoid increasing the
workload for biocurators and should indicate the source,
background models and extent of propagation, so that non-
experts can be more critical. Tools like ML and metabolic
modeling can be applied to continuously test annotation
propagations for consistency with (i) observed phenotypes
(e.g. does propagating that annotation cause an organism
to grow in conditions it shouldn’t), (ii) available omics data
(e.g. does the propagated annotation agree with observed
expression patterns or Tn-Seq insertion frequencies) and (iii)
observed biological and evolutionary patterns (e.g. does the
propagation place a function in a completely unrecogniz-
able chromosomal context or a completely inconsistent taxo-
nomic group). Even if quality control strategies are already in
place for the propagation of annotations in several databases
(52, 78-80), they could be further improved and more effi-
ciently automated with the use of models. Indeed, models have
an incredible capacity to rapidly and automatically integrate
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vast amounts of knowledge, rapidly testing (and correcting)
new proposed inferences (81, 82); ML has an incredible
capacity for pattern recognition, which includes recogniz-
ing inferences that fit these patterns and inferences that do
not (42). Models can operate effectively in data-sparse envi-
ronments (because they leverage mechanistic understanding)
(83, 84); ML excels in deeply complex data-overwhelming set-
tings (85, 86), and thus, these two technologies are deeply
complementary. Applied in concert, these approaches offer
a means of globally evaluating all annotations, judging for
consistency system-wide. We simply need frameworks that
integrate data with models in a tool that makes this kind of
analysis possible. Importantly, we need to increase the number
of active biocurators in the workforce to check the predic-
tions generated by these models, particularly in the initial
training stages; otherwise, errors will just propagate more
quickly.

Building a new data-driven biological culture
& automation of functional data generation
and capture

The last 5years have seen a global movement to adhere to
good practices for scientific data management and steward-
ship that have been summarized as the FAIR principles (87).
In the first talk of Session 4, Elisha Wood-Charlson (Lawrence
Berkeley National Lab) revisited these principles with a focus
on functional annotation and omics data, discussing how both
incentives and mandates can be used in combination. The
pressure imposed by funding agencies to follow FAIR princi-
ples is steadily increasing as data management plans are now
mandated in proposals (88) and tools to help design them have
been adopted by most academic institutions (https://dmp-
tool.org/). Agencies are also providing data depositories
for the research they fund (see https://science.osti.gov/Ini-
tiatives/PuRe-Data/Resources-at-a-Glance for Department Of
Energy (DOE), https://www.nlm.nih.gov/NIHbmic/domain_
specific_repositories.html for NIH). This is a start, but Wood-
Charlson emphasized that the whole research ecosystem, from
publication to promotion, has to require and reward FAIR
practices and that hiring data management specialists in large
teams and institutions can help ensure their implementation.

Geoffrey Hutinet (University of Florida) then discussed
the challenges that database proliferation and the absence
of unified protein identifiers created when teaching the use
of bioinformatic tools to a variety of novice biologist users.
Educators spend a lot of time drilling into students the
notion that the information in databases can be obsolete
or wrong and that functional data needs to be verified by
cross-referencing several databases and by checking recent
literature. The plethora of available databases also poses a
challenge that could be eased by unique identifiers or bet-
ter mapping between databases. Finally, databases need to be
designed as intuitively as possible, particularly at the initial
stages of interaction. Clear help or tutorials are indispensable;
otherwise, users (students or professionals) will resort to other
methods/tools if unable to scale the new learning curve after
only a few minutes.

Stephen K. Burley (Rutgers University, Research Col-
laboratory for Structural Bioinformatics PDB (RCSB PDB))
gave an overview of the history of the PDB, which recently
celebrated its 50th anniversary (89). Since its inception,
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PDB has embraced the FAIR principles emblematic of
responsible data science. More recently, this commitment
was officially recognized with Core Trust Seal Certification
(https://www.coretrustseal.org/). PDB is a testament to how
adherence to the FAIR practices can benefit both the scien-
tific and broader communities. By defining and implement-
ing fully machine-readable data standards, PDBx/mmCIF has
been adopted by the biostructure community, making exper-
imental 3D structure data public domain and interoperable
using data exchange APIs (90, 91). Making all the information
open access and available without limitations on data usage,
even for commercial users, has facilitated the discovery and
development of many small-molecule and biological drugs
(92). Open access allowed PDB to become the reference struc-
ture database for fundamental biology, biomedicine, energy
sciences and bioengineering/biotechnology (Figure 2A), liter-
ally traversing the life sciences from agriculture to zoology.
PDB data are also made available for outreach and educa-
tion formats by the PDB101.RCSB.org website (93). Finally,
Burley emphasized that the recent turning point in computed
structure modeling with the development of AlphaFold2 (58)
was built on years of work by many groups that all relied
upon open-access PDB data. He concluded by cautioning that
users of computed structure models need to be educated as to
how the reliability of these structural models can vary greatly,
even between different regions of the same polypeptide
chain.

Benjamin Gyori (Harvard Medical School) discussed how
automated knowledge assembly—which combines structured
sources with text mined extractions from literature in a princi-
pled way—can greatly help functional annotation through the
creation of structured knowledge bases that can be queried
programmatically or through human-machine interfacing.
Challenges in this process include the recognition of biolog-
ical entities that have many different but equivalent names,
as well as normalizing redundant entries that represent the
same entity in different ontologies. To address these chal-
lenges, his group developed the Gilda Entity Normalization
Service (http://grounding.indra.bio) (94) and Biopragmatics
Stack (https://biopragmatics.github.io), a set of resources to
manage bio-ontologies and their relationships (94). He then

presented INDRA, a software platform that automatically
assembles biochemical mechanisms extracted from the lit-
erature and pathway databases into knowledge bases and
explanatory models (Figure 2B) (95). For example, using
this platform on a set of protein kinases with few known
substrates [often called dark kinases (96)] allowed iden-
tifying previously missed kinase targets (97) and enabled
the creation of a self-updating portal for deubiquitinating
enzymes (https://labsyspharm.github.io/dubportal/) (98). He
also described the BioFactoid platform aimed at leveraging
author input to create machine-readable pathways at the time
of publication (99).

One major issue that came out of the Session 4 discussions
was that large databases often already follow most FAIR prin-
ciples even if they are not yet always totally open source with
no systematic protocol to copy the whole database by outside
users. However, the protein function information reported
in papers does not. There are still papers today that publish
information about proteins without providing an identifier.
As pointed out in Session 1, above, clear standards imposed
by publishers and, thusly, added to checklists by reviewers
would contribute to solving this issue. The InChIKey repre-
sentation of molecules, which generates unique alphanumeric
string identifiers for chemicals (100), is an example of where
FAIR standards and interoperability have already been imple-
mented and revolutionized the ability to query databases
with chemical entities once the standard was universally
adopted.

Many discussions focused on the value of small expert
databases that can capture very valuable curated knowledge
but might not have the resources to follow FAIR practices. It
was suggested that larger databases should provide guidelines
and standards that the more niche databases could use, both,
to allow information flow and to make possible data integra-
tion in cases where the smaller databases can no longer be
maintained, as most databases have quite a short life span
(101).

Finally, the constant opposition demonstrated between
the machine readability and human readability for func-
tional annotation information was discussed. Experimental-
ists sometimes struggle to use GO term identification for
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can seed defined hypotheses for the discovery of molecular and biological functions associated with genes/proteins of unknown or uncertain function.

describing a function of interest as terms are not always
named intuitively or have yet to be created.

Challenges in designing, conducting and
capturing HTP functional screening assays to
increase functional knowledge at pace with
the potential of computational methods’
processing and propagating of the same
knowledge

Session 5 focused more specifically on how to fill the func-
tional knowledge gaps for the true unknowns, as opposed to
fixing uncaptured or wrongly annotated problems discussed
in the previous sessions. Crysten Blaby-Haas (Brookhaven
National Laboratory) focuses on understanding plant protein
function by combining different types of data and sequence
relationships to inform function. During her talk, she empha-
sized that, with an analysis performed on the AmiGO2 plat-
form (http://amigo.geneontology.org/amigo), only 0.1% of
microbial proteins and 1% of eukaryotic proteins were found
to be associated with at least one experimentally supported
GO term, all with a clear bias toward proteins of the human-
pathogen sphere. To tackle this immense gap in knowledge,
Blaby-Haas advocated for the use of multiple types of compar-
ative genomic evidence and, further, that HTP assays should
be better integrated to support computationally propagated
functional annotations, in addition to being used to gener-
ate actionable hypotheses for genes of unknown or uncertain
function (Figure 3) (102, 103).

Irina Rodionova (University of California, San Diego)
presented the Palsson Laboratory Platform that dissects
bacterial regulatory networks using Independent Compo-
nent Analysis to identify independently modulated sets of
genes called iModulons and the transcriptional regulators
that control them from expression data (https:/imodu-
londb.org/index.html) (104). This has been a powerful tool to
identify which genes are regulated by regulators of unknown
function or to identify the function of ‘unknowns’ under

the control of known regulators. For example, the iMod-
ulon approach has allowed the prediction and subsequent
validation of the unknown E. coli gene, ydhC, which was
determined to encode a purine transporter (105). Future
developments that will integrate iModulon with flux balance
analysis models are expected to make the platform even more
powerful.

Gloria Sheynkman (University of Virginia) discussed the
complexity of the annotation of protein isoforms in eukary-
otes that result from alternative splicing. Indeed, it is well
established that different isoforms can have different func-
tions, but, to date, less than 1% of human isoforms are
annotated (106, 107). Sheynkman reported an HTP study
of 366 different isoforms from 161 genes that showed that
these isoforms can have wide-ranging differences in protein
interaction profiles (108). The arrival of long-read RNA-
seq has revolutionized the identification of the isoform field
(109), and a community has been created to evaluate tools
and establish standards, such as those seen with the recent
Long-Read RNA-seq Genome Annotation Assessment Project
(110, 111). These long reads also allow for the delineation
of transcript isoforms, and, thus, allow for the predic-
tion of full-length proteins, which enables MS-search-based
detection and experimental validation of the isoform at the
protein level (110, 112). Sheynkman finished by discussing
the challenges of annotation for not only isoforms but for
all proteoforms, including post-translational modifications
(113), each of which will likely become increasingly signifi-
cant given the advances of HTP top-down proteomics tech-
nologies (114) and the possibilities of a Human Proteoform
Project (115).

Finally, Peter Uetz (Virginia Commonwealth University)
described the use of yeast two-hybrid methods to detect
genome-wide protein interaction networks (116) and how
they can be used to provide functional clues regarding
domains of unknown function (DUFs) (117). Uetz empha-
sized that essential DUFs can range from poorly to highly
conserved (118) and that even well-studied housekeeping
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enzymes, such as those involved in glycolysis, can have reg-
ulatory or moonlighting roles through interaction networks
that had not been appreciated until more recently (119).

The major point that emerged from all discussion groups
was that most of the HTP data generated today are not easily
mineable because they are not integrated or cross-referenced
within most databases. It was emphasized that combining
evolutionary associations with functional associations is a
powerful way to discover new functions, but the latter are dif-
ficult to analyze as one often relies on supplemental excel files
or deposited data with obsolete or unmappable identifiers.
Ideally, BLAST-like engine(s) that can find homologs within
various available HTP (e.g. expression data in model microbes
or proteomics data, or ChIP-Seq data), such as the Fitness-
Browser developed to analyze Tn-Seq data (120), would allow
for the capture of all HTP data available for a given protein
family. User-friendly tools for analyzing and comparing co-
expression data from different organisms exist [see Table 1
of (121)] but vary greatly in the number of organisms cov-
ered and the usefulness of their respective outputs. Established
databases like UniProt are always interested in ways to incor-
porate HTP data, but the lack of metadata and standards
makes this objective difficult. In the rare cases where stan-
dards have been created and used by the community, such as
the International Molecular Exchange standards for protein—
protein interactions (122), then these data do get successfully
integrated into databases and are much easier to mine. Such
standards could allow easier capture of the essentiality data
and phenotypes data that have now been gathered for many
model organisms over the last 20 years (123, 124). The recent
creation of the Global Biodata Coalition (https://globalbio-
data.org/) has been a step in the right direction, providing
stable funding for core databases that then could have more
resources to work with for communities to create better data
standards.

Another point of discussion that came up in several sessions
in this meeting is the nonavailability of potential substrates
for enzymatic or even phenotypic assays that greatly limit
the power of HTP screens and require custom synthesis. Nor
is it yet clear which HTP datatypes are optimal for under-
standing gene function, as different approaches (e.g. genetics,
metabolomics and proteomics) are likely more or less infor-
mative for different protein classes. Benchmarking studies to
ascertain the utility of these HTP data sets for understand-
ing protein function in a few model organisms is required
before the implementation of these approaches in additional
organisms.

Synthesis, creating the roadmap for efficient
and accurate functional annotation of the
global proteome

Sean O’Donoghue (Garvan Institute), Chris Mungall (Berke-
ley National Laboratories) and Rich Roberts (New England
Biolabs) gave the final three talks summarizing the main dis-
cussion points of the 1.5-day meeting (Figure 4) and propos-
ing ideas for moving forwards.

A major recurrent theme throughout the meeting was
the need for better communication between the different
communities that work on functional annotations, mainly
experimentalists, biocurators and computational biologists.

1"

Venues that bring these three communities together regu-
larly do not exist. It was very clear that putting mem-
bers of three groups in the same room (physical or virtual)
for 2 days revealed that different languages and objectives
had to be reconciled, but obvious cross-fertilization and
problem-solving strategies also quickly emerged. Creating
long-term sustainable collaborations across these three com-
munities with different norms and schools of thought requires
strategic and directed support—both before the collabora-
tors come together and during their engagement. These could
be spearheaded by societies working together. For example,
the International Society for Biocuration could co-organize
sessions at the general American Society for Microbiology
(ASM) or Federation of American Societies for Experimen-
tal Biology (FASEB) meetings. Another possibility would be
for the communities involved to apply for specific funding
to enhance community building such as the NSF AccelNet
(https://www.nsf.gov/pubs/2021/nsf21511/nsf21511.htm) or
RCN  https://www.nsf.gov/pubs/2017/nsf17594/nsf17594.
htm) programs.

Another theme that emerged was that functional anno-
tation must be democratized and become a global research
community practice at the same level as deposition of raw
genomics data in public repositories. Authors must become
involved in this process. To make this possible, an infras-
tructure needs to be established to cement FAIR principles
for protein functional annotation. The minimal/desired infor-
mation about protein function needs to be defined, and the
informatics infrastructure to allow annotation and curation
of protein functional data at the time of paper submission
needs to be implemented. Organizations already in place,
such as Force 11 (https://forcell.org), show that publishers
and librarians are already primed to encourage and enforce
FAIR functional annotation practices with publishing authors
if the community were to just agree on a framework. Educa-
tion of future scientists is also required as most biologists are
unaware of how the data they generate get imported into the
databases that they use. Several open-access training modules
have already been created by EMBL/EBI focusing on biocu-
ration (https://www.ebi.ac.uk/training/online/courses/biocur
ation-collection/) or data management; these should be inte-
grated into biology graduate programs. Several successful
efforts to involve students in annotation processes have
already occurred, such as the HHMI SeaPhage Program,
which has sequenced and annotated hundreds of phage
genomes (https://seaphages.org), or the CACAQ effort that
uses undergraduates to check annotations (48). Students
could also be involved in generating functional data like
that which have been recently established by the SEA-
GENES program funded by the Howard-Hughes Medical
Institute where students screen several proteins for cer-
tain properties (https://www.hhmi.org/science-education/pro-
grams/science-education-alliance).

Building on his experience in creating GenBank and leading
the Combrex effort (125), Rich Roberts strongly advocated
for the creation of a consortium or umbrella organization
(or a group within an existing one) that would take on the
role of an advocate for articulating the importance of solv-
ing the functional annotation problem for all fields of life
sciences. This consortium would take on the task of con-
vincing politicians, private donors and/or companies of the
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Figure 4. Questions discussed during the five sessions.

need for specific funding. Importantly, the utility of mea-
suring the economic impact of accurate and exhaustive pro-
tein functional annotation, an exercise recently performed by
EBI (126), would go a long way to convince the different
stakeholders.

A set of grand challenges that could be used to federate
efforts and funding were identified. These include (i) integra-
tion and harmonization of all protein functional knowledge
that is scattered across the literature and databases into a cen-
tral resource or as common annotations in all databases. This
might be a long-term objective, but the first step, which is
improved interoperability between databases, is already in the
works; (ii) predicting the context-dependent function of pro-
teins in different organismal groups using an integrative model
that takes into account sequence, structure, active sites, phylo-
genetic relationships, expression profile, subcellular localiza-
tion, presence of substrates, etc.; (iii) identifying an incentive
system for subject matter experts to provide annotation for
databases. For example, a challenge could be correcting the
poorly or wrongly annotated proteins in UniProt; (iv) creating
high-quality annotations (integrating literature capture, mod-
els, expert curation, paralog flagging and confidence scores)
for 100, 500 or 1000 representative genomes; (v) finding the
genes for the 900 enzymes with EC numbers and no genes and
(vi) identifying the function of ALL the genes in a few model
organisms such as a yeast or E. coli. Funding and organizing
communities to tackle a subset of these grand challenges could
be a way to catalyze the required changes.

Conclusion

To conclude, mechanisms must be put in place to synergize,
synthesize and democratize all aspects of the functional anno-
tation ecosystem. Synergies need to be increased between
communities (i.e. biocurators, computational biologists and
experimentalists) to effectively transform expert experimental

Knowledge is
in papers

How to text
mine impose True

Knowledge is
in databases

Knowledge is
in raw data

Collecting
and mapping

How do we

omics data to
protein
sequences

FAIR? (IDs,
metadata,
access)

Novel paper
annotation

mechanisms

knowledge into high-quality, standardized functional anno-
tations. HTP data sets must become easily mineable, so
experimentalists who did not generate the data can read-
ily use it to make functional hypotheses. Scientists work-
ing on non-model organisms need feedback from the model
organism communities with successful stories of capturing all
species-specific functional information to envision effective
approaches for their biological domains of interest. Strate-
gies already successfully applied for well-studied organisms
(e.g. function curation projects and GO Phylogenetic Annota-
tion) or specific protein superfamilies (e.g. SSNs for Radical
SAM enzymes) could be scaled up and applied across the
entire spectrum of protein diversity. The increased synergy
between databases is critical to creating more highly con-
nected resources of functional data (common IDs, centralized
or federated repositories, consistent annotations, etc.). Finally,
synergies between efforts to assess function prediction meth-
ods (e.g. Critical Assessment of protein Function Annotation
(CAFA), Center for Critical Assessment of Genome Interpre-
tation (CAGI), DREAM and BioCreative) would help leverage
different approaches to address the various computational
aspects of function prediction. The deficit of biocurators ded-
icated to recognizing, selecting, standardizing and integrat-
ing the vast amounts of experimental knowledge regarding
specific proteins that remains untapped within the scientific
literature needs to be recognized.

Supplementary data

Supplementary data are available at Database Online.
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