PARABOLIC ANDERSON MODEL ON HEISENBERG GROUPS:

THE ITO SETTING
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ABSTRACT. In this note we focus our attention on a stochastic heat equation defined on
the Heisenberg group H™ of order n. This equation is written as O;u = %Au + uW, where
A is the hypoelliptic Laplacian on H” and {W,;« > 0} is a family of Gaussian space-time
noises which are white in time and have a covariance structure generated by (—A)~¢ in
space. Our aim is threefold: (i) Give a proper description of the noise Wy; (ii) Prove that

n

one can solve the stochastic heat equation in the It6 sense as soon as o > % (iii) Give some
basic moment estimates for the solution u(¢, x).
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Many fascinating links between parabolic Anderson models [15, 16, 19, 20, 29|, KPZ
equation |18] and polymer models [13, 23, 26, 31| on R? or Z? have been recently established.
Challenging properties such as intermittency [19, 21| and localization |22, 23] have also been

F. Baudoin is supported by the NSF grant DMS-1901315.
C. Ouyang is supported in part by Simons grant #851792.
S. Tindel is supported by the NSF grant DMS-1952966.
J. Wang is supported by the NSF grant DMS-1855523.

1



2 F. BAUDOIN, C. OUYANG, S. TINDEL, AND J. WANG

derived in various contexts. Overall one can argue that those models are now fairly well
understood on flat spaces, although the body of literature on the topic is still steadily
growing.

In this article we start a series of studies aiming at investigating if the geometry of the
underlying space has a chance to influence the intermittency and/or localization features
of parabolic Anderson models. In fact previous studies [32] tend to show that compact
manifolds will not yield behaviors which are significantly different from the flat situation, as
far as PAM models are concerned. On the other hand, the recent contribution [14]| exhibits
more substantial changes on non-compact discrete manifolds such as infinite graphs. We have
thus decided to turn our attention to a class of non compact sub-Riemannian manifolds for
which explicit computations are still available, namely the family {H",n > 1} of Heisenberg
groups based on R".

More specifically let H” be the space R?" x R equipped with the following product defined
for (a,b,c), (a,b,c) € R* x R" x R:

(a,b,¢) % (a',b,c) = (a+d,b+V c+ +2w((ab),(d, b)), (ab), (d,V)ecR™,

where w is the symplectic form w((a,b), (/,V')) = >, alb; — a;b;. Basic facts about Heisen-

berg groups will be recalled in Section 2. At this point let us just recall that a subelliptic
Laplace operator A can be defined on H". With this operator in hand, we consider the

following linear equation on R, x H":

Ou(t,q) = 5 dult.) + u(t,q) W(t, ). (1.1

interpreted in the It6 sense. We focus on a proper definition, existence-uniquness result and
basic moment estimates for equation (1.1). Our findings can be summarized as follows:

(1) A substantial part of our effort is dedicated to properly define and study a natural
class of space-time Gaussian noise {W,;0 < a < § + 1} on Ry x H". For the sake of
conciseness, we will restrict our study here to noises which are white in time. As far as the
space variable is concerned, our noisy inputs will deviate slightly from fractional Brownian
motion or Riesz-type noises which are usually considered for stochastic PDEs on R? (see e.g.
[19, 20]). Namely for a fixed a € (0, § + 1), the noise W, is defined as a centered Gaussian
family {W,(¢); ¢ € H}, with a covariance function of the form

BWo(Walw) = [ [ [-8)¢)(ta) [-8) “w](ta) duladr, (12

where the Hilbert space H is based on a proper Sobolev-type structure and where i stands
for the Haar measure on H”. Although this kind of noise might be related to Riesz-type
noises due to the properties of the kernel related to (—A)~®, our definition is in fact inspired
by [25] and references therein (with motivations rooted in the analysis of Gaussian free fields
and log-correlated processes).

(ii) Once the noise W,, is defined, we investigate basic properties for this process (such
as invariance with respect to dilations, rotations and left translations on H"). We also
separate a regime 0 < a < "T“ for which W, (¢, -) is distribution-valued, from the situation
24l < o < 2 4 1 which yields a point-wise definition of z — W, (¢, z) as a function. Notice

that the case a = 0 corresponds to a white noise on R, x H", while W, with o = %

D) 1S
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a log-correlated field and a parameter o > 4 + 1 means that x — W (¢, z) is differentiable.
We do not take those cases into consideration for the sake of conciseness. A Besov space
analysis of the field W,, is postponed to a subsequent paper.

(iii) The field W, serves as a noisy input for equation (1.1). In Section 4 we build a
stochastic integration theory inspired by [15, 16|, which enables the definition of a random
field mild solution to the stochastic heat equation. Then we handle existence results thanks
to two different methods:

(1) When a € (%, %), one can apply the general results from [28] in order to get existence
and uniqueness thanks to Itd type calculus considerations. Notice that this method only
applies to the case when W (¢, -) is distribution-valued.

(2) We also revisit the existence-uniqueness problem through chaos expansions. This presents
several advantages: it allows us to treat the case a € ("TH, 5 +1), and it also yields necessary
conditions on «.

(iv) Another advantage of the chaos expansion method alluded to above is that it poten-
tially leads to sharp estimates for moments of the solution. This is often achieved through
Feynman-Kac representations. In this paper we restrict our computations to a basic expo-
nential type estimates of the form

c1e? < E [(u(t,z))?] < cze’,

where ¢q, . .., ¢4 are unspecified positive constants. However, it will be clear from our consid-
erations that our setting is amenable to precise moments asymptotics similar to [11, 12, 19].

Overall our paper has to be seen as a contribution setting up the basics of a full stochastic
analysis for the parabolic Anderson model on H". Our considerations are based on Malliavin
calculus and stochastic integration for random fields. The main novelty in our method is
to incorporate advanced tools of analysis on Heisenberg groups (reverse Poincaré inequality,
small ball probabilities for the Brownian motion to quote a few) into this framework. In
particular, we made an extensive use of the projective approach to Fourier analysis on H",
recently advocated in [1]. This allows us to express many of our conditions in a neat and
explicit way.

As mentioned above, one of our main goals in this project is to track down how the
geometry for spaces of the form H" can influence the global behavior of a system like the
stochastic heat equation. As far as existence and uniqueness in the [t6 setting is concerned,
one should compare our noise W, to the closest family of Gaussian noises considered on
R? in the SPDE literature. Arguably this family is given by Bessel kernels (see e.g. [19,
Example 2.4]), which correspond to a covariance structure analogous to (1.2):

2
E W@ | = 10— 272 -

Observe that in Dalang’s terminology, the spectral measure of W, is given by v(d§) =
(1+4]€[%)%* d€. Tt is then proved that one can solve the stochastic heat equation on R¢ driven
by WEd if and only if a@ > % — % If one wishes to compare this condition in the flat space
R? with our framework in H", we must consider the topological dimension of H” given by
d = 2n + 1. The condition a > & stated above for existence-uniqueness should thus be read

as o > %f — i, as opposed to the a > f‘f — % mentioned for the R? case. Importantly enough,
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this discrepancy should be explained as an effect of the degeneracy coming from the sub-
Riemannian structure of H”. Indeed, if one replaces the topological dimension d = 2n+1 by
the Hausdorff dimension @ = 2(n + 1) (see Remark 3.15 below for further details, as well as
a comparison with the fractional noises in [25]), then our condition o > % reads a > % — %
We thus go back to the condition on W, alluded to in the flat case. Therefore it is clearly
seen that some of the sub-Riemannian geometric structures of H” do affect the behavior of

stochastic heat equations in a crucial way.

As mentioned above, our study of geometric features in the parabolic Anderson model calls
for further developments. Among those, let us highlight the following natural questions:

(a) Pathwise definition of stochastic heat equations in the stratonovich sense, which relies
on the prior introduction of weighted Besov spaces on H".

(b) Higher order expansions and renormalization techniques for small values of « in the
noise W,. This generalization requires cumbersome regularity structures techniques.

(c) Definition of polymer measures related to equation (1.1). Then one should study related
exponents and disorder regimes affected by the geometry of H". Related to this question,
one would also like to derive sharp asymptotics for the moments of u(t,x) as t — oo.

(d) Extensions to more general underlying spaces. In particular, we believe that fractals
might give a wide variety of exotic exponents for both PAM and polymer measures.

We plan to tackle those issues in subsequent publications.

The rest of the paper is organized as follows. First, in Section 2, we introduce some basics
about Heisenberg groups and the related Brownian motion on H”. For the convenience
of readers, some preliminary material on the projective approach to Fourier analysis on
H" developed in [1] is also be presented in this section. Section 3 is then devoted to the
construction of our noises W, on H", together with a study of some elementary properties of
this family of random fields. Finally, in Section 4, we prove the existence and uniqueness of
the solution to equation (1.1). We also demonstrate an exponential upper and lower bound
for the second moment of the solution.

Notation 1.1. Throughout the paper, we sometimes write a < b when there exists an un-
specified constant C' such that a < Cb. In the same way we write a < b if there exist Cy, Cy
such that C1b < a < Cyb.

2. PRELIMINARIES

In this section we first recall some basic facts about Brownian motions on the (2n + 1)-
dimensional isotropic Heisenberg group H" associated to its sub-Riemannian structure. We
also include a short introduction about Fourier analysis on H".

2.1. The Heisenberg group. The Heisenberg group H" is one of the simplest example
of manifold with a sub-Riemannian structure. As mentioned in the introduction, it can be
identified with R?" x R, equipped with the group multiplication:

(x,y,2) % (2, ¢, 7)) = (x+ 2",y + ¢, 2 + 2+ 2w((z, ), (2, Y))), (z,9),(@,y) € R*
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where w : R? x R — R, w((z,y),(¢/,y)) = D1, «ly; — x;y, is the standard symplectic
form on R?". The identity in H" is e = (0,0,0) and the inverse is given by (z,y,2)™" =
(—x, —y, —z). Its Lie algebra h can be identified with R*"*! with the Lie bracket given by

[(a,b,c), (d,b,c)] = (0,0,2w((a,b), (a’, b)), (a,b),(a,b)cR™

Clearly b can be identified with the tangent space T.(H™). A basis of left invariant vector
fields at p = (z,y, z) is given as

Xi(p) = 0y, +29:0,, Yi(p) =0, —2x,0,, Z(p)=0,, i=1,...,n (2.1)

In the basis (2.1) we then distinguish a horizontal bundle D, := Span{X;(p), Y;(p),i =
1,...,n}, for all p € H". We recall that D satisfies the basic and fundamental condition
[X;,Y;] = —4Z for all 1 < i < n. It is often more geometrically meaningful to describe
the Heisenberg group as a sub-Riemannian manifold by equipping the horizontal bundle D,,
p € H" with an inner product such that {X;(p), Yi(p),i = 1,...,n} is an orthonormal frame
at p. The associated horizontal sub-Laplacian is then given by

A=) X7+Y7 (2.2)
=1

Also notice that p will designate the Haar measure on H”, which is nothing else but the
Lebesgue measure on R?"1,

In the remainder of the article we will investigate the invariance of our noises under some
natural families of transformations on H". More specifically, the 3 families we will consider
are the following:

(i) The dilations H* — H", which are defined as a family {0,; A > 0} given by

Sa(z,y, 2) = (A\x, Ay, \22), for any (z,y,2) € H". (2.3)
(ii) The horizontal rotations Ry, defined by
Ry(x,y,z) = ((cosB)x + (sin )y, —(sinO)x + (cos 0)y, z). (2.4)

Here for any x € R", the vector (cos @)z is given by ((cos )z, ... (cosf)x,).

(iii) Eventually, for any = € H", we denote by L, : H* — H" the left translation
L,y :=xy, forall ye H" (2.5)

2.2. Brownian motion on H". In the sequel we will write {;};>¢ for the Brownian motion
on H". It is common to define B as a Markov process with generator %A. Given a standard
Brownian motion (B, 8) in R?", B can also be realized as the solution of the following SDE
interpreted in the Stratonovich sense:

dB, =Y X,(B,) o dB} + Yi(B,) o dB;, (2.6)
i=1
with initial condition By = e. Equation (2.6) can be solved explicitly and for ¢ > 0 we obtain

n t
B, = (B, b, 4;), where A, = 22/ Bldfi — BidB:. (2.7)
i=1 Y0
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Notice that the process A; in (2.7) is usually referred to as the Lévy area of (B, [3).

The density for the distribution of B; at time ¢ > 0 is given by the heat kernel p,. When is-
sued from the identity e and working with the Haar measure p on H", a result by Gaveau [17]
based on the Lévy area formula for the characteristic function of A; yields the following semi-
explicit form for p;: for any ¢ = (x,y, z) € H” we have

n(q) = (;/R@“f (sin2h)\2)\>neXp (—%|(x,y)|2coth(2)\)> dX, (2.8)

27rt)n+1

where |(z,y)]? = 2%+ -+ 22 + 9% + -+ y2. As a consequence of our presentation (2.8),
one can derive invariances of p, with respect to the transformations on H" introduced in

Section 2.1. We label this result here for further use.

Lemma 2.1. Let p; be the heat kernel defined by (2.8). Then the following invariance
properties hold true.

(i) For the dilations 0, in (2.3), we have

Dy o8y = %p;. (2.9)
(i1) For the rotations Ry in (2.4), it holds that
pro Ry = py. (2.10)
(iii) For the translations L, introduced in (2.5), we get
peo Ly =pp. (2.11)

Proof. Write p;/»2 according to the semi-explicit formula (2.8). Then it is readily checked
that

p/\% (':Cv Y, Z) = >\2(n+1)pt<)‘x> )‘y7 )‘22)7

which proves our claim (2.9). Relations (2.10) and (2.11) are obtained similarly. O

In order to get proper bounds on the kernel defined by (2.8), we first introduce a distance
on H" that accommodates the sub-Riemannian structure mentioned in Section 2.1. To this
end, we call a path ~ : [0,1] — H" horizontal if it is absolutely continuous and () € H,
for all ¢t € [0,1]. The Carnot-Carathéodory distance on H" is then defined as

1
dee(p1,p2) := inf {/ |Y(t)|ndt ; v : [0,1] — H" is horizontal, v(0) = p1, (1) sz}.
0

(2.12)
In fact the CC-distance is equivalent to a homogeneous distance on H". Specifically, there
exist C,Cy > 0 such that

Ci(y/ I y)2 + 1212) < deele, @) < Co(y/|(, )2 + 1212)). (2.13)

A striking property of the CC-distance is that the Hausdorff dimension of the metric space
(H",d,.) is equal to 2n + 2 and thus strictly greater than the topological dimension of H”
which is 2n + 1.
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With those definitions in hand, it is known that the heat kernel p, defined by (2.8) satisfies
some Gaussian type upper and lower bounds (see references [6, 24|). Namely there exist
1,02, C3,¢4 > 0 such that for every ¢ > 0 and g = (x,y, z) we have

C1 Co C3 C4
o exp(~ L e 0)?) < pila) < - exp( L dle,)?). (24)

2.3. Fourier analysis and Sobolev spaces. The sub-Laplacian A defined by (2.2) is
essentially self-adjoint on the space of smooth and compactly supported functions C§°(R***1),
see |4]. Therefore it admits a unique self-adjoint extension, which we still denote by A, that
is defined on a dense subspace of L?(R*"*! 1), where p designates as before the Lebesgue
measure on R?"H1,

The above considerations lead to a spectral representation of A (for instance see [30]).
Namely from the spectral theorem, there exist a measure space (A,v), a unitary map U :
L*(H", 1) — L*(A,v) and a non negative real valued measurable function m on A such that

UAU 1 g(\) = —m(N)g(\), (2.15)

for all A € A, and g € L*(A,v) such that U~'g € Dom(A). Note that given g € L?(A,v), we
have that U~'g belongs to Dom(A) if only if

/ m v (d\) < +oo. (2.16)

The spectral decomposition (2.15) allows for the definition of fractional powers of A. That
is for a € R, we define the fractional sub-Laplacian (—A)~® as an unbounded and densely
defined operator on L?*(H", ;1) defined by

U(=8)""U " g(A) = m(A)"g(N).
The domain of (—A)™® is a Sobolev space denoted by W~*? and defined as

W2 = {U_lg :H" — R;/Am()\)_hg(/\)%(d)\) < oo} (2.17)

The construction (2.17) for the Sobolev space W™*? is quite abstract. A more concrete
and explicit version of W~*2 can be described through Fourier transforms on the Heisenberg
group. Below we will follow [1]| for this alternative construction. Indeed, it is well-known
that all irreducible representations of the Heisenberg group H™ are unitary equivalent to the
Schrodinger representations (U*)yer, that is, the family of group morphisms ¢ = (2,7, 2) €
H" — U é\ between H" and the unitary group of L?*(R™) defined by

U(;\u(f) = e ATy (£ —2), £€R™ (2.18)

The group Fourier transform of a function f € L'(H") is defined for each A € R* := R\ {0}
as the operator valued function on L?*(R) given by

FHN = [ f@U; dulq). (2.19)

H7L

Clearly F(f) takes values in the space of bounded operators on L*(R™). If in addition
f € L*(H"), F(f)()\) is a Hilbert-Schmidt operator and the following Plancherel theorem



8 F. BAUDOIN, C. OUYANG, S. TINDEL, AND J. WANG

holds,

n—1 +oo
| 1r@Pdute) = 2 [ IFOWIE A" i (2.20)

The fact that representations of the Heisenberg group are operator-valued leads to cum-
bersome considerations for the Fourier transform. In order to get a more tractable version of
Fourier type computations, a projective point of view is advocated in [1]. Namely for A € R*
and k& € N", we consider the family of Hermite functions

o}a) = A" (VIAl), e R,

where @y is the normalized Hermite function on R which is an eigenfunction of the Schrédinger
operator H = — 37 %22 + |z|* with eigenvalue 2|k| + n. Here for any multi-index integer
J
k= (ki,...,k,) € N we define k! := ky!---k,! and |k| := ky + -+ - + k,,. This family is an
orthonormal basis of L*(R") with respect to the Lebesgue measure, therefore we get
IF(f = > IFD NPy (2.21)
keN™

Identity (2.21) leads us to introduce the following projective definition of the Fourier trans-
form.

Definition 2.2. Let f be an element of L*(H"). If (m, ¢, \) € N" x N* x R* we denote
Fim, 0,0) = (F(HO)DA, B) e (2.22)
We will call} the Fourier transform of f.

A few remarks about Definition 2.2 are in order. First, notice that in (2.22), the Fourier
transform is now complex valued as in R". Next observe that the family U defined by (2.18)
satisfies U} = Id. Hence the projective Fourier transform of the Dirac distribution at the
identity e is given by:

Oc(m, 0, 0) = (F(8) (N, @) p2rny = (UNDY), @) r2@ny = G,

where 0,y = 1 if m = ¢ and 0 otherwise. Moreover, with Definition 2.2 in hand, the
Plancherel formula (2.20) takes a more familiar shape:

n—1 +OO
/n F(g)Pd inﬂ 3 / (m, £, ) 2IA["dA. (2.23)

m,leNm”

In addition, the Fourier inversion formula for ¢ = (z,y, 2) is also obtained by integrating
complex valued functions. Namely we get

= > / e K o (@) f(m, £, N)d,

m,LeN"
where K, 4(¢) is a kernel that can be expressed in terms of the Hermite functions (see [1]).

Definition 2.2 yields a convenient notion of fractional sub-Laplacians and Sobolev spaces.
This construction, see |1, Formula 1.7], stems from the fact that A interacts nicely with the
group Fourier transform through the following relation,

FAF)N) = —4F(fHNH?,
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where H* = — Y77 | % + A2|x|?, whose eigenfunctions are given by ® m € N" with

eigenvalues |A|(2|m|+n). This relation leads to the following simple formula for a function f
in the Schwartz space S(R?"™!) of rapidly decreasing functions on R?*"*! (see [1, page 372|):

-~

Af(m, 0, \) = —4|\(2lm| +n) f(m,0,)), for (m,f,\)eN*xN'xR*.  (2.24)

If we denote by (P,);> the semigroup generated by A, then formula (2.24) shows that for a
function f in the Schwartz space S(R?"1),

Pif(m, 0,2) = e”# @M im0, 3).
It follows that if, as before, p; denotes the heat kernel issued from the identity e, then
Pi(m, £, \) = e~ PCmlEn s (2.25)

Starting from (2.24) and considering f € S(R*"!), it is thus natural to define (—A)~“f for
a € (0,1) through its Fourier transform: for (m, ¢, \) € N* x N" x R* we have

(=AY F(m, 0,\) = 47|\ (2|m| +n) " F(m, L, \) . (2.26)

From [1, Theorem 2.6], one can then check that (—A)~*f sits in S(R*"*!). Related to our
fractional Laplacians, the Sobolev space W~%? can then be described as

+0o0
W2 = {f S L?(Hn),/ < > A @Im| +n) 7 f(m, o )\)2> IA["dA < —|—oo} :
o m,leN?
(2.27)
Let us finish this section by some estimates for the fractional Laplacian (—A)~®. Specifi-
cally, invoking the Gaussian estimates (2.14), it can be shown (as in [8]) that for 0 < o < n+1
the operator (—A)~® admits a kernel G, (¢, ¢2) which is given by:

1

+oo
STy T 'pr(qu,ge) dr, forall qi g € H". (2.28)
() /0

Then using the representation (2.28), one can obtain the following bound for the kernel G,,.

Ga(Ql: CI2) =

Lemma 2.3. Let 0 < o < n+ 1 and consider G, defined by (2.28). Then there exist
constants c¢,C' > 0 such that for u a.e. qi,qo € H", we have

c C

< Gala1,¢2) < . 2.29
dec(q1, q2) 2= = (a1, 62) < dee(q1, go)? 179 ( )

Proof. We invoke the left-invariant property of both p; (see (2.11)) and d... Then we integrate
the heat kernel bounds (2.14) into (2.28). We obtain that

1 too _
Ga<q17q2) < m/o T lpr(Ch 1Q2) dr
< oo a—n—2 C4 “1_\2
> T €xXp _? dcc(e7 QI q2) dT
0

C
B dcc(q17 q2>2(n+1—a)
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for some constants C,C" > 0. We can show the lower bound in a similar way. Hence we
obtain the conclusion. U

3. DESCRIPTION OF THE FRACTIONAL NOISE W

A good understanding of (1.1) relies on a proper description of the driving noise W. We
carry out this task here, including cases where W is distribution-valued as well as function-
valued. Our spatial covariance functions will all be based on fractional powers of A as
introduced in Section 2.3. More specifically we consider a noise on R,y x H" which is white
in time and colored in space, similarly to what is done in R (see for instance [15] and [29]).
For sake of conciseness, the case of a colored noise in time (cf. e.g [19]) is postponed to a
subsequent publication. In this context, given a non-negative definite function A : H” — R,
the noise W will be thought of as a centered Gaussian family {W(¢); ¢ € D} for a certain
subset D of functions on R, x H". The covariance of W is then given by

BOWEWE) = [ [ etta)t e s 3

where we recall that u stands for the Haar measure on H". As mentioned above, we will
now introduce two important types of covariance functions, generated by powers of the
sub-Laplacian A on H".

3.1. Negative powers of the sub-Laplacian with 0 < o < 2L, In this section we con-
sider a distribution valued noise W, whose covariance function is generated by (—A)~?,
where we recall that A is defined by (2.2). Namely we wish the covariance function of W,
to be given by

E (W, () / / n (6 ) (D) G(tq) dp(g)dt.  (3.2)

Notice that if such a covariance function exists, it is obviously a positive definite function
according to expression (3.2). We now state a proposition ensuring the existence of W as a

Gaussian family.
Proposition 3.1. Let a be a reqularity parameter in (0, ”—H) We also introduce a Hilbert

2
space H as
H = L*(R; W2, (3.3)

where W™?% is the space defined by (2.27). Then the covariance function (3.2) defines an
isonormal centered family {W,(p); ¢ € H}. Moreover,

(1) The covariance E (W, (0)Wq(¥)) admits the representation (3.1), with A = Gy, that is
given by (2.28).

(2) If p, ¢ are two non negative functions in H we have

E(Wa( /R/ t(h (t Q2) dtdﬂ(Ql)dM(%)-

2 2—4
n)2 dcc q17q2 nt @

where we recall that the symbol < 1is introduced in Notation 1.1.
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Proof. First it is obvious from (3.2) that E(W,(p)W,(¢)) is well defined for o, € W2
Next in order to prove our first claim, we start from expression (3.2) and use the fact that
(—A)~@ is self-adjoint in order to write

B(Wae)Wa(0) = [ [ olt.a)(-8) 0 (t.an)du(ar)dr. (3.4)
R+ n
Since (—A)72* admits the kernel Gy, given by (2.28), we can recast the above equality as

E (Wa(p)Wo(¥)) = /R /(Hn)2 Gaal(q1, @2)(t, 1)V (t, q2)dp(qr)dp(gz)dt, (3.5)

which proves our first claim. The second claim is easily shown by combining (3.5) and the
estimate (2.29). O

Remark 3.2. For a € (0, ”TH} an alternative way to construct and study the noise W, is
to use the theory of tempered distribution in the Heisenberg groups developed in [1]. More
precisely, it turns out that the space of tempered distributions S’(H™) on the Heisenberg
group is the same as the space of tempered distributions in R?***!. We can then define

fractional powers of the sub-Laplacian on tempered distributions by the duality formula
<(—A)_a<b, f> = <<I>, (—A)_af>, ®eS'(H"), feSH").

and it follows from the estimates in [1| that (—A)~* : S'(H") — S’(H"). In particular, one
can then define the random tempered distribution

W, = (~A) W,

where W is a white noise (realized as a tempered distribution) on [0, +00) x H". This remark
will be further developed in a subsequent work, where weighted Besov spaces of tempered
distributions supporting the noise W, will be explicitly constructed. In the present work,
we will only rely on the Hilbert space type construction provided in Proposition 3.1.

Next we state some basic properties of the fields W, namely invariance by dilation and
rotation. To this aim, we label the invariance of our potential G, by dilation for further use.

Lemma 3.3. Let G, the kernel for the operator (—A)~* with 0 < a < n+ 1. For the
dilations 0y in (2.3) we have the following scaling property:

1

Ga00x = omie

Ga. (3.6)
Proof. Write G, 06, thanks to relation (2.28). Then apply the elementary change of variable
t/A\? = u therein and invoke (2.9). This proves (3.6) thanks to elementary considerations. [

n+1

We are now ready to state the dilation invariance property for W, when 0 < o < *5=.

Proposition 3.4. Let W, be the field described in Proposition 3.1, with 0 < a < ”TH For
any A > 0, we have that

{Walpody),p € LRy W)} 2 A H2IOW, (p), 0 € (R W ™)) (3.7)
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Proof. Both sides of (3.7) define a centered Gaussian field. We shall prove that the covariance
functions of those two fields coincide. Let us start with the left hand side of (3.7), and
consider two functions ¢, in L*(R,;W~*?). Owing to (3.5) we have

E (Wa(p 0 0))Wa(t0dy)) = / - p(t, \p)Y(t, 0xq)Gaa(p, @)dt du(p)dp(q)
R+X Hn)2
Next we set p := d\p, ¢ := 0,q in the integral above. This yields

E (Wa( 0 6,)Wa (¥ 0 03))
= /R (Hn)zso(t,pW(t,q)Gza<5;1p75;1q)dtdu(5;1p)du(5;1q). (3.8)

Plugging relation (3.6) into (3.8), and resorting to the property du(dy'q) = A~?du(q) with
Q=2(n+1), we get
E (Wa(p 0 0))Wa(9 08y)) = A2 H#2e) / @ (t: )0 (1, 0)Goa (P, @)t dp(p)dpa(a).
Ry x(H™)
This is obviously the covariance function for the right hand side of (3.7), which ends the
proof. O

Remark 3.5. Identity (3.7) explains why we separate between a < ”T“ and a > "TH for a
distributional vs function-valued noise W,. In order to see this, for a parameter A > 0, a
given z € H" and a smooth function ¢, set

1
Seap(p) = A—Qw(5»1(f€‘1p)), peH",

where we recall that @ = 2(n + 1) is the homogeneous (or effective) dimension. Then a way
to characterize the fact that a distribution f is in C? for some 8 < 0 on H" is to have

[ Suxolo)f(0) duly) < ., (39

for all test functions ¢. Note that the criterion (3.9) is also valid for negative values of 5.
At a heuristic level, one can implement the criterion (3.9) to our noise W, by checking that

B [(Wa(Senp))?] < e 2. (3.10)
Now (3.7) easily yields

B[(WalSr9)?] = 3B [Wa (0lr ') 0 611)]

_ CWAQ(n+1+2a)f2Q — )\4a72(n+1).

We thus get an exponent = 2a — (n + 1) in (3.9). In particular, the separation between
B < 0 (distribution-valued noise) and 4 > 0 (function-valued noise) occurs at v = “=L. This
explains our restriction on « for this section as well as Section 3.2.

Next we consider invariances with respect to the horizontal rotations Ry defined by (2.4)
and the left translations L, introduced in Section 2.1. Our result is summarized in the
proposition below.

Proposition 3.6. Let o € (O, ”TH) and W, be the same random field as in Proposition 3.4.
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(i) For 0 € [0,27), consider the rotation Ry defined by (2.4). Then the following identity in
distribution holds true:

{Wa(po Ro);o € (R W%)} = {Wa(p)ip € L(Re; W)} (3.11)
(ii) For any x € H", we have that
{Walpo Lu),p € LRy W)} = {Walp) € LR W)} (3.12)

Proof. To prove (i), first note that the heat kernel p; is invariant by rotation, as assessed
by (2.10). This immediately yields the invariance of G, by rotation, similarly to what
we did for (3.6). Eventually the invariance of W, is obtained along the same lines as for
Proposition 3.4.

In order to prove (ii), similarly to what we did for Proposition 3.4, we just need to show
that the covariance functions of the two fields agree. Consider the covariance of the noise on
the left hand side. For any ¢, in L*(R,; W~*?) and = € H", by (3.5) we have

E(Wa(po L)Wy (o L)) = / o(t, zp)Y(t, 2q)Gaa(p, q)dt dp(p)dp(q)

R+X(H")2
Due to the left translation invariance of the Haar measure u, we obtain that
E (Wa(p o Ly )Wa(¥ 0 Ly)) = / - p(t,p)y(t, q)Gaala ™ p, 2~ q)dt du(p)dp(q) (3.13)
R+>< H"
Then by the translation invariance of the green function, namely

Gga($_1p7 x_lq) = GQa(p7 Q)a (314)
we obtain the conclusion. Notice that (3.14) is an easy consequence of (2.5) and (2.28). O

3.2. Negative powers of the sub-Laplacian with “TH < a < 3+ 1. In the regime 0 <
a < "T“, the noise W was defined as a distribution. We will now describe a range of
parameters for which the fractional Gaussian field can be defined pointwisely as the analogue

of a fractional Brownian motion.
We start by giving an integrability result for the kernel GG, which will be crucial in order
to define our Gaussian field.

Proposition 3.7. Let 1 < a < 2 +1 and consider the kernel G, defined by (2.28). Then
there exists a constant C' > 0 such that for every z,y € H"

/ (Ga(w,9) = Galy, 9))*dp(a) < Clee(w, y)**=20Y, (3.15)

where we recall that the distance d.. is given by (2.12).

Before proving Proposition 3.7, let us state and prove two technical lemmas. The first one
quantifies the ultracontractivity of the heat semigroup F,.

Lemma 3.8. Let P, be the heat semigroup on H", whose kernel is the function p; as given by
(2.8). There exists a constant C > 0 such that for every f € L*(H", ), t > 0 and g € H",

C
P9 < o I e (3.16)
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Proof. Starting from the expression P,f(g9) = [g.pi(9,9)f(q)du(q), we invoke Cauchy-
Schwarz inequality and Chapman- Kohnogorov identity in order to get

1/2
PAOI < Wl ([ 10 9)dn(a))

1/2
= |1l 2 cexn py (D219, 9))"? .

Hence owing to (2.14) and due to the left translation invariance property of the heat kernel

p: we have that
A9 < L2t

where ¢3 is the constant in (2.14). This completes the proof of (3.16). O

Our second lemma gives more information about the regularity of P, f for a square inte-
grable function.

Lemma 3.9. Let the notation of Lemma 3.8 prevail. There exists a constant C > 0 such
that for every f € L*(H", u), t > 0 and z,y € H",

dcc(x y)

|Pf(z) = Bf(y)l < C 1 Il 2 - (3.17)

Proof. From the reverse Poincaré inequality in [5], it is known that there exists a constant
C > 0 such that for every g € L*(H", uu), t > 0 and z,y € H",

dec(x
1Rae) = P < O gl e (3,19

We now invoke the fact that P, f = P,g with ¢ = P,f. then we apply successively inequal-
ity (3.18) and Lemma 3.8. This yields

| Py f(x) — Porf(y)] < Cdccil’ Y)

which concludes the proof. 0]

dec(T
LD e

We now focus our attention to the proof of Proposition 3.7, for which some of the arguments
are inspired by [8].

Proof of Proposition 3.7. Consider z,y € H" and a > 0. Our first aim is to upper bound

the quantity
Qaf(xa y) = (_A)iaf(m) o <_A)7af<y)7 (319>
for a generic function f € L?(H"). Note that according to (2.28) we have

Quf(ry) = —— / TP (x) - Puf(y))d.

I'(a) Jo
We now introduce a parameter ¢ > 0 to be fixed later on, and decompose @, f as
IR R 1>
= —— [ t*}(P ~- P, — (P ~- P
Qfla) = gz | 7 PI@ = P+ s [ e R @) = sl

= Q) f(x,y) + Qb f(x,y). (3.20)
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We then estimate the right hand side of (3.20) term by term. For Q° f(x,y) we resort to
(3.16) in order to get

n+1

é ’ a—1 o a—1-ntl
|Qaf (2,y)] ¢t (IPef (@) + [Pf (y)]) dt < Ol fll L2 m ) . dt.

"“ , we obtain

QL (. 9)| < OF 2l 2quan . (3.:21)
As far as Qif(;v, y) in (3.20) is concerned, we use relation (3.17). This yields

@wwwnscl =P () — Pof ()t
< Clfllaaesy ([ 7 il

Due to the fact that o < 1+ § we thus get

IQif(x,y)\ < C(Sa_l_%dw(m’ y)HfHLQ(H”7u)' (3'22)

In order to make (3.21) and (3.22) comparable, we choose & such that d*'~2d..(z,y) =

§*="2", which easily gives & = d,.(z,y)?. With this choice of § and plugging (3.21), (3.22)
into (3.20) we obtain that

Since we have chosen o >

‘/ (z,q) — Galy,q)) (@) dp(q)| < Cldee(z, y)** V| fll 2 - (3.23)

Having proved (3.23), one can establish (3.15) in the following way: Let K, ,, be the
linear form on L?(H", ;1) corresponding to the integral kernel G, (z, ) — Go(y,-). Clearly
from the above inequality we know that for each fixed z and vy, K., : L*(H", u) — R is a
continuous form. Moreover, denoting by ||-||op the operator norm on L?(H", ;1) and resorting

o0 (3.23), it holds that

1Ga(z,) = Galy, Mizgan ) = [ Kawyllop < Cdec(a,y)** "0 (3.24)

The conclusion then follows. O

With Proposition 3.7 in hand, we can now turn to a description of our fractional noise.
For o > ”“ , it will be based on stochastic integration with respect to a white noise measure.
Let then IC denote the o-field on H" that is associated to the topology induced from the
Carnot-Carathéodory distance (2.12), and call B the Borel o-field on R,. We consider a
real-valued centered Gaussian random measure Wy : B ® K — L*(Q2,G,P) with intensity
A® pon H" i.e. Wgn is a white noise such that

e Wyn is a measure on (R x H", B® K) almost surely

e For any set D € K of finite measure and s < t, Wyn([s, ] X D) is a real-valued centered
Gaussian variable with variance given by E (Wgn([s,t] x D)?) = (t — s)u(D).

e For any collection of pairwise disjoint measurable sets {[s;,t;] X D;}jen € (B X
)Y where B is the Borel sets, the random variables Wy ([s;,t;] x D;), j € N are
independent.
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Notice that the Gaussian measure Wgn gives rise to an isonormal Gaussian family {Wgn (f), f €
L*(R, x H";dt ® p1)} with covariance function

E (Wa- (f)Wa-(9)) =/ [t 2)g(t, x)p(dx)dt. (3.25)
R+><H"
Otherwise stated, the covariance function of Wgn is given by (3.2) with a = 0. Therefore
Whyn also possesses the following properties.
e Invariance by dilations (as in Proposition 3.4). It holds that
(Wan(fody), f € L*(Ry x H' dt@p)} 2 (A Wera (), f € L*(Ry x H'; dt@p)} (3.26)
e Invariance by rotations (as in Proposition 3.6). We have
(Wan(f 0 Rp); f € ARy x H'dt @ i)} 2 (Winn (f): f € LA(Ry x H'dt @ )}, (3.27)
e Invariance by left translation (as in Propostion 3.6). It is readily checked that
Warn(f o L), f € LR, x H'dt @ )} 2 {Wann(f), f € L3R, x H3dt @ )} (3.28)

We also introduce an operator G, which is a reformulation of the form K, ,. in (3.24) as an
operator from L?(H", 1) to L*(H", ).

Definition 3.10. Let ”TH < a < 5+ 1 and recall that G, is defined by (2.28). We define
an operator G, on L*(H", u) by

6uf®) = [ (Galp0) ~ Gules0) F@dula). p € (3.29)
Notice that formally, for p almost all p € H" we have
Gof(p) = (=A)""f(p) = (=A)7*f(e).

We are now ready to introduce the Gaussian field on R, x H™ which is analogous to a
Brownian motion in time and fractional Brownian motion in space.

Proposition 3.11. For "3 < o < 2+1, recall that G, is defined by (3.29), and consider the
white noise Wy introduced above. Then the process {W,(t,z);t € Ry, x € H"} is properly
defined by

W, (t,x) = Wan(Gal(z, ) — Gale, ) = /R - Loy (r)(Galz, q) — Gale, q)) dWyn (1, q).

(3.30)
One can also formally express Wy (t, x) as

W, (t, ) = Go(Wan(t,-))(x).

Proof. The proper definition of the right hand side of (3.30) directly stems from rela-
tions (3.25) and (3.15). O

Next we check that Proposition 3.4 (invariance by dilations), Proposition 3.6 (invariance
by rotations and invariance by left-translation) are still valid for W, in the regime ”T“ <
o < § + 1. Moreover, some pointwise versions of (3.7) and (3.11) are available.

Proposition 3.12. Let W, be the field described in Proposition 3.11, with "T“ <a< g+l
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(i) For any A\ > 0, we have that

{W,(t,00z);t > 0,2 € H*} 2 X2~V W (¢ 2):¢ > 0,2 € H"}. (3.31)
(ii) For 6 € [0,2m), consider the rotation Ry defined by (2.4). Then it holds that
Wa(t, Ro(2)) 2 Wa(t, ), (3.32)

for all (t,z) € Ry x H".
(i) For any x € H", let L, be the left translation defined by (2.5). Then it holds that for
anyt € Ry and z € H”,

[Walt. Lyy) = Walt, Lo2)iy € H'} 2 {WL(t,y) — Wa(t,2);y € H"}. (3.33)

Proof. We first prove (i). By its definition (3.30) we know that

W, (t,6x2) = /0 t / (Gal0r2,0) — Gule ) dWars (5, ). (3.34)

Moreover, owing to (3.6) and the fact that dye = e we have
Go(0rz,q) — Gule, q) = N272(+D) (Galz,65'q) — Gale,65'q)) -

Plug this identity into (3.34) in order to get

W, (t,0xz) = N2 20 DT (g 0 671, (3.35)
where the function g is defined by

9(5,7) = 10 (5) (Gal2,0) — Gale, )
We now invoke the invariance (3.26) in (3.35) which yields

Wa(t, x2) 2 N~ W, (g) = A2 FDW, (1, 2),

where the last identity stems again from the definition (3.30) of W,. This concludes the
proof of our claim (3.31).

For (ii), note that Ry(e) = e. From (3.30) we have

(t Ry(x / / (Ro(2), @) — Gu(Role), q))dWarn (s, 9). (3.36)
Since the Green function is invariant under Ry, we have that
Go(Ro(7),q) — Ga(Role),q) = Galx, R-9(q)) — Gale, R-o(q))-

Plug this identity into (3.36) and resort to the invariance (3.27) of Wi under Ry. We then
obtain the desired conclusion.

Finally, from (3.30) we have

t
Walt, L) = Walt.Li2) = [ [ (Gualow.d) = Galozea) Wi (5.0 (330

0 n
The conclusion in (iii) then follows from the left translation invariance property of the green
function and (3.28). O

At last let us address the Holder continuity of the field W.
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Proposition 3.13. Let W, be the field described in Proposition 3.11, with "TH <a<g+l.
Then

i) For all p > 1, there exists a constant C, such that for any t € R, and x,y € H",
p
IWalt,2) = Walt, )l o) < Codeela, y)?~ Y. (3.38)

(ii) For every compact set K C H" and every € > 0, the process x — W, (t,z) is (2a— (n+
1) — €)-Holder continuous on K.

Proof. Since W, is a centered Gaussian process, we only need to prove (3.38) for p = 2.
Moreover, owing to (3.30) we have

B((Wa(t.) = Walt0))?) = [ (Gale0) = Gl
Therefore we get (3.38) for p = 2 thanks to a direct application of Proposition 3.7. This
proves item (i) above. Our claim (ii) is then obtained by a standard use of Kolmogorov’s
criterion. U

Remark 3.14. In Section 3.1 and 3.2 we have respectively treated the cases

n-+1 n-+1 n-+ 2
I<ax< 5 and <a< 5

The situation a@ = % is thus ruled out from our study. It corresponds to a log-correlated

type process (see e.g [25]). This kind of log-correlated process deserves a separate analysis
and is avoided here for sake of conciseness. Let us also mention that the range a € [§ +1, 00)
is not included in our study. This would correspond to noises which are Lipschitz regular in
space.

Remark 3.15. The reference [25] is concerned with fractional processes of the form (—A)~*W
in RY, where W is a white noise. The corresponding Hurst parameter Hpa is defined in [25]
as Hra = 2a0 — d/2. Now according to our Proposition 3.13, the Hurst parameter in H"
should be defined as

Hgn =2a— (n+1).

If we write the Hurst parameter as Hygn = 2a — do /2, comparing with the formula for Hya,
the effective dimension d.g of H™ for the problem at stake is 2(n + 1). As mentioned in the
introduction, this has to be contrasted with the topological dimension 2n + 1 of H", and
notice that deg coincides with the Hausdorff dimension.

4. EXISTENCE AND UNIQUENESS OF THE ITO SOLUTION

In this section we establish existence and uniqueness for the solution of the stochastic heat
equation (1.1) interpreted in the It6 sense. We shall explore two different methods in order to
do so, namely: (i) applying a more general result about nonlinear stochastic heat equations
on Lie groups contained in [28], (ii) computing and controlling the chaos expansion for the
linear equation (1.1).
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4.1. Existence and uniqueness through It6 calculus. The article [28] relies on stochas-
tic integration in infinite dimensions techniques, in order to solve nonlinear heat equations on
Lie groups. In this section we will see how to apply this method to our specific equation (1.1).

We start by recalling some elements of It6 stochastic integration in our context. In all
the cases examined in Sections 3.1 and 3.2, our covariance function A = Ga, in (3.1) is more
regular than the Dirac delta-function. Therefore following the same arguments as in [33], one
can extend our noise W to a o-finite L*-valued measure B — W, (B) defined for bounded
Borel sets B in R, x H". In particular we introduce

Mi(A) .= W,([0,t] x A), forall t>0,Ae B,(H"). (4.1)
Let {F:,t > 0} be the filtration given by
Fr=0{MyA):0<s<t AeB,H"} VN, t>0,

which is the natural filtration generated by W, augmented by all P-null sets N in F. We
also consider the family of subsets of R, x H™ x 2, which contains all sets of the form
{0} x A x Fy (where A is a Borel subset of H" and F, € Fy), as well as (s,t] x A x F with
0 < s <t (where F € F;). This class of sets is called the class of predictable rectangles. The
o-field generated by predictable rectangles is called the predictable o-field, which is denoted
by P. Sets in P are called predictable sets. A random field X is called predictable if X is
P-measurable.

4.1.1. Case of W, with a € (0,5). Fix @ € (0,%4*) and consider W, defined by the
covariance (3.2). We are now ready to introduce a reasonable class of It6 integrable fields on
R, x H". Namely for p > 2, denote by P, the set of all predictable random fields such that

1= [ ds [ Galanallf(sa) (5ol mldaude) < ox,  (42)
Ry Hn" xH"

where we recall that p stands for the Haar measure on H" and ||- ||, denotes the L”(2)-norm.
We have the following Proposition, which can be proved along the same lines as in [33].

Proposition 4.1. Suppose that for some t > 0 and p > 2, a random field X = {X(s,q) :
(s,q) € (0,t) x H"} has the following properties,

(i) X(s,-) is adapted to Fy;
(i) X is jointly measurable with respect to B(R. x H") @ F;
(i) ||X||mrp < 00, where the (M, p)-norm is defined by (4.2).

Then the field X1 oy is in P,.

We now start the construction of a It6 type stochastic integral with respect to W,. The
definition below handles the case of elementary processes.

Definition 4.2. An elementary process g is a process given by

9(s:0) =D > Xijlpila,

i=1 j=1
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where n and m are finite positive integers, —oo < a; < by < --- < a, < b, < 00, the sets A;
are elements of By(H") and X, ; € F,,. The integral of such a process with respect to W, is
defined as

/R+ /n 5 @) Walds, dq) = ZZ ((ai, bi] x Aj), (4.3)

i=1 j=1

where we recall that the quantities Wy ([a;, b)) x A;) are introduced in (4.1). Moreover, for
the elementary process g we have

[(/W/ (5,9)Wal(ds dq)) ] = llgll3s 2 (4.4)

where the norm || - ||ar2 is given by (4.2).

Predictable processes are the natural class of processes which can be integrated with
respect to W,. In the proposition below we present the extension of 1t6’s integral to processes

in PQ.

Proposition 4.3. Recall that the set Py is defined by the norm (4.2). Then the following
holds true.
(i) The space of elementary processes defined in Definition 4.2 is dense in Ps.

(ii) Forg € Pa, the stochastic integral [o, [y 9(s,2)Wa(ds, dx) is defined as the L*(Q)-limit
of elementary processes approrimating g, and (4.3) still holds true.

Proof. The proof follows by standard arguments. See for example [15, 16]. O

Remark 4.4. With expression (4.2) in mind, it should be apparent that relation (4.4) is an
extension of Proposition 3.1-(1) to predictable processes.

With those preliminary notions in hand, our stochastic PDE (1.1) is formally written in
its mild form as follows,

U(t,q) = J0<t7Q> + [(t7Q)7 (45>

where p; is the heat kernel in (2.8), Jo(t,q) = [ggn Pe(¢7 @1)uo(q1)dp(qr) is the solution to the
homogeneous equation, and the stochastic integral is given by

I(t,q) :Z/[] pi—s(q g )u(s, ¢1)Wa(ds, dqy). (4.6)
0.t]xH™

We also define more precisely what we mean by It6 solution to (1.1).

Definition 4.5. A process u = {u(t,q), (t,q) € Ry x H"} is called a random field solution
of (1.1) if the following conditions are met:

1
2) w is jointly measurable with respect to B(R, x H") x F;

(1) u is adapted;

(2)

(3) [[I(t,q)||2 < oo for all (t,q) € Ry x H";
(4)

(5)

u
u

4) The function (t,q) — I(t,q) is continuous in L*(Q);
5) u satisfies (4.5) almost surely for all (t,q) € Ry x H™.
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Thanks to the above definition, we can now give a rigorous definition to solutions of (1.1)
as well as a sufficient condition allowing to solve (1.1).

Theorem 4.6. Fiz a regularity parameter o € (2, 25%) and let W, be defined by (3.2)-(3.5).

Then there ezists a unique solution to (1.1) in the Ito sense, interpreted as in Definition 4.5.

Proof. We shall apply a general result proved in [28]. Notice that [28] was considering equa-
tion (1.1) interpreted in the infinite dimensional setting. However, the general considerations
in [16] apply to our setting. Therefore, one can identify the random field solution (4.5) and
the solution constructed in [28§].

The sufficient condition given in [28| can be spelled out as

/B el M@)lg) < 0 (47)

where A is featuring in relation (3.1). For the noise W,, we thus have A = Gy, as in (3.5).
Hence we are reduced to show (4.7) when 2 < o < 21 To this aim we invoke relation (2.29),
which allows to write

| delea) > aadnte) < [ dile)
Ble,1)

Ble,y) dec(€, @) 12710

(4.8)

Using [2| we write the integral (4.8) in polar coordinates with respect to r = d..(e,q). This
brings about a Jacobian term r¢~!, where Q = 2n + 2 is the homogeneous dimension of H”
alluded to in Remark 3.15. We end up with

1 1
d
/ dcc(€,Q)_2nA<Q)dM<Q) S / 7’2n+1_4n_2+4ad7‘ — / “%
Ble,1) 0 o T

The latter integral is finite whenever o > 7, which finishes our proof. O

4.2. Existence and uniqueness through chaos expansions. In this section we take
another look at equation (1.1). Namely we shall write the solution to this equation directly
as a random field, by characterizing its chaos expansion. The advantage of this approach is
twofold: first it enables to state necessary and sufficient conditions on the covariance function
A in order to get existence and uniqueness result for the stochastic heat equation. Then we
shall also get some valuable information about moments of the solution.

4.2.1. Preliminaries on chaos expansions. In this section we recall the minimal amount of
Malliavin calculus tools necessary to state our results. The reader is referred to [27] for more
details.

Recall that the Cameron-Martin space #H is defined in (3.3). The m-th Wiener chaos,
denoted by Hj, is defined as the closed linear span of the random variables of the form
Hi(W,(¢)), where ¢ is an element of H with norm one and Hj, is the k-th Hermite polyno-
mial. We denote by I, the linear isometry between H®* (equipped with the modified norm
VE!|| - ||lyer) and the k-th Wiener chaos H. It is given by I;,(0®*) = kU H,(W,(p)), for any
v € H with |||y = 1.
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Any square integrable random variable, which is measurable with respect to the o-field
generated by W,, has an orthogonal Wiener chaos expansion of the form

F=E(F)+ Y L(f).

where f), are symmetric elements of H®*, uniquely determined by F. This kind of expansion
can easily be extended to random fields. Specifically consider a field u = {u(t,q),t > 0,q €
H"} such that E[u(t, q)?] < oo for all t,q. Then u(t,q) has a Wiener chaos expansion of the
form

u(t,q) = Blu(t,¢)] + Y L(fu(-t,4)), (4.9)

where the series converges in L*(2). With this kind of decomposition in hand, we can now
give a definition of Skorohod integrable field.

Definition 4.7. We say that the random field uw with decomposition (4.9) is Skorohod inte-
grable if the deterministic function E[u] sits in the space H, if f, (considered as a function
on (R x H") 1) is an element of HEFV for all k > 1, and if the following series converges
in L*(Q):

Wa(B(w) + 3 T (Fo),

where }k denotes the symmetrization of fi.. That is,

1
) ¢
fk(slaqb » Sk Qk, 7Q) k’+1 |:fk(817QI7 y Sk Gk, Jq)

k
+ka(t1,qh“' i1 Qi1 b @ b, Qs s Ty i) |-
i—1

We will denote the sum of this series by §(u) = fooo an u Wy, which we call the Skorohod
integral of u.

Note that when wu is the solution to equation (4.5) given by Theorem 4.6, the Itd type
stochastic integral (4.6) is equivalent to a Skorohod integral as introduced in Definition 4.7.
Hence by a standard iteration procedure (see e.g. [20]), v admits a chaos expansion as
in (4.9) with fi given explicitly by

1
Fils1,01, 05 80y Gy 1 0) = 33P0 (4 Go0) Py =501y (@o(2)5 Go(1))Ps, U0 (Go(1)), - (4-10)

where o denotes the permutation of {1,2,...,k} such that 0 < s,y < -+ < s,0) < t. We

can thus state the following existence-uniqueness result, for which more details are provided
e.g. in [19, 20].

Proposition 4.8. Equation (4.5) admits a unique solution in the Itd-Skorohod sense (that
is when I(t,q) in (4.6) is understood as in Definition 4.7) if and only if the following holds:

D KAt @)[Fger < oo (4.11)

k=0



PAM ON HEISENBERG GROUP 23

In the sequel we will give conditions on « so that (4.11) is fulfilled.

4.2.2. FEstimates for a fived chaos. Having (4.11) in mind, we now proceed to upper bound
each contribution || fi(-, %, q)||yer. Since fi is given by (4.10), we first introduce a notation
valid for 0 < s1 < -+ < s < t,

g<87 q, ta y) = Dt—s;, (% Qk) © Dsg—s1 (q27 Q1)7 (412>

where we use the convention ¢ = (q1,...,qx) and s = (s1,...,Sk). We can now state a first
upper bound for || fi (-, £, q)|lyex-

Lemma 4.9. For k > 1, let fi be the function defined by (4.10). Then fort >0 and g € H"
we have

12\
14, By 5 Nl [g (Z5) M] , (4.13)

where the quantity M, k. is given by (note that we use the convention sgpi1 =t below):

k
My = / ds [ / I3 IR 2l | 4 n) 2 msaNI@madm gy (4.14)
04 =1 /R

m; EN"

Proof. We start with a couple of easy simplifications. First we have assumed that ug is a
bounded function on H". Therefore p,  uo in the right hand-side of (4.10) is bounded.

Also note that by symmetry, we only need to evaluate for a particular time simplex [0, X :=
{(s1,.+.,5,);0 < 81 < -+ < s, < t}. So, recalling the definitions of f; and ¢ in (4.10)
and (4.12) respectively, we obtain

1
17t @llger < Mt y) o2,

where we have set

k
Mk(tay) = /[ ]k dS/( 2 g(S>Q7tay) HGQ(x(qi?qg)g(Saq/vt?y) dﬂ(Q)dlU“<q/) (415)
0,t]% n)2

i=1
In the sequel we will prove the bound claimed in (4.13) by proving a suitable bound for the
quantity My(t,y).

In order to compute Mj(t,y) more explicitly, we first look at the integral with respect to
¢; and ¢; in the right hand-side of (4.15). We get an integral of the function

~

Mi(t,y,y") = /( o Pe(Y, 0)G2a(q, ¢y, 4') du(q)du(q'), (4.16)

for a given y € H". By translation invariance, p;(y, q) takes the form p;(y~'q). Hence the
above integral becomes

~

My(t,y,y) = /( - ey ) Gaala, o () ') dulq)dp(q).



24 F. BAUDOIN, C. OUYANG, S. TINDEL, AND J. WANG

Moreover, since Gy, is the kernel for the operator (—A)™2* (see identity (2.28)), we get
W(twy) = [ pl0) () () ) (@) duta)
= /n ((=2)™pu(y™")) (@) (=2)p((¥)7")) (@dplq).  (4.17)

)-
),

where we resort to the self-adjointness of (—A)~® for the second identity (see also (3.4
(3.5)). Therefore one can simply invoke Schwarz inequality in the right hand-side of (4.17
which yields

Mty ") < I=2) ey ) lezan g - 1(=2) ")) le2n

<
< sup [[(=2)"pe(z ™) [Z2gan ) - (4.18)

rzeH”

We now prove that the L? norm in the right hand side of (4.18) does not depend on z.
Namely notice that the Fourier transform of p;(z~!-) can be expressed thanks to (2.19) as

Fole )0 = [ pla U dute) = | pla ) duta)

where we have used the change of variable x7'¢ = ¢/ and the left invariance of i for the
second identity. Hence invoking the flow property of U we obtain

Fole )0 = [ pld)020 dta') = U2 o F ()N,

Since U2 is a unitary operator, it does not change the Hilbert-Schmidt norm of Fp.(\).
Otherwise stated, we have

| Fpe(x™ )Y N)lus = | Fpe(N)|lus, for all z € H*, A € R.

Combining this observation with Plancherel’s identity (2.20), the right hand-side of (4.18)
becomes

sup [[(=A) " pe(e ™ M za@n ) = (=) el L2 gean - (4.19)

rzeH"

Moreover, making successive use of the projective Plancherel inequality (2.23), relation (2.26)
for the Fourier transform of (—A)*a f and (2.25) for p,, we get

(=) pellZ2am) =7

) (m, 1, )2IA"dA
mlEN"

2n 1

/ A2 (2]m] 4 n)-2eSN@mE gy (4.90)

<
— 7T-n—l—l
meN”

We can now plug (4.20) into (4.19) and then back in (4.18). This enables to write

Bty < 2 3 /w A[29(2]m] + n)~2ee-SACImEn gy (491

meN”

n+1
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Recalling that M is defined by (4.16), we can now report (4.21) into (4.15) and iterate the
procedure over variables ¢;. We end up with

2n—1 k
Mk(tay) S (71'”+1>
></ dsH/]A P ST IR @] + )R Sensonm gy (4.99)

m; EN?
which is exactly our claim (4.13). O

Remark 4.10. At a heuristic level, one can see from (4.14) why the condition § < a < ”TH
pops out in order to solve equation (4.5). Indeed, the following holds true for the right
hand-side of (4.14):

(i) In order for the integral with respect to A to be finite near 0, one needs n — 2a > —1,
that is o < "T“

(ii) In order for the integral with respect to s first and then with respect to A to be finite,
one needs (n — 1) — 2a < —1, that is a > .

(iii) In order for the integral with respect to s first and then with respect to m to be finite,
one needs 2a + 1 > n, that is a > "T’l

The above constrains can be combined to be § < a < ”+1 , which agrees with the condition
in Theorem 4.6. In the remainder of this sectlon we w1ll make those statements rigorous.

With Remark 4.10 in mind, let us assume that § < a < ”TH Our next aim will be to get
a proper upper bound on the right hand side of (4.14). To this end, we split the contribution
of d\ in the following way: fix N > 1 and set

DY, = / IA"727ld)\, and Dy = / A2, (4.23)
A>N A<N

By the assumption that a > 7, Dy, is finite for all positive N and approaches to 0 as N 1 oo.
Furthermore, the following two quantities are also finite whenever o > %,

o 1 o
Ci= Y (2m[+n)™, and G =3 ) (2fm] + n)” G, (4.24)
meNn meN”n

With this additional piece of notation in hand, we can now state our main technical lemma
toward the evaluation of (4.14).

Lemma 4.11. Let § < a < ”TH For any N > 0, let D3, Dy and Cy, Cy be given in (4.23)
and (4.24). Consider the quantity M, defined by (4.14). Then, we have

Myi < Z( ) (DY) (D) (4.25)

J=1
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Proof. In the right hand-side of (4.14), we start with an elementary change of variables
Siz1 —Si=w; for 1 <i<k—1,and t — s = wg. Denoting dw = dw,dws - - - dwy,, we have

Mn,,gg/ de/]A Y IRl A+ n) e BN CmEm gy (4.26)
Stk

m;EN"

where the set S, is defined by
See = {(wy, ..., wp) €[0,00)% 1wy + -+ +wy <t} (4.27)

Our next elementary step is to linearize the integrals in the right hand-side of (4.26). We
get

k
M, < / dw / LT Ix 2 @lm| + n)—2eeSubd@imEman, . dy,.
Stk RF 509

7nZEN" i=1,.

Now recall that we have used a parameter N > 1 in (4.23). We split the integrals with
respect to A above according to this parameter. This yields

k
My < / dw/ I (tgniemy + Lgazny)
St.k R 300

7n2€N" i=1,.

IN[PTE2)my | 4 n) TR Bl @Imaln) g\ gy (4.28)

In order to handle the products in (4.28), let us introduce an additional notation. Namely we
denote by I a generic subset of {1,...,k} and I¢ = {1,...,k}\I stands for its complement.
We split R¥ accordingly as R* = R x R for the integration with respect to \, with related
variables called A\; and Aje. Then starting from (4.28) we get

M, < Z Z Qr(m, w)Qe(m,w)dw,

IC{L2,...k} miEnn Stk

.....

where we have set

Qumw) = [ e e
|

QIC(m, w) _ / H 1{|/\ \>N}|)\ ‘n 2a(2’mz‘ + n) 2c —8w1\)\ [(2|m;]+n) d\e.
|[¢

i€lc

One can also factorize the integration with respect to w in the following way: recalling the
definition (4.27) of S, we trivially have S,,, C S! x SI*, with S} = {(w;,i € I) : w; >
0, ic;wi <t} and S{° defined similarly. Next bound the exponential terms e~ BwilAil @lmil+n)
by 1 whenever ¢+ € I. we end up with

Mn,k < Z Z QI(mI)Qlc(mIC)’ (429)

IC{1,2,0.k} maeln

ook
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where we define my = {my;i € I}, me = {m;;i € I°} and

) = / I / mH1W<N}ui|"*2a<2\mi|+n)*2adwlcu], (4.30)
5] ;

(me) / /,I | LT tonasmy X2 @lms| 4 n) 20 Sl CImbE ) qued e (4.31)
sl JRl®

icl¢

Notice that each m; is an element of N*, and we will thus consider m; as an element of N™/I.
In the same way m;. is understood as an element of N*°l. In addition, the expression (4.29)
can be further factorized in order to get

> > Qilmy) Y Quelmr) | (4.32)

I1c{1,2,....k} mypeNn] myceNnIIC

M, i

IA

We will now bound the two terms in the right hand-side of (4.32) separately.

The term Q ; defined by (4.30) is upper bounded as follows: we recall that C is defined by
(4.24). Then since a < ”“ , we also resort to expression (4.23) for Dy, plus an elementary
integration over the snnplex S!. which yields

. Dy 7]
> Qulmy) < %. (4.33)

mIEN"m
Notice that the factor ¢/l/|I]! in (4.33) comes from the integral over dwy.

As far as the term QIC defined by (4.31) is concerned, we simply invoke the fact that
SI < [0,00]l°l and we integrate the exponential terms exp (—8w;|\;|(2]m;| + n)) over w; in
order to get

Z ch(mIC)

mIcENn‘IC‘
< Z / / , H Lipnpsny A" 72 (2] my| + n) 2 e Bwilal@miEm gy e d e
m e eNIIE| [0,00]1¢1 JRIZCI iere

1 1
== E: ||1 |2 (2)my| + n) T dre.
8 / i1e| (Infzny A (2fmal +n)” IAi| (2|m;| + n) !

mICEanlcl iele
Owing to the fact that o > 4 and having the definitions (4.23)-(4.24) in mind, we get
S Qrlmr) < (G0, (4.34)

mICGNn‘IC‘

Substituting (4.33) and (4.34) into (4.32), we have thus obtained that

USSR

7!

The proof of our claim (4.25) is thus completed. O
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4.2.3. FExistence, uniqueness and moment estimates. This section is devoted to prove our
existence-uniqueness result thanks to chaos expansion. This is summarized in the theorem
below. Notice that an advantage of the chaos expansion method is that it produces some
necessary and sufficient condition on the parameter .

Theorem 4.12. Assume W, is a Gaussian noise whose covariance function is given by (3.5).
Then if o € (2, 241), equation (4.5) admits a unique solution in the It6-Skorohod sense (as
given in Proposition 4.8). Moreover provided |ug(x)| > k for a constant k > 0, the condition

o € (2,251 is also necessary in order to solve equation (4.5).

Proof. We divide this proof into sufficient and necessary conditions.

Step 1: Sufficient condition. Let us assume that o € (%, 25+). As stated in Proposition 4.8,
we just need to check inequality (4.11) in order to get existence and uniqueness. Now
gathering (4.25) and (4.13), we get

ik
1fx (-t @) 3er < % ' (I‘;)@Cl]—,) (CoDH)* (4.35)

where we have set Cp = 2" 17— (n+1)

(’;) < 2% we obtain

Zk'nfk b < ol 3 CE S (’“)M (CaDF)"™

. Summing over k and using the elementary inequality

k=0 j=1 J ‘7'
k
< ol 3 3 P 0,5y
k=0 j=1
= uoll 3 PP (0,03) 7 S act (i) (was)
j=1 ' k=j

Now we can choose N large enough to ensure the summation over k in (4.36) converges and

equals to % under our standing assumption on «. Plugging this into (4.36) gives us
i KU (ot @) 500 < ol Z tcl OQD;)‘j (2C,CyD5) < 0o, (4.37)
— T 1 - 200G Dy =

This proves (4.11) and hence (4.5) admits a unique solution.

Step 2: Necessary condition. If the initial condition wug is such that ug(x) > k > 0, then
according to (4.13) and (4.14) a necessary condition in order to solve our heat equation (1.1)
is that M, ; < co. Moreover, after some elementary simplifications we discover that

Mn,l =9 Z (2|m| + n)—(2a+1)/ )\n—?oa—l <1 . 6—8)\(2\m\+n)) d\.
meNn 0

Now considering the term m = Oy~ only we get

Mnl > / )\n—Qa—l (1 . 6—8n)\) d\.
0
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Then we divide [0,00) in to [0,1) U [1,00) and use the bound 1 —e™* 2 z on [0,1) and
1—e*<1on[l,o0). This yields

1 0o
My, 2 / APTREIN + / A2 (4.38)
0 1

From the right hand-side of (4.38), it is readily checked that the condition o € (%, 24) is
necessary for the finiteness of M, ;.

Step 1 and Step 2 complete the proof of existence and uniqueness of solution to equa-
tion (1.1) by the method of chaos expansion. O

We now state a rough exponential estimate for the L?-moments of u(t, ¢). This non-optimal
bound illustrates how useful the chaos approach can be in our context.

Proposition 4.13. As in Theorem 4.12, we consider the noise W, with a € (3, "TH) Let

u be the unique solution to equation (4.5). Then there exist cy,...,c4 > 0 such that for all
(t,q) € Ry x H" we have

c1e” < E [(u(t,q))?] < cze. (4.39)

Before proving Proposition 4.13, we need to state a couple of preliminary results on the
Brownian motion B on H”. We first label a basic scaling result for this process.

Proposition 4.14. Let B be the Brownian motion on H™ introduced in Section 2.2, and
recall that the distance d.. is given by (2.12). We assume that By = e almost surely. Then
fort > 0 the following scaling property holds true:

doo(Brre) 2 Vid (B, e). (4.40)

Proof. For the dilation J, given in (2.3), it is shown in [3, pp. 36-37| that B; @ 6. Bi.
Hence the result follows from the fact that de.(8 7 Bi,e) = vt deo(Bi, €). O

We also label an estimate about small ball probabilities for the Brownian motion on H",
which will be crucial for our lower bound on L?-moments of the stochastic heat equation.

Lemma 4.15. Let B be the Brownian motion on H" defined in Section 2.2. We also consider
an independent copy B of B. For €,t > 0 such that € < \/t, we define an event

Ay = { sup dCC(BS,BS) < 6} ) (4.41)
0<s<t
Then there exist two constants ¢, C > 0 such that
Ct
P(A.;) > cexp {——2} . (4.42)
€

Proof. We assume (without loss of generality) that By = Bo = e. Then it is easily seen that

{Sup dCC(BS’BS) < 6} ) {Sup dcc(Bsae> < %} N {sup dcc(‘?,Bs) < E} .

0<s<t 0<s<t 0<s<t 2
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Therefore invoking the independence of B and B we obtain

P ( SUp dee(Bs, Bs) < e) >P ({ sup de.(Bs, e) < E} N {sup dee(e, By) < E})
0<s<t 0<s<t 2 0<s<t 2
2
>P ( sUp dee(Bs, e) < E) : (4.43)
0<s<t 2

We now bound the right hand-side of (4.43). To this aim, for » > 0, let us denote by T, the
hitting time by B of the Carnot-Carathéodory sphere with center e and radius r. Using the
scaling property for the process s — d..(Bs, €) stated in Proposition 4.14, we can then write

4t
P(sup d(Be) <) 2B (T2 ) =B (12 2).

0<s<t

Moreover, according to Theorem 5.2 in [7] (see also Corollary 5.4 therein), one has

4t 4t
P<T12—2> Z]P(ﬁZ—Q)’
5 5

where 7 is the hitting time of 1 by a Bessel process of dimension 2n + 3 started from zero.
The result follows then from classical estimates. 0

Remark 4.16. In fact the proof above also yields a more precise estimate. By [10, Corollary
5.4] we know that

lim 1lnIP)<T1 > i) =

t—oo t -

4\
Vi og? €2
where A; is the Dirichlet eigenvalue of the Carnot-Carathéodory sphere. Hence for every

€ > 0 we have

1 A
liminf — InP(Ac;) > —2.

t—+oo ¢ €2

We now turn to the proof of our estimate for L2-moments of u(t, ¢). It relies on a Feynman-
Kac representation of moments which will be mostly detailed in section 4.2.4 (the Feynman-
Kac representation being crucial in the smooth noise case).

Proof of Proposition 4.13. The upper bound in (4.39) is an easy consequence of (4.37). We
thus focus on the lower bound. Towards this aim, we start by stating a Feynman-Kac repre-
sentation for the L2-moments. This claim will be detailed below in the proof of Theorem 4.17.
Here we content ourselves with asserting that

t
E [u(t,q)ﬂ =K [exp {c/ GQQ(BS,BS)dsH , (4.44)

0
where B, B are two independent Brownian motions on H" starting from e, and where E

designates the expected value with respect to B, B only. Now for €,t > 0 consider the event
A, defined by (4.41). Due to the positivity of the exponential function we get

E [ul(t, q)ﬂ > E {exp {c /Ot Goo(Bs, Bs)ds} 1AEJ :
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Moreover, thanks to the definition of A.; and resorting to (2.29) in order to bound Ga, we
obtain

ct
E [(u(t,9))?] Z exp {m} P(Acy).
Invoking relation (4.42) for € < /¢, this yields

Efu(t,q)?] = exp {<E2(Tcl—2a) - g) t} : (4.45)

Note that whenever o < "T“, we have 2(n+ 1 —2«a) < 2. Hence if ¢ is large enough, one can

find e large enough but still with e < v/t such that

c C c
21 20) 2 2 ea(nilza) (4.46)
Plugging (4.46) into (4.45), the lower bound in (4.39) is proved. 0

4.2.4. Smooth noise regime. We now turn to the analysis of the mild equation (4.5) with
chaos expansions, in the smooth case a > . Notice that this case is not included in
Theorem 4.6 above. Generally speaking developments for SPDEs driven by function-valued
noises are scarce in the literature. Moreover covariances for noises of the form (3.30) are
growing polynomially at co, which induces some additional technical difficulty in the analysis
of stochastic convolutions like (4.6). Below we will see how to solve this obstacle thanks to
a Feynman-Kac representation of moments.

Theorem 4.17. Consider the Gaussian noise W, for "TH < a< "T*Z, as introduced in

Proposition 3.11. Then equation (4.5) interpreted in the It6-Skorohod sense admits a unique
solution.

Proof. This proof is not a direct application of the chaos estimate (4.11). It is based instead
on a closely related Feynman-Kac formula already alluded to in (4.44). We divide it in
several steps.

Step 1: Reduction to an exponential estimate. Owing to relation (3.30), the covariance
function of W, is given by

E[W.(s, q)Wal(t,¢)] = (s At)v(a.4),
where the function v is defined by

1a.)i= [ (Golar) = Galea)(Galdr) = Gales ) dur). (247

We now claim that the existence of a solution to (4.5) can be reduced to prove that for all
£ > 0 we have

E, {exp <5 /Ot'y(Bs,Bs)ds)} < 00, (4.48)

where B, and B, are two independent Brownian motions on H" starting from the same
point . In (4.48), also notice that E, designates the expected value with respect to the
randomness in B and B.
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In order to prove that existence of a solution to (4.5) amounts to (4.48), we start from (4.11).
Indeed, (4.11) asserts that a precise L?(2)-bound on the solution u yields existence and
uniqueness. Next we consider a smooth noise

W; == Wa * Pe,

where p. is the heat kernel in (2.8). Then one can show that equation (4.5) driven by the
(smooth in space) noise W¢, admits a unique solution called u¢. Furthermore similarly to [19,
Proposition 4.7], relation (4.48) ensures that u¢ converges in L? to u, where u solves (4.5).
Our aim will thus be to prove (4.48). Notice that this method amounts to using a Feynman-
Kac representation of the solution.

Step 2: Estimates on . Recall that Proposition 3.7 states that for all ¢ € H" we have
[ (Gala.r) = Gulesr) du(r) < Caufg, ) 200

Plugging this relation into (4.47) and applying the elementary inequality |ab| < (a® +0?)/2,
we get

(6, @) S (deela, €)% 0D 4 dee(q )@ F2mH ). (4.49)

Reporting (4.49) into (4.48) and invoking Schwarz’ inequality, it is now sufficient to prove
that for all 5 > 0 we have

E {exp <6 /Ot dee(Bs, e)4a_2(“+1)d8>} < o0. (4.50)

In the sequel we turn our attention to prove (4.50).

Step 3: Proof of (4.50). We apply Jensen’s inequality to the left hand-side of (4.50). This
yields

oo ([ 5500 - o o [ g2
E { /0 t exp (Bt dec(Bs, €)' 72+) )ds]

/Ot]E [exp <6t doe(Bs, e)ta=2n+1) )} ds.  (4.51)

Owing to (2.14), it is now readily seen that the right hand-side of (4.51) is finite as long as
4a —2(n+ 1) < 2 (or otherwise stated o < %£2).

Step 4: Conclusion. We have proved that (4.48) holds true as long as a < According
to our considerations in Step 1, we have thus obtained the existence and unlqueness of a
solution to (4.5) under this condition on a. O

n+2

Interestingly enough (and similarly to the distributional noise case of Section 4.2.3), the
Feynman-Kac type methodology put forward in Theorem 4.17 also yields asymptotic results
for the second moment of u through Laplace method. Below is a result in this direction.

Theorem 4.18. In the regime "T“ <a< "T“ of Theorem 4.17, let u be the unique solution
to equation (4.5). Then for all ¢ € H™, w,(q) admits the following asymptotic upper bound
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for its second moment: there exist two constants Cy,Cy > 0 such that for t large enough we
have

E[u,(z)?] < Oyt exp {Cst"} (4.52)

where the exponent p = p(«a) satisfies

200 — n n+1 n—+2

l<p=—"7-——7< <a< 4.53
P 2— (2a—n) A “ (4.53)

2 2

Proof. According to equations (4.48) and (4.51), the second moment of u;(q) is controlled
by a quantity @Q; of the form

Qi = % /0 E lexp (Ct deo(Bs, )72+ D) | ds, (4.54)

for a constant C' > 0. We will now estimate the right hand-side of (4.54). Apply first the
scaling property (4.40) to the right hand-side of (4.54). We get

Q=1 [ Efesp (Crst 00 a2 ) s

Moreover recall that we are considering the regime a > "TH Hence bounding s2*~(+1 by

t20=(+1) we end up with

Qu < E [oxp (O deo(By, )2+

Therefore invoking (2.14) we obtain

Q: < Cs / exp (C1 " dee(q, €)' 2 — Cyd(e, q)?) du(q).

We now resort to polar coordinates, similarly to what we did after equation (4.8). This
allows to write

+o0o
Q: < / 2 exp <Ct2o‘_" pla=20n+l) _ oy r2) dr. (4.55)
0

We are thus reduced to evaluate the 1-d integral in the right hand-side of (4.55).

The right hand-side of (4.55) will be bounded thanks to Laplace asymptotics. To this
aim, consider the change of variable r = t"u, where v = p/2 and p is defined by (4.53). It is
elementary to check that

t2afntu(4a72(n+l)) t?l/'

Hence the change of variable in (4.55) leads to the upper bound

—+00

0, < tu(2n+1)/ W2t W) gy, (4.56)
0

where we have set
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Recall again that 2a — n < 2 under our set of assumptions. Hence one can easily optimize
f over R. We get

Q00 — T5at (D
u* = argmin f(u) = <M> o : (4.57)
20y
* C *\2a—n
f(u ):Z(Q—2a+n) (u*)= . (4.58)
We also let the patient reader check that
/(W) =2C4(2a — (n+2)) < 0. (4.59)

According to Laplace’s method (see e.g. [9, Section 6.4]) and going back to (4.56), for ¢ large
enough we have

1
. 2T 2
< t(2n+1)u *\2n+1 2 f(u*) ( > )
Qe S (u ) € t2”|f”(u*)\

Reporting the values (4.57), (4.58) and (4.59) in the inequality above, we can thus write
Qi St exp {C'H"} =t exp {C't°},

where we recall that p = 2v. This proves our claim (4.52). O
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