FRACTIONAL GAUSSIAN FIELDS ON THE SIERPINSKI GASKET AND
RELATED FRACTALS

FABRICE BAUDOIN AND CELINE LACAUX

ABSTRACT. We study the regularity of the Gaussian random measures (—A)~*W on the Sierpinski gasket
where W is a white noise and A the Laplacian with respect to the Hausdorff measure. Along the way
we prove sharp global Holder regularity estimates for the fractional Riesz kernels on the gasket which are
new and of independent interest.
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1. INTRODUCTION

Brownian motion and its generalizations have been the object of intense study throughout the mod-
ern history of probability. Fractional Gaussian fields are one of those generalizations that have been
extensively studied in the past few years since this class of fields contains as special examples what
appears to be universal objects like the Gaussian free field or the log-correlated field. We refer to the
survey by A. Lodhia, S. Sheffield, X. Sun, and S. S. Watson and its extensive bibliography for a
detailed account on the fractional Gaussian fields in Euclidean spaces. Our goal in the present paper
is to study those fractional Gaussian fields on some self-similar fractals like the Sierpinski gasket. We
are mostly interested in the regularity theory of those fields and in the range of parameters that in the
Euclidean space correspond to the so-called fractional Brownian motion fields. In the Euclidean case, the
regularity theory of fractional Gaussian fields heavily relies on the availability of the Fourier transform
(see [18]) which has no direct analogue in the fractal case. One of our contributions is to show that
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even though there is no Fourier transform in fractals, there is still a rich L? to Holder regularity theory
for the multipliers (—A)~® where A is the Laplacian on the fractal. Therefore, even if our motivating
question is probabilistic, an important part of our work will be analytic and is closely related to theory
of Besov and Sobolev spaces in fractals that was recently developed, see [2,13].

Let us now describe more precisely our main result. For s > 0, consider in R™ the Gaussian random
measure

M) X = (~A)W,

where W is a white noise (i.e. a Gaussian random measure with intensity the Lebesgue measure) and
A the Laplace operator on R™. The expression has of course to be understood in a distributional
sense (see |18] for the details) and means that for every f in the Schwartz space S(R™) of smooth and
rapidly decreasing functions one has

| oy Xt = [ pawias)

This class of Gaussian measures includes the following popular examples which are thoroughly presented

in the survey paper |18]: white noise (s = 0), Gaussian free field (s = 1/2), log-correlated Gaussian

field (s = 2) and fractional random measures (2 < s < 2 + 1). Actually, in the range 2 < s < 2 4 1,

the Gaussian random measure X admits a density with respect to the Lebesgue measure which is the
fractional Brownian motion indexed by R™. The Hurst parameter H of this fractional Brownian motion
is given by H = 2s — 7. In the present paper, we are interested in generalizing those fields on fractals
in the range corresponding to the fractional Brownian motions. For simplicity of the presentation we
carry out explicitly and in details the analysis in the case of the Sierpinski gasket but as we shall discuss
in the last section of the paper, our analysis extends to more general fractals. The main result is the
following:

Theorem 1.1. Let K be the Sierpinski gasket with normalized self-similar Hausdorff measure p and
Laplacian A. Denote dy, the Hausdorff dimension of K and d,, its walk dimension. Let W be a white

noise on LE(K,u). Then, if %’; <s<1l-— ;l—hw, there exists a Gaussian random field (X (x))zerx which

18 Holder continuous with exponent H~ where

dp,
H = sdy, — 2
5 2

and such that for every f which is in the L3 domain of the operator (—A)*

/K (—A)* f(2) X (2)dpu(xr) = /K F ()W (da).

_ o1t .. . d dy e, -
By v~-Hélder we mean (y—e¢)-Hélder continuous for € > 0. In the range 35 <8 < 1—g3f=itis therefore

2
natural to call X a fractional Brownian motion indexed by K and with Hurst parameter H = sd,, — %.

For the Sierpinski gasket the explicit values d; = iﬁ—g and d,, = % are known. The borderline case
dp,

s = 34~ would correspond to the case of a log-correlated field on the gasket. Such field can not be
defined pointwise but only in a distributional sense. We let its study for possible later research.

Since their introduction in [16] and [19], fractional Brownian motions and fields have attracted a lot
of interest, both from theoretical or more applied viewpoints, see [6,|18,20] and the references therein.

Following the definition by P. Lévy [17] of the Brownian field on the sphere, J. Istas defined in [11,[12]
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the fractional Brownian field on manifolds or more generally metric spaces, as a Gaussian field whose
covariance is given by

) 5, 0"+ d(y, 0" — ()",

where o is a fixed point in the space and d the distance. Applying this definition for the Euclidean
distance on the Sierpinski gasket, which is a compact set isometrically embedded in the plane, is not
interesting since it simply yields a field which is the restriction to the gasket of the usual fractional
Brownian field on the plane. It would be more natural to use for the distance d the so-called harmonic
shortest path metric which is for instance defined by J. Kigami in [14]. For this choice of the distance,
it is not clear to the authors what is the exact range of the parameters H for which the function ({2)) is
indeed a covariance function. Our construction of the fractional Brownian field, which is instead based
on the study of fractional Riesz kernels is similar to the construction of fractional fields on manifolds by
Z. Gelbaum [10] and adopt the viewpoint about fractional fields which is given in [18]. One advantage
of working with fractional fields constructed from the white noise using fractional Riesz kernels is the
availability of all the harmonic analysis tools that can be developed on the underlying space. In the case
of fractals like the Sierpinski gasket such tools have extensively been developed in the last few decades;
we mention for instance the references [8,(13,21,22] and the book [15].

Our paper is organized as follows. In Section 2, we study on the Sierpinski gasket the properties of the
operator (—A)~* where A is the Laplacian on the gasket, as defined in [13]. One of the main results

of the section is Theorem [2.10| that implies that for s € (;i—hw, — 2‘2—2) and f € L*(K,u) one can
pointwisely define (—A)~*f and that one has for every x,y € K,

(=A) " F(2) — (=) F()] < Cd(w, y)™ || £l 20 -

In particular, in the range s € (;Th, 1— 2%), the operator (—A)~% maps L*(K,u) into the space of

bounded and (sdw — %)—Hélder continuous functions. This regularization property allows us to define
and study in Section 3, the fractional Brownian field as X := (—A)™*W where W is a white noise and
then to prove Theorem [I.1] A key step is Theorem which deals with a uniform modulus of continuity
and states that there exists a modification X* of X such that

X*(x) — X~
i sy K@) = XW)

020 gz y<s d(z,y)/|Ind(x,y)|

z,yeK

< 400

with H = sd,, — %h. Among the available methods to obtain modulus of continuity, Garsia-Rodemich-
Rumsey inequality (see [9]) allows to study general random fields (e.g. with stable distributions) and
the entropy method (see e.g. [1,[7]), based on a chaining argument, to obtain fine results for Gaussian
random fields. In particular, Theorem [3.8| is established using the entropy method. Finally, at the
end of the section, we prove that the fractional field we constructed is invariant by the symmetries of
the gasket and moreover satisfies a natural scaling property related to the self-similar structure of the
gasket. In the final Section 4, we extend our results to the context of fractional spaces, which are a class

of Dirichlet spaces introduced by Barlow in [4].
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2. FRACTIONAL RIESZ KERNELS ON THE SIERPINSKI GASKET

2.1. Definition of the gasket. We first recall the definition of the Sierpiniski gasket. For further details
we refer to the book by Kigami [15]. In R? ~ C, consider the triangle with vertices ¢y = 0, ¢; = 1 and

Q2 = e%. Fori= 1,2, 3, consider the map

1
Fi(z) = 5(2’ = qi) + G-
Definition 2.1. The Sierpiniski gasket is the unique non-empty compact set K C C such that
3
K=|JF(K
i=1
The Hausdorff dimension of K with respect to the Euclidean metric (denoted d(z,y) = | — y| in this
paper) is given by dj, = 1n5. A (normalized) Hausdorff measure on K is given by the Borel measure
on K such that for every iy,--- i, € {1,2,3},
p(Fy 0.0 F; (K))=3"

FIGURE 1. Sierpinski gasket.
This measure p is dp-Ahlfors regular, i.e. there exist constants ¢, C' > 0 such that for every x € K and
r € [0, diam(K)],
(3) erfh < p(B(z,r)) < Cr,

where we denote by diam(K') the diameter of K and by B(z,r) the metric ball with center z and
radius 7.

2.2. Canonical Dirichlet form and heat kernel estimates. One can construct a canonical Dirichlet
form and associated Laplacian A on the Sierpiniski gasket by using a graph approximation of the gasket.
Denote Vo = {qo, q1, 42}, Vi = Usy . i, iy 0 -+ 0 F;, (Vo) and

n>0
For f € RY", one can consider the quadratic form

E.(f.f) = () Z S (s o Fy (@) — f(Fy o0 Fy(4))’

Jin ,y€VD



Define then
and for f € F,

It is possible to prove that any function f € F, can uniquely be extended into a continuous function
defined on the whole K. We denote by F the set of such extensions. One has then the following theorem,
see the book by Kigami [15].

Theorem 2.2. (€, F) is a local regular Dirichlet form on L*(K, i) with the following property: for every
fgeF

Ef9) =5 3 EfoFigoR).

i=1,2,3

The semigroup {P;} associated with £ is stochastically complete (i.e. P, 1 = 1) and, from [5], has
a jointly continuous heat kernel py(x,y) with respect to the reference measure p satisfying, for some
C1,C2,C3,C4 € (07 OO)?

d dw\ Lo d du ﬁ
(5) Clt*dh/dw exp (—CQ (%) dw ) < pt<377 y) < Cgtfdh/dw exp (—C4< (x,ty) ) d >

for every (z,y) € K x K and t € (0,1).

The exact values of ¢, ¢y, c3, ¢4 are irrelevant in our analysis. As above, the parameter d;, = iﬁ—g is the
Hausdorff dimension. The parameter d,, = % is called the walk dimension. Since d,, > 2, one speaks

of sub-Gaussian heat kernel estimates.

2.3. Fractional Riesz kernels. Let A denotes the generator of the Dirichlet form &, i.e. A is the
Laplacian on K. Our goal in this section is to study the operators (—A)™% s > 0, defined on L3(K, 1)
where

s = {r e . [ san=o}.

From [15], the heat kernel p;(z,y) admits a uniformly convergent spectral expansion:

+oo
(6) pr(,y) = 14 e V' (x)®;(y)

j=1
where 0 < A; < Ay <--- <\, <--- are the eigenvalues of —A and the ®; € F, j > 1, an orthonormal
basis of LZ(K, i) such that

Notice that ®; € F and thus is continuous.
It is known from [§] that the counting function of the eigenvalues:

N(t) = Card{); < t}

satisfies

N(t) ~ O(t)t/
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when t — +o00 where © is a function bounded away from 0. In particular,
+o0 1
Z % < +o0
j=1 "

whenever s > 7. For s > 3 d , the operator (—A)~* is then defined as the bounded operator (—A)~* :

L3(K, ) — L2(K , 11) given by

s = ZAS(/ DI ) 2

From this definition, the function (—A)~*f is thus a priori only defined p a.e. We will prove in this
section and the next one that it actually admits a Holder continuous version, see Remark and
Theorem [2.10, To this end, we first collect basic heat kernel estimates.

Lemma 2.3. There exists a constant C' > 0 such that for every x,y € K andt > 1,
(i, y) — 1] < Ce™,
where Ay > 0 is the first non-zero eigenvalue of K.

Proof. As already noted, the heat kernel p;(x,y) admits a uniformly convergent spectral expansion:

(7) pilz,y) =14+ e M'D;(x)®;(y).

J=1

Since the ®;’s are eigenfunctions, one has for any ¢ > 0,

D;(x) = /K i, )@ () dis(y).

Thus, from Cauchy-Schwarz inequality, we have for every ¢ > 0

oy < ([ pt<x7y>2du<y>)l/2 (f @j(y)2du(y))1/2 = N, ).

In particular, choosing ¢ = 1/4 and using , one obtains that there exists a constant C' > 0 such that
for every x € K,

,(2)] < CM
Coming back to the expansion one obtains that for every z,y € K and t > 1,

“+oo +00
pr(a,y) — 1] < 3 e NtN2 < et Y /2
Jj=1 j=1

which concludes the proof. ([l
Lemma 2.4. For any s > 0 and x,y € K, x # y, the integral

+o0
/0 ¢ Y, y) — 1)t

1s absolutely convergent. Moreover, if s > , the integral is also convergent for x = y.
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Proof. Thanks to the heat kernel upper bound , the integral fol 57 ps(x, y) —1|dt is finite for any s > 0
when z # y and for s > j—z when z = y. Moreover, for any z,y € K, the integral f1+°° t A ps(z, y) — 1|dt
is also finite thanks to lemma 2.3 O

We are now ready for the definition of the fractional Riesz kernels:

Definition 2.5. For a parameter s > 0, we define the fractional Riesz kernel G by

1 +oo
(8) Go(r,y) = —/ " pe(z,y) — )dt, zye K, z#y.
I'(s) Jo
with T' the gamma function.

We will be interested in the integrability properties of GG,. The following estimates are therefore impor-
tant.

Proposition 2.6.
(1) If s € (0,dy/dy,), there exists a constant C' > 0 such that for every z,y € K, x # vy,

C
< —_
‘Gs(x7y)‘ = d(m,y)dhik‘;dw

(2) If s = dp/d, there exists a constant C' > 0 such that for every v,y € K, v # vy
Gs(z,y)| < ClInd(z,y)|.
(8) If s > dp,/d,, there exists a constant C' > 0 such that for every x,y € K,

Proof. We have

+o00
Gulz,y) = —— / £ () — 1)t

[(s)
1 ! s—1 1 e s—1
= m/() " (pe(,y) — 1)dt + mfl " (pe(w,y) — 1)dt.

The integral fioo t*71(ps(z,y) —1)dt can uniformly be bounded on K x K by a constant using lemma ,

so we just need to uniformly estimate the integral fol t*"1ps(x,y)dt. Thanks to the heat kernel upper
bound we have:

1 1 d 1
d(z, )
/ts‘lpt(fﬂ,y)dtgc;a/ ts”‘“““}em(—%(%)d 1)dt.
0 0

We now divide our analysis depending on the value of s. If s > dp,/d,,, one can simply bound

1 dy 1 1
/ ts—l—dh/dw eXp (_C4<d($7ty) ) dwl)dt S / ts_l_dh/dwdt.
0 0

If s < dy/d,, using the change of variable ¢t = ud(z, y)%, one sees that

1 du 1
/ ps—1—dp/du exp(_c4<d(x,ty) )dwl)dt
0
1

Ssdyw—dp V) s—1—dp,/duw 1 dw—1
=d(z,y) u exp( —cq (—) du
0

u
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+o0 1 %
Sd(x7y)sdw—dh/ us—l—dh/dw eXp<—c4<a> dw 1)du.
0

Finally, if s = d,/d,,, using again the change of variable ¢ = ud(z,y)% and setting R = diam(K), one

sees that
1 dw
/ tsflfdh/dw eXp(—C4<d<x,y) )dw_l)dt
0 t
/Ud(x:y)‘““ 1 ( =
= —exp —c4<—> du
0 u u
1d(@y)*e 1N 3 1/Rh 1\ 7
§/ —exp<—04(—> E 1>du—i—/ —exp(—c4<—> & 1)du
u u 0 u u

1/Réw

1/d(z,y)%w 1 1/Rw 1 1\
§/ —du+/ —exp(—c4<—> w 1)clu
1/ Reu u 0 u u

I/Rdw 1

1 dwlfl

0

O

Proposition 2.7. If s > 2d , then for every v € K, y — Gy(z,y) € LE(K,u). Moreover, there exists
a constant C' > 0 such that for every r € K,

/ Go(w,y)%duly) < C.

Proof. From proposition [2.6] it is enough to prove that for v < % the function y — (m el isin L?(K, u)

(since e.g. for a > 0, maX(l, |Inu|) < £ for 0 < u < u). To prove this, we denote by R the diameter
of K and use the Ahlfors regularity of the measure i and a dyadic annuli decomposition as follows.
We denote by C' constants (depending only on R, s,dp,d,,) whose value may change from line to line.

gczpmmmLmﬁﬂBmRrH»

+oo
<C> 27 (B(x, R27))

+o0
< CZ 91 (2v=dn) +00,

=0
which concludes the proof. U
Proposition 2.8. Let s > 5= and consider the operator G, : L§(K, i) — L§(K, p) defined by

%ﬂ@=AG&wﬁ@W@w€K
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Then for every f € L3(K, ), one has p a.e.
(=) f = Gsf.

Remark 2.9. It is important to note that from proposition [2.7, Gsf is defined for all x € K and not
only p a.e. Therefore Gsf can be used as a pointwise definition of (—A)~*f.

Proof. Let f € L3(K, ). One can write

f= f (/K ‘Pj(y)f(y)du(y)> ®;

where the sum is convergent in L2(K, u1). From proposition the operator G, : L3(K, u) — L3(K, 1)

is bounded.
Therefore, in LZ(K, i)
+oo
6.0 =% ( [ 20 fwautn) .,
j=1 WK
By definition of G,, we now compute that for z € K
G.®;(x) :/ G2, y)®;(y)duly)
K
1 e
= — 7 (pe(x,y) — 1)@ (y)dtdu(y
r<s>/K/0 (1) = ()it
“+oo

(pt(x, y) — 1)@;(y)du(y)dt

+oo

ptxy

:@/o (P, ) (w)dt

_ ! /+Oot5_le_’\ftdt®j(x)
I'(s) Jo

y)dp(y)dt

Therefore, one has p a.e.

G.f = Z (/ () = (~8)°,

which establishes the proof. U

2.4. Holder continuity of fractional Riesz kernels. The main theorem of the section is the follow-
ing:

Theorem 2.10. Let s € (2‘%, 2‘?} ) There exists a constant C > 0 such that for every x,y € K
and f € L(K. p),

sdwfdfh
< Cd(z, y)* ™ 2 || fll 2 -

/K (Gl 2) — Galy, 2)) f(2)du(2)

9




As a consequence, there exists a constant C > 0 such that for every x,y € K,

/X(Gs(a:, 2) — Gy(y, 2))2du(z) < Cd(z, y)2d—dn,

We divide the proof in several lemmas. As usual, we will denote by C' constants whose value may change
from line to line.

Lemma 2.11. There exists a constant C > 0 such that for every f € L*(K,u), t € (0,1] and x € K,
C
1P f ()] < =z ([ Fllz -

t2dw

Proof. From Cauchy-Schwarz inequality,
2

PSP = | [ o)1tz
K

< [ mile 2P oo

< p2t(£7 x)”fH%P(K,u)
We conclude then with the sub-Gaussian upper bound . 0
Lemma 2.12. There exists a constant C > 0 such that for every f € L*(K,u), t >0 and z,y € K,

d(a, y) ™
1P f(x) — Pf(y)] < Oj“f”ﬂ(&u)'
2dw

Proof. From [2,|3], it is known that for the Sierpiniski gasket there exists a constant C' > 0 such that for
every g € L=®(K,pn),t >0 and z,y € K,

d(, )t

dp
1w

|Pg(z) — Pg(y)| < C 91| oo (x¢.10)-

Now, if f € L?(K, p), then from the previous lemma P;f € L®(K, ), so that the previous inequality
can be applied to g = P, f. Using the semigroup property this yields

d(z, ) de—dn
1Puf(e) = Puf )] < O .
17 2dw
which concludes the proof. 0

Our third lemma is the following:

Lemma 2.13. Let 2‘2—’; <s<1l-— ;l—’;. There exists a constant C' > 0 such that for every f € L*(K, )
and z,y € K,

—+o0 d
/ B P (@) — Pf(y)|dt < Cd(z, 5)" % | ]| 2.
0

Proof. We split the integral into two parts:

+00 § +oo
/ F P (2) — Puf(y)ldt = / P (2) — Puf(y)lde + / P (2) — Pof(y)ldt
0 0 )

10



where 6 € (0, 1] will later be optimized. First, applying lemma [2.11} we have

) )
/ P () — Puf(y)ldt < / BB ()] + [P ()t

0 0

)

e,

< / R 7

0 t2dy
dp

< C8° 2w || f| r2(se.p0)-

Then, applying lemma [2.12] we have

dw—dp,

[T ense - mrpa s e [
é é

dp
tlfzdw

£ Nl 22y At

+oo _ dy
< Cd(z,y)™ / £ 20 | £l 2o
5
—dy es—14h
< Cd(w,y)* =6 500 || £l L2 -
One concludes

Foo d d
| e IR ) = Pl < € (573 a5 ) g
0

Choosing then 6§ = d(z,y)® yields the expected result. O
We are finally ready for the proof of the main theorem:

Proof. One has

/K(Gs(x,z) — Gy, ) f(2)du(z)| = C

/ e B ) - Py

+oo

gc/ P f(x) — Pf(y)|dt
0

< Cd(a, y)* ™ 2| fll 2o -

By L? self-duality, one concludes

/K(Gs(xa Z) - Gs(ya Z))2dﬂ(z) < Cd(x,y)%dw_dh'

Remark 2.14. It would be natural to expect an associated lower bound

/K(Gs(x, 2) — Gy, 2))%du(z) > cd(z, y)?de=n.

However, such bound could not be obtained by the above methods, and at this time it is not clear to us

if it holds or not.
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3. FRACTIONAL BROWNIAN FIELDS ON THE GASKET

3.1. Reminders on Gaussian measures. Given a probability space (€2, F,P), we consider on the
measurable space (K, IC, i), where K is the Borel o-field on K, a real-valued Gaussian random measure
Wg : K — L? (9, F,P) with intensity u. In other words, Wy is such that

e a.s. Wy is a measure on (K, K)

e for any A € K such that p(A) < oo, Wg(A) is a real-valued Gaussian variable with mean zero
and variance E (W (A)Q) = u(A)

e for any sequence (A,)neny € KN of pairwise disjoint measurable sets, the random variables
Wk(Ay), n € N, are independent.

Then for any f € L*(K, K, u), the stochastic integral

Wﬂﬁ=éfm&

is well-defined and is a centered real-valued Gaussian variable, see e.g. |18, Section 2.3] for details on
the construction. Moreover, denoting by H C L?(Q, F,P) the Gaussian Hilbert space spanned by
{Wk(A); A € K,u(A) < oo}, the functional Wy : L*(K,K, ) — H is an isometry. Hence, for any
f?g e L2(K7IC’ILL)7

o) E( [ rawe [ gdWK) — ()i = [ fodu

3.2. Definition and existence of the fractional Brownian field.

Definition 3.1 (Fractional Brownian field with parameter H). Let H € (0,d,, — dy). We define the
fractional Brownian field with parameter H as the random field given by

X(z) = /KGS(:(;,z) Wi(d2), = € K.

where s = d”ézi, Wy is a Gaussian centered real-valued random measure on L3(K, 1) with intensity p

and G, is the Riesz kernel defined by (8)).
Remark 3.2. Thanks to proposz'tion the random variable X (z) is well defined for all x € K.

Remark 3.3. Thanks to pmposition one has for every f which is in the L3 domain of the operator
(=4A)

Avmvwxwwm:[j@mwm»

Remark 3.4. The Gaussian field (X (z))zcx has mean zero and covariance

E(X (x)X(y)) = / Go(z,2)Gs(y, 2)du(z) = Gas(z,y).
K
We note that since 2s > dp,/d,,, from pmposition the function Gag is uniformly bounded on K x K.

Remark 3.5. One could also consider the random field given by

X(z) = /K (G, 2) — Gulq, 2)) Wic(d2).

where g € K is an arbitrary point of the gasket.
12



Theorem 3.6. Let H € (0,d,, — dy,), then there ezists a constant C > 0 so that for every xz,y € K,
E((X(z) - X (1)) < Cd(x, y)*".
Proof. Since
B(X(2) = X)) = [ (Gulo.2) = Gl 2) )
this follows from Theorem 2.10L O

Proposition 3.7. Let H € (0,d,, — d,), then the fractional Brownian field (X (z)).cx with parameter

H admits a spectral expansion
+00

1
j=1"17

where the N;’s are 1.1.d. normal centered Gaussian random wvariables with variance 1 and the series is

convergent in L*(K x Q,p @ P).

Proof. Note that from the expansion (), one obtains that p ® p a.e. z,y € K
+00 1
Ga(z,y) = 1 2i(2)25(y)
i=1 "

where the sum on the right hand side is convergent in L?(K x K, u® p1). Since the ®;’s form a complete
orthonormal system in L3(K, 1), one easily proves that

Ny = [ @) Wiaz)
K
N;’s are i.i.d. normal centered Gaussian random variables with variance 1. [

3.3. Regularity of the fractional Brownian field. The entropy method (see e.g. [1,/7]) leads to
deduce from the control established in Theorem [3.6] the following modulus of continuity.

Theorem 3.8. There exists a modification X* of X such that
X*(x) — X*
i s @ = X0)

< 0
050 (e yy<s d(z,y)H/|Ind(x,y)|
z,ye K

The proof of this theorem is quite classical since X is Gaussian: we provide it for completeness.

Proof. Let us consider the pseudo-metric p defined by

pla,y) = \E((X(2) - XW)), ayeK
and let H,(¢) denote the log-entropy for K, that is
H,(e) = In(N,(¢))

where N,(¢) is the smallest number of p-balls of radius r < ¢ needed to cover K. According to Theo-
rem 1.3.5 of [1], there exist a random variable 7 and a universal constant D such that

(10) W<, s (X)X <D [*\/H(e) e

p(z,y)<p
z,yeK
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Let us now recall that according to Theorem [3.6]
Va,y € K, ple,y) < Cd(z,y)"

with C a finite positive constant. Then N,(g) = O (%) since d is the Euclidean distance on R? and
K C R? a compact set. Therefore, up to change the random variable n and D, leads to

csH

Vo <mn, sup |X(z)—X(y)|<D V—Inede.
d(a:,y)}?é 0
T,y€

Then, up to change D in each lines, for all § < n small enough,
csH
1
sup |X(z) — X(y)| < D5H\/—ln(5)+D/ ——de
d(z,y)<d 0 \/ — 11’1(8)
z,yeK

< D&%\/—1In(0) + D& < 2D5H\/—1n(9)
which concludes the proof. 0

3.4. Invariance and scaling properties of the fractional Brownian field.

3.4.1. Invariance by symmetries. The Sierpinski gasket admits 3 symmetries oy, 09,03 which are the
reflections about the lines dividing the triangle with vertices qq, ¢1, g2 into two equal parts.

Proposition 3.9. Let H € (0,d,, — d;,) and
X(x) = / Gs(x,2) Wk (dz), x € K,
K

be the fractional Brownian field with parameter H. Then, for every i =1,2,3 in distribution
(X (01(2))ser =" (X(2))sex-
Proof. The Dirichlet form &£ on the gasket is invariant by o;, i.e. for every f € F
E(fooi foa)=Eff).
Thus, for every z,y € K, pi(0;(z),0:(y)) = pe(x,y). This implies that Gas(0;(x), 04(y)) = Gas(x,y) and
thus E(X (0:(2))X (03(y)) = E(X ()X (y))- O
In particular, at the vertices, one obtains that X (qo), X(q1), X (¢2) have the same distribution.

3.4.2. Invariance by scaling. Let w = (i, -+ ,i,) € {1,2,3}", and denote
Fw:Filo---oFin
where we recall that

1
Fi(z) = 5(2’ — i) + .
The compact set K, := F,(K) C K is itself a Sierpiniski gasket. Denote by X" a fractional Brownian

motion field with parameter H on K,,.

Proposition 3.10. The Gaussian field (2" X¥(F,(1)))sex s a fractional Brownian motion field with

parameter H on K.
14



Proof. In the proof let us indicate with a superscript or subscript w the objects related to the Sierpinski
gasket K, (Dirichlet form, heat kernel, etc...). From the limit , one can see that for every f € F,,
one has

5 n
5w(f7f):(§> 8<fOFw7fOFw)'
Thus the relation between the Laplacian of K, and the Laplacian of K is given

(Apf)o Fy =5"A(foF,).
This yields that for the heat kernels (with respect to the reference measure p)

P (Fu (), Fu(y)) = 3"psni(2, y).

As a consequence, one has for x,y € K, x # v,

1

+o00
Gﬂ%mIWMZﬁEA B (P (Fu(2), Fuly)) — 1)dt

n +o0
25@4 £ (psa(, y) — 1)dt

—3—n/+oots—1( (z,y) — 1)dt
- 5”8F(8) 0 pt I,y .

Since p i | |
1 2
g M n3 o

5. " d. 25 s

one has 5™ = 213%/2 and therefore
3n/2

G2 (Fu(2), Ful) = 57 Gil.9)

Notice now that if Wi, is a white noise on L3(K,,, it), due to the self-similarity of the Hausdorff measure
o one has for every f € L3(K,, i),

E«Kf@wmw0>=Kf@%w>
:%/f@MWww

2
One concludes that in distribution:

X(Fu(r)) = i GY(Fu(r), 2) W, (dz)

35/2/ Gw( ( )>Fw(2)) WK(dZ)

- /K Gi(,2) Wi (dz).
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4. GENERALIZATION TO OTHER FRACTALS: BARLOW FRACTIONAL SPACES

FIGURE 2. Sierpinski carpet.

Let (K,d,p) be a compact metric space isometrically embedded in some Euclidean space where p is
the Hausdorff measure on K. Let now (£, F = dom(&)) be a strongly local regular Dirichlet form on
L3(K, ).

We assume that the semigroup {F;} has a jointly continuous heat kernel p;(x,y) satisfying, for some
1, C,c3,¢4 € (0,00) and dj, > 1,d,, € [2,+0), dy, > d,

d dy 1_1 d du ﬁ
(11) eyt =/ eXp(—CZ(M>dw >§pt(x,y) < gt~/ exp(—c4< (z,9) )d >

t t

for every (z,y) € K x K and t € (0,1).
We moreover assume that metric space (K, d) satisfies the midpoint property, i.e. for any z,y € K there
exists z € K such that d(z,z) = d(z,y) = 3d(z,y). The latter is equivalent to requiring the space be
geodesic. Metric spaces satisfying the above assumptions are called fractional metric spaces and were
extensively studied by Barlow in Section 3 of the lectures . Besides the Sierpinski gasket studied
previously, another popular fractal set that fits into this framework is the Sierpinski carpet represented
in Figure [2]
From ,, it is known that under the previous assumptions the measure p is dj-Ahlfors regular and
that there exists a constant C' > 0 such that for every f € L®(K,pu),t >0 and z,y € K,

duw—dp,
(12) P = R )] < O i
dw
For the Sierpinski carpet it is known that d;, = }Egg = 31(1)‘?32 and d,, ~ 2.097. However, the Holder
exponent d,, — dp, in (12]) might not be optimal and it has actually been conjectured in [3] that the best
Holder exponent in (12) is dy, — dj, + dyy — 1 where d;y is the topological Hausdorff dimension of the
carpet.
In this framework, the ingredients and are enough to repeat the proofs of proposition and
theorem [2.10, The proof of theorem also extends to this setting. As a consequence one obtains the
following theorem valid under the assumptions of this section.

Theorem 4.1. Let W be a white noise on L3(K, u). Then, ifﬁl—’; <5< 1= there exists a Gaussian

%7
random field (X (x))zex which is Hélder continuous with exponent H~ where
H=sd,— %,
2

16



such that for every f which is in the L2 domain of the operator (—A)*

/K (—A)* £ ()X () du(x) = /K F (@)W (dz).
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