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We consider the motion of a point particle in a stationary spacetime under the influence of a scalar,
electromagnetic, or gravitational self-force. We show that the conservative piece of the first-order self-force
gives rise to Hamiltonian dynamics, and we derive an explicit expression for the Hamiltonian on phase
space. Specialized to the Kerr spacetime, our result generalizes the Hamiltonian function previously
obtained by Fujita et al. [Classical Quantum Gravity 34, 134001 (2017).], which is valid only for
nonresonant orbits.
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Introduction.—The two-body problem in general rela-
tivity has been the focus of intense observational and
theoretical interest in recent years. On the observational
side, LIGO and VIRGO have detected several dozen
coalescences of binary systems containing black holes
and neutron stars [1–3] via the gravitational waves that
they emit. The near future should bring many more
detections from upgraded instruments, from the next
generation ground based detectors Cosmic Explorer [4]
and Einstein Telescope [5], from the space based detector
LISA [6], and potentially from pulsar timing arrays [7]. On
the theoretical side a wide variety of approaches valid in
different regimes have been used to understand the dynam-
ics of black hole binaries with ever greater precision:
numerical relativity [8], the post-Newtonian approximation
[9–12], the post-Minkowskian approximation [13] for
which amplitude methods from quantum field theory have
been fruitfully brought to bear [14], the small mass ratio
approximation [15,16], and the effective one-body frame-
work which synthesizes information from the other
approaches [17,18].
An issue that arises in this field is whether one can define

dissipative and conservative sectors of the dynamics for
which the conservative sector admits a Hamiltonian
description. While this is not possible in the fully nonlinear,
dynamical regime, it has been achieved in the post-
Newtonian and post-Minkowskian approximations to vari-
ous orders, and it is a foundational assumption of the
effective one-body framework. Its status within the small
mass ratio regime, however, has been an open question
beyond the leading order of geodesic motion. In that regime
the small body is treated as a point particle, and the leading
order self-force acting on that body is computed by taking a
gradient of a suitably regularized version of the body’s self-
field [15,16], computed as a perturbation of the large black
hole spacetime. That force can be split into time-even
conservative and time-odd dissipative pieces. Hamiltonian

descriptions of the conservative motion have been derived
in special cases (orbits in the Schwarzschild spacetime [19]
and nonresonant orbits in Kerr [20]). General orbits in Kerr
however have been an open question.
In this Letter we show that the leading order conservative

self-forced motion of a nonspinning body in any stationary
spacetime admits a Hamiltonian description, and derive an
explicit expression for the Hamiltonian. We then discuss a
number of applications in the context of binary black holes:
implications for our understanding of the integrability of
the motion, and the identification of a new class of gauge
invariant observables that may be useful for comparing
different computational methods.
General result in Hamiltonian dynamics.—We start by

deriving a general result in the theory of Hamiltonian
systems. We define a pseudo-Hamiltonian dynamical sys-
tem to consist of a phase space Γ, a closed, nondegenerate
two form ΩAB, and a smooth pseudo-Hamiltonian function
H∶Γ × Γ → R, forwhich the dynamics are given by integral
curves of the vector field

vA ¼ ΩAB ∂

∂QBHðQ;Q0ÞjQ0¼Q; ð1Þ

whereΩABΩBC ¼ δAC andQA are coordinates on Γ. Pseudo-
Hamiltonian systems need not be Hamiltonian, and can be
used to describe dissipation [21].
We now specialize to a pseudo-Hamiltonian system

which is a perturbation of a Hamiltonian system, with
symplectic form and pseudo-Hamiltonian

ΩAB ¼ Ω0AB; ð2aÞ

HðQ;Q0Þ ¼ H0ðQÞ þ εH1ðQ;Q0Þ þOðε2Þ: ð2bÞ

Here ε is a formal expansion parameter. We denote byQ →
φτðQÞ the zeroth order Hamiltonian flow, defined by the
condition
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d
dτ

����
τ¼0

φA
τ ðQÞ ¼ ΩAB

0 ∂BH0; ð3Þ

and the group composition law

φτ½φτ0 ðQÞ� ¼ φτþτ0 ðQÞ: ð4Þ

The pseudo-Hamiltonian perturbation H1 is defined in
terms of a function G∶Γ × Γ → R via

H1ðQ;Q0Þ ¼
Z

∞

−∞
dτ0G̃ð0; Q; τ0; Q0Þ; ð5Þ

where we have defined

G̃ðτ; Q; τ0; Q0Þ ¼ G½φτðQÞ;φτ0 ðQ0Þ�: ð6Þ

The function G is assumed to satisfy the conditions

GðQ;Q0Þ ¼ GðQ0; QÞ; ð7aÞ

G̃ðτ; Q; τ0; Q0Þ → 0 as τ or τ0 → �∞: ð7bÞ

We now show that with these assumptions, the pseudo-
Hamiltonian system (2) is Hamiltonian to linear order in ε.
To do so we need to find a perturbed Hamiltonian
H̃ ¼ H0 þ εH̃1 þOðε2Þ, and a perturbed symplectic form
Ω̃AB ¼ Ω0AB þ εΩ̃1AB þOðε2Þ, for which the equation of
motion dQA=dτ ¼ Ω̃AB

∂BH̃ coincides with that given by
Eqs. (1) and (2) to OðεÞ. This yields the requirement

∂BH̃1 − Ω̃1BCΩCD
0 ∂DH0 ¼

∂

∂QB H1ðQ;Q0ÞjQ0¼Q: ð8Þ

We choose the perturbation to the symplectic form to be

Ω̃1BC ¼
�

∂

∂QB

∂

∂QC0

Z
dτ

Z
dτ0χðτ; τ0ÞG̃ðτ; Q; τ0; Q0Þ

�
Q0¼Q

ð9Þ

where

χðτ; τ0Þ ¼ 1

2
sgnðτÞ − 1

2
sgnðτ0Þ: ð10Þ

Because of the antisymmetry property χðτ0; τÞ ¼ −χðτ; τ0Þ
and the symmetry property (7a) of G, the expression (9)
defines a closed two form on phase space. Using the
symplectic form perturbation (9) and the pseudo-
Hamiltonian perturbation (5) we find that the requirement
(8) reduces to

∂BH̃1 ¼
�

∂

∂QB

Z
dτ0G̃ð0;Q;τ0;Q0Þ

�
Q0¼Q

þΩCD
0 ∂DH0

�
∂

∂QB

∂

∂QC0

Z
dτ

Z
dτ0χG̃ðτ;Q;τ0;Q0Þ

�
Q0¼Q

:

ð11Þ

We now proceed to simplify the second term in Eq. (11),
in several stages. First, we bring the factorΩCD

0 ∂DH0 inside
the square brackets and replace it with the tensor
ΩC0D0

0 ∂
0
DH0 at Q0. This replacement is valid because of

the subsequent evaluation at Q0 ¼ Q. Second, we can
replace the differential operator ΩC0D0

0 ∂
0
DH0∂C0 using the

zeroth order Hamiltonian flow (3). The second term
becomes

�
∂

∂QB

d
dΔτ0

����
Δτ0¼0

Z
dτ
Z

dτ0χG̃½τ; Q; τ0;φΔτ0 ðQ0Þ�g
Q0¼Q

:

ð12Þ

Third, using the definition (6) of G̃ together with the group
property (4) of the Hamiltonian flow we have

G̃½τ; Q; τ0;φΔτ0 ðQ0Þ� ¼ G̃ðτ; Q; τ0 þ Δτ0; Q0Þ: ð13Þ

Hence the term (12) can be rewritten as

�
∂

∂QB

Z
dτ

Z
dτ0χ

d
dτ0

G̃ðτ; Q; τ0; Q0Þ
�
Q0¼Q

: ð14Þ

Fourth, we integrate by parts with respect to τ0 and make
use of the condition (7b) to eliminate the boundary terms.
The derivative of the expression (10) for the function χ
gives a delta function, dχ=dτ0 ¼ −δðτ0Þ. The final result is

�
∂

∂QB

Z
dτG̃ðτ; Q; 0; Q0Þ

�
Q0¼Q

: ð15Þ

Using the definition (6), the symmetry property (7a) and
relabeling τ → τ0 this can be written as

�
∂

∂QB0

Z
dτ0G̃ð0; Q; τ0; Q0Þ

�
Q0¼Q

: ð16Þ

Finally inserting this expression as a replacement for the
second term in the condition (11), we see that the right
hand side is now a total derivative, as desired, and the
resulting expression for the perturbation to the
Hamiltonian is
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H̃1ðQÞ ¼
Z

dτ0G̃ð0; Q; τ0; QÞ: ð17Þ

This completes the proof that the system (2) is
Hamiltonian.
We can obtain a more convenient representation of this

Hamiltonian system by making a linearized phase space
diffeomorphism parametrized by the vector field εξA, under
which we have

H̃1 → H1 ¼ H̃1 þ LξH0; ð18aÞ

Ω̃1AB → Ω1AB ¼ Ω̃1AB þ ðLξΩ0ÞAB: ð18bÞ

If we choose ξA ¼ ΩAB
0 ηB then we find Ω1AB ¼ Ω̃1AB−

∂AηB þ ∂BηA. We now choose

ηA ¼ 1

2

�
∂

∂QA0

Z
dτ

Z
dτ0χG̃ðτ; Q; τ0; Q0Þ

�
Q0¼Q

; ð19Þ

which yields from Eq. (9) that Ω1AB ¼ 0. Hence the new
symplectic form coincides with the unperturbed symplectic
form:

ΩAB ¼ Ω0AB þOðε2Þ: ð20Þ

Similarly by inserting Eq. (19) into Eq. (18a) and simplify-
ing using the same techniques as for Eq. (11) yields

H1ðQÞ ¼ 1

2

Z
dτ0G̃ð0; Q; τ0; QÞ; ð21Þ

which differs from the original result (17) by a
factor of 2.
Application to motion under the conservative self-

force.—We now explain how the motion of a particle
under the action of its conservative first-order gravitational
self-force in a stationary spacetime ðM; gabÞ can be cast as a
pseudo-Hamiltonian system of the form (2), by slightly
modifying the pseudo-Hamiltonian construction of Fujita
et al. [20]. This will allow us to apply our Hamiltonian
result [Eqs. (20) and (21)].
For the zeroth order geodesic motion we use phase

space coordinates ðxμ; pμÞ with symplectic form Ω0 ¼
dpμ ∧ dxμ and Hamiltonian

H0 ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðxÞpμpν

q
: ð22Þ

The time parameter τ associated with this Hamiltonian is
then proper time normalized with respect to gab, while the
conserved value of −H0 is the mass of the particle.
For the first-order motion, consider a particle at location

xμ
0
with initial 4-momentum pμ0 . Writing Q0 ¼ ðx0; p0Þ, we

denote by φτ0 ðQ0Þ ¼ ½xμ̄ðτ0Þ; pμ̄ðτ0Þ� the geodesic with
initial data Q0. From this geodesic we can compute the
Lorenz gauge metric perturbation

hμνðx;Q0Þ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμ0ν0pμ0pν0

q
Z
dτ0Gμνμ̄ν̄½x;x0ðτ0Þ�pμ̄ðτ0Þpν̄ðτ0Þ:

Here the symmetric Green’s function Gμνμ̄ ν̄ is the average
of the retarded and advanced Green’s functions, regularized
according to the Detweiler-Whiting prescription [15,22].
The conservative forced motion of the particle is then
equivalent at linear order to geodesic motion in the metric
gμν þ hμν, where Q0 is held fixed when evaluating the
geodesic equation and then evaluated at Q0 ¼ Q [16,22].
We can therefore obtain a pseudo-Hamiltonian descrip-

tion of the dynamics by replacing the metric gμνðxÞ in
Eq. (22) with gμνðxÞ þ hμνðx;Q0Þ. Expanding to linear order
in hμν, comparing with Eqs. (2b), (5), and (6), and setting to
unity the formal expansion parameter ε we can read off the
function GðQ;Q0Þ on phase space to be

GðQ;Q0Þ ¼ −
Gμνμ0ν0 ðx; x0Þpμpνpμ0pν0

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gλσpλpσ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gλ0σ0pλ0pσ0

p : ð23Þ

Similar constructions work for scalar and electromagnetic
self-forces. For a particle endowedwith a scalar charge q and
electromagnetic charge e we replace the initial Hamiltonian
expression (22) with −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gμνðpμ − eAμÞðpν − eAνÞ

p
− qΦ.

The expression (23) gets replaced by −q2Gscðx; x0Þ in the
scalar case, whereGsc is the scalarGreen’s function, andwith

−
e2Gμμ0 ðx; x0Þpμpμ0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

−gλσpλpσ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−gλ0σ0pλ0pσ0

p

in the electromagnetic case, where Gμμ0 is the Lorenz gauge
electromagnetic Green’s function.
The function satisfies (23) the symmetry property (7a). It

will also satisfy the decay property (7b) if the retarded
Green’s function falls off at late times at fixed spatial
position. This is known to be true for scalar fields in a class
of stationary spacetimes [23], while for black holes it is a
lore of the field that perturbations decay at late times as a
power law [24]. This decay was shown for the Weyl scalars
in black hole spacetimes by Barack [25], and it is also
generally believed to be true for tensor perturbations,
although it has not yet been established rigorously; see
Refs. [26,27] for recent developments.
From this pseudo-Hamiltonian formulation it follows

that the motion under the conservative self-force is
described by the Hamiltonian (21), in any stationary
spacetime for which the retarded Green’s function goes
to zero at late times.
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Specialization to motion near a black hole.—Specialize
now to the motion of a particle orbiting a Kerr black hole.
In this context it is useful to derive an explicit form for the
Hamiltonian in action angle variables.
We use the variables ðqα;jαÞ¼ðqt;qr;qθ;qϕ;jt;jr;jθ;jϕÞ

defined in Refs. [28,29], deformed via Eq. (19). In these
variables the symplectic form is Ω ¼ djα ∧ dqα, and the
full Hamiltonian from Eqs. (21) and (22) is

H ¼ H0ðjαÞ þH1ðqα; jαÞ: ð24Þ

The zeroth order geodesic motion is given by qαðτÞ ¼
qα0 þ Ωα

0ðjÞτ, jα ¼ const, where Ωα
0 ¼ ∂H0=∂jα are the

zeroth order frequencies.
We now fix a value m of the conserved quantity −H,

which is the mass of the particle to leading order. For
describing motion on the mass shell H ¼ −m it will be
convenient to define rescaled versions of the symplectic
form and Hamiltonian,

Ω̂AB ¼ ΩAB=m; Ĥ ¼ H=m: ð25Þ

This rescaling preserves Hamilton’s equations. Using the
fact that under the transformation ðxμ; pμÞ → ðxμ; spμÞwith
s > 0 we have ðqα; jαÞ → ðqα; sjαÞ [29], H0 → sH0, and
H1 → s2H1 [cf. Eq. (23)], the dynamical system can be
written as

Ω̂ ¼ dJα ∧ dqα; Ĥ ¼ Ĥ0ðJÞ þmĤ1ðq; JÞ; ð26Þ

where Jα ¼ jα=m.
Next, the Hamiltonian (26) is independent of qt because

of the symmetries of the Kerr background.
This allows a description in terms of a six-dimensional
Hamiltonian system instead of the eight-dimensional
system (26), following the method of Sec. 45 of
Ref. [30]. The new system has symplectic form
Ω ¼ dJi ∧ dqi, time parameter qt, and Hamiltonian h ¼
hðqi; JiÞ defined by

Ĥ½qi;−hðqi; JiÞ; Ji� ¼ −1 ð27Þ

where qi ¼ ðqr; qθ; qϕÞ. From Eqs. (25) and (27) we obtain

hðqi; JiÞ ¼ h0ðJiÞ þmh1ðqi; JiÞ þOðm2Þ ð28Þ

where h0 and h1 are given by Ĥ0ð−h0; JiÞ ¼ −1 and
h1 ¼ Ĥ1ðqi;−h0; JiÞ=Ωt

0. The zeroth order frequencies
are now ωi

0 ¼ ∂h0=∂Ji ¼ Ωi
0=Ωt

0.
The Hamiltonian perturbation h1 is independent of qϕ

due to the symmetry of the Kerr background, and can be
expanded in Fourier modes on the torus parametrized by
q ¼ ðqr; qθÞ:

h1ðq; JiÞ ¼
X∞

kr¼−∞

X∞
kθ¼−∞

eik·qh1 kðJiÞ: ð29Þ

It is possible to obtain an explicit formula for the
coefficients h1 k starting from a Fourier expansion of the
function (23) in action angle variables

Gðq; J; q0; J0Þ

¼
Z

dω
X
m;k;k0

e−iωðqt−qt
0 Þ−imðqϕ−qϕ0 Þeik·qþik0·q0Gωmkk0 ðJ; J0Þ:

Combining this with Eqs. (21), (27), (28), and (29) gives

h1 k ¼ π

ðΩt
0Þ2

X
m;l

Gωmðk=2þl=2Þðk=2−l=2ÞðJt; Ji; Jt; JiÞ; ð30Þ

where we sum over all pairs of integers l ¼ ðlr; lθÞ for
which kr þ lr and kθ þ lθ are even, and we evaluate at Jt ¼
−h0ðJiÞ and at ω ¼ mωϕ

0 þ ðk − lÞ · ω0=2.
Application: Integrability of dynamics.—We now turn to

discussing some applications. Since the motion is
Hamiltonian one can ask whether it is also integrable. It
will be integrable to linear order if and only if all the
resonant mode amplitudes vanish, that is,

h1 kðJiÞ ¼ 0 whenever k ·ω0ðJiÞ ¼ 0; k ≠ 0: ð31Þ

This condition is easy to prove: under a linearized canoni-
cal transformation with generating function Gðq;JiÞ¼P

kexp½ik ·q�GkðJiÞ we have h1 k → h1 k þ iðk · ω0ÞGk.
Thus choosing GkðJiÞ¼−ih1kðJiÞ=k ·ω0 yields h1 k ¼ 0
for all nonzero k and thus an integrable system (The
resulting Hamiltonian coincides with that found by
Ref. [20], who excluded resonances), and this choice is
possible without divergences only when the condition (31)
is satisfied. Conversely, if the system is integrable there
must exist perturbed versions Ji þmδJi of the action
variables which have vanishing Poisson brackets with
the Hamiltonian h0 þmh1, which yields at linear order
the relation

kih1 k ¼ ðk · ω0ÞδJi k ð32Þ

between Fourier components, enforcing the condition (31).
An alternative version of the integrability condition (31)

is that the average of the conservative time derivative of the
Carter constant QðJiÞ over any orbit on any resonant
torus should vanish. Computing a time derivative using
Eqs. (28) and (29) gives dQ=dτ ¼ Ωt

0ð∂Q=∂JiÞdJi=dqt ¼
−iΩt

0ð∂Q=∂JiÞ
P

k kih1 keik·q. Now using qðτÞ¼q0þΩ0τ,
writing the resonant vectors as k ¼ Nk0 ¼ Nðn;−p; 0Þ for
integers N and taking an orbit average gives [31]
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�
dQ
dτ

�
¼−iΩt

0

	
n
∂Q
∂Jr

−p
∂Q
∂Jθ


 X∞
N¼−∞

Nh1Nk0
eiNqres ; ð33Þ

where qres ¼ k0 · q0 ¼ nqr0 − pqθ0 is the resonant combi-
nation of the phases. The left hand side vanishing for all qres
is equivalent to all the resonant amplitudes h1Nk0

vanishing.
One of us conjectured in Ref. [32] that the linear

integrability condition (31) is satisfied in Kerr, based on
the fact that enhanced symmetries present in the post-
Newtonian limit enforce this condition. However, this was
a weak argument, since it is possible for symmetries to be
present only near the boundary of phase space that
corresponds to the post-Newtonian limit, and not in the
interior (just as for asymptotic spacetime symmetries).
Indeed, recently Nasipak and Evans have shown numeri-
cally that hdQ=dτi ¼ 0 fails for conservative scalar self-
forces in Kerr on resonances [33,34]. The gravitational
self-force case is presumably similar, although this will
need to be confirmed numerically (see Ref. [35]).
If the gravitational case is indeed nonintegrable, the

qualitative consequences for the conservative dynamics are
well understood in general contexts from the theory of
weakly perturbed Hamiltonian systems [30,36]. They have
been explored in the contexts of tidal and other perturba-
tions to extreme mass ratio inspirals in Refs. [37–40].
Suppose we focus attention on one resonant torus Ji ¼ J�i
and neglect the effect of other resonances. First, away from
this torus the invariant tori Ji ¼ constant are deformed
[cf. Eq. (32)] but preserved (as predicted by the
Kolmogorov–Arnold–Moser (KAM) theorem [30]).
Second, within a shell of width Ji − J�i ∼

ffiffiffiffi
m

p
the dynamics

is altered: in them → 0 limit the resonant torus is destroyed
and replaced by a number of islands of size ∼

ffiffiffiffi
m

p
in phase

space within which the motion is integrable [40] [This can
be seen explicitly in the description of the near-resonance
dynamics derived by van de Meent, Eq. (18) of Ref. [41],
dropping the dissipative terms (the first term on the right
hand side and half of the oscillatory terms); the solutions
consist of rotational or librational (islands) motions,
depending on the energy.]. One can define action angle
variables within each island, but they do not join contin-
uously onto the global action angle variables. At finite m
chaotic regions develop within the shell. Third, motion that
starts within the shell is confined to remain within it by the
surrounding surviving invariant tori, since the system is
effectively two dimensional (Jϕ is conserved) [36]. There
are no large excursions to Ji − J�i ∼Oð1Þ, unlike in higher
dimensions.
When one considers the full OðmÞ dynamics with the

dissipative component of the self-force included, the non-
integrable mode coefficients h1 k can drive transient res-
onances which giveOð ffiffiffiffi

m
p Þ kicks to the action variables Ji

[32], and also sustained resonances in which the orbit
evolves along a nonadiabatic path in the space of

parameters Ji maintaining the condition k · ω0ðJiÞ ¼ 0
[41]. However neither of these are smoking gun signatures
of the breakdown of integrability, since both can be
produced when h1 k ¼ 0 by the oscillatory dissipative
components of the self-force [41].
Application: Gauge invariant observables.—Gauge

invariant observables such as invariant redshifts, frequen-
cies of innermost stable circular orbits, etc. have proven
enormously useful for cross-checks between different
computational methods [16]. The simple form (21) of
our Hamiltonian may be helpful for computing such
observables, since one expects the complicated phase space
coordinate transformation (19) not to be relevant for gauge
invariant observables.
For generic orbits, nonintegrability of the dynamics

would impede the definition of such observables. For
example one can no longer label orbits by their three
fundamental frequencies of motion. However new gauge
invariant observables do arise in this context, the resonant
amplitudes h1 k themselves [See Eq. (30) for a general
expression for these amplitudes in terms of the Green’s
function, and Eq. (33) for a prescription for resonant
amplitudes in terms of the self-force.], for which the
action-angle variables are defined geometrically at zeroth
order [29] and which at first order are invariant under
linearized phase space coordinate transformations. These
observables are not accessible from within post-Newtonian
or post-Minkowski theory, but could be useful for compar-
isons between self-force theory and numerical relativity.
They could for example be extracted from the kicks in the
conserved quantities obtained from numerical waveforms.
Conclusion.—We have shown that the conservative

dynamics of the two-body problem in general relativity
in the small mass ratio limit is Hamiltonian to the first
subleading order, when the small body is nonspinning. It
would be interesting to extend this result to include the spin
of the small body, and to second-order conservative self-
forces.
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