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We develop a general framework for constructing charges associated with diffeomor-

phisms in gravitational theories using covariant phase space techniques. This framework
encompasses both localized charges associated with space–time subregions, as well as

global conserved charges of the full space–time. Expressions for the charges include con-
tributions from the boundary and corner terms in the subregion action, and are rendered

unambiguous by appealing to the variational principle for the subregion, which selects
a preferred form of the symplectic flux through the boundaries. The Poisson brackets of
the charges on the subregion phase space are shown to reproduce the bracket of Barnich

and Troessaert for open subsystems, thereby giving a novel derivation of this bracket
from first principles. In the context of asymptotic boundaries, we show that the pro-
cedure of holographic renormalization can be always applied to obtain finite charges
and fluxes once suitable counterterms have been found to ensure a finite action. This

enables the study of larger asymptotic symmetry groups by loosening the boundary
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conditions imposed at infinity. We further present an algorithm for explicitly comput-
ing the counterterms that renormalize the action and symplectic potential, and, as an

application of our framework, demonstrate that it reproduces known expressions for the

charges of the generalized Bondi–Metzner–Sachs algebra.

Keywords: Gravitational charges; asymptotic symmetries; holographic renormalization;

covariant phase space.

PACS numbers: 04.60.Cf, 11.10.Ef, 11.25.Tq, 11.30.Ly

1. Introduction and Summary

Canonical methods in general relativity and other gravitational theories provide

an important tool for understanding the theory’s observables and degrees of free-

dom. These methods are particularly well-suited for characterizing the subtle role

played by diffeomorphisms, which serve as the gauge symmetries of these theories.

The gauge nature of diffeomorphisms is captured by the fact that, in the absence

of boundaries, they generate transformations on the gravitational phase space cor-

responding to degenerate directions of the presymplectic form; equivalently, the

Hamiltonians generating these diffeomorphisms vanish on-shell. Introducing bound-

aries, either at infinity or finite locations in space–time, partially breaks the full

diffeomorphism invariance of theory, and results in nontrivial charges associated

with the broken gauge symmetries. The nonzero contribution to the charges comes

purely from an integral over the boundary of the space–time region, which is a

manifestation of the familiar fact that the on-shell Hamiltonian is a pure boundary

term in diffeomorphism-invariant theories.

An important technical tool for investigating properties of diffeomorphism

invariance is the covariant phase space formalism.1–7 Its advantage over other

constructions of gravitational phase spaces is the fact that covariance is main-

tained throughout. This allows the consequences of diffeomorphism invariance to

be easily discerned, the most important of which is the localization of diffeomor-

phism charges to contributions from the boundary. These boundary charges find

applications in a number of questions in gravitational physics, including black hole

entropy,6–13 asymptotic symmetries,14,15 entanglement and edge modes,16–19 and

holography.20–22 Given the breadth of scenarios in which boundary charges find use,

it is important to have a well-defined framework that constructs these charges in

an unambiguous manner. Unfortunately, there are a number of complications that

arise related to ambiguities in the formalism, renormalization at asymptotic bound-

aries, and equivocal definitions of charges, that have led to differing results and

conclusions regarding boundary charges in various contexts. The goal of this work

is to develop a general framework that addresses these complications and sharply

characterizes the choices that must be made to resolve the various ambiguities.

One major motivation for having such a framework is its applications to holo-

graphy in asymptotically flat space–time, an arena in which the Hamiltonian

formulation can provide important insights.23 One can approach holography in a

bottom-up manner, wherein one uses knowledge of the symmetries and charges of
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the theory at asymptotic boundaries to extrapolate properties of a putative dual

theory. The classic example of this is the discovery by Brown and Henneaux that

the asymptotic charge algebra of AdS3 gravity coincides with the Virasoro alge-

bra of CFT2.24 In a similar manner, systematically understanding the symmetries

and charges at null infinity could help characterize the structure of the boundary

theory. In particular, motivated by the UV/IR correspondence of the standard

AdS/CFT dictionary, one might hope that a prescription for IR renormalization

of classical observables using the Hamiltonian formalism leads to insights on uni-

versal properties of the putative boundary theory in the UV. This procedure is

known as holographic renormalization,21,25–28,a and its use has been expanded to

asymptotically flat applications; for example, it is needed in order to obtain finite

charges associated with the generalized BMS group.29–31

When describing boundary charges, it is often useful to distinguish between

global charges and localized charges.32 Given a set of boundary conditions that

define a phase space, global charges are given by integrals over a complete Cauchy

surface. They include contributions from all the degrees of freedom of the theory,

and generate the corresponding symmetry on the global phase space.32 They are

integrals over the codimension-2 boundaries of the Cauchy surface, which will typi-

cally be a sum over cross-sections of all the codimension-1 boundaries in the space–

time that the Cauchy slice intersects.

Localized charges instead arise when defining a phase space associated with a

subsystem of the full theory, such as when considering a subregion of space–time.

Standard examples include: the interior of a timelike tube in space–time, as it occurs

in the Brown–York quasilocal charge construction;33 the exterior region of a finite

null hypersurface;13,32 and the domain of dependence of a partial Cauchy surface

ending on a cut of I + in asymptotically flat space–times.34 Such subsystems are

fundamentally open Hamiltonian systems, which interact through their boundary

with degrees of freedom of the complementary region. Because of this interaction,

the subregion symplectic form is not conserved under evolution along the boundary,

and hence there is no integrable charge generating the diffeomorphism associated

with this evolution on the subsystem phase space. Instead, localized charges are

defined as a best approximation for the generator of the diffeomorphism on the

subregion.

A procedure for defining localized charges in the covariant phase space was put

forward by Wald and Zoupas,34 and subsequently developed in Refs. 13 and 32.

These charges satisfy a modification of Hamilton’s equation in which the symplectic

form evaluated on a diffeomorphism variation yields the variation of the charge, plus

an additional term representing the flux. In order to produce unambiguous results,

a criterion must be given for separating the charge from the flux in this equation,

aThe name holographic renormalization arose because the formalism originated in the context of
holographic dualities between bulk and boundary theories. However the formalism itself as used
here does not require any such dualities and can be defined in purely classical contexts.
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determining this criterion is the main challenge in obtaining well-defined localized

charges. An additional set of independent ambiguities, known as Jacobson–Kang–

Myers (JKM) ambiguities,35 arises in the definitions of the theory’s Lagrangian and

symplectic potential, and naively affects both localized and global charges. One

would like to have a coherent framework in which all the ambiguities are resolved

through a single unified principle.

We will show that the crucial ingredient is the choice of action for the sub-

region, including boundary and corner terms. Equivalently, this can be viewed as a

preferred choice for the symplectic flux at each of the boundaries, which appear as

the boundary terms in the variational principle for the chosen action. The idea to use

the action principle to resolve ambiguities in the covariant phase was first proposed

in Ref. 36, motivated by holographic considerations in asymptotically AdS space–

times.21,26–28 This principle is also partially inspired by Euclidean gravity, wherein

one takes the action to be the fundamental object from which all other observables

are computed. Furthermore, it ties in with the Brown–York construction of quasi-

local charges,33 in which the subregion action plays a central role, and one can show

that these quasilocal charges agree with the canonical charges constructed when

utilizing the action principle to fix their ambiguities.37 This perspective based on the

full subregion action will allow us to resolve both sets of localized charge ambiguities

in one fell swoop. Moreover, it will enable us to give a simple general argument that

holographic renormalization can always be performed to obtain finite charges and

fluxes, without imposing any boundary conditions on the field variations beyond

those contained in the equations of motion. Indeed, as explained in Ref. 38, such

generality is one of the main novelties that the holographic approach brings to the

study of gravitational charges. Thus, our framework unifies many different aspects

of gravitational charges in diffeomorphism-invariant theories.

In what follows, we give a detailed summary of each of our main results.

1.1. Extended summary of results

We begin in Sec. 2 by presenting the general framework for utilizing the covariant

phase space in constructing gravitational charges. While much of the material in

this section is a review, we present a number of results for handling background

structures in the theory, which modify a number of formulas by noncovariant contri-

butions.b The reasons for allowing noncovariances are twofold. First, as was shown

in Ref. 13, central extensions in gravitational charge algebras arise due to non-

covariant boundary terms in the action, and such extensions often contain criti-

cal information about properties of the theory. Second, allowing for noncovariance

extends the applicability of the covariant phase space to noncovariant formulations

of the theory, such as the ADM formulation,40 facilitating a straightforward com-

parison between the formulations.

bNoncovariant corrections to covariant phase space quantities have also been explored in Ref. 39,

which contains some overlap with the results of Sec. 2.
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The main objective of Sec. 2 is to arrive at unambiguous expressions for the

gravitational charges. Ambiguities can arise in two related but conceptually dis-

tinct ways. The first are the JKM ambiguities,35 which occur in the formulation

of the covariant phase space by Wald and collaborators5–7,34 due to the fact that

various quantities, such as the Lagrangian or the symplectic current, are defined

only up to addition of exact differential forms. We demonstrate in Subsec. 2.4 that

the gravitational charges can be defined in such a way as to be completely invariant

under the JKM transformations, including transformations involving noncovariant

quantities. This provides a powerful link between covariant and noncovariant for-

mulations of the theory, since any two formulations can be viewed as being related

by a JKM transformation. This then demonstrates that the charges are not sensitive

to the specific choices made in setting up the canonical framework.

The second set of ambiguities occurs for localized charges constructed via the

Wald–Zoupas procedure.34 These charges depend on the form of the flux through

the boundary of the subregion, and a prescription is needed to fix the expression

for the flux. Wald and Zoupas gave a proposal called the stationarity requirement

for fixing the ambiguity, which requires that the decomposition of the symplectic

potential be chosen such that the flux vanishes identically in stationary space–

times. This condition, along with a requirement on the covariance properties of the

flux, was shown to yield unambiguous localized charges for BMS generators in 4D

asymptotically flat space–time.34 On the other hand, there has been much recent in-

terest in extended symmetry algebras at null infinity,29–31,41–45 which were missed

in older analyses due to imposition of diffeomorphism-freedom conditions at the

boundary that do not correspond to degeneracy directions of the symplectic form

and are thus not true gauge degrees of freedom. One can demonstrate that the sta-

tionarity and covariance requirements do not produce finite charges associated with

these extended symmetries,46 and for sufficiently permissive boundary conditions,

the stationarity requirement may either fail, or not fully fix all possible ambiguities

in the flux. This motivates finding an alternative for fixing the flux ambiguities.

We therefore focus in this work on a different resolution that is more closely

tied to the variational principle associated with the subregion. This resolution was

first proposed by Compère and Marolf36 (see also Refs. 47 and 48), motivated by

the covariant Peierls bracket construction that far predates the more modern treat-

ments of the covariant phase space.20,49–52 These ideas were subsequently expanded

upon and formalized in the work of Harlow and Wu53 and the extension of this con-

struction to Wald–Zoupas localized charges was recently described by two of us.13

It has also been employed in applications of extended symmetries of asymptoti-

cally AdS spaces and their flat space limits in Refs. 54 and 55.c The variational

cA related approach described in Refs. 18 and 39 absorbs all boundary terms in the action into
a bulk Lagrangian. Often, this produces results consistent with the action variational principle,
but it lacks some of the flexibility of the present formulation, requires arbitrary choices in how to

extend the boundary term into the bulk, and cannot handle the corner improvements described
in Subsec. 2.5.
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principle pertains to the full action for the subsystem, involving an integral of the

Lagrangian in the bulk plus additional boundary terms, which are chosen to ensure

the action is stationary for a given choice of boundary conditions. For a closed

system, the boundary conditions are essential in determining the dynamics of the

theory. Localized subregions instead behave like open systems due to the presence of

symplectic flux through the boundary, and in this case boundary conditions should

not be imposed, as they would unnecessarily constrain the dynamics. Nevertheless,

the boundary contribution in the variation of the action is used to describe the flux

through the boundary, and hence the form of the flux is largely determined by the

choice of boundary condition one would have to impose if viewing the subregion as

a closed system.

From the viewpoint of the variational principle, resolving the ambiguities in

the covariant phase space formalism thus amounts to finding a preferred form for

the flux, or, equivalently, to a preferred boundary condition one would impose if

treating the system as closed. A particularly natural choice is to require that the

flux be of Dirichlet form, meaning it depends algebraically on variations of the

intrinsic variables on the boundary. For example, at a timelike boundary in theo-

ries where the only dynamical field is the metric, the Dirichlet condition implies

that the flux takes the form E = πijδhij , where hij is the induced metric and πij

can involve both intrinsic and extrinsic quantities. Similarly, on a null surface, the

Dirichlet form of the flux is E = πijδqij +πiδn
i, where qij is the degenerate induced

metric and ni is the null generator. Arguments in favor of the Dirichlet form of

the flux were presented in Ref. 13, and include the connection to junction condi-

tions at a surface, the semiclassical description of the path integral when gluing

subregions, and a straightforward relation to the Brown–York and holographic con-

structions. For most of this work, we focus on the Dirichlet form of the flux, but

emphasize that most of the formal constructions work for other choices correspond-

ing to different boundary conditions, although these other choices yield different

values of the charges and can affect their algebra. The dependence of gravitational

charges on the choice of boundary conditions was recently verified in Ref. 56, which

explored the effect of imposing Neumann and York conformal boundary conditions

as opposed to Dirichlet.

The demonstration in Subsec. 2.4 that the action, symplectic form, and localized

charges are all insensitive to ambiguities is then performed by working out how the

individual contributions to each of these quantities change under JKM transfor-

mations once the expression for the flux has been fixed. We also introduce a class

of boundary canonical transformations , which resemble the JKM transformations,

but act nontrivially on the form of the flux, and hence change expressions for the

charges. Because these boundary canonical transformations change the subregion

action, this emphasizes that different choices of action generically produce different

charges. A careful treatment of the definition of all quantities involved in con-

structing the localized charges reveals an additional set of corner ambiguities in

the charges described in Subsecs. 2.1 and 2.5, that naively affect the values of the
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charge. We further demonstrate in Subsec. 2.5 that a corner improvement term in

the localized charges fixes this ambiguity as well.

Having obtained ambiguity-free expressions for the charges, we proceed in Sec. 3

to determine the algebra they satisfy. This algebra can be defined by way of the

bracket introduced by Barnich and Troessaert in Ref. 57 (henceforward referred to

as the BT bracket), where it was postulated as a sensible choice that reproduces

the algebra satisfied by the vector fields generating the diffeomorphisms on space–

time, up to extensions. We present a new result deriving this bracket from first

principles by identifying it as the Poisson bracket of the localized charges on the

subregion phase space. This derivation relies on the flux being of Dirichlet form,

but the arguments continue to hold for a class of alternative forms of the flux,

subject to certain conditions. The bracket of the localized charges in general does

not close, but instead produces additional generators Kξ,ζ that yield an exten-

sion of the algebra satisfied by the space–time vector fields. Explicit expressions

for the extension terms are given in Eqs. (3.11) and (3.19), which are consistent

with the expressions originally derived in Ref. 13, suitably generalized to allow

noncovariances in the bulk Lagrangian. We further show that the brackets be-

tween the new generators Kξ,ζ and the localized charges Hξ coincides with the

bracket postulated by Barnich and Troessaert, as long as the generators Kξ,ζ depend

only on intrinsic variables at the surface when employing the Dirichlet flux condi-

tion. This requirement is nontrivially satisfied for charges constructed at null sur-

faces in general relativity, which serves as a consistency check on the use of the

BT bracket.

The final sections of this paper are devoted to charges constructed at asymp-

totic boundaries. In Sec. 4, as a segue into holographic renormalization, we review a

number of asymptotic symmetry algebras that have been proposed for 4D asymptot-

ically flat space. Our presentation focuses on the different universal structures each

algebra preserves, and we specifically analyze the cases of the standard BMS group,

the generalized BMS group,29,30 and the recently proposed Weyl BMS group,45

which in fact coincides with the symmetry group obtained in Ref. 32 for finite null

boundaries. Detailed derivations of these universal structures and their associated

symmetry groups are given in App. E.

We then turn to an analysis of the holographic renormalization procedure that

is needed to obtain finite results for asymptotic charges and their fluxes. This proce-

dure can be viewed as finding a boundary canonical transformation that renders the

action finite, after which all JKM-invariant quantities are finite as well. We further

show that a JKM transformation can be performed to make each individual term

in the expressions for the charges finite as well. It has often been remarked that one

reason for imposing boundary conditions on fields at asymptotic boundaries is to

ensure that the charges and fluxes have a finite limit to the boundary. The frame-

work of holographic renormalization instead provides a different perspective:38 one

should allow for the most general asymptotic expansion of the dynamical fields that

are consistent with the equations of motion, and handle any divergences using the
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counterterms that renormalize the action. It was first demonstrated by Compère

and Marolf that in asymptotically AdS space, the resulting symplectic structure

obtained via the holographic renormalization procedure is finite for all fluctuations

of the dynamical fields, which further implies the charges and fluxes are finite as

well, consistent with previous results on holographic asymptotic charges.21,26–28 In

Subsec. 5.2, we show that this argument applies quite generally to any asymptotic

boundary, and give a general argument that the fluxes and charges are finite once a

set of boundary terms that renormalize the action have been found. In Subsec. 5.3

we show that holographic renormalization can always be successfully carried out, by

giving an algorithm for computing the terms that one must add to the symplectic

potential and Lagrangian to obtain finite renormalized quantities. It is impossible

to simultaneously maintain covariance and achieve finiteness, so our renormalized

quantities break covariance through dependence on a choice of background struc-

ture. This is entirely analogous to the situation in AdS/CFT, where renormalized

asymptotic charges necessarily depend on the choice of radial cutoff surface, which

translates into the appearance of the Weyl anomaly on the boundary.26,27,58 Finally,

in Sec. 6, we apply the formalism described in Subsec. 5.3 to explicitly compute

the renormalized symplectic potential and the localized charges associated with

the generalized BMS group in vacuum general relativity in 4D asymptotically flat

space–times.

We conclude in Sec. 7 with several points of discussion and avenues for future

work.

1.2. Notation

Unless otherwise stated, we will work in d + 1 space–time dimensions with metric

signature (−,+,+, · · · ). We will use the indices a, b, c for (d+1)-dimensional tensors

in space–time and i, j, k for d-dimensional tensors intrinsic to a surface embedded

in space–time. The conformal factor in our notation will be denoted by Φ (instead

of the more commonly used symbol, Ω, which we will reserve for the symplectic

form). We will use I to denote null infinity in asymptotically flat space–times, I +

where we specialize to future null infinity, and =̂ to denote equality on I + (or more

generally on a null surface). The null normal to a null surface will be denoted by

na, and the auxiliary null vector on a null surface will be denoted by la. κ is used to

denote the inaffinity associated with a null vector and is defined by na∇anb =̂ κnb.

Often an index free notation will be used to denote differential forms, although

the indices will be made explicit where convenient. For example, η ≡ ηi1i2···id and

µ ≡ µi1i2···id−1
will denote the volume forms on codimension-1 and codimension-2

surfaces, respectively. We will use ivη to denote the inner product of a vector field,

va, with a differential form (in this case η). On occasion, the contracted indices will

be displayed while the uncontracted indices will be left implicit. In other places,

where convenient, all of the indices will be made explicit. In summary, we will freely

use any of the expressions ivη, viηi, v
iηij2···jd to denote the contraction of vi into

the form η.
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Table 1. A summary of the various differential forms that are defined in our covariant phase
space formalism, showing their space–time degrees and phase space (S ) degrees, along with the

equations where they are first introduced. We generally employ a convention where Greek or

calligraphic letters denote forms with phase space degree greater than zero, and Latin letters
denote forms of phase space degree zero. See the paragraph above (2.5) for the meaning of the

prime notation, the paragraph below (2.4) for the meaning of the c superscript, and footnote g

for the meaning of the vc superscript.

S degree

Space–time

degree (d+ 1) d (d− 1) (d− 2)

0
L′ (2.5),

c
L (2.8a)

b′ (2.7a),
c
r (2.9a),

`′ (2.12), J′ξ (2.21),

vc
J ξ (2.23), a (2.36a),

B (2.38a)

e (2.9a),
vc
Qξ (2.25),

Q′ξ (2.26), hξ (2.30),

f (2.40a), c′ (2.43),

h̃ξ (2.46)

1
θ (2.5),

c

θ (2.8b),

E (2.12)

λ′ (2.7b),
c
ρ (2.9b),

ν (2.10), β′ (2.12),

Λ (2.38a), ε (2.43)

χ (2.9b), γ′ (2.43),

µξ (5.20b), ζ (2.51)

2 ω′ (2.11)

Pullbacks to surfaces will be denoted using underlines, i.e. the pullback of θ

to a surface will be denoted by
¯
θ. When working with the covariant phase space,

F will be used to denote the field configuration space of a theory, while S will

represent the space of field configurations that satisfy the equations of motion.

Operations on it including Lξ̂, δ, Iξ̂, and ∆ξ̂ will be defined in Subsec. 2.1, and

capitalized calligraphic letters A , B, . . . will be used as abstract indices on S .

Note also that for simplicity, we will not distinguish between “pre-symplectic” and

“symplectic” for quantities defined on the pre-phase space and the true phase space

(see the second paragraph of Subsec. 2.1 for details). Finally, Table 1 lists various

differential forms used in this paper along with their degrees on phase space and

on space–time, and the equations where they first appear.

Finally, when dealing with subregions, it is important to keep track of the

orientations of the various components of its boundary, for which we follow the

conventions of Ref. 53. Beginning with the codimension-0 subregion U with N a

null or timelike component of the boundary, we choose the orientation of N to be

that induced as part of ∂U . The orientation of a spatial surface Σ inside of U whose

boundary intersects N will be oriented as part of the boundary of its past, and the

codimension-2 surface ∂Σ defining a cut of N will inherit the induced orientation

as a boundary of Σ. Note that this means that ∂Σ has the opposite orientation as

that induced as part of the boundary of its past in N . We define the volume form η

on N to be one consistent with this choice of orientation, and similarly define µ on

∂Σ to be consistent with its orientation. See App. C for the details of these volume

forms when N is a null surface.

2250105-9
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2. Gravitational Charges at Finite Boundaries

In any gravitational theory defined on a space–time region with boundary, there

are nonzero charges associated with diffeomorphisms that act near the boundary.

Depending on the context, one can distinguish between two related notions of

charges, namely, global charges and localized charges. Global charges are defined

when the space–time region under consideration can be viewed as a closed system,

which occurs when considering the entire space–time, or else working with a sub-

region of space–time on which boundary conditions are imposed to prevent any

interaction with the complementary region. These charges generate the symmetry

transformation of their associated diffeomorphism on phase space via Hamilton’s

equation, and are conserved under time evolution. On the other hand, localized

charges are defined for a subregion of space–time, which is not assumed to be

isolated from its complement. Such charges need not be conserved due to the

presence of nonzero fluxes through the boundary, and in general will not faith-

fully generate the transformation associated with the diffeomorphism. Nevertheless,

these localized charges provide useful notions of quasilocal energy and momentum

for subregions in phase space, and, as we will discuss, satisfy an algebra that closely

resembles the diffeomorphism algebra of their corresponding vector fields.

Despite the distinctions, the two notions of charges are not entirely independent

of each other. Instead, a global charge can be viewed as a special case of a localized

charge, in which the space–time region is specialized to a closed system and the

fluxes of the charge vanish. For this reason, we will focus in this work on the more

general construction of localized charges, and simply mention at various points how

the construction can be specialized to global charges.

This section reviews the construction of localized gravitational charges using

covariant phase space techniques. The procedure was initially developed by Wald

and Zoupas,34 and in this work we specifically focus on a number of recent develop-

ments on the handling of boundaries in the covariant phase space that have led to

resolutions of the various ambiguities that can appear in the formalism.13,36,47,48,53

The resolution comes from demanding that the symplectic potential E describing

the flux through the subregion’s boundary be of Dirichlet form. We will demon-

strate explicitly that this fixes both the standard JKM ambiguities present in the

covariant phase space formalism,7,35 as well as the additional ambiguity in identify-

ing the flux when employing the Wald–Zoupas procedure. In fact, we will see that

the formalism is invariant under generically noncovariant JKM transformations,

which, in particular, allows for formulations involving a bulk Lagrangian that is

not space–time covariant, such as in the ADM formulation of the theory.40 This

provides maximal flexibility in identifying charges, allowing one to switch between

a covariant or noncovariant formulation depending on the application; invariance

under JKM transformations ensures that the final result for the charges will not

depend on this intermediate choice. We also describe in Subsec. 2.5 a resolution of

an additional set of ambiguities involving corner contributions to the action, leading

2250105-10
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to an improved set of localized charges. These corner-improved charges generalize

the proposal of Ref. 13 to allow for a noncovariant bulk Lagrangian and symplectic

potential.

Throughout this section, we assume that boundaries are at finite locations in

space–time, and that all quantities have finite limits to the boundaries. This assump-

tion excludes asymptotic boundaries such as spatial infinity or future null infinity

in asymptotically flat space–times, which can be brought to a finite location in

space–time via conformal compactification, at the expense of having some of the

dynamical fields diverge on the boundary. Later in Sec. 5, we will discuss the modifi-

cations and generalizations of the formalism that are necessary to handle asymptotic

boundaries, based on the technique of holographic renormalization.

2.1. Covariant phase space

We begin with a brief review of the covariant phase space construction1–7 in order

to establish notation, which largely coincides with that used in Ref. 13, and to point

to places where we generalize the standard treatments. For recent reviews and more

in-depth discussions of the covariant phase space, see Refs. 32 and 53.

The idea behind the covariant phase space is to provide a canonical description

of a field theory defined on a manifold M without breaking covariance by singling

out a foliation of constant-time slices, as it is done in more standard phase space

constructions. This is achieved by working with the space S of all field configura-

tions satisfying the equations of motion, viewed as a subspace of the space F of all

field configurations. In a globally hyperbolic space–time, each solution in S can be

identified, up to gauge transformations, with its initial data defined on a Cauchy

slice Σ, and since this initial data comprises the usual phase space of the theory,

we see that there is a canonical identification between S modulo gauge transfor-

mations and the standard noncovariant phase space.d Since the phase space arises

as a quotient of S by the action of the gauge group, we will find that S has the

structure of a pre-phase space, on which we will construct a pre-symplectic form

that has degenerate directions. Most calculations will be done on S , bearing in

mind that eventually the quotient must be taken to arrive at expressions for the

true phase space. Throughout this work, we will drop the “pre” label for objects

defined on S , and simply point out where it is important to distinguish between

the pre-phase space and true phase space.

The spaces F and S are infinite-dimensional manifolds, on which certain stan-

dard differential geometry concepts are well-defined. The dynamical fields φ (which

will later be taken to consist of the metric and any matter fields) define a collection

of functions on field space, and the gradients of these functions are denoted δφ.

Differential forms of higher degree on field space can then be constructed by taking

dWe will later consider subregions of space–time which are not globally hyperbolic, so this iden-

tification will not hold in those cases, but the construction nevertheless will allow us to define a
sensible notion of phase space for the subregion.
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wedge products, and we will employ the notation where the product αβ of two

field-space differential forms is always assumed to be a field-space wedge product,

and hence satisfies αβ = (−1)abβα, where a and b are the respective form degrees

of α and β. The operator δ then defines an exterior derivative on the space of field-

space differential forms in the usual way. Vector fields are defined by infinitesimal

variations of the field configuration, and since vectors tangent to solution space S

must preserve the equations of motion, they are parametrized by solutions of the

linearized field equations. Given a vector field V on S , we denote the operation of

contraction with a differential form by IV , so that in particular IV δφ gives a phase

space function that returns the linearized solution corresponding to V around each

background solution. We can also take Lie derivatives along a given vector field

V in field space, which we denote LV , and its action on differential forms can be

computed via Cartan’s magic formula,

LV = IV δ + δIV . (2.1)

Our main focus in this work will be diffeomorphism-invariant theories. Infinite-

simal diffeomorphisms are generated by vector fields ξa on space–time, and they

act on fields via the space–time Lie derivative £ξφ. Diffeomorphism invariance

implies that £ξφ is a solution to the linearized field equations, and hence defines

a vector field on S , denoted ξ̂, through the equation Iξ̂δφ = £ξφ. The vector

field ξa can itself be viewed as a function on field space, and often it is taken to

be a constant, meaning δξa = 0. However, in many applications it is useful to

consider transformations generated by field-dependent diffeomorphisms, for which

δξa 6= 0. The Lie bracket [ξ̂, ζ̂]F on field space of the vectors ξ̂ associated with

field-dependent ξa is given by (see App. A)

[ξ̂, ζ̂]F = −Ĵξ, ζ K , (2.2)

Jξ, ζ Ka = [ξ, ζ]a − Iξ̂δζa + Iζ̂δξ
a . (2.3)

This expression employs the modified Lie bracket J · , ·K introduced in Ref. 59, and

its relation to the field space Lie bracket was noted in Ref. 60. Since the vectors ξ̂

are tangent to the solution space submanifold S in F , the bracket [ξ̂, ζ̂]S is also

given by (2.2).

We will be interested in objects defined on field space that may not transform

covariantly under diffeomorphisms. Noncovariances arise in objects that depend on

a background structure such as a nondynamical field. Being nondynamical means

that such a field is constant in field space, and hence Lξ̂ acts trivially on it. In

order to track the lack of covariance of a field space differential form, it is useful

to define the anomaly operator ∆ξ̂, first introduced in Ref. 61, which acts on field

space differential forms constructed from local fields ase

∆ξ̂ = Lξ̂ −£ξ − Iδ̂ξ . (2.4)

eThe operator I
δ̂ξ

acts on the local field variations as I
δ̂ξ
δφ = £δξφ (see App. A for additional

details).
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This operator provides a means for replacing field space Lie derivatives Lξ̂ with

space–time Lie derivatives £ξ, keeping track of the anomalous transformation of

an object when doing so. A covariant object is one that satisfies ∆ξ̂α = 0, so,

for example, since the dynamical fields are covariant, the statement ∆ξ̂φ = 0 is

equivalent to the oft-used identity Lξ̂φ = £ξφ. On the other hand, a nondynamical

field ψ satisfies Lξ̂ψ = 0 even though the space–time Lie derivative is generically

nonzero. In this case, the anomaly is given by ∆ξ̂ψ = −£ξψ. When it is im-

portant to emphasize that a certain object is fully covariant, we will denote it

with an overset c, as in
c
α; hence, for any such quantity, one may always assume

∆ξ̂

c
α = 0.

The dynamics of the theory is specified in terms of its Lagrangian L′, taken to

be a top form on space–time, so that the action is given by
∫
M L′ up to boundary

terms. As we will discuss shortly, various quantities that we will consider depend

on ambiguities in the definition of the Lagrangian and related quantities, and we

employ the notation that quantities that depend on these ambiguities are indicated

with a prime, as in L′. Any primed quantity should be assumed to be noncovariant in

general. Varying the Lagrangian yields the field equations and symplectic potential

θ′ for the theory according to

δL′ = E · δφ+ dθ′ . (2.5)

The solution space S which will serve as the pre-phase space for the theory con-

sists of all field configurations satisfying the field equations E = 0. Our main

focus will be theories whose field equations are diffeomorphism-invariant, meaning

∆ξ̂(E · δφ) = 0. A condition that guarantees diffeomorphism invariance is that the

Lagrangian be covariant up to an exact term, ∆ξ̂L
′ = da′ξ. We will further restrict

attention to theories in which the anomalous term a′ξ can be written as the anoma-

lous transformation of some other quantity defined on the boundary, a′ξ = ∆ξ̂b
′.

This implies that there exists a choice of Lagrangian that differs from L′ by an

exact term,
c

L = L′ − db′, and is fully covariant, ∆ξ̂

c

L = 0.f Iyer and Wald have

shown that whenever there is a covariant Lagrangian, one can find a symplectic

potential
c

θ that is covariant as well, ∆ξ̂

c

θ = 0.7 The covariant symplectic potential

can differ from θ′ by the addition of an exact term and a total variation, and hence

fThis assumption precludes theories such as topologically massive gravity62,63 whose Lagrangians

are not covariant for any choice of boundary term due to the presence of Chern–Simons-like terms,
but nevertheless yield diffeomorphism invariant field equations. The most general definition of a
diffeomorphism-invariant theory would be one whose equations of motion satisfy ∆ξ̂(E · δφ) = 0,

which, in light of Eq. (2.5), implies the anomaly of the Lagrangian need only satisfy

∆ξ̂δL
′ = d∆ξ̂θ

′ . (2.6)

Given that the formalism is invariant under addition of noncovariant boundary terms, as discussed

in Subsec. 2.4, it seems likely that most of the results described in this work can be extended to
this more general class of diffeomorphism-invariant theories. It would be interesting to analyze

such generalizations in more detail, for example, as explored in Ref. 39.
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there must exist quantities b′ and λ′ satisfying the equations

∆ξ̂L
′ = d∆ξ̂b

′ , (2.7a)

∆ξ̂θ
′ = ∆ξ̂δb

′ + d∆ξ̂λ
′ . (2.7b)

For a given Lagrangian L′ and symplectic potential θ′, Eqs. (2.7a) and (2.7b) will

be taken as the definitions of b′ and λ′. Once b′ and λ′ satisfying these equations

have been found, the associated covariant Lagrangian and symplectic potential are

defined to be
c

L = L′ − db′ , (2.8a)
c

θ = θ′ − δb′ − dλ′ . (2.8b)

Equations (2.7a) and (2.7b) fix b′ and λ′ in terms of L′ and θ′ up to shifts of

the form

b′ → b′ +
c
r + de , (2.9a)

λ′ → λ′ − δe+
c
ρ+ dχ (2.9b)

with
c
r and

c
ρ covariant and e and χ generically noncovariant. However, we will see

below that the localized charges and other relevant quantities do not depend on

the freedom to shift by the covariant quantities
c
r,

c
ρ, nor on the shift in λ′ by dχ.

In principle, the charges are sensitive to the shift by e if ∆ξ̂e 6= 0, but this can be

resolved using a more refined treatment of corner terms, as explained in Subsec. 2.5.

Finally, we mention that the standard ambiguities that appear when working

with L′ and θ′ arise from the fact that any other Lagrangian that differs from L′

by an exact term, L′ + da′, yields the same equation of motion, and hence is an

equally valid choice for defining the bulk dynamics. For such a shifted Lagrangian,

any shifted symplectic potential of the form

θ′ + δa′ + dν′ (2.10)

will satisfy the relation (2.5), and hence defines a valid symplectic potential. These

freedoms to shift L′ and θ′ are often presented as ambiguities in the covariant

phase space formalism;7,35 however, it has recently been understood that such

ambiguities may be resolved by specifying the form of the boundary condition

one would impose to ensure vanishing symplectic flux through the boundary of the

subregion.13,36,47,48,53 This resolution is explored in detail in Subsec. 2.4, where it

is shown that the charges, fluxes, and subregion action all involve combinations of

the various objects that are manifestly invariant under these shifts.

2.2. Symplectic form

Before constructing localized charges associated with a subregion, we must first

restrict the solution space to the subregion, and equip it with a symplectic structure.

To this end, we let U denote the open set in M defining the subregion of interest,

whose boundary includes a timelike or null component N . There may be additional

boundaries to the future and past of U , and, although these do not play a major
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role in the construction of charges in this work, these additional boundaries will

become important when considering more detailed resolutions of corner ambiguities,

as discussed in Subsec. 2.5. We will restrict attention to the space of solutions

within the subregion U , with no boundary conditions imposed at N . We denote

this restricted solution space by SU .

We now consider spatial slices Σ in U whose boundaries ∂Σ lie in N . We will

define a symplectic form Ω associated with ∂Σ as an integral over Σ and ∂Σ.

The resulting localized phase spaces (SU ,Ω) will serve as the starting point for

constructing localized charges, and it is important to remember that they depend

on both the subregion solution space SU as well as a choice of cut of the boundary.

Two specific examples that illustrate this general framework are as follows.

First, we take U to be a globally hyperbolic, asymptotically flat space–time, N to

be future null infinity I +, and Σ to be an asymptotically null slice which intersects

I + in some cut ∂Σ.34 Second, we take U to be a timelike tube in space–time, N
to be the timelike boundary ∂U of the tube, and Σ to be a spatial slice whose

boundary ∂Σ lies in N . This second example is the context for the Brown–York

quasilocal charge construction.33 Note that in both of these examples, the subregion

solution space SU is not in one-to-one correspondence with the space of initial data

on Σ. This is a general feature of the framework, since Σ is generally not a Cauchy

surface for the subregion. In the timelike tube example this arises because we have

not imposed any boundary conditions on ∂U .

The symplectic form will be constructed as a sum of two terms, one capturing

the bulk contribution and one involving a boundary contribution. The bulk term

is constructed as the integral over a spatial slice Σ through U of the symplectic

current,

ω′ = δθ′ . (2.11)

To determine the boundary contribution, we first consider the pullback
¯
θ′ of the

symplectic potential to N , and decompose it into three terms

¯
θ′ =̂ −δ`′ + dβ′ + E , (2.12)

where we refer to `′ as the boundary term, β′ as the corner term, and E as the flux

term. The reason for this terminology relates to the variational principle for the

subregion. Neglecting contributions from past and future boundaries, the action for

the subregion U is defined to be

S =

∫

U
L′ +

∫

N
`′ . (2.13)

Varying this action and applying Eqs. (2.5) and (2.12), we find

δS =

∫

U
E · δφ+

∫

N
E +

∫

∂N
β′ (2.14)

and hence it is stationary both with the bulk field equations hold, E · δφ = 0 and

when the flux through the boundary vanishes, E = 0. The corner term β′ localizes to
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the past and future boundaries of N , and in a complete treatment, additional corner

contributions to the action should be added at the codimension-2 boundaries of N
and the past and future boundaries, as described in e.g. Refs. 64–66. Although not

crucial to the remaining discussion of this paper, these corner contributions to the

action can produce some modifications to the formalism, as described in Subsec. 2.5.

Without specifying the form of the flux term E , Eq. (2.12) is ambiguous, since we

can always shift it by exact terms and total variations E → E + δB−dΛ by making

compensating changes to `′ and β′. These changes affect the subregion action (2.13),

as well as the definitions of the charges, and hence to avoid such ambiguities, it is

paramount to specify a criterion for selecting a preferred choice for E . In making

such a choice, it is important to realize that the form of E determines the boundary

condition one would impose in a variational principle for the subregion by the above

discussion. While different choices are available for these boundary conditions, we

mention that it is often most useful to choose those in which E takes a Dirichlet form,

meaning only variations of intrinsic quantities on the surface without derivatives

appear in E . For a timelike surface, this means

E = πijδhij , (2.15)

where hij is the induced metric, while for a null surface it means13,37

E = πijδqij + πiδn
i , (2.16)

where qij is the degenerate induced metric, and ni is the null generator. A number

of arguments in favor of the Dirichlet form of the flux were presented in Ref. 13,

such as the relation to junction conditions across N and the semiclassicality of

the gravitational path integral when gluing subregions. We will also utilize this

condition in Sec. 3 when deriving the algebra satisfied by the localized charges,

but we argue that other forms of the flux also allow the derivation to go through.

In writing Eqs. (2.15) and (2.16), we have restricted attention to theories such

as general relativity that admit a Dirichlet variational principle (or equivalently,

possesses second-order equations of motion), and have neglected any contributions

from matter fields to the symplectic potential. Note that the conjugate momenta

πij , πi can involve objects constructed from both the extrinsic and intrinsic geom-

etry of the surface. The Dirichlet requirement fixes the form of E up to addition

of boundary and corner terms constructed entirely from intrinsic quantities, and in

Sec. 5 we will discuss how these purely intrinsic ambiguities are used in the context

of holographic renormalization.

We can further interpret how to view E by taking a variation of Eq. (2.12) and

rearranging terms, which yields

δE =
¯
ω′ − dδβ′ . (2.17)

This shows that E serves as a symplectic potential for the pullback of the symplectic

form
¯
ω′ − dδβ′. Here, the term dδβ′ is precisely of the form of the ambiguity in

the symplectic potential described in Eq. (2.10), and as described in Ref. 53, by

considering an extension of β′ away from the surface N , we can view θ′−dβ′ as the
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symplectic potential everywhere in the bulk. The associated symplectic current is

then ω′ − dδβ′, and integrating this over a spatial slice Σ yields a symplectic form

that is the sum of a bulk and boundary term,

Ω =

∫

Σ

ω′ −
∫

∂Σ

δβ′ . (2.18)

We remark that we will require the quantities L′, θ′, b′ and λ′ to be conti-

nuous everywhere on the space–time subregion and in particular everywhere on its

boundary. This condition is necessary for passing from (d + 1)-dimensional bulk

integrals to d-dimensional boundary integrals using Stokes’ theorem. By contrast,

the quantities `′, β′ and E associated with the decomposition of the pullback of θ′ to

a boundary component will not be required to be continuous across a corner joining

two boundary components. This greater generality for these quantities goes hand

in hand with the use of corner terms in the formalism in Subsec. 2.5 and Sec. 5.

2.3. Localized charges

Having identified a symplectic structure for the subregion U , we can proceed to

construct gravitational charges associated with diffeomorphisms that act near the

boundary N . Diffeomorphism invariance of the field equations implies the existence

of a conserved Noether current J ′ξ associated with each diffeomorphism generated by

a given vector ξa. It follows from Eq. (2.7a) that under the action of diffeomorphisms

on phase space, the Lagrangian L′ transforms as

Iξ̂δL
′ = £ξL

′ + ∆ξ̂L
′ = diξL

′ + d∆ξ̂b
′ . (2.19)

However, from the definition (2.5), the left-hand side can be written as

Iξ̂δL
′ = E · Iξ̂δφ+ dIξ̂θ

′ , (2.20)

and so defining the Noether current to be

J ′ξ = Iξ̂θ
′ − iξL′ −∆ξ̂b

′ , (2.21)

we see that dJ ′ξ = −E · Iξ̂δφ, which vanishes on shell. Here, we find a correction

to the usual definition of the Noether current involving the noncovariance of the

boundary term, ∆ξ̂b
′, which was identified previously in Ref. 53. We can relate the

Noether current (2.21) to the Noether current
vc

J ξ constructed from the covariant

Lagrangian and symplectic potentialg

vc

J ξ = Iξ̂
c

θ − iξ
c

L (2.23)

gThe superscript “vc” in this expression stands for “vector covariant,” and is used to indicate

that the only noncovariance in
vc
J ξ arises from its dependence on the noncovariant vector field ξa.

This notation will be used to indicate any quantity such as
vc
J ξ depending linearly on ξa and its

derivatives whose noncovariance is given by

∆ζ̂

vc
J ξ =

vc
J (∆

ζ̂
ξ) = −

vc
J (Jζ, ξ K−I

ξ̂
δζ) . (2.22)
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using (2.8a) and (2.8b), which produces

J ′ξ = Iξ̂
c

θ + Iξ̂δb
′ + dIξ̂λ

′ − iξ
c

L− iξdb′ − Iξ̂δb′ + £ξb
′ =

vc

J ξ + d
(
iξb
′ + Iξ̂λ

′
)
,

(2.24)

showing that
vc

J ξ and J ′ξ differ by an exact term. Furthermore, since
vc

J ξ is identically

closed on shell and covariantly constructed for any vector ξa, it can be expressed

as the exterior derivative of a potential,
vc

J ξ = d
vc

Qξ , (2.25)

that is covariantly constructed from ξa and the dynamical fields.67 The relation

(2.24) then implies that J ′ξ is also expressible as the exterior derivative J ′ξ = dQ′ξ
of a potential Q′ξ, given by

Q′ξ =
vc

Qξ + iξb
′ + Iξ̂λ

′ . (2.26)

The localized charges Hξ are now constructed by evaluating the contraction

of the field space vector field ξ̂ into the symplectic form. Using the identity (see

App. B)

−Iξ̂ω′ = d
(
δQ′ξ −Q′δξ − iξθ′ −∆ξ̂λ

′
)
, (2.27)

and the definition (2.18) for the subregion symplectic form, we find that the con-

traction of ξ̂ into Ω is given by

−Iξ̂Ω =

∫

∂Σ

(
δQ′ξ −Q′δξ −∆ξ̂λ

′ − iξθ′ + Iξ̂δβ
′
)
. (2.28)

Note that because this contraction localizes to a pure boundary integral, any diffeo-

morphism supported purely in the interior of Σ is a degeneracy of Ω, reflecting that

such transformations are pure gauge. If ξa generated a genuine, global symmetry of

the subregion phase space, the right-hand side of (2.28) would have to be the total

variation δHξ of a quantity Hξ that would be identified as the charge generating

the symmetry. In this case, Eq. (2.28) simply becomes the statement of Hamilton’s

equation, −Iξ̂Ω = δHξ. However, it is clear from inspection that the terms Q′δξ +

∆ξ̂λ
′ + iξθ

′ + Iξ̂δβ
′ generically do not take the form of a total variation upon

integration over ∂Σ, absent the imposition of boundary conditions. While such

boundary conditions arise naturally for global charges for closed subsystems, in the

more general context of an open, localized phase space, such boundary conditions

unnecessarily constrain the dynamics and eliminate dynamical degrees of freedom

associated with fluxes of radiation modes. In this case, we seek to define a set of

localized charges, which satisfy a modification of Hamilton’s equation involving a

term representing the flux of degrees of freedom escaping the subregion.

Using the decomposition (2.12) of θ′, we find that Eq. (2.28) can be reorganized

into the form (see App. B)

−Iξ̂Ω =

∫

∂Σ

δhξ −
∫

∂Σ

(
iξE −∆ξ̂(β

′ − λ′) + hδξ
)
, (2.29)
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where we have defined the localized charge density hξ to be

hξ = Q′ξ + iξ`
′ − Iξ̂β′ . (2.30)

This formula takes the same form as the expression derived by Harlow and Wu,53

applied now in a context where boundary conditions are not imposed on the phase

space, as in Ref. 13. The first term in (2.29) is a total variation, and we are led to

identify this with the localized charge associated with ξa,

Hξ =

∫

∂Σ

hξ . (2.31)

The remaining terms in (2.29) represent the loss of symplectic flux through the

boundary N under a flow generated by ξa that moves ∂Σ along this boundary. The

modified Hamilton’s equation involving nontrivial fluxes for the localized charge

then takes the form

δHξ = −Iξ̂Ω + Fξ̂ , (2.32)

where

Fξ̂ ≡
∫

∂Σ

(
iξE −∆ξ̂(β

′ − λ′) + hδξ

)
. (2.33)

We denote this flux by Fξ̂ rather than simply Fξ to emphasize that it can depend

nontrivially on the field-dependence of the generator of the diffeomorphism.h

The charges constructed via Eq. (2.31) obey a nontrivial conservation equation,

which can be obtained by computing the exterior derivative of the charge density

hξ. This yields the identity (derived in App. B)

dhξ = Iξ̂E −∆ξ̂(`
′ + b′)− iξ(L′ + d`′) , (2.34)

and integrating this between two cuts S1 and S2 of the boundary N produces the

anomalous continuity equation,

Hξ(S2)−Hξ(S1) = −
∫

N 2
1

(
Iξ̂E −∆ξ̂(`

′ + b′)
)
, (2.35)

where the last term in (2.34) does not contribute since ξa is taken to be tangent

to N . The minus sign in this equation appears due to the choice of orientations of

N and ∂Σ, discussed in Subsec. 1.2. The first term on the right of this equation

is interpreted as the symplectic flux out of the subregion, while the second term

involving ∆ξ̂(`
′ + b′) is an anomalous violation of the conservation equation.13

hWe have separated the entire contribution coming from δξa into the flux term, although for cases
where δξa takes a specific form, it may be possible to separate off a total variation from hδξ to

include as a correction to the charge. Such field dependence is used in Refs. 68–73, for example,

to cancel some terms appearing in the flux, to arrive at integrable generators in the absence of
gravitational waves.
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2.4. Ambiguities and boundary canonical transformations

At this point, it is worth commenting that various objects introduced above, such

as Ω (2.18) and hξ (2.30), have been defined without the prime notation. This

is because these objects are in fact insensitive to the two ambiguities we have

mentioned to this point, corresponding to shifting L′ → L′+da and θ′ → θ′+δa+dν,

where a and ν are allowed to be noncovariant in general. We refer to these shifts

of L′ and θ′ as JKM transformations, having first been identified in the work of

Jacobson, Kang and Myers.35 Under such a transformation, we require that the

flux E remains invariant, since we are taking the form of the flux to be a physical

input defining the dynamics of the subregion. In order to keep E invariant even

while θ′ changes under the transformation, we must also shift the quantities `′ and

β′ appearing in the decomposition (2.12). The JKM transformations of the basic

quantities defining the phase space are then given by

L′ → L′ + da , (2.36a)

θ′ → θ′ + δa+ dν , (2.36b)

E → E , (2.36c)

which then imply

ω′ → ω′ + dδν , (2.37a)

b′ → b′ + a , (2.37b)

λ′ → λ′ + ν , (2.37c)

`′ → `′ − a , (2.37d)

β′ → β′ + ν , (2.37e)

J ′ξ → J ′ξ + d(iξa+ Iξ̂ν) , (2.37f)

Q′ξ → Q′ξ + iξa+ Iξ̂ν . (2.37g)

Given these transformations, it is immediate to check from the definitions (2.18),

(2.30), (2.33) and (2.13) that the symplectic form Ω, the charge density hξ, the

symplectic flux Fξ̂, and the subregion action S are all invariant.

Note in particular that if we start with a noncovariant Lagrangian and sym-

plectic potential L′ and θ′, and perform a JKM transformation with a = −b′,
ν = −λ′, we obtain a covariant Lagrangian and symplectic potential,

c

L and
c

θ,

which are often used in standard treatments of the covariant phase space. In this

case, the expressions for the charges and symplectic form reduce to those con-

structed in Ref. 13, which utilized the covariant Lagrangian and symplectic poten-

tial. Invariance of the charges under JKM transformations then implies that these

expressions will agree with charges constructed using a Lagrangian and symplectic

form that differs by the addition of noncovariant boundary and corner terms. The
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main message here is that the only choices that affect the charges are the field

equations E · δφ = 0 and the form of the flux E . The quantity E can be viewed

as a boundary equation of motion, analogous to the bulk expression E · δφ, and,

although we do not impose this field equation for generic localized subregions, the

equation E = 0 would be the boundary condition one would have to impose to have

a well-defined variational principle for the subregion. Note that it is not necessary

to absorb all the boundary terms in the action principle into total derivative terms

in the definition of the Lagrangian L′. Instead, when writing a variational principle

for the subregion, one should view L′ as the bulk part of the action, and `′ as the

boundary contribution, as in Eq. (2.13), and together they produce an action that is

independent of JKM transformations. The choice of a particular L′ is then largely a

matter of convenience. When discussing consequences of diffeomorphism invariance,

such as the first law of black hole mechanics,6,7 it is usually most transparent to

work with covariant
c

L and
c

θ. However, it can also be advantageous to work with a

noncovariant Lagrangian, such as when using the ADM formalism,40 or in the con-

text of holographic renormalization in order to obtain finite space–time integrals, as

expanded upon in Sec. 5. The results of this section indicate that charges obtained

in either formulation coincide, and the transformations (2.36) provide a means for

translating between different choices.

Since the resolution of JKM ambiguities employed in this work relies on fixing a

preferred choice of the flux E , it is worth commenting on the different choices that

are available for E . The different possible choices are obtained from transformations

that alter the decomposition (2.12) of the presymplectic potential, while leaving

L′ and θ′ invariant. Such transformations induce changes in the flux, corner and

boundary terms of the formi

E → E + δB − dΛ , (2.38a)

`′ → `′ +B , (2.38b)

β′ → β′ + Λ . (2.38c)

We refer to such transformations as a boundary canonical transformations , since

they affect the division of the canonical pairs that appear in E into coordinates

and momenta.j For example, starting with a Dirichlet flux on a timelike boundary

E = πijδhij , the boundary canonical transformation with B = −πijhij yields

a Neumann form of the flux, EN = E − δ(πijhij) = −hijδπij . Quantities that

iBy composing with a JKM transformation (2.36) one can obtain an alternative form of boundary

canonical transformations in which L′ → L′ + dB and θ′ → θ′ + δB − dΛ while `′ and β′ are

invariant. However the form (2.38) is more general since it naturally accommodates transformation
parameters B and Λ that are discontinuous from one boundary component to the other, while
L′, θ′ and the JKM parameters a and ν are required to be continuous (see the discussion after

Eq. (2.18) above).
jSee Ref. 74 for a related discussion interpreting such transformations as a canonical transformation
in the context of holographic renormalization.
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were invariant under the JKM transformations considered above transform non-

trivially under these boundary canonical transformations; in particular, the action,

symplectic form, and charge density change according to

S → S +

∫

N
B , (2.39a)

Ω→ Ω−
∫

∂Σ

δΛ , (2.39b)

hξ → hξ + iξB − Iξ̂Λ . (2.39c)

There are a number of situations where boundary canonical transformations are

relevant. The most important example for this work is in considerations of holo-

graphic renormalization, where the naive Dirichlet form for E does not admit a

finite limit to the asymptotic boundary. In this case, one seeks to find a counter-

term B = `ct constructed from intrinsic quantities on the boundary such that

the resulting renormalized action is finite as the boundary is taken to infinity. We

show in Subsec. 5.2 that this ensures that the renormalized flux Eren also has a

finite limit, and hence is sufficient to construct finite asymptotic charges. Another

example in which such boundary canonical transformations appear is in AdS/CFT

when considering the alternative quantization of low mass bulk fields.75

2.5. Corner improvements

While specifying the form of the flux E resolves the standard JKM ambiguities in the

covariant phase space formalism, there is an additional ambiguity that remains even

after fixing E . This ambiguity occurs because the decomposition (2.12) determines

`′ and β′ only up to shifts of the form

`′ → `′ + df , (2.40a)

β′ → β′ + δf , (2.40b)

with f generically noncovariant. Under such a shift, the charge density hξ is not

invariant, instead transforming as

hξ → hξ −∆ξ̂f − diξf , (2.41)

and the term ∆ξ̂f will affect the value of the integrated charge Hξ. A similar shift

occurs in hξ under the transformations of b′ and λ′ described in Eqs. (2.9a) and

(2.9b) by a noncovariant quantity e, leading to a shift in the charge density

hξ → hξ −∆ξ̂e− diξe . (2.42)

In order to handle these additional ambiguities, a correction must be added to

the charges that cancels the dependence on these shifts. This improvement term in

the charges was described in App. C of Ref. 13 when working with covariant L′ and

θ′ (so that b′ and λ′ are set to zero), and here we will describe the generalization

of this procedure to generically noncovariant L′ and θ′.
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The resolution comes from noting that we must not only fix the form of the

flux E on the bounding hypersurface N , but also must fix a preferred corner flux

on the codimension-2 surface ∂Σ on which the charge is being evaluated. In this

case, the quantity β′ − λ′ serves as a higher codimension symplectic potential,

and hence to resolve the ambiguities, we decompose it in a similar manner as θ′

from Eq. (2.12):

β′ − λ′ = −δc′ + dγ′ + ε , (2.43)

where ε is the corner flux. We will obtain unambiguous charges by specifying a

preferred form of ε, which could be determined by a Dirichlet variational principle

for a subregion of space–time that includes corners, as discussed, for example in

Ref. 66. In this case, c′ is related to the corner terms one adds to the action, although

the full action must include terms coming from both hypersurfaces intersecting at

the corner.k The quantity γ′ can be viewed as a codimension-2 symplectic potential,

and in principle we could further consider decomposing it in a similar manner

to θ′ and β′ − λ′. Doing so would yield quantities associated with contributions

to the action and flux associated with codimension-3 defects in the shape of the

subregion. Such features would arise at caustics of a null hypersurface, and also

when considering singular diffeomorphisms such as superrotations that produce

defects on a codimension-2 surface.42,59,76–79 We note, however, in the absence of

such codimension-3 features, the quantity γ′ drops out of any expression for the

charges, and hence we will not consider it further in this work, although a careful

analysis of this type of term would be an interesting future direction.

The quantity ∆ξ̂(β
′− λ′) appears in the identity (2.29), and the decomposition

(2.43) motivates including the c′ term in the localized charge as opposed to the

kIn slightly more detail, we consider a region U bounded by two hypersurfaces N+ and N−
intersecting at a codimension-2 corner C, oriented such that ∂U ⊃ N+ − N−, N+ ⊃ C and

N− ⊃ C, where the signs indicate the relative orientations. The action including contributions
from only these boundaries is given by

S =

∫
U
L′ +

∫
N+

`′+ −
∫
N−

`′− +

∫
C

(c′+ − c′−) . (2.44)

Here, `′± and c′± arise from independent decompositions on N±, and these quantities, along with

β′±, need not be continuous when moving from N− to N+ through C. On the other hand, b′ and
λ′ should be continuous across C, since they arise from L′ and θ′ which are continuous throughout
U . Invariance under the standard JKM transformations follows as before, and we can also check

invariance under the e and f ambiguities described in Eqs. (2.9a), (2.9b), (2.40a) and (2.40b).
For these ambiguities, the quantity e is required to be continuous through C, but f can take on
separate values f± at C. This then implies that the action is invariant under these transformations,

S → S +

∫
N+

df+ −
∫
N−

df− +

∫
C

(−e− f+ + e+ f−) = S . (2.45)

The corner improvement in the present section only considers contributions from the single hyper-

surface N+ ending on C, but it would be interesting to extend this analysis to account for the
contributions from N−.
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flux. The improved charge density is then defined to be

h̃ξ = hξ −∆ξ̂c
′ (2.46)

=
vc

Qξ + iξ(`
′ + b′ + dc′)− Iξ̂ε+ d

(
iξc
′ − Iξ̂γ′

)
, (2.47)

where the expression in the second line follows from applying the definitions (2.30),

(2.26) and (2.43). The improved flux that generalizes Eq. (2.33) is given by

F̃ξ̂ =

∫

∂Σ

(
iξE −∆ξ̂ε+ h̃δξ

)
. (2.48)

Defining the improved localized charge H̃ξ as the integral over ∂Σ of h̃ξ, we find

that improved charges and fluxes still satisfy the modified Hamilton’s equation,

δH̃ξ = −Iξ̂Ω + F̃ξ̂ . (2.49)

Once a preferred form for the corner flux ε is chosen, the shifts in β′ and λ′

described in (2.40b) and (2.9b) require that c′ transform according to

c′ → c′ − f − e . (2.50)

It follows immediately that the improved charge density (2.46) shifts only by exact

terms under the transformation, and hence the integrated improved charge H̃ξ is

invariant.l

The corner flux ε in Eq. (2.43) can be shifted by exact terms and total varia-

tions, leaving the left-hand side β′−λ′ fixed. The transformations that achieve this

are analogous to the boundary canonical transformations (2.38), but arise in the

codimension-2 context rather than in codimension-1. We call these transformations

corner canonical transformations , given that they change the form of ε. One type

of corner canonical transformation is an adjustment of the decomposition (2.43)

by γ′ → γ′ + ζ, ε → ε − dζ, leaving all other quantities fixed. A second type is

a transformation (2.40) with parameter f = F , followed by a boundary canoni-

cal transformation (2.38) with parameters B = −dF and Λ = −δF . Under the

combined transformations we have

c′ → c′ − F , γ′ → γ′ + ζ , ε→ ε− δF − dζ , (2.51)

while `′ and β′ are invariant and h̃ξ → h̃ξ + ∆ξ̂F . This combination of transforma-

tions is designed to leave θ′ invariant. We will make use of these corner canonical

transformations in our discussion of holographic renormalization in Sec. 5.

We emphasize that in our formalism the charges are uniquely determined by

a choice of subregion action principle. The various canonical transformations con-

sidered here coincide with a change in action principle and a corresponding change

in the charges. A small subtlety related to this point occurs in regard to the

effect of the boundary canonical transformation E → E − dΛ. For consistency,

lA slightly different proposal for a corner-improved charge was recently considered in Ref. 56,

which amounts to defining the improved charge density to be h̄ξ = hξ + £ξc
′ = h̃ξ + Iξ̂δc

′.
We note that this alternative proposal does not have the same invariance properties under the
ambiguities as does h̃ξ, which serves as an argument in favor of (2.46).
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Table 2. A summary of the various transformations in the covariant phase space formalism
and how they act on the differential forms. The first row lists the eight different independent

transformations, the second row their names, and the third the equation numbers where the

transformations are defined. The name acronyms are Jacobson–Kang–Myers (JKM) transforma-
tion, boundary canonical transformation (BCT), and corner canonical transformation (CCT).

The remaining rows list the various quantities that occur in the formalism, their names, defining

equations, and how they transform under the transformations. The first eight rows list the fun-
damental independent quantities, while the remaining quantities are derived from the first eight.

Quantities indicated with a † are required to be continuous from one component of the boundary
to another, while those without this symbol may be discontinuous at these transitions. These

discontinuities are associated with the appearance of corner terms in the integrated action (5.2).

The five transformations in the columns for a, ν, e, χ and ζ do not change the integrated action
S, symplectic form Ω, or integrated (improved) localized charges, and thus are analogous to gauge

freedom in the formalism. By contrast, the three transformations in the columns for B, Λ and

F do alter these quantities, reflecting the fact that the boundary flux E and corner flux ε must
be specified (for example via a complete action principle) in order to determine unique localized

charges.

Transformation a† ν† e† χ† B Λ F ζ

Name JKM JKM BCT BCT CCT CCT

Equation (2.36) (2.36) (2.9) (2.9) (2.38) (2.38) (2.51) (2.51)

Quantity Eqs.

L′† Bulk Lagrangian (2.5) da

θ′† Symplectic pot. (2.5) δa dν

b′† L′ noncovariance (2.7) a de

λ′† θ′ noncovariance (2.7) ν −δe dχ

`′ Boundary action (2.12) −a B

c′ Corner action (2.43) −e −F

γ′ (2.43) −χ ζ

ε Corner flux (2.43) Λ −δF −dζ

E Boundary flux (2.12) δB −dΛ

S Action (2.13)
∫
N B −

∫
∂N

F

Ω Sympl. form (2.18) −
∫
∂Σ

δΛ

β′ Corner term (2.12) ν Λ

J′ξ Noether current (2.21) diξa dIξ̂ν −∆ξ̂de

Q′ξ Noether charge (2.26) iξa Iξ̂ν −∆ξ̂e dIξ̂χ

−diξe

hξ Localized charge (2.30) −∆ξ̂e dIξ̂χ iξB −Iξ̂Λ

−diξe

h̃ξ Improved charge (2.46) −diξe dIξ̂χ iξB −Iξ̂Λ ∆ξ̂F
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this transformation must shift the corner flux according to ε→ ε+ Λ (see Table 2),

and these combined transformations have the effect of leaving the variation δS of

the subregion action invariant. One might be tempted to conclude that the corner-

improved charges should then be invariant under this transformation since the

subregion action is meant to uniquely determine the charges; however, according

to Table 2, this transformation in fact shifts the charge density h̃ξ nontrivially.

This suggests that one must not only specify the form of the subregion action, but

also the full form of the fluxes E and ε in order to obtain unique expressions for

the charges. In actuality, both E and ε can be uniquely extracted from the action

provided one specifies on which quantities the on-shell action functionally depends.

In particular, for a Dirichlet action principle, the on-shell action is a functional of

the boundary induced metric hij and the corner induced metric qAB . This uniquely

determines the momenta πij = δS
δhij

and πAB = δS
δqAB

, and hence the fluxes by the

relation E = πijδhij and ε = πABδqAB . Hence, even though the charges depend

on the precise forms of the fluxes, we see that these are ultimately determined in

terms of the subregion action principle.

A summary of the various transformations we have defined in this section is

given in Table 2.

3. Brackets of Localized Charges

With the definition (2.30) of the localized charges in hand, we would next like

to compute the algebra they satisfy. Since these charges arise from the action of

diffeomorphisms on a subregion of a space–time manifold, we should expect the

charge algebra to be closely related to the algebra satisfied by the corresponding

vector fields ξa on space–time under the Lie bracket. Diffeomorphisms of space–

time induce an action on the solution space S which serves as a phase space of

our theory, leading to a related Lie bracket of the vector fields ξ̂ associated with

the space–time vector fields ξa. As mentioned in Eqs. (2.2) and (2.3), the field

space bracket is simply minus the space–time Lie bracket for field-independent

generators, and for field-dependent generators, it is given by minus the modified

Lie bracket J · , ·K.
Normally when dealing with Hamiltonian charges for a symplectic manifold,

the Poisson bracket of the charges can be obtained by contracting the vector fields

generating the symmetry into the symplectic form. However, the localized charges

do not satisfy Hamilton’s equation due to the term involving Fξ̂ in (2.32). This

means that the charges Hξ do not generate the same flow as the vector ξ̂ on the

phase space. Nevertheless, the charges Hξ are functions on phase space, and hence

possess a well-defined Poisson bracket. We will find in this section that this Poisson

bracket on the subregion phase space reproduces the bracket introduced by Barnich

and Troessaert in Ref. 57, providing a novel derivation of this bracket and justifying

its use in defining the algebra of localized charges. Note that there is no contradic-

tion in the fact that these charges have a well-defined Poisson bracket despite the
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presence of fluxes in Hamilton’s equation because the flow generated by Hξ differs

from the flow generated by ξ̂, and it is only the latter that does not preserve the

symplectic form when fluxes are present. Due to the difference between the flows

generated by Hξ and ξ̂, we will find that the charge algebra differs from the algebra

of vector fields under the modified bracket by the extension terms Kξ,ζ appearing

in Eqs. (3.10) and (3.11).

To compute the Poisson bracket, it is first helpful to introduce an abstract index

notation for tensors on field space. We let A , B, . . . denote tensor indices on SU , so

that, for example, the symplectic form on phase space can be written ΩA B. We then

define ΩA B to be an inverse of ΩBC . The meaning of this statement is somewhat

subtle because ΩBC is degenerate on SU , and so inverting it requires some gauge-

fixing procedure to define the subspace of SU on which we are constructing the

inverse. This gauge fixing will yield a tensor ΩA B satisfying

ΩA BΩBC ΩCD = ΩA D . (3.1)

Note that the true subregion phase space PU is obtained from SU by quotienting

out the degenerate directions, and on this quotient space we expect ΩA B to descend

to a well-defined inverse that is independent of the gauge-fixing procedure. We also

assume that the vector fields ξ̂A have been constructed to be tangent to the gauge-

fixed submanifold, so that ΩA BΩBC ξ̂
C = ξ̂A . Often, this requirement introduces

field dependence into the vector ξa, which is one of the reasons for considering

field-dependent symmetry generators.

The Poisson bracket of the localized charges is defined to bem

{Hξ, Hζ} = ΩA B(δHξ)A (δHζ)B . (3.2)

Then since the variation of the localized charges satisfies (2.32), we find for the

Poisson bracket

{Hξ, Hζ} = ΩA B
(

ΩA C ξ̂
C + (Fξ̂)A

)(
ΩBD ζ̂

D + (Fζ̂)B

)
(3.3)

= −ξ̂B
ζ̂DΩBD − ξ̂B(Fζ̂)B + ζ̂A (Fξ̂)A + ΩA B(Fξ̂)A (Fζ̂)B (3.4)

= {Hξ, Hζ}BT + ΩA B(Fξ̂)A (Fξ̂)B , (3.5)

where in the last line we have introduced the Barnich–Troessaert (BT) bracket

{Hξ, Hζ}BT = Iξ̂Iζ̂Ω− Iξ̂Fζ̂ + Iζ̂Fξ̂ = −Iξ̂δHζ + Iζ̂Fξ̂ . (3.6)

This bracket was proposed in Ref. 57 as a means for defining an algebra for

localized charges that only satisfies the modified version of Hamilton’s equation

(2.32), but the interpretation of it as a Poisson bracket on a phase space was left as

an open problem. From Eq. (3.5), we see that the BT bracket in fact coincides with

the ordinary Poisson bracket of the charges Hξ, Hζ , provided we can argue that

mThe sign in the definition of the Poisson bracket here is the more common choice, which is

opposite to the sign employed in Ref. 13.
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the final term quadratic in the fluxes Fξ̂, Fζ̂ vanishes. To see how this occurs, we

first assume that the corner term β′ that appears in (2.12) is covariant, ∆ξ̂β
′ = 0,

that the generators are field-independent δξa = 0, and that the flux has been put

into Dirichlet form, as in (2.15) for a timelike surface or (2.16) for a null surface.

In this case, the symplectic flux Fξ̂ for a timelike surface simply reduces to

Fξ̂ =

∫

∂Σ

iξπ
ijδhij . (3.7)

In this form, we see that the final term in (3.5) involves the contraction of ΩA B

into two metric variations δhij(x)δhkl(x
′) at each pair of points x, x′ on the spatial

codimension-2 surface ∂Σ. Hence, it is determined entirely in terms of the Poisson

bracket of the intrinsic metric on the surface {hij(x), hkl(x
′)}:

∫
dx

∫
dx′ iξπ

ij(x)iζπ
kl(x′){hij(x), hkl(x

′)} . (3.8)

However, this bracket should vanish on general grounds, since it involves values of

the induced metric (without time derivatives) at causally separated points on ∂Σ.

Additionally, at coincident points x = x′, no delta functions should appear in the

Poisson bracket due to the absence of time derivatives. Because of this, we conclude

that the final term (3.5) vanishes, and hence the Poisson bracket of the localized

charges agrees with the BT bracket, at least in the case that the symplectic flux has

been reduced to the form (3.7).n The story is entirely analogous for a null surface,

and similarly relies on the vanishing of the brackets between intrinsic quantities at

the cut ∂Σ, {qij , qkl} = {ni, qjk} = {ni, nj} = 0. For example, for the components

δqAB of the induced metric perturbation on the future horizon of a Schwarzschild

black hole, Ref. 81 derives the commutators

{qAB(
¯
θ, v), qCD(

¯
θ′, v′)}

∝ (qACqBD + qADqBC − qABqCD)δ2(
¯
θ,

¯
θ′)

[
Θ(v − v′)− 1

2

]
, (3.9)

where (
¯
θ, v) = (θ, φ, v) are coordinates on the horizon. This commutator vanisheso

at v = v′.

We can now ask whether any of the conditions leading to this conclusion can

be relaxed. We can allow for the additional terms ∆ξ̂(β
′ − λ′) and hδξ that appear

in (2.33), provided that these also can be put into Dirichlet form. For the corner

term β′−λ′, this can be done using the corner improvement procedure described in

Subsec. 2.5 by selecting a Dirichlet form for the corner flux ε appearing in (2.43).

nInterestingly, Ref. 80 found that commutativity of the intrinsic metric on a codimension-2 slice
of the boundary is violated in the presence of a nonzero Immirzi parameter when utilizing the

first-order formulation of general relativity. This suggests that the naive BT bracket would be
modified in this case, and it would be interesting to investigate these corrections in more detail.
oThat Θ(v − v′)− 1/2 should be interpreted as 0 for v = v′ can be seen by integrating Eq. (3.9)
against wAB(

¯
θ)wCD(

¯
θ′) for some wAB which yields at v = v′ the commutator of an operator

with itself.
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For the hδξ term, this likely leads to some restrictions on the allowed field depen-

dence in ξa.p Finally, we can even allow for choices of the flux term E that are not

Dirichlet form, for example, we could instead require Neumann form E = −hijδπij .
As long as the flux E is of the form where the equation E = 0 defines a valid

boundary condition for the variational principle,q and the condition of vanishing

symplectic flux Fξ̂ = 0 imposes no further restrictions, one will still be able to argue

that the flux terms in (3.5) vanish.

The interpretation given here of the BT bracket as an ordinary Poisson bracket

on the subregion phase space is a novel proposal of this work, and can be compared

to previous arguments for arriving at this definition of the bracket for localized

charges Hξ. In Ref. 13, two of us suggested a heuristic derivation of the bracket,

in which the bracket represented the Poisson bracket on a larger phase space con-

sisting of the subregion and a complementary phase space that collects the flux,

yielding a closed global phase space. This interpretation is similar to the one pre-

sented in this work, but differs in that our present proposal shows that no auxiliary

system is needed to interpret the bracket as a Poisson bracket. It is likely the two

proposals are consistent with each other, after employing a gluing construction as

discussed in Subsec. 7.2. Another proposal by Troessaert82 suggested an interpreta-

tion in which the boundary fields on which Dirichlet conditions would be imposed

in the variational principle are interpreted as classical sources for the subregion

phase space, motivated by similar interpretations appearing in AdS/CFT. This

interpretation appears to be close in spirit to the proposal in this paper; however,

Troessaert’s construction involves an explicit decomposition of the bracket into an

ordinary bulk Poisson bracket and corrections involving variations of the boundary

sources. This makes comparison to the present interpretation difficult, although it

would be interesting to further investigate whether the two proposals are consistent

with each other. Finally, we mention some recent work by Wieland83 in which the

bracket arose as a Dirac bracket after constraining the phase space to remove all

radiative modes from the theory. By contrast, the bracket in this work imposes no

such constraint, and hence disagrees with Wieland’s proposal. However, it may be

that the two proposals agree for a specific choice of transformations and charges

that are “purely Coulombic,” as might be expected for charges associated with

diffeomorphisms acting near the boundary.

Having argued that the BT bracket coincides with the Poisson bracket of the

localized charges, we can use it to compute the canonical algebra satisfied by these

functions on the local phase space. A straightforward calculation (see App. B) using

the bracket definition (3.6) and the expressions (2.30) and (2.33) for the charge

pOnce the field-dependence of ξa has been fixed, one could decompose hδξ = −δa + dτ + ε,
and include the a contribution in the charge and ε in the flux. Such a decomposition will lead
to additional modifications of the brackets of the charges. This kind of decomposition has been

investigated recently in Refs. 68–73.
qThis can equivalently be phrased as finding a Lagrangian submanifold for the boundary phase
space involving the symplectic pairs (πij , hij).
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density and symplectic flux yields the following charge representation theorem:

{Hξ, Hζ} =
(
HJξ, ζ K +Kξ,ζ

)
, (3.10)

Kξ,ζ =

∫

∂Σ

(
iξ∆ζ̂(`

′ + b′)− iζ∆ξ̂(`
′ + b′)

)
. (3.11)

Hence, we see that the bracket reproduces the algebra of the vector fields ξa under

the modified bracket (2.3), up to an extension parametrized by a new set of genera-

tors Kξ,ζ . The combination `′+b′ that appears in the formula for the extension is a

JKM-invariant quantity, and reduces to the expression for the extension in Ref. 13

when utilizing a covariant Lagrangian L′. Note that Eq. (B.9) indicates that the

extension would involve an additional contribution iξiζ(L
′+d`′), except for the fact

that we have assumed that ξa and ζa are both parallel to the same hypersurface,

causing this term to pull back to zero. In fact, this term was first derived in Ref. 17

assuming boundary conditions to make such transformations integrable, and was

also recently explored in Ref. 39. Assuming charges associated with the two inde-

pendent normal directions to ∂Σ can be consistently defined,17,39,84 this suggests

the full formula for the extension is given by the sum of (3.11) and the integral of

iξiζ(L
′ + d`′).r

The generators Kξ,ζ are local functionals of the vector fields ξa, ζa and the

geometric quantities defined on the boundary, and we can therefore compute their

brackets with the original localized charges using a similar set of arguments as

above:

{Hξ,Kζ,ψ} = ΩA B
(
δHξ

)
A

(
δKζ,ψ

)
B

= −ξ̂B
(
δKζ,ψ

)
B

+ ΩA B
(
Fξ
)
A

(
δKζ,ψ

)
B
. (3.12)

To simplify this further, we postulate that Kξ,ζ is a functional of only intrinsic

variables on the surface, Kξ,ζ = Kξ,ζ [hij ] (including any field-dependence in the

vectors ξa, ζa). It can be checked that this condition is satisfied in general rela-

tivity with a finite null boundary,13 and we expect it to hold more generally for

theories that admit a Dirichlet variational principle. Its variation can therefore be

written as

δKξ,ζ =

∫

∂Σ

(
kijξ,ζδhij + dσξ

)
(3.13)

and the exact piece dσξ integrates to zero on ∂Σ. On a null surface, we simi-

larly require that δKξ,ζ involve only the variations δqij and δni. As before, using

rThe bracket defined in Ref. 39 further differs from the BT bracket since it is defined to subtract

the extension term Kξ,ζ , so that it tautologically leads to a representation of the vector field

algebra. It was later shown in Ref. 85 that this bracket arises as a Poisson bracket of integrable
Hamiltonian charges in the extended phase space constructed by Ciambelli, Leigh and Pai,86 and

the generalization to ambiguity-free charges analogous to those constructed in this work was given

in Ref. 87. The need to extend the phase space to arrive at the bracket considered in these works
shows that it is closely related but essentially different from the BT bracket.
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the assumption that Fξ̂ is in Dirichlet form and that the intrinsic variables com-

mute on ∂Σ, we see that the second term in (3.12) drops out, and we derive the

relation

{Hξ,Kζ,ψ} = −Iξ̂δKζ,ψ . (3.14)

Finally, the assumption that Kξ,ζ is a functional of only intrinsic quantities leads

by the same arguments to the result that the Kξ,ζ generators commute among

themselves,

{Kξ,ζ ,Kψ,χ} = 0 . (3.15)

As before, if we are instead working with a flux E that is not of Dirichlet form,

the commutation relations (3.14) and (3.15) will remain valid as long as Kξ,ζ is

a functional only of quantities that would be fixed by the variational principle

associated with the chosen form of the flux.

The relations (3.10), (3.14) and (3.15) fully define the algebra satisfied by the

canonical charges Hξ and the extension charges Kξ,ζ . In the case that Iξ̂δKζ,ψ can

be expressed only in terms of the generators Kχ,ρ, the charges (Hξ,Kζ,ψ) yield a

representation of an Abelian extension of the algebra satisfied by the vector fields

under the bracket Jξ, ζ K. This condition was confirmed, for example, for a class of

vector fields satisfying a Witt algebra acting on Killing horizons in Ref. 13, where

it was further demonstrated that only a single independent generator Kξ,ζ arises,

yielding a central extension, the Virasoro algebra. In the most general case, however,

one would expect Iξ̂δKζ,ψ to be expressed as a sum of Hξ and Kχ,ρ, producing a

more complicated algebra, presumably related to Diff(N ) or Diff(U), in which Kξ,ζ

generates an Abelian subalgebra. It would be interesting to explore these more

complicated algebras in future work.

The requirement that Kξ,ζ be a functional of intrinsic data on the boundary

is a nontrivial consistency requirement in order to conclude the algebraic relation

(3.14). To further motivate it, we remark that this requirement can be related

to a generalized notion of symmetry for the subregion.s Normally, symmetries are

defined as transformations that leave the subregion action (2.13) invariant. However,

we can also consider transformations that change the action only by a boundary

term that is constructed entirely from intrinsic data,

Iξ̂δS =

∫

N
Aξ . (3.16)

In the Dirichlet variational principle where the intrinsic data is fixed by a boundary

condition, requiring Aξ to depend only on intrinsic quantities then says that the

action is invariant up to a constant. In such a situation, one can still derive a

Noether charge that generates the symmetry, and it is conserved up to quantities

constructed from the intrinsic geometry, which commute with all observables. The

sWe thank Don Marolf for discussions on this point.
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quantity Iξ̂δS can be reexpressed using the anomaly operator as

Iξ̂δS =

∫

N
∆ξ̂(`

′ + b′) + iξ(L
′ + d`′) , (3.17)

where we find both of the contributions that arise in the formula for the exten-

sion, as discussed below (3.11).t Restricting to ξa that is tangent to N , we see

that Aξ and ∆ξ̂(`
′ + b′) coincide. Hence, ∆ξ̂(`

′ + b′) must be expressible purely

in terms of intrinsic quantities to be consistent with this generalized symmetry

principle.

The charge algebra (3.10), (3.11) was derived for localized charges Hξ con-

structed without employing the corner improvement described in Subsec. 2.5. When

working with the improved charges H̃ξ defined as integrals of the improved charge

density (2.46), the Poisson bracket of the charges is again given by the BT bracket

(3.6) after replacing the flux terms involving Fξ̂ to the modified fluxes F̃ξ̂, defined

in (2.48). As before, the charge algebra reproduces the modified bracket algebra of

the vector fields up to an extension (derived in App. B),

{H̃ξ, H̃ζ} = H̃Jξ, ζ K + K̃ξ,ζ , (3.18)

K̃ξ,ζ =

∫

∂Σ

(
iξ∆ζ̂(`

′ + b′ + dc′)− iζ∆ξ̂(`
′ + b′ + dc′)

)
. (3.19)

An important property of the BT bracket is that it reduces to a Dirac bracket

for the generators Hξ when boundary conditions are imposed to make them inte-

grable, meaning they satisfy Hamilton’s equation (2.28) with no fluxes. For a flux

in Dirichlet form, this boundary condition is just that the intrinsic quantities on

the surface are fixed. In this case, since we also require that ∆ξ̂(`
′ + b′) is con-

structed purely from intrinsic quantities, the boundary condition also imposes that

∆ξ̂(`
′ + b′) is constant on the constrained phase space, and hence δKξ,ζ = 0. In

this case, the vector fields generating the symmetry must be chosen to preserve the

boundary condition, and we find that the generators Kξ,ζ yield a central extension

of the vector field algebra, as required by general arguments32,88,89 on the properties

of group actions on a symplectic manifold.

The more general setup considered in this work does not impose such a boundary

condition, and this allows for Abelian extensions or more general forms of the

algebra. The new generators Kξ,ζ appearing in the extension are functionals of

the intrinsic geometry evaluated on a slice of the boundary N . It is helpful to

view the collection of all such intrinsic functionals as forming an Abelian algebra of

boundary observables localized on the cut ∂Σ. The charges Hξ then act on any such

functional f [hij ], generating its evolution along the vector ξa just as in Eq. (3.14),

{Hξ, f [hij ]} = −Iξ̂δf [hij ] . (3.20)

tAs a side consequence, this demonstrates that extensions appear in the bracket of canonical

charges only for transformations that do not leave the subregion action invariant.
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Hence, even when ` is covariant so that the extension terms Kξ,ζ in (3.10) vanish,

we can still construct an extended algebra by allowing the generators Hξ to act on

the intrinsic functionals f [hij ]. These intrinsic functionals are reminiscent of the

edge modes arising in Ref. 90 when accounting for the Hayward term in the gravi-

tational subregion action. It would be interesting to further explore this connection

between edge mode degrees of freedom and the action of the localized charges Hξ

on functionals of intrinsic data.

4. Vacuum General Relativity at Null Infinity

In the formalism developed in the past two sections, we have implicitly assumed

that the boundaries N are at finite locations in space–time, and that all quantities

are finite on those boundaries. In Sec. 5, we will extend the formalism to handle

the case of asymptotic boundaries, treated in a conformal completion framework

to bring them to finite locations. In this context, the Lagrangian and symplectic

potential can diverge at the boundaries and must be suitably renormalized using

the techniques of holographic renormalization.21,27,28,31,91 In this section, we take a

detour to provide a motivating example for our treatment of holographic renormal-

ization of Sec. 5: an analysis of various asymptotic symmetry groups for vacuum

general relativity in asymptotically flat space–times.

As discussed in the introduction, in recent years a number of different field con-

figuration spaces have been suggested that modify the boundary conditions imposed

at I +, and that give rise to extensions of the Bondi–Metzner–Sachs (BMS) group

of asymptotic symmetries. The BMS group arises when one defines a field configura-

tion space by fixing some of the diffeomorphism freedom on the boundary. However,

some of the relevant linearized diffeomorphisms are not degeneracy directions of the

symplectic form, and thus do not correspond to gauge degrees of freedom. Hence it

is a nontrivial restriction on the theory to impose these conditions. Lifting some of

the boundary conditions leads to an enlarged symmetry group called the generalized

BMS group.29–31,46

In this section, we first review the field configuration space definitions which lead

to the BMS group and generalized BMS groups, using the language of Ref. 32. We

then further relax the boundary conditions at null infinity so as to uncover an even

bigger symmetry group. This procedure allows us to uncover new boundary degrees

of freedom, or edge modes.16,17,92,93 The enlarged symmetry group coincides with

the symmetry group on finite null surfaces derived in Ref. 32. Following Ref. 45 we

will call this group the Weyl BMS group. Some of the details of the analysis are

relegated to App. E.

4.1. Field configuration spaces

We describe asymptotically flat space–times using the conformal completion frame-

work, reviewed in App. D. Some of the relevant fields on space–time are the physical

metric g̃ab, the conformal factor Φ, the unphysical metric gab = Φ2g̃ab and normal

na = ∇aΦ, while some of the fields on I + are the null generator ni, inaffinity κ,
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and volume forms ηijk and µij . We restrict attention throughout to 3 + 1 dimen-

sions. Higher-dimensional space–time does possess supertranslation symmetries94

and associated charges,96,u and it would be interesting to investigate analogous

extensions of those symmetry groups.

We now review a number of field configuration spaces corresponding to different

boundary conditions at I +. To start, we fixM and I + and consider the set of all

asymptotically flat space–times (M, gab,Φ). Since everything should be invariant

under the conformal transformation (gab,Φ) → (e−2σgab, e
−σΦ), it is convenient

to fix the conformal freedom by fixing a choice of conformal factor Φ0 on a neigh-

borhood D of I +, with Φ0 = 0 and ∇aΦ0 6= 0 on I +. We now define the large

configuration phase of all unphysical metrics with that conformal factor:

Γ0 = {(M, gab,Φ) |Φ = Φ0 on D, G̃ab = 0} . (4.1)

This is the most general configuration space consistent with the equations of motion.

All of the spaces we will consider will correspond to subspaces of Γ0 obtained by

imposing specific boundary conditions.

Consider first the BMS field configuration space.34,46 We fix a conformal factor

Φ0 on a neighborhood D of I +, fix a particular unphysical metric g0 ab on I +,

and define

ΓBMS = {(M, gab,Φ) |gab|I + = g0 ab|I + , Φ = Φ0 on D, ∇a∇bΦ|I + = 0} . (4.2)

Here we have used the conformal freedom (D.3) to fix the conformal factor, imposed

the Bondi condition (D.9) to set ∇a∇bΦ to zero on I +, and fixed the unphysical

metric on I +. The original justification for imposing these conditions was that the

entire space Γ0 can be obtained by taking the orbit of ΓBMS under diffeomorphisms

and conformal transformations.34 However, not all of these diffeomorphisms are

gauged in the sense of corresponding to degeneracy directions of the symplectic

form (see Sec. 6 for more details), which has led to the recent consideration of

enlarged configuration spaces and weaker boundary conditions.14 The enlargement

leads to new degrees of freedom on the boundary, known as boundary gravitons or

edge modes.16,17,92,93

We next consider the generalized BMSv configuration space of Campiglia and

Laddha.29–31 Here we fix a conformal factor Φ0 on a neighborhood D of I +, fix

a volume form η̄0 ijk and null generator n̄i0 on I + that satisfy the identity (D.7c)

with κ = 0, and define46

ΓGBMS = {(M, gab,Φ) |ni = n̄i0, ηijk = η̄0 ijk, Φ = Φ0 on D, ∇a∇bΦ|I + = 0} .
(4.3)

uReference 95 argued for imposing boundary conditions that remove these supertranslation sym-

metries, because of the divergence of the associated symplectic flux. However, as argued in Sec. 5
of this paper, such divergences can generically be addressed using holographic renormalization
and so should not be used as a criterion for determining which boundary conditions to impose.
vThe terminology “extended BMS group” was used in Ref. 46, but “generalized BMS group”
seems to be more common.
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Here the normal ni and volume form ηijk are understood to be computed from gab
and Φ as described in App. D. Compared to the BMS configuration space (4.2), we

have replaced the unphysical metric evaluated on I + with the volume form and

the intrinsic normal.

The field configuration space can be further expanded by dropping the volume

form. This yields the Weyl BMS field configuration space45

ΓWBMS = {(M, gab,Φ) |ni = n̄i0, Φ = Φ0 on D, ∇a∇bΦ|I + = 0} . (4.4)

Note that the three different configuration spaces we have defined are related by

ΓBMS ⊂ ΓGBMS ⊂ ΓWBMS , (4.5)

when n̄i0 and η̄0 ijk are those computed from g0 ab on I .

4.2. Symmetry groups

We now turn to describing the symmetry groups and algebras of the three field

configuration spaces (4.2)–(4.4). The derivations of these groups are given in App. E,

where we use the universal structure approach of Ashtekar97 and the techniques of

Ref. 32.

We start by picking a convenient class of coordinate systems on I +. Choose

a cross-section C of I + and choose coordinates θA = (θ1, θ2) on C. Extend the

definition of θA to all of I + by demanding that θA be constant along integral

curves of n̄i0. Here for the spaces ΓGBMS and ΓWBMS, n̄i0 is the intrinsic normal that

appears explicitly in the definitions, while for the BMS case (4.2), n̄i0 is computed

from the metric g0 ab on I + and from Φ0. Along each integral curve we define a

parameter u by setting u = 0 on C and demanding that

n̄0 = ∂/∂u . (4.6)

This construction yields a coordinate system yi = (u, θA) on I +.

In this class of coordinate systems, the diffeomorphisms ϕ : I + → I + have

the following form for all three groups:

û = eα(θA)
[
u+ γ(θA)

]
, (4.7a)

θ̂
A

= χA(θB) , (4.7b)

where for a point P on I + we have defined yi = yi(P) and ŷi = yi(ϕ(P)). Equa-

tion (4.7b) defines a mapping χ from C to itself, or equivalently from the space of

generators of I + to itself. This set of maps is isomorphic to the set Diff(S2) of

diffeomorphisms of the two-sphere. Writing the map (4.7) as (α, γ, χ), the group

composition law is

(α2, γ2, χ2) ◦ (α1, γ1, χ1) = (α3, γ3, χ3) , (4.8)
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where

α3 = α1 + α2 ◦ χ1 , (4.9a)

γ3 = γ1 + e−α1γ2 ◦ χ1 , (4.9b)

χ3 = χ2 ◦ χ1 . (4.9c)

The linearized version of the mapping (4.7) is ŷi = yi+ ξi, where the generator ξ is

ξ =
[
γ(θA) + α(θA)u

]
∂u + ξA(θB)∂A . (4.10)

Using the notation (4.7), the structure of the three different groups can be

summarized as follows:

• For the BMS group, as is well known, the function γ parametrizes super-

translations and can be freely specified. The map χ and the function α are

constrained by

χ∗q̄AB = e2αq̄AB , (4.11)

where χ∗ is the pullback operator and qAB is the spatial metric. It follows that

χ is a global conformal isometry of the sphere, of which there is a six-parameter

family isomorphic to the Lorentz group, and α is determined by χ. The group

structure is the semidirect product

SO(1, 3) n S , (4.12)

where S is the normal subgroup of supertranslations given by α = 0, χ = identity,

and the subgroup γ = 0 is isomorphic to the Lorentz group SO(1, 3). Note that

the semidirect product in Eq. (4.12) has the property that the supertranslation γ

transforms under the conformal isometries of the two-sphere as a scalar density

of weight 1/2, γ → e−αχ∗γ, from Eqs. (4.9) and (4.11).98

• For the generalized BMS group, the only change is that the six-parameter group

of conformal isometries is replaced by the infinite-dimensional group Diff(S2) of

diffeomorphisms of the two-sphere. Thus, the supertranslation function γ can

be chosen freely as before, the diffeomorphism χ can be freely chosen, and the

function α is determined as a function of χ by

χ∗µ̄AB = e2αµ̄AB , (4.13)

where µ̄ij = −η̄ijkn̄k. The group structure is the semidirect product

Diff(S2) n S . (4.14)

The semidirect product here has the property that the supertranslation γ still

transforms as a scalar density of weight 1/2,

γ → e−αχ∗γ , (4.15)

but now under all diffeomorphisms of the two-sphere instead of just the conformal

isometries. This follows from Eqs. (4.9) and (4.13).
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• Finally, for the Weyl BMS group, the constraint (4.13) that determines α as a

function of χ is lifted, and α can now be freely chosen. This group is isomorphic

to the group of symmetries on any null surface at a finite location defined in

Ref. 32, as can be seen by comparing Eqs. (4.7) here with Eqs. (4.7) of that

paper. The group has the following structure. We define the subgroup T of all

supertranslations to be given by χ = identity, which is parametrized by α and γ.

This is a normal subgroup and the total group has the structure

Diff(S2) n T . (4.16)

The supertranslation group T contains two subgroups. First, there is the sub-

group S given by α = 0, parametrized by γ. These were called affine supertrans-

lations in Ref. 32 since they correspond to displacements in affine parameter.

This is a normal subgroup of both T and of the full group. Second, there is the

non-normal subgroup W given by γ = 0, parametrized by α. These were called

Killing supertranslations in Ref. 32 since they correspond to displacements in

Killing parameter when there is a Killing vector field. They were also called Weyl

rescalings in Ref. 45, as mentioned earlier. The supertranslation group has the

structure

T =W n S , (4.17)

so the full symmetry group can be written as

Diff(S2) n (W n S) . (4.18)

Here the first semidirect product is such that the supertranslation functions α

and γ transform as scalars under diffeomorphisms of the two-sphere, not as scalar

densities,w,x from Eqs. (4.9).

5. Gravitational Charges at Asymptotic Boundaries:

Holographic Renormalization

5.1. Introduction and overview

We now return to the context of general theories and general space–time dimen-

sions. The general formalism for gravitational boundary symmetries and charges

wHowever, if we change from the Diff(S2) subgroup (α, γ, χ) = (0, 0, χ) to the alternative Diff(S2)

subgroup given by (α, γ, χ) = [α(χ), 0, χ], with α(χ) the function of χ given by imposing Eq. (4.11),
then in the semidirect product (4.18) the Killing supertranslations W transform as scalars but

the affine supertranslations S transform as scalar densities as in Eq. (4.15), from Eqs. (4.9). This

alternative Diff(S2) subgroup is the one that arises naturally within the generalized BMS subgroup
(α, γ, χ) = [α(χ), γ, χ], which is why affine supertranslations transform as scalar densities in the
GBMS and BMS cases.98

xOne can also express the Weyl BMS group as the semidirect product (Diff(S2) nW) n S. In
this case the action of the second semidirect product endows the affine supertranslations with

a certain weight under the Weyl rescalings W, as well as an independent density weight under
the diffeomorphisms, which again can be adjusted at will by choosing the Diff(S2) subgroup
appropriately.
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developed in Sec. 2 assumed that the boundaries are at finite locations in space–

time (for example future event horizons), and that all the quantities defined are

finite on those boundaries. In this section we will extend the formalism to handle

cases of asymptotic boundaries, treated in a conformal completion framework to

bring them to finite locations.y In general the Lagrangian and symplectic poten-

tial can then diverge at the boundaries. Some previous general treatments of the

covariant phase space framework either did not treat asymptotic boundaries in

general,53 or used the finiteness of certain quantities on the boundary as a criterion

to determine which boundary conditions to impose and which field configuration

space to use,34 which is in general unnecessarily restrictive.

The key idea of the extended formalism is holographic renormaliza-

tion,21,26–31,36,100 which exploits the boundary canonical transformations and JKM

transformations discussed in Subsec. 2.4 to make the integrated action and sym-

plectic potential θ′ finite on the boundary. Once one has a renormalized symplectic

potential, the formalism of Sec. 2 then yields finite gravitational global and localized

charges.

In Sec. 2 we discussed the fact that it is sometimes necessary to introduce a back-

ground structure which violates covariance in order to obtain gravitational charges.

For example this occurs with certain boundary conditions on finite null surfaces.13

Similarly, here it is sometimes the case that the transformations that are necessary

to renormalize the Lagrangian and symplectic form require the introduction of some

background structures. This is the case, for example, for generalized BMS symme-

tries (Subsec. 4.1) in vacuum general relativity at null infinity, where it was shown

in Ref. 46 that a completely covariant renormalization of the symplectic potential

is impossible. A similar situation arises in asymptotically AdS space–times, where

it is necessary to introduce a space–time foliation near the boundary as a back-

ground structure when renormalizing the action. Dependence of the renormalized

quantities on this foliation signals the appearance of Weyl anomalies in the dual

CFT description.21,26,27,36,58

The various possible background structures that we will consider are (i) a folia-

tion of space–time near the boundary; (ii) a choice of conformal factor Φ near the

boundary; and (iii) a choice of vector field v near the boundary which satisfies

va∇aΦ = 1, which we will call a rigging vector field . We expect that in many

situations only the foliation will be necessary to affect holographic renormalization.

However, later in this section will make use of the more restrictive assumption of

the existence of a rigging vector field to argue that holographic renormalization can

always be successfully carried out.

We start by defining our notation and conventions for the covariant phase space

framework with asymptotic boundaries. As discussed in Subsec. 2.2, our phase

yAlthough we assume a conformal completion, our general framework would also be applicable to
situations like odd-dimensional asymptotically flat space–times where the conformal framework
does not apply,99 by making use of a radial foliation.
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Dυ

i+

i0

I +

Nυ

Σf
υ

Συ

Figure 1: Standard setup for holographic renormalization in asymptotically flat spacetimes. The subre-
gion under consideration is associated with a segment of I + to the future of a spatial surface Σ. The
cutoff subregion Dυ is depicted in gray, and its boundary components Nj,υ consist of Συ, Nυ, and Σf

υ.

in spacetime, making all cutoff integrals manifestly finite.

On each boundary we define a boundary action `′j, and on the boundaries ∂Nj we define
corner actions c′j. Then the total action is defined to be

Sυ =

∫

Dυ
L′ +

∑

j

∫

Nj,υ
`′j +

∑

j

∫

∂Nj,υ
c′j. (5.2)

A successful renormalization of the action consists of finding definitions of `′j and c′j so that
Sυ has a finite limit as υ → 0. We will generally drop the subscript j in the remainder of
this section.

In the action (5.2) we allow the boundary term `′j to have different forms on different
boundaries Nj, and be in effect discontinuous across the interfaces ∂Nj between two different
boundaries. This is the reason for including the corner terms, which otherwise would give a
vanishing contribution if `′j + dc′j were a continuous function on ∂D. An additional reason
for separating out corner terms is as follows. One might imagine eliminating such terms by
replacing `′j → `′j + dc′j. However such a replacement may violate corner covariance; it can
arise that there exist definitions of c′j that are covariant with respect to corner-preserving
diffeomorphisms, but no extensions of these definitions to objects that are fully covariant
with respect to diffeomorphisms of the entire boundary.

The general scheme for holographic renormalization can be described in terms of a number
of stages, starting with conventional stages to renormalize the action, and then subsequent
stages to renormalize the symplectic potential and to adjust corner terms. We now give an
overview of the various stages. Although in practice the charges and other JKM-invariant
quantities would only be computed at the end of the process, we list in the overview which
of the these quantities would change at each stage, in order to clarify the logical structure of

39

Fig. 1. Standard setup for holographic renormalization in asymptotically flat space–times. The
subregion under consideration is associated with a segment of I + to the future of a spatial surface

Σ. The cutoff subregion Dυ is depicted in gray, and its boundary components Nj,υ consist of Συ ,

Nυ and Σfυ .

subspaces are defined by a space–time subregion U , and a spatial slice Σ whose

boundary ∂Σ lies in ∂U . We define D = U ∩I+(Σ), the intersection of the subregion

with the chronological future of the spatial slice, i.e. the set of all points to the future

of Σ in U . The region D will be the setting for the action principle for the phase

subspace. We will denote by Nj the various components of the boundary of D,

one of whom will be the portion of the boundary N discussed in Subsec. 2.2 in

the chronological future of Σ, and one of whom will be the spatial slice Σ. For

asymptotic boundaries we use the conformal completion framework and work with

conformally rescaled fields which are finite on the boundary. The conformal factor Φ

is chosen to be vanishing on asymptotic boundaries and to have a nonzero gradient

there, and to be positive on D.

In order to discuss renormalized actions, we define a cutoff manifold Dυ to be

the set of points in D with Φ > υ, which excludes a neighborhood of the asymptotic

boundaries. We will assume that the boundary of the truncated manifold can be

decomposed into a number of components in the same way as the full manifold:

∂Dυ =
⋃

j

Nj,υ . (5.1)

The standard example we will have in mind is depicted in Fig. 1. Here, the region

Dυ has a single timelike boundary Nυ that limits to a segment of I +, and Συ
comprises the past boundary of Dυ. We also include a future boundary Σf

υ so that

the cutoff region is bounded in space–time, making all cutoff integrals manifestly

finite.
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On each boundary we define a boundary action `′j , and on the boundaries ∂Nj
we define corner actions c′j . Then the total action is defined to be

Sυ =

∫

Dυ
L′ +

∑

j

∫

Nj,υ
`′j +

∑

j

∫

∂Nj,υ
c′j . (5.2)

A successful renormalization of the action consists of finding definitions of `′j and

c′j so that Sυ has a finite limit as υ → 0. We will generally drop the subscript j in

the remainder of this section.

In the action (5.2) we allow the boundary term `′j to have different forms on

different boundaries Nj , and be in effect discontinuous across the interfaces ∂Nj
between two different boundaries. This is the reason for including the corner terms,

which otherwise would give a vanishing contribution if `′j + dc′j were a continuous

function on ∂D. An additional reason for separating out corner terms is as follows.

One might imagine eliminating such terms by replacing `′j → `′j+dc′j . However such

a replacement may violate corner covariance; it can arise that there exist definitions

of c′j that are covariant with respect to corner-preserving diffeomorphisms, but no

extensions of these definitions to objects that are fully covariant with respect to

diffeomorphisms of the entire boundary.

The general scheme for holographic renormalization can be described in terms

of a number of stages, starting with conventional stages to renormalize the action,

and then subsequent stages to renormalize the symplectic potential and to adjust

corner terms. We now give an overview of the various stages. Although in practice

the charges and other JKM-invariant quantities would only be computed at the end

of the process, we list in the overview which of these quantities would change at each

stage in order to clarify the logical structure of the process. In later subsections we

will show that the steps described here can be carried out successfully for general

theories using a rigging vector field and a boundary vector field as background

structures (although we expect that a bulk foliation will in general be sufficient).

(1) We start with a divergent Lagrangian L′ and symplectic potential θ′. We choose

the decomposition (2.12) to make `′ = β′ = 0. We assume that the initial

quantities are covariant, so that b′ = λ′ = 0, and it follows from Eq. (2.43) that

c′ = γ′ = ε = 0. The action S, symplectic form Ω, gravitational charges H̃ξ

and flux E are all divergent.

(2) We perform a boundary canonical transformation (2.38) with B and Λ chosen

to put the flux E into Dirichlet form. The modifies E , `′, β′, S and H̃ξ, and

in particular involves adding a boundary term to `′. For example, in vacuum

general relativity with a timelike boundary the corresponding boundary term

B is the Gibbons–Hawking–York term.

(3) We perform a second boundary canonical transformation (2.38) to make L′+d`′

finite and also to make the flux E finite, while preserving the Dirichlet form of

the flux. The parameter B of the transformation is a boundary counterterm that

is added to `′ to make L′ + d`′ finite on the boundary, which is a functional

of the intrinsic data on the boundary.26,27,91 The parameter Λ is computed
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from B in the same way that the symplectic potential θ′ is computed from the

bulk Lagrangian, by varying with respect to the intrinsic data, see for example

Ref. 55. Schematically

δB =
δB

δ(intrinsic)
δ(intrinsic) + dΛ ,

which guarantees that the modification E → E + δB − dΛ to the flux preserves

Dirichlet form. The quantities which change in this step are E , `′, β′, Ω, S

and H̃ξ. In Subsec. 5.3 we show explicitly that it is always possible to find

a boundary canonical transformation (B,Λ) that makes both L′ + d`′ and E
finite. (It should be possible to always specialize the transformation to preserve

Dirichlet form although we do not show this here.)

(4) We next repeat these steps in one lower dimension to adjust corner terms. We

perform a corner canonical transformation (2.51) parametrized by forms F and

ζ in order to put the corner flux ε into Dirichlet form. This involves identi-

fying appropriate intrinsic degrees of freedom on the corners ∂N . Additional

quantities that change are S and H̃ξ.

(5) We then perform a second corner canonical transformation (2.51) to make the

integrated action S and corner flux ε finite, while maintaining the Dirichlet

form of the corner flux. The parameter −F of the transformation is a corner

counterterm that is added to c′ to make the integrated action finite, which is a

functional of the intrinsic data on the corner. The parameter ζ is computed from

F as described in step (3) above, by varying with respect to the intrinsic data,

to ensure that the modification (2.51) to the corner flux ε preserves Dirichlet

form. The gravitational charges H̃ξ as well as the symplectic form Ω are now

finite, if the corner terms can be chosen so that ∆ξ̂(`
′ + dc′) is finite [from

Subsec. 2.5 the charges H̃ξ will be finite if E , L′ + d`′ and ∆ξ̂(b
′ + `′ + dc′) are

all finite, and b′ = 0 here]. In Subsec. 5.4 we show explicitly that this is the

case: it is always possible to find a corner canonical transformation (f, ζ) of

this kind that makes the integrated action S, corner flux ε and `′ + dc′ finite.

The general proof requires the introduction of additional background structure

on the boundary.

(6) We use a JKM transformation (2.36) with a = `′ and ν = −β′. This step is

not necessary to obtain finite charges, but it is convenient in order to make

other quantities in the formalism finite. It makes finite the Lagrangian L′ and

symplectic potential θ′, and also modifies b′, λ′ and `′, but does not affect the

charges, action or symplectic form.

(7) Finally we use a transformation of the form (2.9) with e = c′, χ = γ′ and
c
r =

c
ρ = 0. This step is also optional, since it does not change the charges, but

it is convenient as it makes c′ and γ′ vanish and λ′ finite. The other quantity that

is modified is b′, which can still be divergent. However ∆ξ̂b
′ = ∆ξ̂(b

′ + `′ + dc′)

will be finite (since this quantity was finite at step (5) and is not modified by

steps (6) or (7)), which is sufficient for finiteness of the charges.
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Table 3. A summary of the steps in the general holographic renormalization procedure of this
paper. The first row lists the numbered steps described in Subsec. 5.1, and the second row the

transformations used in getting to each step from the previous step (detailed in Table 2). The

remaining rows list the various quantities that occur in the formalism, their names, defining
equations, and how they transform under the steps. The symbol → means that the corresponding

quantity is altered by the transformation of that step. The symbols ∞, f and 0 mean that the

quantity is diverging, finite and vanishing, respectively, at the end of the step.

Step 1 2 3 4 5 6 7

Transformations B, Λ B, Λ F , ζ F , ζ a, ν e, χ

Quantity Eqs.

S Action (2.13) ∞ →∞ →∞ →∞ → f

Ω Sympl. form (2.18) ∞ →∞ → f∫
∂Σ h̃ξ Integ. charge (2.46) ∞ →∞ →∞ →∞ → f

L′ Bulk Lagrangian (2.5) ∞ ∞ ∞ ∞ ∞ → f

θ′ Symplectic pot. (2.5) ∞ ∞ ∞ ∞ ∞ → f

E Boundary flux (2.12) ∞ →∞ → f

b′ Pot., noncovar. (2.7) 0 0 0 0 0 →∞ →∞
λ′ Pot., noncovar. (2.7) 0 0 0 0 0 →∞ → f

`′ Boundary action (2.12) 0 →∞ →∞ ∞ ∞ → 0

β′ Corner term (2.12) 0 →∞ →∞ ∞ ∞ → 0

c′ Corner action (2.43) 0 0 0 →∞ →∞ ∞ → 0

γ′ (2.43) 0 0 0 →∞ →∞ ∞ → 0

ε Corner flux (2.43) 0 →∞ →∞ →∞ → f

The algorithm described here is summarized in Table 3, which shows which

quantities change at each step, and when quantities diverge or become finite.

Although we show that this procedure can always be carried out in order to

obtain finite renormalized charges, there are a number of subtleties that arise in the

asymptotically flat case that are not present in asymptotically dS or AdS spaces.z

These subtleties relate to the form of the counterterm for the action `ct and their

dependence on the free data associated with the cutoff surface N . In asymptotically

(A)dS spaces, this free data can be chosen to be the induced metric on the cutoff

surface, which is fully unconstrained by the equations of motion in the limit that

the cutoff is taken to the boundary. The counterterms needed to renormalize the

action are covariantly constructed from the boundary metric, and hence they are

given by local expressions in terms of the free data. Locality and covariance of the

counterterms are important in the holographic correspondence, as they allow the

on-shell action to be interpreted as the generating functional of correlation functions

in a local CFT dual.25,101,102

zWe thank Kostas Skenderis and Ioannis Papadimitriou for discussions on this point.
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For asymptotically flat space–times, one finds that the induced metric on the

cutoff surface is not freely specifiable, but instead satisfies a number of differential

constraints in the limit that the cutoff surface is taken to infinity.103 Even though

counterterms that are local and covariant with respect to the induced metric on

the cutoff surface can be constructed,91 since this induced metric is not freely

specifiable, the variation of the on-shell action with respect to this induced metric

is necessarily subject to constraints. This generically leads to nonlocal dependence

of the counterterms on the free data on the cutoff surface, and further complicates

a simple holographic interpretation for asymptotically flat spaces.74,103,104 While

this does not affect the main results of this work on obtaining finite gravitational

charges, addressing these subtleties is an important question for further developing

the holographic correspondence in flat space.

The remainder of this section is organized as follows. In Subsec. 5.2 we provide

a very general argument which shows that the existence of a renormalized total

action (including bulk, boundary and corner terms) is sufficient to show that it

is possible to renormalize the symplectic potential. The renormalized symplectic

potential and charges will in general depend on the choice of foliation used to

renormalize the action, as discussed above. In Subsec. 5.3 we present a similar and

complementary result. Given any covariant theory in which the Lagrangian and

symplectic potential diverge near the boundary, we demonstrate the existence of

a renormalized Lagrangian and a renormalized symplectic potential, by explicitly

computing the counterterms that one needs to subtract off in order to obtain finite

quantities. These counterterms again depend on the choice of conformal factor, and

in addition depend on a choice of rigging vector field.

As an application of our holographic renormalization formalism, in Sec. 6 we

specialize to vacuum general relativity in asymptotically flat (3 + 1)-dimensional

space–times, specialize to the generalized BMS field configuration space, and com-

pute the renormalized symplectic potential and the associated localized charges at

future null infinity.

5.2. Existence of renormalized symplectic potential :

General argument assuming a finite action

In this subsection we show that a renormalized action functional is sufficient to

provide a renormalized symplectic potential. From this one can obtain a complete

set of IR finite observables which act on the boundary phase space.

We emphasize from the outset that noncovariances and background structures

play a crucial role in this renormalization procedure, which thus avoids the no-go

theorem of Ref. 46. In particular, the general argument relies on the introduction

of a background foliation near the boundary, on which the renormalized action

depends [cf. Eq. (5.2)]. Thus, any renormalization of the boundary action can it-

self involve noncovariant counterterms. This is entirely analogous to the way holo-

graphic renormalization works in AdS/CFT, where a radial foliation is introduced
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near the AdS boundary, and different choices of foliations lead to different values

of the boundary action.21,26–28,36,58 On the boundary, this is simply the statement

that UV regulators break conformal invariance. However, we do demand that the

renormalization procedure respects boundary covariance, a point which was also em-

phasized in Ref. 53. Thus, we do not introduce any background structures beyond

the foliation.

We start by taking a variation of the integrated action (5.2) and using the equa-

tion of motion (2.5) to eliminate the bulk contribution. Applying the decomposition

(2.12) of the symplectic potential results inaa

δSυ =
∑

j

∫

Nj,υ
Ej +

∑

j

∫

∂Nj,υ
(β′j + δcj) . (5.3)

We next use the decomposition (2.43) of β′j to give

δSυ =
∑

j

∫

Nj,υ
Ej +

∑

j

∫

∂Nj,υ
(λ′ + εj) . (5.4)

Finally, we note that λ′ is assumed to be continuous on ∂Dυ, implying continuity

at the interfaces between different boundaries Nj . Since the contributions from λ′

always occur in pairs with opposite signs coming from the two Nj,υ intersecting at

each corner, the overall contribution from λ′ vanishes, and so

δSυ =
∑

j

∫

Nj,υ
Ej +

∑

j

∫

∂Nj,υ
εj . (5.5)

By assumption, the left-hand side has a finite limit as υ → 0, implying that the sum

of all the boundary and corner fluxes on the right must also be finite in the limit.

Hence, if any individual contribution in these sums diverges, it must be canceled

by a divergence appearing in a different term. In this case, one expects to be able

to choose each of the corner fluxes εj such that Ej + dεj has a finite limit.

To see how this is borne out in more detail, we can focus on the standard

example given in Fig. 1 in which the codimension-1 boundaries consist of Συ, Σfυ
and Nυ, and the corners are ∂Συ and ∂Σfυ. The spatial surfaces Συ and Σfυ intersect

the Φ foliation transversally, and so any divergence coming from an integral of the

respective fluxes over these surfaces must be localized in the Φ → 0 regions of

these surfaces, which are just their boundaries. Since the boundaries of Συ and Σfυ
coincide with the boundaries of Nυ, it follows that any remaining divergence in the

flux on Nυ must cancel against divergences at its boundary. Hence, it is possible

to shift the flux EN by an exact term to cancel its divergence. This allows us to

conclude that we can arrange for the εj to be chosen such that Ej + dεj is finite on

each boundary.

aaNote that some of the boundaries ∂Nj,υ may have multiple components, in which case the
quantities c′j and εj are understood to be independently specifiable on each component.
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Finally, from the decomposition (2.43), it follows that the symplectic poten-

tial θ′ is finite up to exact terms and total variations. Hence we can find a JKM

transformation (2.36) that makes the symplectic potential at any given asymptotic

boundary finite. This renormalized symplectic potential will in general depend on

the choice of foliation.

5.3. Explicit renormalization using background structures

In this subsection we provide an explicit algorithm for holographic renormalization

in general contexts, based on allowing the counterterms to depend on a rigging

vector field in addition to a foliation. The intent is to provide an existence proof

for background-dependent counterterms. However we expect that in applications it

will be generally possible to find counterterms that depend only on a foliation. Note

that the dependence of the counterterms on the additional background structure

provided by the rigging vector is possibly related to the nonlocality of these terms

relative to the free data on the asymptotic boundary, as discussed in Refs. 103

and 104.

As discussed in Subsec. 5.1, the setup is that we have a region D in a (d + 1)-

dimensional space–time, and a portion N of the boundary of D, where we are

using conformal compactification to treat the asymptotic boundary N as a finite

boundary. We assume that the Lagrangian L′ and symplectic potential θ′ are

smooth in the interior of D but can diverge on N , and assume a smooth conformal

factor Φ with Φ = 0 on N . We fix a rigging vector field v which is defined on a

neighborhood of N , is nowhere vanishing, and satisfies va∇aΦ = 1.105,106 Note that

Φ is determined in terms of v from this condition and the condition Φ = 0 on N .

Consider now a boundary canonical transformation (2.38) parametrized by B

and Λ. If we combine this with a JKM transformation (2.36) with a = B and

ν = −Λ, the Lagrangian and symplectic potential transform as

L′ → L′ren = L′ + dB , (5.6a)

θ′ → θ′ren = θ′ + δB − dΛ , (5.6b)

The two main results of this section are:

(1) There exists a transformation of this kind for which the renormalized Lagran-

gian and symplectic potential (5.6) (and not just their pullbacks to surfaces of

constant Φ) have finite limits to the boundary N . We will construct this trans-

formation explicitly. This is sufficient to make the charges H̃ξ finite, assuming

the property of corner terms described in step (3) of Subsec. 5.1.

(2) The anomaly

∆ξ̂¯
θ′ren (5.7)

in the pullback to the boundary of the renormalized symplectic potential is the

sum of an exact term and a total variation, both of which are finite on the

boundary.
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The derivation of these results is given in App. F. Here we summarize some of the

details.

5.3.1. Renormalized symplectic potential and Lagrangian

We start by defining some notations. We define for υ > 0 a map

πυ : N → D , (5.8)

which moves any point υ units along the integral curve of v passing through that

point. The image of N under this mapping is the surface Φ = υ which we will denote

by Nυ. Any differential form Λ on a neighborhood of N is uniquely determined by

specifying (i) ivΛ, and (ii) the pullbacks π∗υΛ for the values of υ that cover the

neighborhood, via Λ = dΦ ∧ ivΛ + Λh with ivΛh = 0 and π∗υΛh = π∗υΛ.

The quantities B and Λ that define the boundary canonical transformation (5.6)

are given by

ivB = 0 , (5.9a)

π∗υB =

∫ υ0

υ

dῡ π∗ῡivL
′ , (5.9b)

ivΛ = 0 , (5.9c)

π∗υΛ = −
∫ υ0

υ

dῡ π∗ῡivθ
′ , (5.9d)

where we have chosen a fixed υ0 > 0. The renormalized Lagrangian and symplectic

potential are given by

ivL
′
ren = 0 , (5.10a)

ivθ
′
ren = 0 , (5.10b)

π∗υθ
′
ren = π∗υ0

θ′ . (5.10c)

The expressions (5.9) and (5.10) become more transparent when expressed in a

suitable class of coordinate systems. We choose a coordinate system (x0, x1, . . . , xd)

for which x0 = Φ and v = ∂/∂x0. We define for convenience the basis d-forms,

(d− 1)-forms and (d− 2)-forms

$ = dx1 ∧ · · · ∧ dxd , (5.11a)

$i = −i∂i$ = (−1)idx1 ∧ · · · ∧ d̂xi ∧ · · · ∧ dxd , (5.11b)

$ij = i∂i$j , (5.11c)

where the hat on a basis one-form means that one-form is omitted in the wedge

product, and i and j run over 1 · · · d. We expand the symplectic potential θ′, La-

grangian L′, and boundary canonical transformation forms B and Λ as

L′ = L dx0 ∧$ , (5.12a)

θ′ = θ′ 0$ + θ′ i dx0 ∧$i , (5.12b)
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B = B0$ +Bi dx0 ∧$i , (5.12c)

Λ = Λi$i + Λij dx0 ∧$ij , (5.12d)

together with a similar notation for L′ren and θ′ren. Using these notations, Eqs. (5.9)

reduce to

Bi = 0 , (5.13a)

B0(υ, xj) =

∫ υ0

υ

dῡL(ῡ, xj) , (5.13b)

Λi(υ, xj) = −
∫ υ0

υ

dῡ θ′ i(ῡ, xj) , (5.13c)

Λij(υ, xj) = 0 , (5.13d)

where we have written (x0, x1, . . . , xd) = (υ, x1, . . . , xd) = (υ, xj). Similarly

Eqs. (5.10) reduce to

Lren = 0 , (5.14a)

θ′ iren = 0 , (5.14b)

θ′ 0ren(υ, xj) = θ′ 0ren(0, xj) = θ′ 0(υ0, x
j) . (5.14c)

We now turn to some examples of applications of this formalism. In many cases

we can split the Lagrangian and symplectic potential into diverging and finite pieces,

L′ = L′div + L′finite, θ′ = θ′div + θ′finite, such that the diverging pieces obey the

identity (2.5) on shell, δL′div = dθ′div. It is convenient then to compute the boundary

canonical transformation using just the diverging pieces, which is sufficient to make

L′ren and θ′ren finite. In this case the result (5.14) for the renormalized Lagrangian

and symplectic potential on the boundary becomes

Lren(0, xj) = Lfinite(0, xj) , (5.15a)

θ′ iren(0, xj) = θ′ ifinite(0, xj) , (5.15b)

θ′ 0ren(0, xj) = θ′ 0finite(0, xj) + θ′ 0div(υ0, x
j) . (5.15c)

If we can further choose υ0 to make the second term in Eq. (5.15c) vanish, then we

obtain

θ′ 0ren(0, xj) = θ′ 0finite(0, xj) , (5.16)

so the pullback of the renormalized symplectic potential is just the pullback of its

finite piece.

A class of examples which includes vacuum general relativity at null infinity

(see Sec. 6) is when L′div and θ′div are finite polynomials in Φ−1. In this case the

second term in Eq. (5.15c) can be made to vanish by choosing υ0 =∞. The choice

υ0 = x0 = ∞ seems at first glance to be problematic, since the coordinates need

only be defined for a finite range of values of x0. However, we can regard the choice
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of value of υ0 as a specification of a prescription for finding antiderivatives of the

specific functions encountered in Eqs. (5.13), so the inconsistency can be finessed.

A more general class of examples is obtained by allowing log terms, which arise

for example in asymptotically AdS space–times. Suppose that there exists some

integer t for which ΦtL′ and Φtθ′ are smooth functions of Φ and Φ log Φ. Then we

can expand L′ and θ′ as

θ′ 0 =
−1∑

p=−t

∞∑

q=0

θ0(p,q)Φp(Φ log Φ)q + θ′ 0finite , (5.17a)

θ′ i =
−1∑

p=−t

∞∑

q=0

θi(p,q)Φp(Φ log Φ)q + θ′ ifinite , (5.17b)

L =
−1∑

p=−t

∞∑

q=0

L(p,q)Φp(Φ log Φ)q + Lfinite , (5.17c)

where the coefficients depend only on xi and not on x0 = Φ. The integrals in

Eqs. (5.13) can conveniently be evaluated by assuming similar expansions for the

integrals and equating coefficients of Φp(Φ log Φ)q, which yields recursion relations

that can be solved. This yields

Λi =
∞∑

k=−t+1
k 6=0

min(k,−1)∑

p=−t+1

p−1∑

j=−t

1

k





p−1∏

l=j+1

(
l

k
− 1

)
 θi(j,k−j−1)Φp(Φ log Φ)k−p

−
−1∑

p=−t

1

p
θi (p,−p−1)Φp(Φ log Φ)−p (5.18)

and

B0 = −
∞∑

k=−t+1
k 6=0

min(k,−1)∑

p=−t+1

p−1∑

j=−t

1

k





p−1∏

l=j+1

(
l

k
− 1

)
L

(j,k−j−1)Φp(Φ log Φ)k−p

+
−1∑

p=−t

1

p
L(p,−p−1)Φp(Φ log Φ)−p . (5.19)

Here we have effectively chosen υ0 =∞ for terms in the integrands with p+q < −1,

υ0 = 1 for p + q = −1, and υ0 = 0 for p + q > −1. These choices again make the

second term in Eq. (5.15c) effectively vanish,bb so we again recover the result (5.16).

bbNote that the condition δL′div = dθ′div is not satisfied in this case due to mixing with the finite
terms, but one can directly check that Eq. (5.16) is still valid.
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5.3.2. Anomalies of renormalized symplectic form and Lagrangian

Although the renormalized Lagrangian L′ren and renormalized symplectic potential

θ′ren are finite, they are no longer covariant, assuming one which starts with co-

variant quantities. In this section we will discuss the corresponding anomalies, which

are computed explicitly in App. F. This will yield the second result described above,

that the dependence of the pullback of the renormalized symplectic potential on

the background structures arises only through corner and boundary terms.

We will show that the anomalies in B and Λ are of the form

∆ξ̂B = (∆ξ̂B)finite + dκξ , (5.20a)

∆ξ̂Λ = (∆ξ̂Λ)finite + δκξ − dµξ − Iδ̂ξΛ , (5.20b)

where the indicated quantities are finite and κξ and µξ are quantities that in general

can diverge on the boundary. Inserting these expressions into Eqs. (5.6) for the

renormalized Lagrangian and symplectic potential, and acting with the anomaly

operator yields for field-independent symmetries

∆ξ̂L
′
ren = d(∆ξ̂B)finite , (5.21a)

∆ξ̂θ
′
ren = δ(∆ξ̂B)finite − d(∆ξ̂Λ)finite . (5.21b)

If we now take a pullback to the boundary, and use the fact that the pullback

operator commutes with the anomaly operator and the space–time and phase space

exterior derivatives d and δ, we obtain

∆ξ̂¯
θ′ren = δπ ∗0

(
∆ξ̂B

)
finite

− dπ ∗0
(
∆ξ̂Λ

)
finite

. (5.22)

Here on the right-hand side we have denoted the pullback by π0 ∗ instead of using

our usual boldface notation.

The explicit expressions for the quantities appearing in the anomalies (5.20) are

as follows. The finite pieces are given by

iv(∆ξ̂B)finite = 0 , (5.23a)

π∗υ(∆ξ̂B)finite = π∗υ0
iξL
′ , (5.23b)

iv(∆ξ̂Λ)finite = 0 , (5.23c)

π∗υ(∆ξ̂Λ)finite = −π∗υ0
[ivθ

′£ξΦ] . (5.23d)

In coordinate notation these relations are

(∆ξ̂B)ifinite = 0 , (5.24a)

(∆ξ̂B)0
finite(υ, xj) = (ξ0L)(υ0, x

j) , (5.24b)

(∆ξ̂Λ)ijfinite = 0 , (5.24c)

(∆ξ̂Λ)ifinite(υ, xj) = −(ξ0θ′ i)(υ0, x
j) , (5.24d)
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where we have decomposed the symmetry generator as ξ = ξ0∂0 + ξi∂i. The quan-

tities κξ and µξ are given by

ivκξ = 0 , (5.25a)

π∗υκξ =

∫ υ0

υ

dῡ π∗ῡiξivL
′ − iπ∗υξ

∫ υ0

υ

dῡ π∗ῡivL
′ , (5.25b)

ivµξ = 0 , (5.25c)

π∗υµξ =

∫ υ0

υ

dῡ π∗ῡiξivθ
′ − iπ∗υξ

∫ υ0

υ

dῡ π∗ῡivθ
′ . (5.25d)

In coordinate notation these relations are

κξ =

(
ξi
∫ υ0

υ

L dῡ −
∫ υ0

υ

ξiL dῡ
)
$i , (5.26a)

µξ = −1

2

[
ξi
∫ υ0

υ

θ′ j dῡ − ξj
∫ υ0

υ

θ′ i dῡ −
∫ υ0

υ

(ξiθ′ j − ξjθ′ i)dῡ
]
$ij , (5.26b)

where the integrands are evaluated at υ = ε̄.

5.4. Renormalization of corner terms

In this subsection we show that it is always possible to find a corner canonical

transformation (2.51) that makes the integrated action S, corner flux ε as well as

`′ + dc′ finite.

The basic idea is the trivial integral identity, for any function L(u, v) of two

variables u, v:
∫ ∞

u0

dū

∫ ∞

v0

dv̄L(ū, v̄) =

∫ ∞

u

dū

∫ ∞

v

dv̄L(ū, v̄)−
∫ u0

u

dū

∫ ∞

v

dv̄L(ū, v̄)

−
∫ ∞

u

dū

∫ v0

v

dv̄L(ū, v̄) +

∫ u0

u

dū

∫ v0

v

dv̄L(ū, v̄) . (5.27)

Here the first term on the right-hand side will be the bulk action, which can diverge

as v → 0 or u → 0 (we assume that the integrals are finite at large u and v). The

second and third terms on the right-hand side are boundary terms that are added

at the boundaries u = constant and v = constant (Eq. (5.13)). Finally the fourth

term is the corner term that when added makes the total integral manifestly finite

in the limit u→ 0, v → 0, as can be seen from the left-hand side.

We now translate this idea into a covariant notation and add the additional

dimensions which were suppressed in the above argument. Consider two boundaries

N and Ñ which intersect in a (d − 1)-surface C. In Subsec. 5.3 we introduced a

vector field v and a diffeomorphism πv which moves points v units along integral

curves of v. We also introduced a coordinate v which vanishes on N and for which

va∇av = 1.
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We now introduce the additional background structure of a nowhere vanishing

vector field u on the boundary N . We can then introduce a coordinate u on N by

u = 0 on C and ua∇au = 1 on N . We can then extend the definitions of u and u

off N by Lie transporting with respect to v. Finally we define the diffeomorphism

π̃u to be the map that moves points u units along integral curves of u.

Using this notation, the boundary term B associated with the boundary N is

given by Eqs. (5.9) and (5.13). There is an analogous boundary term B̃ for the

boundary Ñ , given by

iuB̃ = 0 , (5.28a)

π̃∗uB̃ =

∫ u0

u

dū π̃∗ūiuL
′ . (5.28b)

Finally the corner term c on C required to make the total action finite is given by

iuc = 0 , (5.29a)

ivc = 0 , (5.29b)

π̃∗uπ
∗
vc =

∫ u0

u

dū

∫ v0

v

dv̄ π̃∗ūπ
∗
v̄iuivL

′ . (5.29c)

6. Vacuum General Relativity at Future Null Infinity:

Gravitational Charges

In this section, to explicitly demonstrate the holographic renormalization procedure

described in Subsec. 5.3, we specialize to the case of future null infinity in vacuum

general relativity in four-dimensional asymptotically flat space–times, and to the

generalized BMS (GBMS) field configuration space (4.3). We then compute the

renormalized symplectic potential and the localized charge using the results laid

out in Subsec. 5.3 and Sec. 2, with the conformal factor and rigging vector field

taken to be those associated with Bondi–Sachs coordinates. The results obtained

in this section agree with expressions for the charges obtained previously in, e.g.

Refs. 31 and 107, explicitly demonstrating the utility of the holographic renormal-

ization algorithm described in Subsec. 5.3. Although we do not consider it here,

the holographic renormalization algorithm should generalize to the larger WBMS

group described in Subsec. 4.2, for which finite renormalized charges were obtained

in Ref. 45.

We identify the coordinate system discussed in Subsec. 5.3 with the Bondi–Sachs

coordinates according to (x0, x1, x2, x3) = (Φ, u, θ, φ) ≡ (Φ, u, xA). The physical

metric in these coordinates corresponds to the line element31,107,cc

ds̃2 = −Ue2F du2 + 2e2FΦ−2 du dΦ + Φ−2hAB
(
dxA − UAdu

) (
dxB − UBdu

)
.

(6.1)

ccWe use the symbol “F” here in place of the symbol β that is used in Refs. 31 and 107 to avoid
confusion with our symbol for the corner term in decomposition of the symplectic potential [as in
(2.12)].
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Here we have used Φ = 1/r in place of the radial coordinate r used in Refs. 31 and

107 (see, e.g. the discussion in Ref. 108 for more details on the construction of the

Bondi–Sachs coordinate system in the physical space–time). In these coordinates,

Φ = 0 corresponds to I +, and the null generator of I + is given by ni =̂ (∂u)i.

Moreover, in these coordinates, we have a foliation of I + by cross-sections of

constant u. The 1-form on I + normal to this foliation is given by li := −∇iu. The

functions appearing in (6.1) are smooth in their dependence on (Φ, u, xA) and their

expansions in powers of Φ, after imposing the Einstein equations, are given by31

U =
1

2
R− 2ΦM +O

(
Φ2
)
, (6.2a)

F = − 1

32
Φ2CABCAB +O

(
Φ3
)
, (6.2b)

UA = −1

2
Φ2DBC

AB + 2Φ3LA +O
(
Φ4
)
, (6.2c)

hAB = qAB + ΦCAB +
1

4
Φ2qABC

CDCCD +O
(
Φ3
)
, (6.2d)

where R denotes the Ricci scalar of the leading order sphere metric qAB , and
√
q

denotes the square root of its determinant. In addition, DA is the derivative operator

compatible with qAB . Moreover, CAB is (−2 times) the shear associated with the

auxiliary normal la := −Φ2g̃ab∇au and satisfies qABCAB = 0 as well as δ(qABCAB)

for all perturbations. Furthermore, M denotes the Bondi mass aspect and LA is

related to the angular momentum aspect.dd Note also that it follows from (4.3) that

δni = δ
√
q = 0. Finally, capital Roman indices are raised and lowered using qAB

throughout this section.

Next, we compute the symplectic potential θ′, which we take to be the space–

time covariant one given in Eq. (39) of Ref. 34 and so here θ′ =
c

θ. We will also

take L′ to be the covariant Einstein–Hilbert Lagrangian, so L′ =
c

L. We make

use of the Einstein equations for the background metric, the linearized Einstein

equations for the perturbations and the Bondi condition (D.9). We find that the

symplectic potential diverges as Φ−2 and that there are no logarithmic divergences.

In particular, the divergent pieces are given in the notation of (5.17) byee (setting

16πG = 1)

θ
(−2,0)
0 = 0 , θ

(−1,0)
0 =

√
q

(
−δR− 1

2
NABδq

AB

)
,

θ
(−2,0)
1 = −

√
q

2
CABδq

AB , θ
(−1,0)
1 = 0 .

(6.3)

ddThe angular momentum aspect NA, defined in Ref. 107, is related to LA by NA = −3LA +
3
32

DA(CBCC
BC) + 3

4
CA

BDCCBC .
eeWe omit writing the explicit expressions for θ

(−2,0)
A and θ

(−1,0)
A since they will not be needed

for the explicit charge calculation later in this section.
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Note that here δqAB is the variation of the inverse metric, qAB , and not

qACqBDδqCD. In addition, we have

θ
(0,0)
0 =

√
q

[
2δM + 2∂uδZ + δ(DAU A) +

1

2
NABδC

AB − 1

4
RCABδqAB −DAUBδq

AB
]
.

(6.4)

Note also that here

NAB := ∂uCAB , Z := − 1

32
CABC

AB , U A := −1

2
DBC

AB . (6.5)

We now consider the renormalization of the symplectic potential. Using the expres-

sion (5.18) specialized to t = 2, d = 3 with the coefficients of the logarithmic terms

taken to vanish, we have that

Λ = −
[
log Φθ

(−1,0)
1 − Φ−1θ

(−2,0)
1

]
dx2 ∧ dx3

−
[
log Φ θ

(−1,0)
3 − Φ−1θ

(−2,0)
3

]
dx1 ∧ dx2

−
[
log Φθ

(−1,0)
2 − Φ−1θ

(−2,0)
2

]
dx3 ∧ dx1 . (6.6)

We follow the procedure described in Sec. 5 which instructs us to find a boundary

canonical transformation that yields finite renormalized quantities L′ren = L′ + dB

and θ′ren = θ′−dΛ [recall (5.6a) and (5.6b)]. Since we have taken L′ =
c

L and θ′ =
c

θ,

we pick Λ = −λ′ and B = b′ [recall (2.8a) and (2.8b)] to parametrize our boundary

canonical transformation. Note however that in vacuum general relativity with zero

cosmological constant, the Lagrangian vanishes on shell. For that reason, it does not

need to be renormalized, and so we take b′ = B = 0. Using the explicit expressions

for the (unrenormalized) symplectic potential along with the linearized Einstein

equations to compute θ′ren = θ′ − dΛ [(5.6b) with B = 0], we find that the effect of

adding dΛ is to cancel the diverging pieces in each component of θ′ while leaving

the finite pieces unchanged. Moreover, the pullback of the renormalized symplectic

potential to I + is given by (6.4).

Note that our expression for the symplectic potential and the subsequent renor-

malization procedure, when implemented in Bondi coordinates, coincide with those

in Ref. 31. Note also that even though we have demonstrated our renormalization

procedure for conditions that correspond to the generalized BMS configuration

space, subject to the Bondi condition, the procedure itself is completely general

and can be applied to any of the extensions of the BMS algebra discussed in Sec. 4,

with or without the Bondi condition. It is guaranteed to work in any of these cases

using the general algorithm described in Subsec. 5.3.

Having obtained an expression for the pullback of the (renormalized) symplectic

potential, we now seek to obtain a decomposition of it into a boundary term, a

corner term, and a flux term in keeping with (2.12), that is, a decomposition of

the form

¯
θ′ren =̂ −δ`′ + dβ′ + E . (6.7)
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Comparing this with (6.4) suggests the following choice for the flux term E

E = −η
[

1

2
NABδC

AB − 1

4
RCABδqAB −DAUBδq

AB

]
, (6.8)

where η is the volume element on I + given by η = −√q du ∧ dθ ∧ dφ. Moreover,

we can read off that

`′ = η
[
2M + 2∂uZ + DAU A

]
, β′ = 0 , (6.9)

where we have used the fact that ∂uδZ = £nδZ = δ∂uZ since δni = 0.

Note that while CAB is not an intrinsic quantity on I +, its variation still occurs

in our expression for the flux in (6.8). This appears to be at odds with the Dirichlet

form of the flux advocated for in this work, since CAB is related to the extrinsic

geometry of I + with respect to the auxiliary null direction la. In asymptotically

dS or AdS spaces, the equations of motion allow one to solve for CAB in terms

of the leading metric qAB at I +,109–111 and hence flux terms involving δCAB are

still consistent with Dirichlet form. This is no longer the case in asymptotically flat

space–times, in which CAB represents free data on I +. Nevertheless, from (6.2d)

we see that CAB is a subleading component of the spherical part of the metric, hAB ,

which is an intrinsic quantity on each Φ = const surface, which limit to I +. It is

therefore not entirely surprising that CAB appears as a configuration variable in the

expression for the flux. Furthermore, the news tensor NAB that appears conjugate

to CAB in the expression of the flux is given by the u-derivative of CAB according to

(6.5), as one would expect of a momentum variable, lending additional support to

interpreting (6.8) as the appropriate analog of the Dirichlet form of the flux. An

interesting question for future work would be to understand better the principle for

selecting a preferred form of the flux for asymptotically null surfaces, rather than

postulating the form as is done in this section.

We now proceed to calculate

Hξ = lim
S′→S

∫

S′
hξ , (6.10)

where S′ here denotes u = const cross-sections of a one-parameter family of Φ =

const surfaces that limit to I + in the unphysical space–time. As denoted above,

to define the charge, Hξ, on a cross-section, S, of I +, we will perform this integral

and then take the limit S′ → S. We calculate (2.30), where ξa for a generalized

BMS vector field is given by15

ξa = f∂u +

[
Y A − ΦDAf +

1

2
Φ2CABDBf +O(Φ3)

]
∂A

+ Φ2

[
1

2
Φ−1DAY

A − 1

2
D2f − 1

2
ΦU ADAf +

1

4
ΦDA

(
DBfC

AB
)

+O(Φ2)

]
∂Φ .

(6.11)
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Here f(u, xA) = γ(xA)+ 1
2uDBY

B(xA) where γ(xA) is the supertranslation function

and Y A is the generator of arbitrary smooth diffeomorphisms on S2. Moreover, Q′ξ

is given by (2.26) and
vc

Qξ in vacuum general relativity is given by
(
where recall that

we have set 1
16πG = 1

)

vc

Qξab = −ε̃cdab∇̃cξd . (6.12)

Using (6.3), (6.6), (6.11) and the fact that

Iξ̂δq
AB = −DAY B −DBY A + qABDCY

C , (6.13)

we find that

Iξ̂λ
′ = Iξ̂Λ = −Φ−1µCABDAY B + · · · , (6.14)

where · · · denotes terms that vanish upon pullback to S′ and are hence not relevant

for the calculation of the charge. Note also that µ = −inη =
√
q dθ ∧ dφ. Then,

explicitly calculating
vc

Qξ, one finds that its pullback to S′ has a piece that diverges

as Φ→ 0 that is given by Φ−2µDAY
A−Φ−1µY ADBCAB . The first term is a total

derivative which drops out of the integral over S′. Moreover, the second term cancels

with (6.14) up to a total derivative term. We therefore see that upon integrating

over S′, the diverging piece drops out of
∫
S′
Q′ξ. Taking the limit S′ → S we then

obtain
∫

S

Q′ξ = −
∫

S

µ

[
2f∂uZ − 2fM −U ADAf

− 2Y A
{
NA −

1

4
CA

BDCCBC −
1

16
DA(CBCC

BC)

}]
. (6.15)

Using this in addition to (6.9) and (6.11) to compute (2.30) and dropping total

derivative terms, we find that the final expression for Hξ is given by

Hξ =

∫

S

µ

[
4fM + 2Y A

{
NA −

1

4
CA

BDCCBC −
1

16
DA

(
CBCC

BC
)}]

. (6.16)

This expression is the same as the one derived for the (usual) BMS charge in,

for example Refs. 107, 108 and 57, and is also consistent with the expression for the

charge given in (9.21) of Ref. 45. It was pointed out in Ref. 31 that this expression

diverges in limits to the end-points of I + (i.e as u→ ±∞) when one allows for the

most general fall-offs in u of CAB : CAB = O(u), that are compatible with the action

of the GBMS group on the boundary fields. To cure these “corner” divergences, one

would have to implement an additional renormalization step, similar in spirit to the

one discussed in Subsec. 5.3. Presumably, one would have to add to the expression

for Λ in (6.6) terms that are finite as Φ → 0 but which diverge as u → ±∞.

This would modify the expression for β′ after which one would have to pick an

expression for υ (see (6.20) and the discussion around it) which would lead to a

different expression for the charge, Hξ. However, addressing this issue is beyond the

2250105-55



July 26, 2022 10:3 IJMPA S0217751X22501056 page 56

FA

V. Chandrasekaran et al.

scope of this paper and we leave it to future work. Indeed, it would be interesting

to carry out these steps to attempt to derive the GBMS charge expression in (5.49)

of Ref. 31 which does not have the aforementioned divergences.

We note that the decomposition we picked in (6.9) was not unique even after

having picked the expression for the flux, E , which we take to be given by (6.8).

Instead of the choice made in (6.9), one could instead have picked

`′ = η
[
2M + DAU A

]
, β′ = 2δZµ . (6.17)

Also, because of the Bondi condition, (DAU A)η = d(iU η), and therefore one could

also consider a decomposition of (6.4) in which

`′ = η[2M + 2∂uZ] , β′ = −δ(iU η) , (6.18)

where we have defined a vector U i on I + such that U ili = 0 and U A = U iei
A

where ei
A is a projector onto angular directions. Finally, one could also consider

`′ = 2ηM , β′ = −δ(iU η − 2Zµ) . (6.19)

To resolve the ambiguity between these choices, as described in Subsec. 2.5, one

needs to implement a corner improvement where one looks for a decomposition of

β′ − λ′ of the form [see (2.43)]

β′ − λ′ = −δc′ + dγ′ + ε . (6.20)

As described in (2.46), the improved expression for the charge density is given by

h̃ξ = hξ − ∆ξ̂c
′. To obtain unambiguous charges,ff one needs to fix an expression

for ε in addition to the expression for E which we fixed to be given by (6.8). Here,

we pick ε = Λ,gg,hh with the specific choice of Λ given by (6.6). Since we have

computed λ′ = −Λ, we see from Eq. (6.20) that this choice amounts to always

setting δc′ = −β′. It is then easy to check that calculating the charge in the same

way as before but with hξ replaced with h̃ξ for each of the three cases given in

Eqs. (6.17)–(6.19), the final charge expression remains unchanged and in each case

is just given by (6.16), even though the boundary Lagrangian `′ is different in

each case. This demonstrates that, as highlighted earlier in the paper, fixing an

expression for the flux terms in the problem, on the boundary as well as the corners

(E and ε in this case), gives us an unambiguous expression for the charge.

ffThe γ′ term in (6.20) only contributes an exact piece to the charge density and therefore, in the

present context, its choice does not affect the charge. We therefore pick γ′ = 0 here for convenience.
ggNote from (6.6) that Λ is actually divergent on I +, and so really this decomposition is done on
a cutoff surface near I + after extending β′ arbitrarily away from I +. Obtaining a finite corner

flux on I + would entail a more careful analysis of corner terms in the action of vacuum general

relativity which we leave to future work.
hhNote also that to ensure finiteness of the charge in the u→ ±∞ limits described earlier (an issue

we have chosen to ignore here), one would need to pick a different expression for ε. Presumably,

this would follow from a more careful analysis of the corner terms in the action and the resulting
charge expression will indeed be modified in that case.
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7. Discussion

We conclude with a discussion of a number of future directions and applications of

this work.

7.1. More general asymptotic symmetries

The holographic renormalization argument presented in Sec. 5 demonstrates that

all asymptotic charges can be rendered finite once appropriate counterterms have

been found to produce a finite renormalized gravitational action. This holds with-

out imposing asymptotic boundary conditions on the dynamical fields, and hence

motivates exploring formulations of the theory in which the standard boundary

conditions are relaxed. Indeed, the arguments of Sec. 5 were inspired by similar con-

siderations for asymptotically anti-de Sitter space–times36 in which the standard

Dirichlet boundary condition was relaxed. This produces an enlarged asymptotic

symmetry algebra for these space–times, which have been further explored in the

works on the Λ-BMS group.54,110 In the past, finiteness of the action and charges

has been suggested as a reason for selecting boundary conditions for the theory,

but the analysis of this work suggests that this is unnecessary, since finiteness can

instead be achieved through holographic renormalization. The only reason for im-

posing boundary conditions should be to obtain a well-defined variational principle,

or, equivalently, to ensure the phase space describes a closed system that does not

lose symplectic flux through its boundary.

Relaxing the standard boundary conditions of four-dimensional asymptotically

flat space–times leads to the enlarged symmetry algebras discussed in Sec. 4. Each

of the symmetry groups described there still fixes some structure at null infinity,

but since holographic renormalization applies in the absence of any such boundary

condition, it is tempting to propose an even more general set of symmetries. These

would be obtained by relaxing the final condition leading to the Weyl BMS con-

figuration space (4.4), namely, not imposing ni be fixed. We would expect to obtain

in this manner all diffeomorphisms of I + as asymptotic symmetries, and it would

be interesting to compute expressions for the associated charges.ii The enlarged

algebra may also be related to the extended symmetries of finite null surfaces

explored in Ref. 113.

Another context in which extended symmetries can arise is in higher-dimensional

asymptotically flat space–times. In higher than four space–time dimensions, there

exist consistent boundary conditions that eliminate the supertranslations as asymp-

totic symmetries. However, in light of the relation between supertranslations and

the Weinberg soft graviton theorems,114–116 which hold in all dimensions, it is desir-

able to find a phase space in higher dimensions that admits a nontrivial action of

supertranslations. Such relaxed boundary conditions have been explored in Refs. 94,

117 and 118, and the general holographic renormalization argument suggests that

iiThe appearance of Diff(I ) has also been suggested to appear in the context of asymptotically

de Sitter and anti-de Sitter spaces in Ref. 112.
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a phase space can be constructed in which these transformations produce finite

charges.jj It would be interesting to carry out the holographic renormalization pro-

cedure in these higher-dimensional cases and to construct the phase space on which

the renormalized BMS charges are defined, as well as to obtain charges associated

with higher-dimensional versions of the symmetry algebras described in Sec. 4.

Some ideas in this direction have been explored in Refs. 55, 119–121.

A final application would be to investigate the recently proposed w1+∞ sym-

metry of 4D asymptotically flat gravity, which was derived at the level of celes-

tial amplitudes.122 An interesting question to address is whether the charge gen-

erators of this algebra arise from asymptotic diffeomorphisms, to give a space–

time interpretation of the symmetry transformations. The holographic renormal-

ization procedure in this work provides an ideal framework for investigating this

question.

7.2. Gluing and quantization

One of the main motivations for considering localized charges is to understand the

embedding of the localized phase spaces and their observables into the global phase

space of the theory. In the classical context, understanding this embedding can help

give meaning to quasilocal notions of energy, which are relevant in practice since

astrophysical processes are usefully described using local descriptions of objects’

locations and momenta, despite the fact that local observables are nonperturba-

tively ill-defined in a diffeomorphism-invariant theory. There is a natural construc-

tion known as Marsden–Weinstein symplectic reduction123 by which localized phase

spaces can be assembled into a global phase space, ensuring in the process that the

localized charges become trivial, as would be expected for charges associated with

a gauge symmetry. This application of symplectic reduction to the gluing of local

phase spaces was discussed in the work of Donnelly and Freidel.16 The idea is to

take two adjacent localized phase spaces P1 and P2, each containing a set of

charges Hi
ξ, i = 1, 2, associated with diffeomorphisms that act at their common

boundary. One then constructs the product phase space P12 = P1 ×P2, which

also admits an action of the boundary symmetry, generated by the sum of the in-

dividual charges, Htot
ξ = H1

ξ + H2
ξ . The reduced phase space is obtained by then

restricting to the submanifold of zero total charge Htot
ξ = 0, and further quotienting

by the flow generated by the charges within this submanifold. This two-step process

results in a new phase space Pred = P12//G, with G the group of boundary sym-

metries. The fact that the boundary symmetries should act trivially on the global

phase space is now encapsulated by the restriction to the zero charge submani-

fold and further quotienting by the group action. This process thus gives a way of

jjThese relaxed boundary conditions have been questioned in Ref. 95 on the grounds of not leading

to finite fluxes through I +, but such divergences can always be handled by the procedure of
holographic renormalization, at the expense of introducing some dependence on a background
structure (see, for example Ref. 96).
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realizing the individual phase spaces Pi within the global phase space, although

they are not symplectic submanifolds due to the quotient procedure needed in the

construction.

The work of Donnelly and Freidel focused on symmetries in general relati-

vity that preserve the codimension-2 boundary of a subregion Cauchy surface.16

Such symmetries are simpler to handle since the flux term in Hamilton’s equa-

tions (2.29) identically vanishes (assuming covariant β′ − λ′ and field-independent

generators), and the Wald–Zoupas procedure is not needed in order to construct

localized charges. The more general localized charges considered in this work are

defined even when there are nonzero fluxes, and in Sec. 3 we showed that their

Poisson brackets on the localized phase space are given by the BT bracket, which

reproduces the diffeomorphism algebra of the vector fields (or a suitable modifica-

tion when generators are field-dependent) whenever the extension term Kξ,ζ can

be shown to vanish. This is enough to apply the Marsden–Weinstein reduction pro-

cedure, since the localized charges generate an action of the boundary symmetry

group on the localized phase space, even though this action does not generically act

like a diffeomorphism on all observables, due to the failure of such a transforma-

tion to satisfy Hamilton’s equation. It would be very interesting to carry out this

procedure in more detail in order to better understand the relevance of localized

charges within the full global phase space.

An even more interesting question is to understand how to apply the reduction

in the case of nonvanishing extension terms in the algebra of localized charges,

as in Eq. (3.10). The extensions Kξ,ζ represent additional independent charges,

and together with the Hξ generators they produce an algebra that is larger than

the original set of boundary symmetries. There is a question of how to interpret

these additional charges, and how to interpret the reduction with respect to the

additional generators. The mathematical machinery for handling such situations

is called symplectic reduction by stages,124 and it would be worth investigating

whether the reduced phase space obtained using this procedure reproduces the

expected global phase space.

Another major motivation for carrying out this reduction procedure is in the

applications to the quantum theory of subregions in a gravitational theory. There

is an analogous procedure to Marsden–Weinstein reduction whereby the physical

Hilbert space Hphys is realized as a subspace of the tensor product H1⊗H2, where

Hi are the Hilbert spaces constructed via quantization of the localized phase spaces

Pi.16,125 This subspace is defined as the zero charge eigenspace associated with the

boundary symmetries in the localized phase spaces, and restricting to this physical

Hilbert space has the interpretation of imposing the constraints associated with

diffeomorphism invariance. There are a number of results beginning with the works

of Guillemin and Sternberg that show in certain situations that the process of

quantization commutes with symplectic reduction.126 Hence, we should expect that

the localized phase spaces Pi provide useful semiclassical descriptions of the local

Hilbert spaces Hi.
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These local phase spaces are important when addressing questions regarding

entanglement entropy for subregions in gravitational theories and the entropy asso-

ciated with black hole horizons. It has long been appreciated that black holes

possess an entropy proportional to their area,127–129 and in a variety of contexts,

this entropy can be usefully interpreted as entanglement entropy.130–133 Even more

generic subregions in gravity are expected to possess a finite entropy;134–136 for

example, in holography, subregions bounded by extremal codimension-2 surfaces

have an entropy given by the Ryu–Takayanagi formula, which is interpreted as the

entanglement entropy of a subregion of the boundary conformal field theory.137 The

construction of localized Hilbert spaces as described above is then crucial for giving

a bulk Hilbert space interpretation of this entropy. The larger Hilbert space H1⊗H2

in which the physical Hilbert space is embedded is known as the extended Hilbert

space, and contains additional edge mode degrees of freedom that contribute to

the entanglement entropy.125 These edge modes can be viewed as objects charged

under the boundary symmetries considered in this work, and hence the localized

charges play a central role in characterizing edge mode degrees of freedom. In some

cases, considerations of boundary symmetries can in fact be shown to determine

the entropy given some reasonable assumptions on the quantization of the localized

phase space. The best examples of this often involve a set of Virasoro symmetries

or a related centrally extended algebra acting on a Killing horizon.8,9,11–13 In this

case, the quantization is conjectured to involve a CFT, and the Cardy formula for

such a theory then is able to reproduce the Bekenstein–Hawking entropy of the

horizon. It is interesting that the central extension in these examples seems to play

an important role in determining the entropy, and this may be related to interesting

properties of the reduction procedure for algebras involving nonzero extensions.

7.3. Corner improvements

In Subsec. 2.5, we described an additional correction that must be added to the

localized charges to arrive at an expression that is fully invariant under the extra

ambiguities mentioned in that section. This correction was first described in App. C

of Ref. 13, and this work generalizes the proposal to allow for noncovariances

in L′ and θ′. As mentioned in the text, the correction to the charge density in-

volves a quantity c′ which appears as a contribution to the subregion action from

codimension-2 corners. Note there are additional questions involving the precise

relation between the full corner contribution to the action and the c′ appearing in

the charge, since, as discussed in footnote k, there are independent contributions

to the corner action coming from the boundary of each hypersurface N± ending

at the corner. Spelling out the precise relation between these contributions to the

action and the localized charges would be an interesting future direction to explore.

Ambiguities of the type described in Subsec. 2.5 arose in the construction of

GBMS charges in Sec. 6, where there could have been other possible choices for the

form of the corner flux than the one we picked. It would be interesting to relate

2250105-60



July 26, 2022 10:3 IJMPA S0217751X22501056 page 61

FA

A general framework for gravitational charges and holographic renormalization

the choice made there to a more careful analysis of boundary terms needed to

obtain a finite variational principle for subregions bounded by I +, and to carefully

derive these terms from a corner Dirichlet principle as well as a corner-improved

holographic renormalization procedure, as described in Subsec. 5.1. A possible result

of such an analysis would be to obtain GBMS charges that are finite in the limit

to either end of I +. This would allow comparison to the expression obtained by

Compère, Fiorucci and Ruzziconi in Eq. (5.49) of Ref. 15, which does satisfy this

finiteness property but was derived somewhat indirectly by using input from soft

theorems.

Finally, we mention that localized charges constructed via the Brown–York pro-

cedure, as described recently in Ref. 37, also enjoy the property of being free of the

ambiguities discussed in Subsec. 2.5, since these charges only depend on the form

of the codimension-1 flux E . On the other hand, these charges can differ from the

canonical charges for transformations that act anomalously on the boundary struc-

tures, and hence may yield different expressions than the corner-improved charges.

It would be useful to carry out this comparison in detail.

7.4. Alternative resolutions of the ambiguity

In this work, we have emphasized that resolving the ambiguities in the covariant

phase space construction amounts to choosing a preferred form of the flux. Fol-

lowing Ref. 13, we advocated for the use of a Dirichlet form of the flux, given the

close connection to standard holographic constructions, junction conditions, and

the Brown–York formulation of localized charges recently explored in Ref. 37. Addi-

tional intrinsic counterterms preserving the Dirichlet form of the flux are necessary

for asymptotic symmetries, where they are needed to ensure a finite flux through

the boundary, and were related to the holographic renormalization of the action in

Subsec. 5.2. Previously, there have been other proposals for resolving the ambigui-

ties, and we take a moment to briefly comment on these alternative approaches.

The approach initially advocated by Wald and Zoupas,34 and employed in sub-

sequent work, for example Ref. 32, fixes some ambiguities using a stationarity con-

dition, although for sufficiently permissive boundary conditions, this requirement

either does not yield a unique result, or else fails to hold. A different approach is

to focus on the properties of a given Lagrangian, and to extract a preferred sym-

plectic potential using homotopy operators of the variational bicomplex.18,138,139

While this certainly yields an unambiguous result, there is still a degree of arbi-

trariness in the fact that homotopy operators for a given complex in general are

not unique. In fact, the original formulas by Iyer and Wald7 for the symplectic

potential are completely unambiguous. The ambiguity instead arises in addressing

why one particular formula for the symplectic potential is preferred over another.

In this regard, we find that resolving the ambiguity by focusing on properties of

the flux yields a clearer explanation of what choices have been made in finding the

resolution. It would still be interesting to carefully relate the resolutions we explore
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in this work to those involving the variational bicomplex, and understand the extent

to which these two approaches can be made equivalent. Finally, we mention the work

of Kirklin,140 who uses a construction based on the path integral for a subregion, and

extracts a manifestly unambiguous symplectic potential using ideas closely related

to the Peierls bracket construction.49 This procedure has a number of advantages

beyond being manifestly unambiguous, including making a more direct connection

to the quantum description of the subregion, and being completely covariant with

respect to the codimension-2 corner of the subregion; i.e. it does not require a pre-

ferred codimension-1 hypersurface N bounding the subregion. Unfortunately, the

construction is sufficiently different from the standard covariant phase space that

it is not immediately clear what the specific form of the corner contribution to

the symplectic potential is in Kirklin’s construction. It would be very interesting

to make this comparison, and determine whether his construction is related to the

Dirichlet form of the flux that was the focus of this work.

7.5. Casimir energy of vacuum AdS

A byproduct of the localized charge construction in Subsec. 2.3 is that the result-

ing charges are largely free from the usual ambiguity to be shifted by phase space

constants. The reason for this is that there are fewer quantities that qualify as true

constants when no boundary condition is imposed on the intrinsic boundary data.

The requirement that the charges satisfy Eq. (2.32) is therefore a stronger condi-

tion than the one occurring in standard canonical frameworks in which boundary

conditions are imposed to ensure the flux Fξ̂ vanishes. The additional content in

Eq. (2.32) is that the charge Hξ must satisfy this equation even for variations that

violate the boundary conditions. For example, when taking E to be in Dirichlet

form, and choosing ξa such that ∆ξ̂(β
′ − λ′) + hδξ vanishes, one would find that

imposing a Dirichlet boundary condition causes the entire flux Fξ̂ to vanish, and

Hξ is then the charge that integrates Hamilton’s equation for the transformation.

However, any other quantity H ′ξ that differs from Hξ by a functional of the intrinsic

quantities on the boundary would also satisfy Hamilton’s equation, since such in-

trinsic functionals are phase space constants once the Dirichlet boundary condition

is imposed. On the other hand, these intrinsic functionals have a nontrivial varia-

tion for fluctuations that do not hold the intrinsic data fixed, in which case H ′ξ will

fail to satisfy (2.32) in the larger phase space considered in this work where such

variations are permitted. This allows us to conclude that the charge Hξ is unique

up to an overall constant that is independent of the bulk and boundary geometry.

The expression (2.31) represents a valid choice for fixing this constant, and allows

for meaningful comparison of the values of the charges in different space–times.

An important context in which such a comparison arises is in odd-dimensional

asymptotically AdS spaces, where, depending on the choice of boundary confor-

mal frame, the charges in vacuum AdS can take on nonzero values. In particular,

for asymptotic time translations, the nonzero charge is interpreted as the Casimir

energy for the dual CFT.27 This result crucially relies on the ability to compare the
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charges in different conformal frames, and for the alternative definition of canonical

charges proposed by Ashtekar, Magnon and Das (AMD),141,142 the energy vanishes

for vacuum AdS, regardless of the choice of conformal frame. The resolution of

this discrepancy lies in the fact that the AMD charges differ from the charges con-

structed from a holographic stress tensor by an intrinsic functional of the boundary

geometry.21,22 This intrinsic functional has the effect of subtracting off the value of

the charge of vacuum AdS in the appropriate conformal frame, so that the AMD

charges always vanish in vacuum AdS.

This raises the question as to which definition of charge coincides with the

expression (2.31) in the context of asymptotically AdS space–times. The answer can

be inferred from the results of Ref. 37 (see also Refs. 20, 21 and 53), which showed

that when the flux is chosen to be of Dirichlet form, Hξ agrees with the Brown–

York charges constructed from the boundary stress tensor obtained by varying the

subregion action with respect to the intrinsic boundary variables.33,kk Since the

Casimir energy is obtained from holographic charges constructed using the Brown–

York method, it is immediately apparent that the charges Hξ considered here will

reproduce the Casimir energy of asymptotically AdS space–times, and therefore

differ from the AMD charges. It is important to emphasize that, like the holographic

charges, any shifts in the localized charges Hξ are derived from a corresponding

change in the subregion action, since the action principle completely determines the

expression for the charges. This property is not shared by the AMD charges, and

there does not appear to be any action principle that would yield the AMD formula

for the charges via the method of Subsec. 2.3. Our construction thus provides a novel

means of obtaining this Casimir energy from canonical methods that does not suffer

from ambiguities associated with shifting the charges by intrinsic functionals.

7.6. Implications for holography

There are a number of potential applications of this work to various aspects of

holography. The arguments of Subsec. 5.1 on holographic renormalization of the

symplectic potential are largely motivated by well-known constructions that origi-

nated in AdS/CFT.21,25–28 Although Dirichlet boundary conditions were initially

thought to be necessary in order to obtain a finite symplectic form, it was pointed

kkMore precisely, the equivalence between the Brown–York and canonical definitions of charges was
shown to hold for transformations that act covariantly on the intrinsic geometry of the boundary.

In the case of a null boundary, we showed in Ref. 37 that for transformations that act anomalously

on the null generator ni, in the sense ∆ξ̂n
i = wξn

i for some function wξ, the two definitions of
charges differ by an intrinsic functional constructed from wξ. In the asymptotically AdS context,

a similar anomaly should arise for asymptotic symmetries associated with conformal isometries

of the boundary metric with nontrivial conformal factors. In these cases, the holographic charges
and canonical charges Hξ likely differ, and it would be interesting to investigate whether this

difference has any physical interpretation. Note that this subtlety does not affect the discussion

of the Casimir energy, since that involves charges associated with time translation, which is a
boundary isometry with vanishing conformal factor.
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out in the work of Compère and Marolf that in fact the holographic renormalization

procedure also yields a finite boundary symplectic form, after taking into account

the appropriate corner contributions.36 This then motivates definitions of a wide

class of charges associated with all boundary diffeomorphisms, instead of focusing

only on the subalgebra of conformal Killing vectors of the boundary metric. For

example, in the context of asymptotically de Sitter or anti-de Sitter spaces, such

considerations led to the identifications of the Λ-BMS symmetry algebras, which

are useful in obtaining the BMS symmetries upon taking a flat space limit.54,55,110

The general proof in Subsec. 5.2 that such renormalization is always possible, inde-

pendent of the details of the space–time asymptotics, suggests that the associated

generalized charges are always present, and hence should have an interpretation in

the dual holographic description.

One puzzling aspect of interpreting these charges holographically is that the

symmetry algebras constructed in this way are much larger than the algebras typi-

cally encountered in standard examples of AdS/CFT. For example, in asymptoti-

cally AdS spaces, the dual quantum theory is a conformal field theory, where the

only conserved diffeomorphism charges are those associated with conformal isome-

tries. On the other hand, the charges considered in this work are generically not

conserved, due to the presence of nonzero fluxes through the boundary, and hence

there is no immediate contradiction with standard holographic considerations. The

existence of these charges appears to be most closely tied to the ability to define

a local stress tensor operator in the dual theory. As recently reviewed in Ref. 37,

the entire set of localized charges can be constructed using the Brown–York stress

tensor on the subregion boundary. Although each individual charge may not be

conserved, the stress tensor itself satisfies a covariant conservation equation as a

consequence of the gravitational constraints. In a holographic dual picture, the dic-

tionary relates the Brown–York stress tensor to the local stress tensor of the dual

field theory. Because the continuity equation relating the nonconservation of the

charges to the flux is intimately related to the covariant conservation equation of

the stress tensor, one could speculate that the diffeomorphism charges become im-

portant when characterizing the theory in a hydrodynamical regime, which gives

a coarse-grained, effective description of the quantum theory in which the impor-

tant degrees of freedom are those associated with conserved quantities, such as the

stress tensor. This connection between gravity and hydrodynamics has been noted

in holography in the fluid-gravity correspondence,143,144 and has also appeared in

various other contexts including the membrane paradigm of black holes145,146 and

considerations of the Einstein equation of state.147

There are a number of other possible holographic applications of this work.

The considerations of localized charges are well-adapted to describing gravitational

theories in local subregions, and in some cases these subregions can be given a

holographic interpretation in terms of a CFT deformed by an irrelevant T T̄ or

T 2 deformation.148,149 Some ideas relating the T T̄ deformation to covariant phase

space constructions were recently considered in Ref. 150.
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Another area of interest to which the localized charges may be relevant is in the

recent models of black hole evaporation that reproduce the Page curve,151–153 where

outgoing Hawking radiation in an asymptotically flat AdS black hole is collected

in a nongravitational theory on flat space, in order to induce evaporation. This

gluing construction is similar in spirit to the reduction procedure described in Sub-

sec. 7.2 for combining subregions, and hence it may be worthwhile to understand

the evaporation models from that perspective. Furthermore, the gluing construc-

tion should in principle be possible in setups where both subregions are gravita-

tional, and hence may yield a useful way of understanding black hole evaporation

models without restricting one of the subregions to be nongravitational. This may

help address recent criticisms of applicability of the evaporation models to genuine

asymptotically flat gravitational systems raised in Refs. 154 and 155.

Finally, the considerations of null surfaces and holographic renormalization is

particularly well-adapted to applications in celestial holography, which seeks to

find a dual of asymptotically flat space in terms of a celestial CFT.23,156,157 In

particular, it would be worthwhile to understand the covariant counterterms needed

to renormalize the action and the associated null Brown–York stress tensor recently

considered in Ref. 37, without explicitly employing the auxiliary rigging vector used

in Subsec. 5.3.
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Appendix A. Field Space Calculations

Here we collect some identities satisfied by various operators on field space. Given

a vector field V on F , its action on differential forms via the Lie derivative is given

by Cartan’s magic formula

LV = IV δ + δIV . (A.1)
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More generally, if ν is a vector-valued one-form on F , we can define a derivation

of the exterior algebra of degree 0 denoted Iν which is given by contraction on the

vector index and then antisymmetrization of the remaining covariant indices; on a

p-form α, this is given by158

(Iνα)A1A2···Ap
= νB

A1
αBA2···Ap

, (A.2)

where the underline denotes antisymmetrization of the indices. The graded com-

mutator of Iν with the exterior derivative δ defines a new derivation of degree 1

denoted Lν ,

Lν = Iνδ − δIν . (A.3)

In particular, a field-dependent vector field ξa has nontrivial variation δξa which

is a one form on field space. The map ξa 7→ ξ̂ extends to δξa, producing a vector-

valued one form on F denoted δ̂ξ. This object then defines derivations Iδ̂ξ and Lδ̂ξ
by the above definitions. A vector-valued differential form ρ of higher degree defines

derivations Iρ and Lρ in a similar manner.

Lemma A.1. The various derivations defined above satisfy

[Lξ̂,£ζ ] = £(Iξ̂δζ)
, (A.4)

[£ξ, Iδ̂ζ ] = 0 , (A.5)

[Iξ̂, Iδ̂ζ ] = I
Îξ̂δζ

, (A.6)

[Iδ̂ξ, Iδ̂ζ ] = Iσ̂ , σa = Iδ̂ξδζ
a − I

δ̂ζ
δξa , (A.7)

[Lξ̂, Iδ̂ζ ] = Iτ̂ , τa = [δζ, ξ]a + δIξ̂δζ
a − I

δ̂ζ
δξa , (A.8)

[Lξ̂, Lζ̂ ] = −LĴξ, ζ K , Jξ, ζ Ka = [ξ, ζ]a − Iξ̂δζa + Iζ̂δξ
a . (A.9)

In particular, (A.9) implies that the field space Lie bracket is given by

[ξ̂, ζ̂]F = −Ĵξ, ζ K . (A.10)

Proof. For (A.4), we compute

[Lξ̂,£ζ ] = Iξ̂δ£ζ + δIξ̂£ζ −£ζIξ̂δ −£ζδIξ̂

= Iξ̂£δζ + £ζIξ̂δ + £δζIξ̂ −£ζIξ̂δ −£ζδIξ̂

= £Iξ̂δζ
−£δζIξ̂ + £δζIξ̂ (A.11)

yielding the identity. Equation (A.5) is identically true from the definition of how

£ξ and I
δ̂ζ

act on field space differential forms. Equations (A.6) and (A.7) follow

from the Nijenhuis–Richardson bracket for two algebraic derivations.158
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For Eq. (A.8), we know from the general structure of brackets of derivations that

[Lξ̂, Iδ̂ζ ] must be an algebraic derivation, and hence is determined by its action on

a basis of one-forms δφ. This then produces

[Lξ̂, Iδ̂ζ ]δφ = Iξ̂δ£δζφ+ δ£Iξ̂δζ
φ− I

δ̂ζ
δ£ξφ

= −£Iξ̂δζ
δφ+ £δζ£ξφ+ £δ(Iξ̂δζ)

φ

+ £Iξ̂δζ
δφ−£I

δ̂ζ
δξφ−£ξ£δζφ

= £(
[δζ,ξ]+δIξ̂δζ−Iδ̂ζδξ

)φ , (A.12)

which then reproduces the right-hand side of (A.8).

Finally, for the commutator [Lξ̂, Lζ̂ ], we know that the resulting derivation will

be a Lie derivative, and hence it is determined by its action on the scalars φ. We

can therefore compute

[Lξ̂, Lζ̂ ]φ = Lξ̂£ζφ− Lζ̂£ξφ

= £Iξ̂δζ
φ+ £ζ£ξφ−£Iζ̂δξ

φ−£ξ£ζφ

= −£Jξ, ζ Kφ . (A.13)

Lemma A.2. The operator ∆ξ̂ satisfies the following identities :

[δ,∆ξ̂] = ∆δ̂ξ , (A.14)

[∆ξ̂,∆ζ̂ ] = ∆[ξ̂,ζ̂]F
= −∆Ĵξ, ζ K , (A.15)

[∆ξ̂, Iζ̂ ] = I
∆̂ξ̂ζ

= −IĴξ, ζ K + I
Îζ̂δξ

. (A.16)

Proof. Equation (A.14) follows from

δ∆ξ̂ = δ(Lξ̂ −£ξ − Iδξ)

= Lξ̂δ −£δξ −£ξδ + Lδ̂ξ − Iδ̂ξδ

= ∆ξ̂δ + ∆δ̂ξ (A.17)

since I
δ̂δξ

= 0.

To derive Eq. (A.15), we can use the identities in Lemma A.1 to derive

[∆ξ̂,∆ζ̂ ] = [(Lξ̂ −£ξ − Iδ̂ξ), (Lζ̂ −£ζ − Iδ̂ζ)]

= −LĴξ, ζ K + £[ξ,ζ] −£Iξ̂δζ
+ £Iζ̂δξ

− [Lξ̂, Iδ̂ζ ]− [Iδ̂ξ, Lζ̂ ] + [Iδ̂ξ, Iδ̂ζ ] . (A.18)
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The last three commutators all combine into a single contraction Iα̂, and using

(A.7) and (A.8) we find

αa = −[δζ, ξ]a − δIξ̂δζa + I
δ̂ζ
δξa + [δξ, ζ]a + δIζ̂δξ

a

− Iδ̂ξδζa + Iδ̂ξδζ
a + I

δ̂ζ
δξa = δJξ, ζ Ka . (A.19)

Hence, Eq. (A.18) becomes

[∆ξ̂,∆ζ̂ ] = −LĴξ, ζ K + £Jξ, ζ K + I
δ̂Jξ, ζ K = −∆Ĵξ, ζ K . (A.20)

Finally, for Eq. (A.16), we apply Eqs. (A.6) and (A.10) to compute

[∆ξ̂, Iζ̂ ] = [Lξ̂ −£ξ − Iδ̂ξ, Iζ̂ ] (A.21)

= I[ξ̂,ζ̂]F + I
Îζ̂δξ

(A.22)

= −IĴξ, ζ K + I
Îζ̂δξ

= I
∆̂ξ̂ζ

. (A.23)

Appendix B. Phase Space Calculations

The standard Iyer–Wald identity6,7 for computing the contraction of a vector field

into the symplectic current receives modifications when θ′ contains noncovariances.

Making generous use of Cartan’s magic formula in addition to Eqs. (2.4), (2.7b),

(2.21), (2.24), (A.14), as well as the fact that on-shell, δL′ = dθ′, we find that

−Iξ̂ω′ = −Lξ̂θ′ + δIξ̂θ
′

= −£ξθ
′ −∆ξ̂θ

′ − Iδ̂ξθ′ + δ(J ′ξ + iξL
′ + ∆ξ̂b

′)

= −iξdθ′ − diξθ′ −∆ξ̂δb
′ − d∆ξ̂λ

′

− J ′δξ −∆δ̂ξb
′ + dδQ′ξ + iξδL

′ + δ∆ξ̂b
′

= d(δQ′ξ −Q′δξ − iξθ′ −∆ξ̂λ
′) , (B.1)

where we used δiξL
′ = iδξL

′+ iξδL
′ in the third line. This is then used in determin-

ing the charges and fluxes that appear upon contracting −Iξ̂ into the symplectic

form. Taking into account the additional boundary contribution to Ω [Eq. (2.18)],

the result localizes to a boundary integral, whose integrand, using Eqs. (2.4) and

(2.12), is given by

δQ′ξ −Q′δξ − iξ¯θ
′ −∆ξ̂λ

′ + Iξ̂δβ
′

= δQ′ξ −Q′δξ + iξδ`
′ −£ξβ

′ + diξβ
′ − iξE −∆ξ̂λ

′ + Lξ̂β
′ − δIξ̂β′

= δ(Q′ξ + iξ`
′ − Iξ̂β′)−Q′δξ − iδξ`′ + ∆ξ̂(β

′ − λ′) + Iδ̂ξβ
′ − iξE + diξβ

′

= δhξ − hδξ − iξE + ∆ξ̂(β
′ − λ′) + diξβ

′ , (B.2)
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where we recall the definition of the charge density

hξ = Q′ξ + iξ`
′ − Iξ̂β′ . (B.3)

Integrating this expression over the boundary of a Cauchy surface then yields

Eq. (2.29).

The exterior derivative of hξ can then be explicitly computed, using Eqs. (2.4)

and (2.12),

dhξ = J ′ξ + £ξ`
′ − iξd`′ − Iξ̂dβ′

= Iξ̂¯
θ′ − iξL′ −∆ξ̂b

′ + Iξ̂δ`
′ −∆ξ̂`

′ − iξd`′ − Iξ̂dβ′

= Iξ̂E −∆ξ̂(`
′ + b′)− iξ(L′ + d`′) , (B.4)

which verifies Eq. (2.34).

When computing the bracket between the localized charges, it is helpful to

have an expression for the anomaly of the charge density. First, we note using

the expression (2.26) for Q′ζ , the transformation property (2.22) satisfied by the

covariant part
vc

Qζ , and the identity (A.16), that the anomaly of Q′ζ is given by

∆ξ̂Q
′
ζ = −Q′Jξ, ζ K +Q′Iζ̂δξ + iζ∆ξ̂`

′ − Iζ̂∆ξ̂β
′ , (B.5)

and similarly it follows that the anomaly of the charge density is

∆ξ̂hζ = −hJξ, ζ K + hIζ̂δξ + iζ∆ξ̂(`
′ + b′)− Iζ̂∆ξ̂(β

′ − λ′) . (B.6)

The bracket (3.6) of the charges is then given by

{Hξ, Hζ} = −Iξ̂δHζ + Iζ̂Fξ̂ =

∫

∂Σ

mξ,ζ , (B.7)

and by applying the definition (2.33) of Fξ̂ and using (B.4) and (B.6), the integrand

can evaluate to

mξ,ζ = −£ξhζ −∆ξ̂hζ + Iζ̂
(
iξE −∆ξ̂(β

′ − λ′) + hδξ
)

(B.8)

= hJξ, ζ K − iζ∆ξ̂(`
′ + b′) + iξ∆ζ̂(`

′ + b′) + iξiζ(L
′ + d`′)− diξhζ . (B.9)

Integrating this over the surface ∂Σ yields the charge representation theorem quoted

in Eq. (3.10), using that ξa and ζa are both tangent to N which causes the term

iξiζ(L
′ + d`′) to pull back to zero.

A similar computation yields the bracket for the corner-improved charges con-

structed in Subsec. 2.5. Working with an improved charge density h̃ξ defined by

dropping the final exact term in Eq. (2.47) which integrates to zero in the charge,

h̃ξ =
vc

Qξ + iξ(`
′ + b′ + dc′)− Iξ̂ε , (B.10)
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we find that its exterior derivative is given by

dh̃ζ = Iζ̂E −∆ζ̂(`
′ + b′ + dc′)− iζ(L′ + d`′) , (B.11)

and its anomaly by

∆ξ̂h̃ζ = h̃∆ξ̂ζ
+ iζ∆ξ̂(`

′ + b′ + dc′)− Iζ̂∆ξ̂ε . (B.12)

The bracket of the charges is

{H̃ξ, H̃ζ} = −Iξ̂δH̃ζ + Iζ̂F̃ξ̂ =

∫

∂Σ

m̃ξ,ζ (B.13)

with F̃ξ̂ defined in (2.48). Then applying (B.11) and (B.12), the integrand eva-

luates to

m̃ξ,ζ = −£ξh̃ζ −∆ξ̂h̃ζ + Iζ̂
(
iξE −∆ξ̂ε+ h̃δξ

)
(B.14)

= h̃Jξ, ζ K + iξ∆ζ̂(`
′ + b′ + dc′)

− iζ∆ξ̂(`
′ + b′ + dc′) + iξiζ(L

′ + d`′)− diξh̃ζ , (B.15)

which by the same arguments as above yields the corner-improved charge represen-

tation theorem, Eqs. (3.18) and (3.19).

Appendix C. Scaling Transformations on a Null Surface

Consider a space–time (M, gab) containing a null surface N . In this appendix we

review the various geometric quantities that are naturally defined on N (see for

example Sec. 3 of Ref. 32 for more details), and how they transform under rescalings

of the null normal and under conformal transformations of the metric. We restrict

to four-dimensional space–times in this section.

We pick a smooth future-directed normal covector na on N , and define the

inaffinity κ, a function on N , byll

na∇anb =̂ κnb , (C.1)

where we are using =̂ to mean equality when evaluated on N . The contravariant

normal na = gabnb, when evaluated on I +, can be viewed as an intrinsic vector ni,

since nana = 0. We denote by qij the degenerate induced metric, and by ηijk the

3-volume form on N given by taking the pullback of ηabc where ηabc is any three

form with 4η[abcnd] = εabcd. Finally we define a 2-volume form by

µij = −ηijknk . (C.2)

llIf the extension of na away from N is chosen to satisfy ∇[anb] = 0, the quantity κ is equivalently

given by the relation ∇a(nbn
b) =̂ 2κna which is the usual definition of surface gravity for a

horizon when na is a Killing vector field. Thus the inaffinity is sometimes called surface gravity

for general normals na, although in the most general case where ∇[anb] 6= 0, these two definitions
of κ will not agree.
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Next, we take the pullback on the index a of ∇anb, which is then orthogonal to

nb on the index b. This quantity therefore defines an intrinsic tensor W j
i called the

Weingarten map.159 The second fundamental form or shape tensor is Kij = W k
i qkj ,

which can be decomposed as

Kij =
1

2
Θqij + σij (C.3)

in terms of an expansionmm Θ and a symmetric traceless shear tensor σij .

These fields on a null surface obey the relations32,159

qijn
j = 0 , (C.4a)

Kijn
j = 0 , (C.4b)

W j
i n

i = κnj , (C.4c)

(£n −Θ)qij = 2σij , (C.4d)

(£n −Θ)ηijk = 0 , (C.4e)

(£n −Θ)µij = 0 , (C.4f)

(£n − κ)Θ = −1

2
Θ2 − σijσklqikqkl −Rabnanb , (C.4g)

where qij is any tensor that satisfies qijq
jkqkl = qil.

Consider now rescaling the normal according to

ni → eσni , (C.5)

where σ is a smooth function onN . We can also perform a conformal transformation

on the metric,

gab → e2Υgab . (C.6)

Here Υ is a smooth function on a neighborhood of N , but we will be interested

only in Υ restricted to N . Under the combined effect of these transformations the

various fields transform as

na → eσ+2Υna , (C.7a)

qij → e2Υqij , (C.7b)

µij → e2Υµij , (C.7c)

ηijk → e2Υ−σηijk , (C.7d)

κ → eσ(κ+ £nσ + 2£nΥ) , (C.7e)

mmThe relation of the expansion Θ to the divergence ∇ana of the normal depends on how one

extends the definition of na off the null surface. If that extension satisfies nana = 0, then Θ =
∇ana − κ. If that extension satisfies ∇[anb] = 0, then we have instead Θ = ∇ana − 2κ.160
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Θ → eσ(Θ + 2£nΥ) , (C.7f)

Kij → eσ+2Υ(Kij + qij£nΥ) , (C.7g)

W j
i → eσ

[
W j
i +Di(σ + Υ)nj + £nΥδji

]
, (C.7h)

where Di is any derivative operator on N . These transformation laws preserve the

relations (C.4).

In applying this framework to null surfaces N at a finite location in space–

time,32 the metric gab is the physical metric. Hence there is no freedom to confor-

mally rescale the metric, and we must take Υ = 0. In this case the scaling laws

(C.7) reduce to the scaling lawsnn given in Eq. (3.3) of Ref. 32. By contrast, in

applying the framework to future null infinity N = I +, the metric gab is the un-

physical metric and is subject to the conformal rescaling freedom (D.3), which also

includes a rescaling of the normal. In this case we must take Υ = −σ, and with this

specialization the scaling laws (C.7) reduce to the laws (D.8) given in App. D.

Appendix D. Asymptotically Flat Space times:

Notations and Conventions

In this appendix we review the definition of asymptotically flat space–times in

3 + 1 dimensions, and define the notations we use for the conformal completion

framework used to describe them.

Consider vacuum space–times that are asymptotically flat at null infinity, I ,

in the sense of Ref. 161. This means that we have a manifold M with boundary

I which is topologically R× S2, and an unphysical metric gab which is smooth on

M for which I is null. We also have a smooth conformal factor Φ on M which

satisfies Φ = 0 on I and for which

na = ∇aΦ (D.1)

vanishes nowhere on I . Finally the physical metric

g̃ab = Φ−2gab (D.2)

satisfies the vacuum Einstein equation G̃ab = 0 on M \ I . The conformal trans-

formation

(gab,Φ)→
(
e−2σgab, e

−σΦ
)
, (D.3)

where σ is a smooth function on M , preserves the physical metric. Although nor-

mally one would expect the theory to be invariant under this conformal freedom, it

is possible in general contexts for the definitions of gravitational charges to depend

on background structures like the choice of conformal frame (as it does in AdS),

nnNote that the quantities denoted here by W j
i , Θ, qij , µij , ηijk and ni were denoted there K j

i ,
θ, hij , εij , εijk and `i, respectively.
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as we argued in Sec. 2. The following discussion can be easily adapted to past null

infinity but we will focus on future null infinity just for simplicity.

As for any null surface, the metric gab and normal na determine a number of

geometric quantities on I +, reviewed in App. C. These include the inaffinity κ,

the expansion Θ, the shear tensor σij , the induced metric qij , the 3-volume form

ηijk, the 2-volume form µij , the second fundamental form or shape tensor Kij , and

the Weingarten map W j
i . For general null surfaces these quantities obey a number

of identities given in Eqs. (C.4). We now review properties of these quantities that

are specific to I +.

First, the normal na is a pure gradient from Eq. (D.1), and so ∇[anb] = 0. Since

I + is null we have nan
a = Φg + O(Φ2) for some function g on I +. Taking a

gradient, evaluating at Φ = 0, using the symmetry of ∇anb and using the definition

(C.1) of the inaffinity κ now yields that

gabnanb = 2κΦ +O(Φ2) . (D.4)

Second, it follows from the vacuum Einstein equation satisfied by the physical metric

that

∇(anb) =̂ fgab (D.5)

for some function f on I +; see, e.g. Eq. (2.6) of Ref. 46. As a reminder we are

using =̂ to mean equality when evaluated on I +. Combining this with Eq. (D.1)

yields ∇anb =̂ fgab, from which we obtain f = κ and

∇a∇bΦ =̂ κgab , (D.6a)

Θ = 2κ , (D.6b)

σij = 0 , (D.6c)

W j
i = κδji . (D.6d)

Inserting Eqs. (D.6b) and (D.6c) into the general identities (C.4) for any null surface

yields the relations

qijn
j = 0 , (D.7a)

(£n − 2κ)qij = 0 , (D.7b)

(£n − 2κ)ηijk = 0 , (D.7c)

(£n − 2κ)µij = 0 . (D.7d)

Under the conformal transformation (D.3) the transformation laws for the various

fields on I + are given by the special case Υ = −σ of the transformation laws (C.7)

discussed in App. C, and are given by

ni → eσni , (D.8a)

na → e−σna , (D.8b)
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qij → e−2σqij , (D.8c)

µij → e−2σµij , (D.8d)

ηijk → e−3σηijk , (D.8e)

κ → eσ(κ−£nσ) . (D.8f)

These transformation laws preserve the relations (D.6) and (D.7). Using the freedom

(D.8f) one can enforce the Bondi condition

κ = 0 . (D.9)

However in most of our analysis in this paper we will not make this specialization

and will allow κ to be nonzero.

Appendix E. Symmetry Groups at Future Null Infinity in

Vacuum General Relativity

In this appendix we derive the symmetry groups that correspond to the three

different field configuration spaces defined in Sec. 4 in the body of the paper. Rather

than proceeding directly, it will be more convenient to proceed in three stages,

following the universal intrinsic structure approach of Ashtekar97 and the techniques

of Ref. 32:

• We define universal intrinsic structures in each of the three cases, and derive the

corresponding group of diffeomorphisms of I + that preserve these structures.

• We define boundary structures on I + in each of the three cases, and define

associated field configuration spaces. These configuration spaces are related to

those given in Sec. 4 by taking orbits under the conformal transformations.

• Finally, we show that the symmetry groups of the intrinsic structures coincide

with those of the field configuration spaces associated with the boundary struc-

tures, and with the symmetry groups of the spaces of Sec. 4.

We first explain these steps in detail in the BMS context, and then outline the

extensions to the generalized BMS and Weyl BMS contexts.

E.1. Bondi Metzner Sachs case

E.1.1. Definition of intrinsic structure

Consider triplets of tensor fields (ni, qij , κ) defined on I + that satisfy the relations

(D.7a) and (D.7b) for which the vector field ni is complete. We define any two

such triplets to be equivalent if they are related by a rescaling of the form given by

Eqs. (D.8a), (D.8c) and (D.8f):

(ni, qij , κ) ∼ (eσni, e−2σqij , e
σκ− eσ£nσ) . (E.1)
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We denote the equivalence class associated with a given triple as

u21 = [ni, qij , κ] . (E.2)

We call the quantity u21 an intrinsic geometric structure on I +. These structures

are universal in the sense that given any two such structures on I +, there exists a

diffeomorphism ϕ : I + → I + which maps one onto the other via pullback.oo

We will be defining a number of similar equivalence classes throughout this

appendix, and our notational conventions for these objects are as follows. In the

symbol uAB , A can be 2 (if the induced metric qij is present in the set of fields),

1 (if the volume form ηijk is instead present), or 0 (if neither qij nor ηijk is present).

The second index B can be 1 (if the inaffinity κ is present in the set of fields) or

0 (if κ is absent). Thus there will be six types of equivalence class, u21, u11, u01, u20,

u10 and u00. Additionally, we will consider structures in which the normal covector

na is also present in the set of fields. When this is the case, we will use the notation

pAB , while the notation uAB is reserved for structures in which na is absent. Finally

tensor fields in the equivalence classes are barred (e.g. n̄i, q̄ij , . . .) when κ is absent,

and are not barred (e.g. ni, qij , . . .) when κ is present.

A given asymptotically flat space–time (M, g̃ab) determines a unique intrinsic

structure u21 = u21[g̃ab], as follows. Choose an unphysical metric gab and confor-

mal factor Φ for which g̃ab = Φ−2gab. Compute the quantities qij , n
i and κ from

the unphysical metric and conformal factor, and take the equivalence class (E.2).

The result is independent of which conformal factor and unphysical metric within

the equivalence class is chosen, by the equivalence relation (E.1) and the scaling

laws (D.8).

We can define a different type of universal intrinsic structure,97 without the

inaffinity κ, as follows. Consider pairs (n̄i, q̄ij) that satisfy Eqs. (D.7a) and (D.7b)

with κ = 0:

n̄iq̄ij = 0 , £n̄q̄ij = 0 . (E.3)

We define two such pairs to be equivalent if they are related by a transformation

of the form (D.8) that preserves κ = 0, that is,

(n̄i, q̄ij) ∼ (eσn̄i, e−2σ q̄ij) (E.4)

with £n̄σ = 0. We denote the equivalence class associated with a given pair as

u20 =
[
n̄i, q̄ij

]
. (E.5)

There is a one-to-one correspondence between intrinsic structures of the type u21

and those of the type u20. Given an intrinsic structure
[
ni, qij , κ

]
, if we consider

the set of representative triples (n̄i, q̄ij , 0) with vanishing inaffinity, the result is

the equivalence class
[
n̄i, q̄ij

]
. Conversely, given the equivalence class

[
n̄i, q̄ij

]
, we

can take any element (n̄i, q̄ij), consider the corresponding triple (n̄i, q̄ij , 0), and

ooThis can be shown by an argument similar to that given in Subsec. 4.1 of Ref. 32.
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then take the equivalence class under the equivalence relation (E.1) to generate the

intrinsic structure of type u21. We will denote this one-to-one correspondence as

u21 = u21(u20).

E.1.2. Symmetry group of intrinsic structure

Consider now diffeomorphisms ϕ : I + → I +. We define the action of the pullback

ϕ∗ on an intrinsic structure u21 =
[
ni, qij , κ

]
by acting with the pullback on a

representative of the equivalence class:

ϕ∗
[
ni, qij , κ

]
=
[
ϕ∗ni, ϕ∗qij , ϕ

∗κ
]
. (E.6)

This action is well defined, since if (ni, qij , κ) and (n̂i, q̂ij , κ̂) are two triples related

by a rescaling function σ, then the pullbacks of these triples are related by the

rescaling function ϕ∗σ. Now given an intrinsic structure u21, we define the corre-

sponding symmetry group to be the group of diffeomorphisms which preserves the

intrinsic structure:

Du21
=
{
ϕ : I + → I +

∣∣ ϕ∗u21 = u21} . (E.7)

From the definition (E.6) and the equivalence relation (E.1), given a diffeomor-

phism ϕ in this group and a representative (ni, qij , κ) of the intrinsic structure,

the action of the diffeomorphism is that of a rescaling by some smooth function

α = α(ϕ, ni):

ϕ∗ni = e−αni , (E.8a)

ϕ∗qij = e2αqij , (E.8b)

ϕ∗κ = e−α(κ+ £nα) . (E.8c)

The dependence of the function α on the choice of representative (or equivalently

on the normalization of the normal) is given by

α(ϕ, eσni) = α(ϕ, ni) + σ − ϕ∗σ , (E.9)

from Eqs. (E.1) and (E.8).

We similarly define the symmetry group Du20 to be the group of diffeomorphisms

that preserves a given intrinsic structure u20 =
[
n̄i, q̄ij

]
:

Du20
=
{
ϕ : I + → I +

∣∣ ϕ∗u20 = u20} . (E.10)

Because of the one-to-one correspondence discussed above, this group coincides

with the group (E.7), in the sense that

Du21(u20) = Du20
, (E.11)

where the notation is defined after Eq. (E.5). To see this in more detail, if ϕ ∈ Du20

then ϕ∗u20 = u20, and so ϕ∗u21(u20) = u21(ϕ∗u20) = u21(u20), where we have used

covariance, and so ϕ ∈ Du21(u20). The converse uses the fact that the mapping

u20 → u21(u20) is a bijection.
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Because of the equality (E.11), we can give an alternative characterization of

the symmetries in the group. From the definition (E.6) and the equivalence relation

(E.4), given a representative (n̄i, q̄ij) of the intrinsic structure u20 and a diffeomor-

phisms ϕ in Du20
, the action of the diffeomorphism is that of a rescaling by some

smooth function α = α(ϕ, n̄i):

ϕ∗n̄i = e−αn̄i , (E.12a)

ϕ∗q̄ij = e2αq̄ij , (E.12b)

where

£n̄α = 0 . (E.13)

The dependence of the function α on the choice of representative is given by

α(ϕ, eσn̄i) = α(ϕ, n̄i) + σ − ϕ∗σ , (E.14)

from Eqs. (E.1) and (E.12), which coincides with the dependence (E.9) except that

here we must have £n̄σ = 0 from Eq. (E.4). Equations (E.3), (E.12) and (E.13)

are the usual definitionpp of the BMS group. The linearized versions of Eqs. (E.12)

and (E.14) are

£ξn̄
i = −αn̄i , (E.15a)

£ξ q̄ij = 2αq̄ij , (E.15b)

and

α(ξi, eσn̄i) = α(ξi, n̄i)−£ξσ , (E.16)

where the infinitesimal diffeomorphism is represented by the vector field ξi on I +.

E.1.3. Definition of field configuration space

We now turn to the definition of a field configuration space whose symmetry group

matches that of the intrinsic structures discussed above. We start by defining a

geometric structure on I + which we call a boundary structure, which is an extension

of our previous definition of intrinsic structure. We consider sets of tensor fields on

I + of the form

(ni, qij , κ, na) , (E.17)

where na is a choice of normal covector, the remaining fields satisfy the relations

(D.7a) and (D.7b), and the vector field ni is complete. We define any two such sets

ppThe induced metric q̄ij induces a unique two-dimensional Riemannian metric on the space
of generators of I +, from Eqs. (E.3). One can specialize the choice of representative in the

equivalence class
[
n̄i, q̄ij

]
, using the freedom (E.4), to make this metric have constant scalar

curvature (i.e. be a round two metric). While this specialization is often used to simplify the
presentation of the BMS group, it is not necessary to do so.
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to be equivalent if they are related by a rescaling of the form (D.8) for some smooth

function σ:

(ni, qij , κ, na) ∼ (eσni, e−2σqij , e
σκ− eσ£nσ, e

−σna) . (E.18)

We denote the equivalence class associated with a given set as

p21 = [ni, qij , κ, na] . (E.19)

A choice of equivalence class is the desired boundary structure on I +.

A choice of boundary structure p21 = [ni, qij , κ, na] determines a unique intrin-

sic structure u21: choose a representative (ni, qij , κ, na), discard na, and form the

equivalence class u21 = [ni, qij , κ] under the equivalence relation (E.1). The result

is independent of the representative initially chosen, from Eqs. (E.1) and (E.18).

We will denote this induced intrinsic structure by u21(p21). The boundary structure

contains more information than the intrinsic structure, which is necessary for the

definition of the field configuration space.

Just as for intrinsic structures, a given asymptotically flat space–time (M, g̃ab)

determines a unique boundary structure p21 = p21[g̃ab], as follows. Choose an un-

physical metric gab and conformal factor Φ for which g̃ab = Φ−2gab. Compute the

quantities qij , n
i, κ and na from the unphysical metric and conformal factor, and

take the equivalence class (E.19). The result is independent of which conformal

factor and unphysical metric are chosen, by the equivalence relation (E.18) and the

scaling laws (D.8).

Just as for intrinsic structures, we can define a different type of boundary struc-

ture, without the inaffinity κ, as follows. Consider triplets (n̄i, q̄ij , n̄a) that satisfy

Eqs. (E.3) for which n̄a is a complete normal covector. We define two such triplets

to be equivalent if they are related by a transformation of the form (D.8) that

preserves κ = 0, that is,

(n̄i, q̄ij , n̄a) ∼ (eσn̄i, e−2σ q̄ij , e
−σn̄a) (E.20)

with £n̄σ = 0. We denote the equivalence class associated with a given triplet as

p20 =
[
n̄i, q̄ij , n̄a

]
. (E.21)

Just as above, a boundary structure p20 determines a unique intrinsic structure

u20 = u20(p20) by dropping the normal covector n̄a. Also, just as for intrinsic

structures, there is a one-to-one correspondence between boundary structures of

the type p21 and those of the type p20, which we will denote as p21 = p21(p20) and

p20 = p20(p21). Given an asymptotically flat space–time (M, g̃ab), we define the

corresponding boundary structure of the new type to be

p20(g̃ab) = p20(p21(g̃ab)) . (E.22)

Next, given a boundary structure p21, we define the corresponding field config-

uration space to be the set of all unphysical metrics and conformal factors that are

compatible with that boundary structure:

Γp21
= {(M, gab,Φ) ∈ Γ0| p21(gab,Φ) = p21} . (E.23)
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Similarly, given a boundary structure p20, we define the field configuration space

Γp20 = {(M, gab,Φ) ∈ Γ0| p20(gab,Φ) = p20} . (E.24)

These two spaces coincide, from Eq. (E.22), in the sense that

Γp21(p20) = Γp20 . (E.25)

An argument analogous to that given in App. B of Ref. 32 can be used to show

that the orbit of Γp21
under diffeomorphisms ofM is the entire space Γ0 defined in

Eq. (4.1).

E.1.4. Symmetry group of field configuration space

We now turn to a discussion of the symmetry group of diffeomorphisms that pre-

serve the configuration phase space,

Gp21 = {ψ :M→M| ψ(I +) = I +, ψ∗Γp21 = Γp21

}
. (E.26)

These diffeomorphisms induce diffeomorphisms of I +: for any ψ in Gp21 we define

ϕ = ψ|I + , (E.27)

and since ψ preserves the boundary, ϕ is a diffeomorphism from I + to I +. Next,

since ψ preserves I +, the pullback of any normal covector na evaluated on I +

must be a rescaling of that normal, so we have

ψ∗na =̂ eγna , (E.28)

where γ = γ(ψ, na) is a smooth function on I + which depends on the diffeomor-

phism and on the normalization of the normal. The dependence on the normaliza-

tion of the normal is given by

γ(ψ, e−σna) = γ(ψ, na) + σ − ϕ∗σ , (E.29)

from Eqs. (E.27) and (E.28).

The physical asymptotic symmetry group is given by modding out by trivial

diffeomorphisms whose asymptotic charges vanish:

Dp21
= Gp21

/ ∼ . (E.30)

Here the equivalence relation ∼ is defined so that two difeomorphisms are equivalent

if they are related by a trivial diffeomorphism. For space–time boundaries that are

null surfaces at a finite location, the trivial diffeomorphisms are those with32

ϕ = identity , γ = 0 . (E.31)

This is also true in the BMS context, and we will assume it remains true for the

more general symmetry groups discussed below, pending the explicit computation

of the corresponding charges. It follows that the group Dp21
is in one-to-one corre-

spondence with the set of pairs (ϕ, γ):

Dp21
' {(ϕ, γ) |ψ ∈ Gp21

} . (E.32)
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We now argue that the group Dp21 coincides with the symmetry group Du21

of the intrinsic structure discussed in Subsec. E.1.2. From the condition ψ∗Γp21
=

Γp21 in the definition (E.26), we obtain that for any (M, gab,Φ) in Γp21 we have

p21 = ψ∗p21(gab,Φ) = p21(ψ∗gab, ψ
∗Φ). Using Eqs. (E.27) and (E.28) we can rewrite

this as

[
ϕ∗ni, ϕ∗qij , ϕ

∗κ, eγna
]

=
[
ni, qij , κ, na

]
. (E.33)

Using the equivalence relation (E.18) it follows that there exists a scaling function

α on I + for which

ϕ∗ni = e−αni , (E.34a)

ϕ∗qij = e2αqij , (E.34b)

ϕ∗κ = e−α(κ+ £nα) , (E.34c)

eγna = eαna . (E.34d)

The first three equations here coincide with Eqs. (E.12), which imply that ϕ lies in

Du21
. The last equation implies that α = γ, which is compatible with the scaling

laws (E.9) and (E.29). In particular this implies that γ is determined by ϕ, γ = γ(ϕ),

which implies from Eq. (E.32) that Dp21
and Du21

are isomorphic.

E.1.5. Alternative definition of field configuration space with

conformal freedom fixed

The literature has often used an alternative definition of the field configuration

space, which differs from the definition (E.23) given above only in that the conformal

freedom is fixed.34,46 This configuration space ΓBMS is defined in Eq. (4.2), and

depends on a choice of conformal factor Φ0 on a neighborhood D of I + and a

choice of unphysical metric g0 ab on I +.

We now show that the orbit of ΓBMS under conformal transformations is a par-

ticular space Γp21
, where p21 =

[
n̄i0, q̄0 ij , 0, n̄0 a

]
and n̄i0, q̄0 ij and n̄0 a are computed

from the given data Φ0 on D and g0 ab on I +. First, it follows from the definitions

(E.23) and (4.2) that ΓBMS ⊂ Γp21
. Next, suppose that (M, gab,Φ) lies in Γp21

. It

follows that

[
ni, qij , κ, na

]
=
[
n̄i0, q̄0 ij , 0, n̄0a

]
, (E.35)

where the fields on the left-hand side are computed from gab,Φ. From the equiva-

lence relation (E.18) there exists a scaling function α on I + so that

(
ni, qij , κ, na

)
=
(
e−αn̄i0, e

2αq̄0 ij , e
−α£n̄0α, e

αn̄0a

)
. (E.36)

By suitably extending the definition of α from I + into the interior of the space–

time we can make e−αΦ coincide with Φ0 on D, since the gradients of these functions
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agree on I +. It then follows that
(
M, e−2αgab, e

−αΦ
)

(E.37)

lies in ΓBMS.

From this relation between ΓBMS and Γp21
, it follows that the asymptotic sym-

metry group of ΓBMS coincides with Dp21 . Note however that a bulk diffeomorphism

ψ acts differently on the two spaces. On ΓBMS it acts in tandem with a conformal

transformation to preserve the conformal factor,

(gab,Φ)→
[(

Φ

ψ∗Φ

)2

ψ∗gab,Φ

]
, (E.38)

while on Γp21 it acts simply as

(gab,Φ)→ (ψ∗gab, ψ
∗Φ) . (E.39)

E.2. Generalized BMS field configuration space and

symmetry group

We now turn to the generalized BMS field configuration space and generalized BMS

group of Refs. 29–31. The discussion in this case mirrors exactly the discussion of

the BMS case given in the previous section, with the following modifications:

• The induced metric qij is replaced everywhere by the volume form ηijk. Thus we

use Eq. (D.7c) instead of Eqs. (D.7a) and (D.7b), and use the scaling relation

(D.8e) everywhere instead of the relation (D.8c).

• The equivalence relation (E.1) is replaced with

(ni, ηijk, κ) ∼ (eσni, e−3σηijk, e
σκ− eσ£nσ) , (E.40)

and the definition (E.2) of intrinsic structure is replaced by

u11 = [ni, ηijk, κ] . (E.41)

• Similarly the equivalence relation (E.4) is replaced by

(n̄i, η̄ijk) ∼
(
eσn̄i, e−3σ η̄ijk

)
(E.42)

with £n̄σ = 0 and £n̄η̄ijk = 0. The definition (E.5) of intrinsic structure is

replaced

u10 =
[
n̄i, η̄ijk

]
. (E.43)

• The corresponding symmetry groups Du11
and Du10

are defined as in App. E.1.2,

and again coincide in the appropriate sense. The relations (E.12) that define the

symmetries are replaced by

ϕ∗n̄i = e−αn̄i , (E.44a)

ϕ∗η̄ijk = e3αη̄ijk , (E.44b)
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where £n̄α = 0, whose linearized versions are46

£ξn̄
i = −αn̄i , (E.45a)

£ξ η̄ijk = 3αη̄ijk . (E.45b)

• The definitions (E.19) and (E.21) of boundary structures are replaced by the

analogous definitions

p11 =
[
ni, ηijk, κ, na

]
(E.46)

and

p10 =
[
n̄i, η̄ijk, n̄a

]
. (E.47)

• The corresponding field configuration spaces Γp11
and Γp10

are defined as be-

fore, and the argument that the corresponding symmetry groups Dp11
and Dp10

coincide with those of the intrinsic structures is unchanged.

• The definition (4.2) of the conformal-freedom-fixed field configuration space is

replaced with the definition (4.3) of the space ΓGBMS. As before, one can show

that taking the orbit of ΓGBMS under conformal transformations yields a particu-

lar space Γp11 , with p11 =
[
n̄i0, η̄0 ijk, 0, n̄0 a

]
, and that the asymptotic symmetry

group of ΓGBMS coincides with Dp11
.

E.3. Weyl BMS field configuration space and symmetry group

The field configuration space can be further expanded by omitting both the induced

metric qij and volume form ηijk from the definitions. We call the resulting space the

Weyl BMS field configuration space, following Ref. 45, since the extra symmetries

correspond to conformal transformations of the form (D.8) that are independent of

other pieces of the symmetry generator. The resulting symmetry group then coin-

cides with the symmetry group of general null surfaces at finite locations derived in

Ref. 32. This coincidence of symmetry groups should facilitate understanding how

the asymptotic symmetry group is obtained from a limit of symmetry groups on

finite null boundaries. It will also be important in future derivations of global con-

servation laws in black hole space–times, where analyses analogous to Refs. 162 and

163 at future timelike infinity will be needed in order to determine the appropriate

matching of symmetry generators on the future horizon with those on future null

infinity; see for example the discussion in Sec. 7 of Ref. 32.

For the Weyl BMS field configuration space, the required modifications to the

discussion of the BMS case of App. E.1 are:

• The induced metric qij is omitted everywhere. Thus the equivalence relation (E.1)

is replaced with

(ni, κ) ∼ (eσni, eσκ− eσ£nσ) , (E.48)

and the definition (E.2) of intrinsic structure is replaced by

u01 = [ni, κ] . (E.49)
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Similarly the equivalence relation (E.4) is replaced by

(n̄i) ∼ (eσn̄i) (E.50)

with £n̄σ = 0. The definition (E.5) of intrinsic structure is replaced

u00 =
[
n̄i
]
. (E.51)

• The corresponding symmetry groups Du01
and Du00

are defined as in App. E.1.2,

and again coincide in the appropriate sense. The relations (E.12) that define the

symmetries are replaced by

ϕ∗n̄i = e−αn̄i , (E.52)

where £n̄α = 0, whose linearized version is

£ξn̄
i = −αn̄i . (E.53)

The symmetry group (E.52) coincides with that of general finite null surfaces,

given by Eqs. (4.4) of Ref. 32 specialized to κ = 0.

• The definitions (E.19) and (E.21) of boundary structures are replaced by the

analogous definitions

p01 = [ni, κ, na] (E.54)

and

p00 =
[
n̄i, n̄a

]
. (E.55)

• The corresponding field configuration spaces Γp01
and Γp00

are defined as be-

fore, and the argument that the corresponding symmetry groups Dp01
and Dp00

coincide with those of the intrinsic structures is unchanged.

• The definition (4.2) of the conformal-freedom-fixed field configuration space is

replaced with the definition (4.4) of the space ΓWBMS. As before, one can show

that taking the orbit of ΓWBMS under conformal transformations yields a par-

ticular space Γp01 , with p01 =
[
n̄i0, 0, n̄0 a

]
, and that the asymptotic symmetry

group of ΓWBMS coincides with Dp01
.

E.4. Properties of the asymptotic symmetry groups

We now turn to a characterization of the structure of the symmetry groups discussed

in the previous sections and the corresponding algebras.

For convenience, we will specialize to the definitions Du20 , Du10 and Du00 of

these groups in which the inaffinity κ has been set to zero, given by Eq. (E.10) and

its avatars. For each universal structure u20, u10 or u00, we pick a corresponding

representative (n̄i, q̄ij), (n̄i, η̄ijk), or (n̄i). The null generator n̄i is common to all of

these representatives, and we construct a coordinate system (u, θA) on I + using

this normal as described in Subsec. 4.2 in the body of the paper. The symmetry

transformations are then given by Eqs. (4.7).
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To derive these transformations, we start with Eq. (E.12a), which is common

to all three groups. Combining this with Eq. (4.6) yields

ϕ∗∂u = e−α∂u =
∂u

∂û
∂u +

∂θA

∂û
∂A , (E.56)

which yields θA = θA(θ̂B), and inverting yields Eq. (4.7b). It also yields

∂uû(u, θA) = eα(u,θA) . (E.57)

Also from Eq. (E.13) which applies to all three groups we obtain that ∂ue
α = 0, so

that α = α(θA), and now integrating Eq. (E.57) yields Eq. (4.7a).

This completes the derivation for the Weyl BMS case, where the functions χ,

α and γ are unconstrained. For the generalized BMS case, it follows from the

conditions (E.44) and the definition (C.2) of µij that the function α is given by

Eq. (4.13). Similarly, for the BMS case, it follows from the condition (E.34b) that

the function α is given by Eq. (4.11).

Finally, it can be useful to understand the action of the groups on representatives

of the universal structures for which κ 6= 0. We specialize for simplicity to linearized

supertranslations of the form

ξi = fni . (E.58)

Note that the symmetry generator ξi is invariant under the conformal rescalings

(D.8) by definition, but that the coefficient f has a nonzero conformal weight,

transforming as f → e−σf from Eq. (D.8a). For the BMS group the coefficient f

satisfies the conformally invariant equation

(£n − κ)f = 0 , (E.59)

from Eqs. (D.7a), (D.7b), (E.8a) and (E.8b). This equation is also valid for the

generalized BMS group, from Eqs. (D.7c) together with the unbarred version of

Eqs. (E.45). Finally, for the Weyl BMS group, Eq. (E.59) is replaced with the

conformally invariant equationqq

£n(£n − κ)f = 0 , (E.60)

from Eqs. (E.8a) and (E.8c) which apply to the group Du01 . This equation now

admits the two different kinds of supertranslations as solutions.

Appendix F. Details of Holographic Renormalization with a

Rigging Vector Field

In this appendix we derive some of the results on holographic renormalization which

were discussed in Sec. 5.

qqThis equation differs from the corresponding Eq. (4.17) of Ref. 32, despite the fact that the
underlying algebras of infinitesimal diffeomorphisms ξ on the null surfaces coincide. The difference
arises from the fact that the scaling properties of κ and ni differ in the two cases (see App. C).
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We start by inserting the coordinate expansions (5.12) of the Lagrangian and

symplectic form into the identity (2.5), and specializing to on-shell field configura-

tions. This yields

θ′ 0,0 + θ′ i,i = δL . (F.1)

Similarly the boundary canonical transformation (5.6) can be written in terms of

coordinate components as

Lren = L+Bi,i +B0
,0 , (F.2a)

θ′ 0ren = θ′ 0 + δB0 − Λi,i , (F.2b)

θ′ iren = θ′ i + δBi + Λi,0 + 2Λij,j . (F.2c)

It follows that the choices (5.13) of B and Λ yield Lren = θ′ iren = 0, cf. Eq. (5.14a).

Also differentiating Eq. (F.2b) with respect to x0 and combining with Eqs. (5.13)

and (F.1) gives θ′ 0ren ,0 = 0. Hence to evaluate θ′ 0ren at x0 = 0 we can evaluate it at

x0 = υ0, at which value it reduces to θ′ 0(υ0), from Eqs. (F.2b) and (5.13). This

yields the result (5.14c).

We next turn to the computation of the anomalies (5.20). Given the prescription

(5.9) for B[L′, v], the anomaly is given by, from the definition (2.4),

∆ξ̂B = B[ψ∗L′, v]−B[ψ∗L′, ψ∗v] . (F.3)

Here it is understood that the right-hand side is to be linearized in the diffeo-

morphism ψ, whose linear part is parametrized by the vector field ξ. (It will be

convenient to initially work with the full nonlinear diffeomorphism rather than its

linearized version). Acting on both sides with ψ−1 ∗, we see that the right-hand

side is proportional to ξ, and so we can drop the ψ−1 ∗ on the left-hand side when

working to linear order. This gives

∆ξ̂B = B[L′, ψ−1 ∗v]−B[L′, v] . (F.4)

Defining B1 = B[L′, ψ−1 ∗v], we have from Eqs. (5.9) that B1 is given by

iṽB1 = 0 , (F.5a)

π̃∗υB1 =

∫ υ0

υ

dῡ π̃∗ῡiṽL
′ , (F.5b)

where ṽ = ψ−1 ∗v and

π̃υ = ψ ◦ πυ ◦ ϕ−1 , (F.6)

with ϕ : N → N being the restriction of ψ to the boundary N . Acting on both

sides of Eq. (F.5b) with ϕ∗ now gives

π∗υψ
∗B1 =

∫ υ0

υ

dῡ π∗ῡψ
∗iṽL

′ . (F.7)
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Using ψ∗ = 1 + £ξ + · · · together with Eq. (F.4) this can be rewritten as

π∗υ∆ξ̂B = −π∗υ£ξB +

∫ υ0

υ

dῡ π∗ῡiv£ξL
′ . (F.8)

We now switch to using the coordinate notation of Subsec. 5.3.1. First, for any

vector field w = w0∂0 + wi∂i and any d-form χ = χ0$ + χidx0 ∧ $i, the Lie

derivative is given by

£wχ =
[
w0χ0

,0 − w0
,iχ

i + (wiχ0),i
]
$

+
[
−wi,0χ0 − wi,jχj + (w0χi),0 + (wjχi),j

]
dx0 ∧$i . (F.9)

Using this formula together with Eqs. (5.13), we find Eq. (F.8) reduces to

(∆ξ̂B)0 = (ξ0L)(υ0)−
(
ξi
∫ υ0

υ

dῡL −
∫ υ0

υ

dῡ ξiL
)

,i

. (F.10)

The other component of ∆ξ̂B is given by combining Eq. (F.5a) with ṽ = v −£ξv

and Eq. (F.4), which gives

iv∆ξ̂B = i£ξvB . (F.11)

Using v = ∂0 this yields

(∆ξ̂B)i = ξi,0

∫ υ0

υ

dῡL . (F.12)

Combining the results (F.10) and (F.12) with Eqs. (5.24a), (5.24b) and (5.26a) now

shows consistency with the identity (5.20a).

The derivation of ∆ξ̂Λ is exactly analogous. Equations (F.8) and (F.11) are

replaced by

π∗υ∆ξ̂Λ = −π∗υ£ξΛ−
∫ υ0

υ

dῡ π∗ῡiv£ξθ
′ , (F.13a)

iv∆ξ̂Λ = i£ξvΛ , (F.13b)

which together yield

∆ξ̂Λ = −
[
(ξ0θ′ i)(υ0)−

∫ υ0

υ

dῡ ξi,0θ
′ 0 + ξj

∫ υ0

υ

dῡ θ′ i,j −
∫ υ0

υ

dῡ ξjθ′ i,j

]
$i

+ ξi,0

∫ υ0

υ

dῡ θ′ j dx0 ∧$ij . (F.14)

Combining this with Eqs. (5.24c), (5.24d), (5.26) and (F.1) now shows consistency

with the identity (5.20b).
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