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We develop a general framework for constructing charges associated with diffeomor-
phisms in gravitational theories using covariant phase space techniques. This framework
encompasses both localized charges associated with space—time subregions, as well as
global conserved charges of the full space—time. Expressions for the charges include con-
tributions from the boundary and corner terms in the subregion action, and are rendered
unambiguous by appealing to the variational principle for the subregion, which selects
a preferred form of the symplectic flux through the boundaries. The Poisson brackets of
the charges on the subregion phase space are shown to reproduce the bracket of Barnich
and Troessaert for open subsystems, thereby giving a novel derivation of this bracket
from first principles. In the context of asymptotic boundaries, we show that the pro-
cedure of holographic renormalization can be always applied to obtain finite charges
and fluxes once suitable counterterms have been found to ensure a finite action. This
enables the study of larger asymptotic symmetry groups by loosening the boundary

fCorresponding author.

2250105-1


https://dx.doi.org/10.1142/S0217751X22501056
mailto:venchandrasekaran@ias.edu
mailto:eef3@cornell.edu
mailto:is354@cornell.edu
mailto:asperanz@gmail.com

V. Chandrasekaran et al.

conditions imposed at infinity. We further present an algorithm for explicitly comput-
ing the counterterms that renormalize the action and symplectic potential, and, as an
application of our framework, demonstrate that it reproduces known expressions for the
charges of the generalized Bondi-Metzner—Sachs algebra.

Keywords: Gravitational charges; asymptotic symmetries; holographic renormalization;
covariant phase space.

PACS numbers: 04.60.Cf, 11.10.Ef, 11.25.Tq, 11.30.Ly

1. Introduction and Summary

Canonical methods in general relativity and other gravitational theories provide
an important tool for understanding the theory’s observables and degrees of free-
dom. These methods are particularly well-suited for characterizing the subtle role
played by diffeomorphisms, which serve as the gauge symmetries of these theories.
The gauge nature of diffeomorphisms is captured by the fact that, in the absence
of boundaries, they generate transformations on the gravitational phase space cor-
responding to degenerate directions of the presymplectic form; equivalently, the
Hamiltonians generating these diffeomorphisms vanish on-shell. Introducing bound-
aries, either at infinity or finite locations in space-time, partially breaks the full
diffeomorphism invariance of theory, and results in nontrivial charges associated
with the broken gauge symmetries. The nonzero contribution to the charges comes
purely from an integral over the boundary of the space-time region, which is a
manifestation of the familiar fact that the on-shell Hamiltonian is a pure boundary
term in diffeomorphism-invariant theories.

An important technical tool for investigating properties of diffeomorphism
invariance is the covariant phase space formalism.'”” Its advantage over other
constructions of gravitational phase spaces is the fact that covariance is main-
tained throughout. This allows the consequences of diffeomorphism invariance to
be easily discerned, the most important of which is the localization of diffeomor-
phism charges to contributions from the boundary. These boundary charges find
applications in a number of questions in gravitational physics, including black hole
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entropy, asymptotic symmetries, entanglement and edge modes,
holography.?°~22 Given the breadth of scenarios in which boundary charges find use,
it is important to have a well-defined framework that constructs these charges in
an unambiguous manner. Unfortunately, there are a number of complications that
arise related to ambiguities in the formalism, renormalization at asymptotic bound-
aries, and equivocal definitions of charges, that have led to differing results and
conclusions regarding boundary charges in various contexts. The goal of this work
is to develop a general framework that addresses these complications and sharply
characterizes the choices that must be made to resolve the various ambiguities.
One major motivation for having such a framework is its applications to holo-
graphy in asymptotically flat space—time, an arena in which the Hamiltonian
formulation can provide important insights.?? One can approach holography in a

bottom-up manner, wherein one uses knowledge of the symmetries and charges of
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the theory at asymptotic boundaries to extrapolate properties of a putative dual
theory. The classic example of this is the discovery by Brown and Henneaux that
the asymptotic charge algebra of AdSj3 gravity coincides with the Virasoro alge-
bra of CFT5.?4 In a similar manner, systematically understanding the symmetries
and charges at null infinity could help characterize the structure of the boundary
theory. In particular, motivated by the UV/IR correspondence of the standard
AdS/CFT dictionary, one might hope that a prescription for IR renormalization
of classical observables using the Hamiltonian formalism leads to insights on uni-
versal properties of the putative boundary theory in the UV. This procedure is
known as holographic renormalization,?!:25-28-2
asymptotically flat applications; for example, it is needed in order to obtain finite
charges associated with the generalized BMS group.2%3!

When describing boundary charges, it is often useful to distinguish between
global charges and localized charges.?? Given a set of boundary conditions that
define a phase space, global charges are given by integrals over a complete Cauchy
surface. They include contributions from all the degrees of freedom of the theory,
and generate the corresponding symmetry on the global phase space.?? They are
integrals over the codimension-2 boundaries of the Cauchy surface, which will typi-
cally be a sum over cross-sections of all the codimension-1 boundaries in the space—
time that the Cauchy slice intersects.

Localized charges instead arise when defining a phase space associated with a
subsystem of the full theory, such as when considering a subregion of space—time.
Standard examples include: the interior of a timelike tube in space—time, as it occurs

and its use has been expanded to

in the Brown-York quasilocal charge construction;3? the exterior region of a finite
null hypersurface;'?32 and the domain of dependence of a partial Cauchy surface
ending on a cut of £ in asymptotically flat space-times.?* Such subsystems are
fundamentally open Hamiltonian systems, which interact through their boundary
with degrees of freedom of the complementary region. Because of this interaction,
the subregion symplectic form is not conserved under evolution along the boundary,
and hence there is no integrable charge generating the diffeomorphism associated
with this evolution on the subsystem phase space. Instead, localized charges are
defined as a best approximation for the generator of the diffeomorphism on the
subregion.

A procedure for defining localized charges in the covariant phase space was put
forward by Wald and Zoupas,** and subsequently developed in Refs. 13 and 32.
These charges satisfy a modification of Hamilton’s equation in which the symplectic
form evaluated on a diffeomorphism variation yields the variation of the charge, plus
an additional term representing the flux. In order to produce unambiguous results,
a criterion must be given for separating the charge from the flux in this equation,

2The name holographic renormalization arose because the formalism originated in the context of
holographic dualities between bulk and boundary theories. However the formalism itself as used
here does not require any such dualities and can be defined in purely classical contexts.
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determining this criterion is the main challenge in obtaining well-defined localized
charges. An additional set of independent ambiguities, known as Jacobson-Kang—
Myers (JKM) ambiguities,®> arises in the definitions of the theory’s Lagrangian and
symplectic potential, and naively affects both localized and global charges. One
would like to have a coherent framework in which all the ambiguities are resolved
through a single unified principle.

We will show that the crucial ingredient is the choice of action for the sub-
region, including boundary and corner terms. Equivalently, this can be viewed as a
preferred choice for the symplectic flux at each of the boundaries, which appear as
the boundary terms in the variational principle for the chosen action. The idea to use
the action principle to resolve ambiguities in the covariant phase was first proposed
in Ref. 36, motivated by holographic considerations in asymptotically AdS space—
times.2126-28 This principle is also partially inspired by Euclidean gravity, wherein
one takes the action to be the fundamental object from which all other observables
are computed. Furthermore, it ties in with the Brown—York construction of quasi-
local charges,?? in which the subregion action plays a central role, and one can show
that these quasilocal charges agree with the canonical charges constructed when
utilizing the action principle to fix their ambiguities.?” This perspective based on the
full subregion action will allow us to resolve both sets of localized charge ambiguities
in one fell swoop. Moreover, it will enable us to give a simple general argument that
holographic renormalization can always be performed to obtain finite charges and
fluxes, without imposing any boundary conditions on the field variations beyond
those contained in the equations of motion. Indeed, as explained in Ref. 38, such
generality is one of the main novelties that the holographic approach brings to the
study of gravitational charges. Thus, our framework unifies many different aspects
of gravitational charges in diffeomorphism-invariant theories.

In what follows, we give a detailed summary of each of our main results.

1.1. Extended summary of results

We begin in Sec. 2 by presenting the general framework for utilizing the covariant
phase space in constructing gravitational charges. While much of the material in
this section is a review, we present a number of results for handling background
structures in the theory, which modify a number of formulas by noncovariant contri-
butions.P The reasons for allowing noncovariances are twofold. First, as was shown
in Ref. 13, central extensions in gravitational charge algebras arise due to non-
covariant boundary terms in the action, and such extensions often contain criti-
cal information about properties of the theory. Second, allowing for noncovariance
extends the applicability of the covariant phase space to noncovariant formulations
of the theory, such as the ADM formulation,*® facilitating a straightforward com-
parison between the formulations.

bNoncovariant corrections to covariant phase space quantities have also been explored in Ref. 39,
which contains some overlap with the results of Sec. 2.

2250105-4



A general framework for gravitational charges and holographic renormalization

The main objective of Sec. 2 is to arrive at unambiguous expressions for the
gravitational charges. Ambiguities can arise in two related but conceptually dis-
tinct ways. The first are the JKM ambiguities,?® which occur in the formulation
of the covariant phase space by Wald and collaborators® "3* due to the fact that
various quantities, such as the Lagrangian or the symplectic current, are defined
only up to addition of exact differential forms. We demonstrate in Subsec. 2.4 that
the gravitational charges can be defined in such a way as to be completely invariant
under the JKM transformations, including transformations involving noncovariant
quantities. This provides a powerful link between covariant and noncovariant for-
mulations of the theory, since any two formulations can be viewed as being related
by a JKM transformation. This then demonstrates that the charges are not sensitive
to the specific choices made in setting up the canonical framework.

The second set of ambiguities occurs for localized charges constructed via the
Wald-Zoupas procedure.?* These charges depend on the form of the flux through
the boundary of the subregion, and a prescription is needed to fix the expression
for the flux. Wald and Zoupas gave a proposal called the stationarity requirement
for fixing the ambiguity, which requires that the decomposition of the symplectic
potential be chosen such that the flux vanishes identically in stationary space—
times. This condition, along with a requirement on the covariance properties of the
flux, was shown to yield unambiguous localized charges for BMS generators in 4D
asymptotically flat space—time.?* On the other hand, there has been much recent in-

29-31,41-45 which were missed

terest in extended symmetry algebras at null infinity,
in older analyses due to imposition of diffeomorphism-freedom conditions at the
boundary that do not correspond to degeneracy directions of the symplectic form
and are thus not true gauge degrees of freedom. One can demonstrate that the sta-
tionarity and covariance requirements do not produce finite charges associated with
these extended symmetries,*S and for sufficiently permissive boundary conditions,
the stationarity requirement may either fail, or not fully fix all possible ambiguities
in the flux. This motivates finding an alternative for fixing the flux ambiguities.
We therefore focus in this work on a different resolution that is more closely
tied to the variational principle associated with the subregion. This resolution was
first proposed by Compere and Marolf36 (see also Refs. 47 and 48), motivated by
the covariant Peierls bracket construction that far predates the more modern treat-
ments of the covariant phase space.2?*%52 These ideas were subsequently expanded
upon and formalized in the work of Harlow and Wu®® and the extension of this con-
struction to Wald-Zoupas localized charges was recently described by two of us.'?
It has also been employed in applications of extended symmetries of asymptoti-
cally AdS spaces and their flat space limits in Refs. 54 and 55.¢ The variational

€A related approach described in Refs. 18 and 39 absorbs all boundary terms in the action into
a bulk Lagrangian. Often, this produces results consistent with the action variational principle,
but it lacks some of the flexibility of the present formulation, requires arbitrary choices in how to
extend the boundary term into the bulk, and cannot handle the corner improvements described
in Subsec. 2.5.
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principle pertains to the full action for the subsystem, involving an integral of the
Lagrangian in the bulk plus additional boundary terms, which are chosen to ensure
the action is stationary for a given choice of boundary conditions. For a closed
system, the boundary conditions are essential in determining the dynamics of the
theory. Localized subregions instead behave like open systems due to the presence of
symplectic flux through the boundary, and in this case boundary conditions should
not be imposed, as they would unnecessarily constrain the dynamics. Nevertheless,
the boundary contribution in the variation of the action is used to describe the flux
through the boundary, and hence the form of the flux is largely determined by the
choice of boundary condition one would have to impose if viewing the subregion as
a closed system.

From the viewpoint of the variational principle, resolving the ambiguities in
the covariant phase space formalism thus amounts to finding a preferred form for
the flux, or, equivalently, to a preferred boundary condition one would impose if
treating the system as closed. A particularly natural choice is to require that the
flux be of Dirichlet form, meaning it depends algebraically on variations of the
intrinsic variables on the boundary. For example, at a timelike boundary in theo-
ries where the only dynamical field is the metric, the Dirichlet condition implies
that the flux takes the form & = Wijéhij, where h;; is the induced metric and 7t
can involve both intrinsic and extrinsic quantities. Similarly, on a null surface, the
Dirichlet form of the flux is £ = 7% §¢;; +m;0n’, where g;; is the degenerate induced
metric and n’ is the null generator. Arguments in favor of the Dirichlet form of
the flux were presented in Ref. 13, and include the connection to junction condi-
tions at a surface, the semiclassical description of the path integral when gluing
subregions, and a straightforward relation to the Brown—York and holographic con-
structions. For most of this work, we focus on the Dirichlet form of the flux, but
emphasize that most of the formal constructions work for other choices correspond-
ing to different boundary conditions, although these other choices yield different
values of the charges and can affect their algebra. The dependence of gravitational
charges on the choice of boundary conditions was recently verified in Ref. 56, which
explored the effect of imposing Neumann and York conformal boundary conditions
as opposed to Dirichlet.

The demonstration in Subsec. 2.4 that the action, symplectic form, and localized
charges are all insensitive to ambiguities is then performed by working out how the
individual contributions to each of these quantities change under JKM transfor-
mations once the expression for the flux has been fixed. We also introduce a class
of boundary canonical transformations, which resemble the JKM transformations,
but act nontrivially on the form of the flux, and hence change expressions for the
charges. Because these boundary canonical transformations change the subregion
action, this emphasizes that different choices of action generically produce different
charges. A careful treatment of the definition of all quantities involved in con-
structing the localized charges reveals an additional set of corner ambiguities in
the charges described in Subsecs. 2.1 and 2.5, that naively affect the values of the
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charge. We further demonstrate in Subsec. 2.5 that a corner improvement term in
the localized charges fixes this ambiguity as well.

Having obtained ambiguity-free expressions for the charges, we proceed in Sec. 3
to determine the algebra they satisfy. This algebra can be defined by way of the
bracket introduced by Barnich and Troessaert in Ref. 57 (henceforward referred to
as the BT bracket), where it was postulated as a sensible choice that reproduces
the algebra satisfied by the vector fields generating the diffeomorphisms on space—
time, up to extensions. We present a new result deriving this bracket from first
principles by identifying it as the Poisson bracket of the localized charges on the
subregion phase space. This derivation relies on the flux being of Dirichlet form,
but the arguments continue to hold for a class of alternative forms of the flux,
subject to certain conditions. The bracket of the localized charges in general does
not close, but instead produces additional generators K¢ that yield an exten-
sion of the algebra satisfied by the space—time vector fields. Explicit expressions
for the extension terms are given in Egs. (3.11) and (3.19), which are consistent
with the expressions originally derived in Ref. 13, suitably generalized to allow
noncovariances in the bulk Lagrangian. We further show that the brackets be-
tween the new generators K¢, and the localized charges H¢ coincides with the
bracket postulated by Barnich and Troessaert, as long as the generators K¢ ¢ depend
only on intrinsic variables at the surface when employing the Dirichlet flux condi-
tion. This requirement is nontrivially satisfied for charges constructed at null sur-
faces in general relativity, which serves as a consistency check on the use of the
BT bracket.

The final sections of this paper are devoted to charges constructed at asymp-
totic boundaries. In Sec. 4, as a segue into holographic renormalization, we review a
number of asymptotic symmetry algebras that have been proposed for 4D asymptot-
ically flat space. Our presentation focuses on the different universal structures each
algebra preserves, and we specifically analyze the cases of the standard BMS group,
the generalized BMS group,??3? and the recently proposed Weyl BMS group,*®
which in fact coincides with the symmetry group obtained in Ref. 32 for finite null
boundaries. Detailed derivations of these universal structures and their associated
symmetry groups are given in App. E.

We then turn to an analysis of the holographic renormalization procedure that
is needed to obtain finite results for asymptotic charges and their fluxes. This proce-
dure can be viewed as finding a boundary canonical transformation that renders the
action finite, after which all JKM-invariant quantities are finite as well. We further
show that a JKM transformation can be performed to make each individual term
in the expressions for the charges finite as well. It has often been remarked that one
reason for imposing boundary conditions on fields at asymptotic boundaries is to
ensure that the charges and fluxes have a finite limit to the boundary. The frame-
work of holographic renormalization instead provides a different perspective:38 one
should allow for the most general asymptotic expansion of the dynamical fields that
are consistent with the equations of motion, and handle any divergences using the

2250105-7



V. Chandrasekaran et al.

counterterms that renormalize the action. It was first demonstrated by Compere
and Marolf that in asymptotically AdS space, the resulting symplectic structure
obtained via the holographic renormalization procedure is finite for all fluctuations
of the dynamical fields, which further implies the charges and fluxes are finite as
well, consistent with previous results on holographic asymptotic charges.?:26-28 In
Subsec. 5.2, we show that this argument applies quite generally to any asymptotic
boundary, and give a general argument that the fluxes and charges are finite once a
set of boundary terms that renormalize the action have been found. In Subsec. 5.3
we show that holographic renormalization can always be successfully carried out, by
giving an algorithm for computing the terms that one must add to the symplectic
potential and Lagrangian to obtain finite renormalized quantities. It is impossible
to simultaneously maintain covariance and achieve finiteness, so our renormalized
quantities break covariance through dependence on a choice of background struc-
ture. This is entirely analogous to the situation in AdS/CFT, where renormalized
asymptotic charges necessarily depend on the choice of radial cutoff surface, which
translates into the appearance of the Weyl anomaly on the boundary.25:27:58 Finally,
in Sec. 6, we apply the formalism described in Subsec. 5.3 to explicitly compute
the renormalized symplectic potential and the localized charges associated with
the generalized BMS group in vacuum general relativity in 4D asymptotically flat
space—times.

We conclude in Sec. 7 with several points of discussion and avenues for future
work.

1.2. Notation

Unless otherwise stated, we will work in d + 1 space—time dimensions with metric
signature (—, +, +, - - - ). We will use the indices a, b, ¢ for (d+1)-dimensional tensors
in space—time and 4, j, k for d-dimensional tensors intrinsic to a surface embedded
in space—time. The conformal factor in our notation will be denoted by ® (instead
of the more commonly used symbol, 2, which we will reserve for the symplectic
form). We will use .# to denote null infinity in asymptotically flat space-times, .# T
where we specialize to future null infinity, and = to denote equality on .#+ (or more
generally on a null surface). The null normal to a null surface will be denoted by
ng, and the auxiliary null vector on a null surface will be denoted by [?. k is used to
denote the inaffinity associated with a null vector and is defined by n®V,n® = knb.
Often an index free notation will be used to denote differential forms, although
the indices will be made explicit where convenient. For example, 1 = 7;,i,...4,
1= iyig-ig_, Will denote the volume forms on codimension-1 and codimension-2
surfaces, respectively. We will use 7,7 to denote the inner product of a vector field,
v®, with a differential form (in this case 7). On occasion, the contracted indices will
be displayed while the uncontracted indices will be left implicit. In other places,
where convenient, all of the indices will be made explicit. In summary, we will freely
use any of the expressions i,n, v'n;, vinih...jd to denote the contraction of v into
the form 7.

and
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Table 1. A summary of the various differential forms that are defined in our covariant phase
space formalism, showing their space—time degrees and phase space () degrees, along with the
equations where they are first introduced. We generally employ a convention where Greek or
calligraphic letters denote forms with phase space degree greater than zero, and Latin letters
denote forms of phase space degree zero. See the paragraph above (2.5) for the meaning of the
prime notation, the paragraph below (2.4) for the meaning of the ¢ superscript, and footnote g
for the meaning of the V¢ superscript.

Space—time
degree | (d+ 1) d (d—1) (d—2)
¥ degree

b (2.7a), 7 (292), | ¢ (2.92), @, (2.25),
L (25), | 0/ (2.12), J¢ (221), | QL (2.26), he (2.30),

0 < ve
L (2.82a) | J¢ (2.23), a (2.36a), | [ (2.40a), ¢’ (2.43),
B (2.38a) he (2.46)
. A (2.7b), p (2.9b), ,
6 (2.5), 6 (2.8b), (2:70), p (2:90) x (2.9b), 7" (2.43),
1 v (2.10), B’ (2.12),
£ (2.12) pe (5.20b), ¢ (2.51)
A (2.38a), € (2.43)
2 W' (2.11)

Pullbacks to surfaces will be denoted using underlines, i.e. the pullback of 6
to a surface will be denoted by 6. When working with the covariant phase space,
Z will be used to denote the field configuration space of a theory, while . will
represent the space of field configurations that satisfy the equations of motion.
Operations on it including Lé, d, Ié, and Aé will be defined in Subsec. 2.1, and
capitalized calligraphic letters o/, %, ... will be used as abstract indices on ..
Note also that for simplicity, we will not distinguish between “pre-symplectic” and
“symplectic” for quantities defined on the pre-phase space and the true phase space
(see the second paragraph of Subsec. 2.1 for details). Finally, Table 1 lists various
differential forms used in this paper along with their degrees on phase space and
on space—time, and the equations where they first appear.

Finally, when dealing with subregions, it is important to keep track of the
orientations of the various components of its boundary, for which we follow the
conventions of Ref. 53. Beginning with the codimension-0 subregion ¢ with N a
null or timelike component of the boundary, we choose the orientation of N to be
that induced as part of OU. The orientation of a spatial surface ¥ inside of U whose
boundary intersects N will be oriented as part of the boundary of its past, and the
codimension-2 surface 0% defining a cut of NV will inherit the induced orientation
as a boundary of 3. Note that this means that 0% has the opposite orientation as
that induced as part of the boundary of its past in N'. We define the volume form n
on N to be one consistent with this choice of orientation, and similarly define x on
0% to be consistent with its orientation. See App. C for the details of these volume
forms when A is a null surface.
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2. Gravitational Charges at Finite Boundaries

In any gravitational theory defined on a space—time region with boundary, there
are nonzero charges associated with diffeomorphisms that act near the boundary.
Depending on the context, one can distinguish between two related notions of
charges, namely, global charges and localized charges. Global charges are defined
when the space—time region under consideration can be viewed as a closed system,
which occurs when considering the entire space—time, or else working with a sub-
region of space—time on which boundary conditions are imposed to prevent any
interaction with the complementary region. These charges generate the symmetry
transformation of their associated diffeomorphism on phase space via Hamilton’s
equation, and are conserved under time evolution. On the other hand, localized
charges are defined for a subregion of space—time, which is not assumed to be
isolated from its complement. Such charges need not be conserved due to the
presence of nonzero fluxes through the boundary, and in general will not faith-
fully generate the transformation associated with the diffeomorphism. Nevertheless,
these localized charges provide useful notions of quasilocal energy and momentum
for subregions in phase space, and, as we will discuss, satisfy an algebra that closely
resembles the diffeomorphism algebra of their corresponding vector fields.

Despite the distinctions, the two notions of charges are not entirely independent
of each other. Instead, a global charge can be viewed as a special case of a localized
charge, in which the space-time region is specialized to a closed system and the
fluxes of the charge vanish. For this reason, we will focus in this work on the more
general construction of localized charges, and simply mention at various points how
the construction can be specialized to global charges.

This section reviews the construction of localized gravitational charges using
covariant phase space techniques. The procedure was initially developed by Wald
and Zoupas,?* and in this work we specifically focus on a number of recent develop-
ments on the handling of boundaries in the covariant phase space that have led to
resolutions of the various ambiguities that can appear in the formalism.!3:36,47,48,53
The resolution comes from demanding that the symplectic potential £ describing
the flux through the subregion’s boundary be of Dirichlet form. We will demon-
strate explicitly that this fixes both the standard JKM ambiguities present in the
covariant phase space formalism,”3® as well as the additional ambiguity in identify-
ing the flux when employing the Wald—Zoupas procedure. In fact, we will see that
the formalism is invariant under generically noncovariant JKM transformations,
which, in particular, allows for formulations involving a bulk Lagrangian that is
not space-time covariant, such as in the ADM formulation of the theory.? This
provides maximal flexibility in identifying charges, allowing one to switch between
a covariant or noncovariant formulation depending on the application; invariance
under JKM transformations ensures that the final result for the charges will not
depend on this intermediate choice. We also describe in Subsec. 2.5 a resolution of
an additional set of ambiguities involving corner contributions to the action, leading
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to an improved set of localized charges. These corner-improved charges generalize
the proposal of Ref. 13 to allow for a noncovariant bulk Lagrangian and symplectic
potential.

Throughout this section, we assume that boundaries are at finite locations in
space—time, and that all quantities have finite limits to the boundaries. This assump-
tion excludes asymptotic boundaries such as spatial infinity or future null infinity
in asymptotically flat space-times, which can be brought to a finite location in
space—time via conformal compactification, at the expense of having some of the
dynamical fields diverge on the boundary. Later in Sec. 5, we will discuss the modifi-
cations and generalizations of the formalism that are necessary to handle asymptotic
boundaries, based on the technique of holographic renormalization.

2.1. Covariant phase space

=7 in order

We begin with a brief review of the covariant phase space construction
to establish notation, which largely coincides with that used in Ref. 13, and to point
to places where we generalize the standard treatments. For recent reviews and more
in-depth discussions of the covariant phase space, see Refs. 32 and 53.

The idea behind the covariant phase space is to provide a canonical description
of a field theory defined on a manifold M without breaking covariance by singling
out a foliation of constant-time slices, as it is done in more standard phase space
constructions. This is achieved by working with the space .# of all field configura-
tions satisfying the equations of motion, viewed as a subspace of the space .# of all
field configurations. In a globally hyperbolic space-time, each solution in . can be
identified, up to gauge transformations, with its initial data defined on a Cauchy
slice ¥, and since this initial data comprises the usual phase space of the theory,
we see that there is a canonical identification between . modulo gauge transfor-
mations and the standard noncovariant phase space.d Since the phase space arises
as a quotient of . by the action of the gauge group, we will find that .# has the
structure of a pre-phase space, on which we will construct a pre-symplectic form
that has degenerate directions. Most calculations will be done on ., bearing in
mind that eventually the quotient must be taken to arrive at expressions for the
true phase space. Throughout this work, we will drop the “pre” label for objects
defined on ., and simply point out where it is important to distinguish between
the pre-phase space and true phase space.

The spaces .# and . are infinite-dimensional manifolds, on which certain stan-
dard differential geometry concepts are well-defined. The dynamical fields ¢ (which
will later be taken to consist of the metric and any matter fields) define a collection
of functions on field space, and the gradients of these functions are denoted §¢.
Differential forms of higher degree on field space can then be constructed by taking

dWe will later consider subregions of space-time which are not globally hyperbolic, so this iden-
tification will not hold in those cases, but the construction nevertheless will allow us to define a
sensible notion of phase space for the subregion.
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wedge products, and we will employ the notation where the product af of two
field-space differential forms is always assumed to be a field-space wedge product,
and hence satisfies a8 = (—1)%Ba, where a and b are the respective form degrees
of @ and 3. The operator ¢ then defines an exterior derivative on the space of field-
space differential forms in the usual way. Vector fields are defined by infinitesimal
variations of the field configuration, and since vectors tangent to solution space .
must preserve the equations of motion, they are parametrized by solutions of the
linearized field equations. Given a vector field V on ., we denote the operation of
contraction with a differential form by Iy, so that in particular I, d¢ gives a phase
space function that returns the linearized solution corresponding to V' around each
background solution. We can also take Lie derivatives along a given vector field
V in field space, which we denote Ly, and its action on differential forms can be
computed via Cartan’s magic formula,

Ly =1yd+ 461y . (21)

Our main focus in this work will be diffeomorphism-invariant theories. Infinite-
simal diffeomorphisms are generated by vector fields £* on space—time, and they
act on fields via the space-time Lie derivative £¢¢. Diffeomorphism invariance
implies that £¢¢ is a solution to the linearized field equations, and hence defines
a vector field on ., denoted é, through the equation Iééd) = £¢¢. The vector
field £ can itself be viewed as a function on field space, and often it is taken to
be a constant, meaning 6§* = 0. However, in many applications it is useful to
consider transformations generated by field-dependent diffeomorphisms, for which
0" # 0. The Lie bracket [é, QA‘] o on field space of the vectors é associated with
field-dependent £* is given by (see App. A)

€,ds = —[& 1. (2.2)
[€ ¢1° = [€,¢]" — [6¢" + Iz0¢". (2.3)

This expression employs the modified Lie bracket [-, -] introduced in Ref. 59, and
its relation to the field space Lie bracket was noted in Ref. 60. Since the vectors é
are tangent to the solution space submanifold .¥ in .%, the bracket [é , é] & is also
given by (2.2).

We will be interested in objects defined on field space that may not transform
covariantly under diffeomorphisms. Noncovariances arise in objects that depend on
a background structure such as a nondynamical field. Being nondynamical means
that such a field is constant in field space, and hence Lé acts trivially on it. In
order to track the lack of covariance of a field space differential form, it is useful
to define the anomaly operator Ag, first introduced in Ref. 61, which acts on field
space differential forms constructed from local fields as®

Ag=Lg— £e—Ig. (2.4)

©¢The operator Iz acts on the local field variations as I

5 ggéd) = £5¢¢ (see App. A for additional
details).
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This operator provides a means for replacing field space Lie derivatives Lé with
space-time Lie derivatives £¢, keeping track of the anomalous transformation of
an object when doing so. A covariant object is one that satisfies Aéoz = 0, so,
for example, since the dynamical fields are covariant, the statement Ag¢ =0is
equivalent to the oft-used identity Léqﬁ = £L¢¢. On the other hand, a nondynamical
field 1) satisfies Lé?l) = 0 even though the space-time Lie derivative is generically
nonzero. In this case, the anomaly is given by Aéw = —XL¢p. When it is im-
portant to emphasize that a certain object is fully covariant, we will denote it
with an overset ¢, as in &; hence, for any such quantity, one may always assume
Aga=0.

The dynamics of the theory is specified in terms of its Lagrangian L', taken to
be a top form on space—time, so that the action is given by [ M L' up to boundary
terms. As we will discuss shortly, various quantities that we will consider depend
on ambiguities in the definition of the Lagrangian and related quantities, and we
employ the notation that quantities that depend on these ambiguities are indicated
with a prime, as in L’. Any primed quantity should be assumed to be noncovariant in
general. Varying the Lagrangian yields the field equations and symplectic potential
0’ for the theory according to

5L = E-6¢+do . (2.5)

The solution space . which will serve as the pre-phase space for the theory con-
sists of all field configurations satisfying the field equations £ = 0. Our main
focus will be theories whose field equations are diffeomorphism-invariant, meaning
AE(E -6¢) = 0. A condition that guarantees diffeomorphism invariance is that the
Lagrangian be covariant up to an exact term, A éL’ = daé. We will further restrict
attention to theories in which the anomalous term afé can be written as the anoma-
lous transformation of some other quantity defined on the boundary, a’5 = Aéb’ .
This implies that there exists a choice of Lagrangian that differs from L’ by an
(& (&

exact term, L = L' — db/, and is fully covariant, AEL = 0.f Iyer and Wald have
shown that whenever there is a covariant Lagrangian, one can find a symplectic

c (&
potential 6 that is covariant as well, Ag@ = 0.7 The covariant symplectic potential
can differ from ¢’ by the addition of an exact term and a total variation, and hence

fThis assumption precludes theories such as topologically massive gravity®2:63 whose Lagrangians

are not covariant for any choice of boundary term due to the presence of Chern—Simons-like terms,
but nevertheless yield diffeomorphism invariant field equations. The most general definition of a
diffeomorphism-invariant theory would be one whose equations of motion satisfy A é(E -8¢) =0,
which, in light of Eq. (2.5), implies the anomaly of the Lagrangian need only satisfy

AL = dAée’ . (2.6)

Given that the formalism is invariant under addition of noncovariant boundary terms, as discussed
in Subsec. 2.4, it seems likely that most of the results described in this work can be extended to
this more general class of diffeomorphism-invariant theories. It would be interesting to analyze
such generalizations in more detail, for example, as explored in Ref. 39.
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there must exist quantities b’ and A satisfying the equations
AéL/ = dAéb/ s (27&)
I A s3] N/
A0 = A0 +dA:N . (2.7b)
For a given Lagrangian L’ and symplectic potential 6, Egs. (2.7a) and (2.7b) will
be taken as the definitions of &’ and ). Once b’ and ) satisfying these equations

have been found, the associated covariant Lagrangian and symplectic potential are
defined to be
C
L=L —dv, (2.8a)
0=0 -0 —d\N. (2.8b)

Equations (2.7a) and (2.7b) fix b’ and )\ in terms of L’ and ¢’ up to shifts of
the form

V=V 47 +de, (2.9a)
N = XN = e+ p+dy (2.9b)

with 7 and p covariant and e and x generically noncovariant. However, we will see
below that the localized charges and other relevant quantities do not depend on
the freedom to shift by the covariant quantities T, ,8, nor on the shift in A’ by dy.
In principle, the charges are sensitive to the shift by e if Aée = 0, but this can be
resolved using a more refined treatment of corner terms, as explained in Subsec. 2.5.
Finally, we mention that the standard ambiguities that appear when working
with L' and @’ arise from the fact that any other Lagrangian that differs from L’
by an exact term, L’ + da’, yields the same equation of motion, and hence is an
equally valid choice for defining the bulk dynamics. For such a shifted Lagrangian,
any shifted symplectic potential of the form
0"+ da’ +dv/ (2.10)
will satisfy the relation (2.5), and hence defines a valid symplectic potential. These
freedoms to shift L’ and 6’ are often presented as ambiguities in the covariant
phase space formalism;”3® however, it has recently been understood that such
ambiguities may be resolved by specifying the form of the boundary condition
one would impose to ensure vanishing symplectic flux through the boundary of the
subregion.!3:36:47:48:53 This resolution is explored in detail in Subsec. 2.4, where it
is shown that the charges, fluxes, and subregion action all involve combinations of
the various objects that are manifestly invariant under these shifts.

2.2. Symplectic form

Before constructing localized charges associated with a subregion, we must first
restrict the solution space to the subregion, and equip it with a symplectic structure.
To this end, we let U denote the open set in M defining the subregion of interest,
whose boundary includes a timelike or null component A/. There may be additional
boundaries to the future and past of U, and, although these do not play a major
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role in the construction of charges in this work, these additional boundaries will
become important when considering more detailed resolutions of corner ambiguities,
as discussed in Subsec. 2.5. We will restrict attention to the space of solutions
within the subregion U, with no boundary conditions imposed at N. We denote
this restricted solution space by 7.

We now consider spatial slices ¥ in I/ whose boundaries 9% lie in N'. We will
define a symplectic form € associated with 9% as an integral over ¥ and 9X.
The resulting localized phase spaces (S, ) will serve as the starting point for
constructing localized charges, and it is important to remember that they depend
on both the subregion solution space .#7; as well as a choice of cut of the boundary.

Two specific examples that illustrate this general framework are as follows.
First, we take U to be a globally hyperbolic, asymptotically flat space—time, N to
be future null infinity .# T, and ¥ to be an asymptotically null slice which intersects
Z % in some cut 0X.3* Second, we take U to be a timelike tube in space-time, N
to be the timelike boundary OU of the tube, and X to be a spatial slice whose
boundary Y lies in A/. This second example is the context for the Brown—York
quasilocal charge construction.?® Note that in both of these examples, the subregion
solution space .7, is not in one-to-one correspondence with the space of initial data
on Y. This is a general feature of the framework, since ¥ is generally not a Cauchy
surface for the subregion. In the timelike tube example this arises because we have
not imposed any boundary conditions on OU.

The symplectic form will be constructed as a sum of two terms, one capturing
the bulk contribution and one involving a boundary contribution. The bulk term
is constructed as the integral over a spatial slice ¥ through U of the symplectic
current,

W =60 (2.11)

To determine the boundary contribution, we first consider the pullback 6 of the
symplectic potential to N, and decompose it into three terms

0= -6 +dp' +&, (2.12)

where we refer to ¢ as the boundary term, 3’ as the corner term, and £ as the fluz
term. The reason for this terminology relates to the variational principle for the
subregion. Neglecting contributions from past and future boundaries, the action for
the subregion U is defined to be

S = / o / v (2.13)
Varying this action and applying Egs. (2.5) and (2.12), we find
65:/E-6¢>+/5+ I (2.14)
u N ON

and hence it is stationary both with the bulk field equations hold, E - §¢ = 0 and
when the flux through the boundary vanishes, £ = 0. The corner term 3’ localizes to
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the past and future boundaries of A/, and in a complete treatment, additional corner
contributions to the action should be added at the codimension-2 boundaries of A/
and the past and future boundaries, as described in e.g. Refs. 64-66. Although not
crucial to the remaining discussion of this paper, these corner contributions to the
action can produce some modifications to the formalism, as described in Subsec. 2.5.
Without specifying the form of the flux term &, Eq. (2.12) is ambiguous, since we
can always shift it by exact terms and total variations & — £ + 6 B — dA by making
compensating changes to ¢’ and 8. These changes affect the subregion action (2.13),
as well as the definitions of the charges, and hence to avoid such ambiguities, it is
paramount to specify a criterion for selecting a preferred choice for £. In making
such a choice, it is important to realize that the form of £ determines the boundary
condition one would impose in a variational principle for the subregion by the above
discussion. While different choices are available for these boundary conditions, we
mention that it is often most useful to choose those in which £ takes a Dirichlet form,
meaning only variations of intrinsic quantities on the surface without derivatives

appear in £. For a timelike surface, this means
&= Wijéhij s (215)

where h;; is the induced metric, while for a null surface it means 337

&= wijéqij + mont, (2.16)
where g¢;; is the degenerate induced metric, and n’ is the null generator. A number
of arguments in favor of the Dirichlet form of the flux were presented in Ref. 13,
such as the relation to junction conditions across N and the semiclassicality of
the gravitational path integral when gluing subregions. We will also utilize this
condition in Sec. 3 when deriving the algebra satisfied by the localized charges,
but we argue that other forms of the flux also allow the derivation to go through.
In writing Eqgs. (2.15) and (2.16), we have restricted attention to theories such
as general relativity that admit a Dirichlet variational principle (or equivalently,
possesses second-order equations of motion), and have neglected any contributions
from matter fields to the symplectic potential. Note that the conjugate momenta
7% 7; can involve objects constructed from both the extrinsic and intrinsic geom-
etry of the surface. The Dirichlet requirement fixes the form of £ up to addition
of boundary and corner terms constructed entirely from intrinsic quantities, and in
Sec. 5 we will discuss how these purely intrinsic ambiguities are used in the context
of holographic renormalization.

We can further interpret how to view £ by taking a variation of Eq. (2.12) and
rearranging terms, which yields

08 =w' —dép . (2.17)
This shows that £ serves as a symplectic potential for the pullback of the symplectic
form w’ — ddf’. Here, the term ddf’ is precisely of the form of the ambiguity in

the symplectic potential described in Eq. (2.10), and as described in Ref. 53, by
considering an extension of 8’ away from the surface N, we can view 6’ —df3’ as the
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symplectic potential everywhere in the bulk. The associated symplectic current is
then w’ — ddf’, and integrating this over a spatial slice ¥ yields a symplectic form
that is the sum of a bulk and boundary term,

Q= I 68" . 2.18
/E“ [ 4 (2.18)

We remark that we will require the quantities L', ', b’ and A’ to be conti-
nuous everywhere on the space—time subregion and in particular everywhere on its
boundary. This condition is necessary for passing from (d + 1)-dimensional bulk
integrals to d-dimensional boundary integrals using Stokes’ theorem. By contrast,
the quantities ¢/, 3’ and &£ associated with the decomposition of the pullback of 6 to
a boundary component will not be required to be continuous across a corner joining
two boundary components. This greater generality for these quantities goes hand
in hand with the use of corner terms in the formalism in Subsec. 2.5 and Sec. 5.

2.3. Localized charges

Having identified a symplectic structure for the subregion U, we can proceed to
construct gravitational charges associated with diffeomorphisms that act near the
boundary A. Diffeomorphism invariance of the field equations implies the existence
of a conserved Noether current J, 5’ associated with each diffeomorphism generated by
a given vector £%. It follows from Eq. (2.7a) that under the action of diffeomorphisms
on phase space, the Lagrangian L’ transforms as

Ié(SL/ = £§L/ + AéL/ = digL/ + dAéb/ . (2.19)
However, from the definition (2.5), the left-hand side can be written as
IééL’ =E-I:0+ dféﬂ', (2.20)
and so defining the Noether current to be
Je=10"—icL' — A, (2.21)
we see that dJé =-F-1 édgb, which vanishes on shell. Here, we find a correction

to the usual definition of the Noether current involving the noncovariance of the
boundary term, Aéb’ , which was identified previously in Ref. 53. We can relate the

ve
Noether current (2.21) to the Noether current J¢ constructed from the covariant
Lagrangian and symplectic potential®

ve C C
Je =10 —icL (2.23)

&The superscript “vc” in this expression stands for “vector covariant,” and is used to indicate
ve
that the only noncovariance in J¢ arises from its dependence on the noncovariant vector field £.

ve
This notation will be used to indicate any quantity such as J¢ depending linearly on £% and its
derivatives whose noncovariance is given by

ve

ve ve
Aede=Jwe == J1¢ e1-1560) - (2.22)
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using (2.8a) and (2.8b), which produces
L= 10+ I0H + dIN — ieL —igdl — I.08 + £¢/ = J¢ +d (iet/ + 1)),
(2.24)

ve ve
showing that J¢ and Jé differ by an exact term. Furthermore, since J¢ is identically
closed on shell and covariantly constructed for any vector £%, it can be expressed
as the exterior derivative of a potential,

Je=dQ;, (2.25)
that is covariantly constructed from &% and the dynamical fields.5” The relation

(2.24) then implies that Jé is also expressible as the exterior derivative Jg’ = dQ’E
of a potential Q’g, given by

Qe = Q¢ +igh + I\ . (2.26)
The localized charges H¢ are now constructed by evaluating the contraction

of the field space vector field é into the symplectic form. Using the identity (see
App. B)

I =d (5@’5 — Qhe — it — AéX> , (2.27)

and the definition (2.18) for the subregion symplectic form, we find that the con-
traction of £ into €2 is given by

—I*Q:/ 0Q — Qe — AN — it + 1:08') . 2.28
é 82( ¢~ Wog = BeA — % g) (2.28)

Note that because this contraction localizes to a pure boundary integral, any diffeo-
morphism supported purely in the interior of ¥ is a degeneracy of 2, reflecting that
such transformations are pure gauge. If £* generated a genuine, global symmetry of
the subregion phase space, the right-hand side of (2.28) would have to be the total
variation dHg of a quantity H¢ that would be identified as the charge generating
the symmetry. In this case, Eq. (2.28) simply becomes the statement of Hamilton’s
equation, —1I éQ = JH¢. However, it is clear from inspection that the terms Qgg +
Aé)\’ + i0" + Iééﬂ’ generically do not take the form of a total variation upon
integration over 9%, absent the imposition of boundary conditions. While such
boundary conditions arise naturally for global charges for closed subsystems, in the
more general context of an open, localized phase space, such boundary conditions
unnecessarily constrain the dynamics and eliminate dynamical degrees of freedom
associated with fluxes of radiation modes. In this case, we seek to define a set of
localized charges, which satisfy a modification of Hamilton’s equation involving a
term representing the flux of degrees of freedom escaping the subregion.

Using the decomposition (2.12) of ¢, we find that Eq. (2.28) can be reorganized
into the form (see App. B)

—IEQ = Ohe — / (7;55 - Aé(ﬁ/ - M)+ hgg) , (2.29)
ox ox
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where we have defined the localized charge density h¢ to be
he = Q,g + igél — IEB/ . (2.30)

This formula takes the same form as the expression derived by Harlow and Wu,??
applied now in a context where boundary conditions are not imposed on the phase
space, as in Ref. 13. The first term in (2.29) is a total variation, and we are led to
identify this with the localized charge associated with £,

He = / he . (2.31)
ox

The remaining terms in (2.29) represent the loss of symplectic flux through the
boundary N under a flow generated by £ that moves O along this boundary. The
modified Hamilton’s equation involving nontrivial fluxes for the localized charge
then takes the form

0He = —I:Q + F¢, (2.32)

where
]:é = ‘/82 (255 - Aé(ﬁ/ - )\/) + h5§) . (233)

We denote this flux by ]:é rather than simply F¢ to emphasize that it can depend
nontrivially on the field-dependence of the generator of the diffeomorphism.”

The charges constructed via Eq. (2.31) obey a nontrivial conservation equation,
which can be obtained by computing the exterior derivative of the charge density

he. This yields the identity (derived in App. B)

dhe = I¢€ — Aé(f’ +b') —ig(L +al'), (2.34)
and integrating this between two cuts S; and Sy of the boundary N produces the
anomalous continuity equation,

He(Ss) — He(S1) = —/ (1e8 = gt +v)) . (2.35)

NE

where the last term in (2.34) does not contribute since £ is taken to be tangent
to N. The minus sign in this equation appears due to the choice of orientations of
N and 9%, discussed in Subsec. 1.2. The first term on the right of this equation

is interpreted as the symplectic flux out of the subregion, while the second term

involving Ag(¢' 4 b') is an anomalous violation of the conservation equation.!?

h\We have separated the entire contribution coming from §£® into the flux term, although for cases
where 0£® takes a specific form, it may be possible to separate off a total variation from hse to
include as a correction to the charge. Such field dependence is used in Refs. 68—73, for example,
to cancel some terms appearing in the flux, to arrive at integrable generators in the absence of
gravitational waves.
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2.4. Ambiguities and boundary canonical transformations

At this point, it is worth commenting that various objects introduced above, such
as © (2.18) and he (2.30), have been defined without the prime notation. This
is because these objects are in fact insensitive to the two ambiguities we have
mentioned to this point, corresponding to shifting L' — L'+da and 8’ — 6’ +da+dv,
where a and v are allowed to be noncovariant in general. We refer to these shifts
of L' and 0" as JKM transformations, having first been identified in the work of
Jacobson, Kang and Myers.?® Under such a transformation, we require that the
flux € remains invariant, since we are taking the form of the flux to be a physical
input defining the dynamics of the subregion. In order to keep £ invariant even
while 6’ changes under the transformation, we must also shift the quantities ¢ and
B’ appearing in the decomposition (2.12). The JKM transformations of the basic
quantities defining the phase space are then given by

L' - L' +da, (2.36a)

0" — 0"+ da+dv, (2.36b)
g, (2.36¢)

which then imply

W =W +dév, (2.37a)
¥t +a, (2.37b)
NN 4w, (2.37¢)
00—, (2.37d)
8 =8 +v, (2.37¢)
J¢ = Ji +d(ica+ Lev), (2.37f)
Qe = Q¢ +ica+ Lv. (2.37g)

Given these transformations, it is immediate to check from the definitions (2.18),
(2.30), (2.33) and (2.13) that the symplectic form €, the charge density h¢, the
symplectic flux ]-'57 and the subregion action S are all invariant.

Note in particular that if we start with a noncovariant Lagrangian and sym-
plectic potential L' and €', and perform a JKM transformation with a = —¥,

v = —), we obtain a covariant Lagrangian and symplectic potential, Ic/ and 5,
which are often used in standard treatments of the covariant phase space. In this
case, the expressions for the charges and symplectic form reduce to those con-
structed in Ref. 13, which utilized the covariant Lagrangian and symplectic poten-
tial. Invariance of the charges under JKM transformations then implies that these
expressions will agree with charges constructed using a Lagrangian and symplectic
form that differs by the addition of noncovariant boundary and corner terms. The
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main message here is that the only choices that affect the charges are the field
equations E - §¢ = 0 and the form of the flux £. The quantity £ can be viewed
as a boundary equation of motion, analogous to the bulk expression E - d¢, and,
although we do not impose this field equation for generic localized subregions, the
equation £ = 0 would be the boundary condition one would have to impose to have
a well-defined variational principle for the subregion. Note that it is not necessary
to absorb all the boundary terms in the action principle into total derivative terms
in the definition of the Lagrangian L’. Instead, when writing a variational principle
for the subregion, one should view L’ as the bulk part of the action, and ¢ as the
boundary contribution, as in Eq. (2.13), and together they produce an action that is
independent of JKM transformations. The choice of a particular L’ is then largely a
matter of convenience. When discussing consequences of diffeomorphism invariance,
such as the first law of black hole mechanics,®7 it is usually most transparent to

(& c
work with covariant L and 6. However, it can also be advantageous to work with a

40 or in the con-

noncovariant Lagrangian, such as when using the ADM formalism,
text of holographic renormalization in order to obtain finite space—time integrals, as
expanded upon in Sec. 5. The results of this section indicate that charges obtained
in either formulation coincide, and the transformations (2.36) provide a means for
translating between different choices.

Since the resolution of JKM ambiguities employed in this work relies on fixing a
preferred choice of the flux &£, it is worth commenting on the different choices that
are available for £. The different possible choices are obtained from transformations
that alter the decomposition (2.12) of the presymplectic potential, while leaving
L' and @' invariant. Such transformations induce changes in the flux, corner and
boundary terms of the form!

E—E+6B—dA, (2.384)
¢ 50 +B, (2.38D)
B = B +A. (2.38¢)

We refer to such transformations as a boundary canonical transformations, since
they affect the division of the canonical pairs that appear in £ into coordinates
and momenta.) For example, starting with a Dirichlet flux on a timelike boundary
& = 78h;;, the boundary canonical transformation with B = —7%h;; yields
a Neumann form of the flux, Ey = € — (5(7Tijhij) = —hij67rij. Quantities that

By composing with a JKM transformation (2.36) one can obtain an alternative form of boundary
canonical transformations in which L’ — L’ +dB and ¢’ — 0’ + §B — dA while ¢/ and 8’ are
invariant. However the form (2.38) is more general since it naturally accommodates transformation
parameters B and A that are discontinuous from one boundary component to the other, while
L', ¢’ and the JKM parameters a and v are required to be continuous (see the discussion after
Eq. (2.18) above).

ISee Ref. 74 for a related discussion interpreting such transformations as a canonical transformation
in the context of holographic renormalization.

2250105-21



V. Chandrasekaran et al.

were invariant under the JKM transformations considered above transform non-
trivially under these boundary canonical transformations; in particular, the action,
symplectic form, and charge density change according to

s—>s+/ B, (2.39a)

N

Q=0-— [ 6A, (2.39b)
)

hg — hg + Z'EB — IéA (239C)

There are a number of situations where boundary canonical transformations are
relevant. The most important example for this work is in considerations of holo-
graphic renormalization, where the naive Dirichlet form for £ does not admit a
finite limit to the asymptotic boundary. In this case, one seeks to find a counter-
term B = /. constructed from intrinsic quantities on the boundary such that
the resulting renormalized action is finite as the boundary is taken to infinity. We
show in Subsec. 5.2 that this ensures that the renormalized flux & also has a
finite limit, and hence is sufficient to construct finite asymptotic charges. Another
example in which such boundary canonical transformations appear is in AdS/CFT
when considering the alternative quantization of low mass bulk fields.”

2.5. Corner improvements

While specifying the form of the flux &€ resolves the standard JKM ambiguities in the
covariant phase space formalism, there is an additional ambiguity that remains even
after fixing £. This ambiguity occurs because the decomposition (2.12) determines
¢ and 3’ only up to shifts of the form

0 — 0 +df, (2.40a)
B =B +4f, (2.40D)

with f generically noncovariant. Under such a shift, the charge density h¢ is not
invariant, instead transforming as

hg — h§ — Aéf — di5f7 (241)

and the term Aé f will affect the value of the integrated charge H¢. A similar shift
occurs in he under the transformations of b and X described in Egs. (2.9a) and
(2.9b) by a noncovariant quantity e, leading to a shift in the charge density

hg — hg — Aé@ — dige . (242)

In order to handle these additional ambiguities, a correction must be added to
the charges that cancels the dependence on these shifts. This improvement term in
the charges was described in App. C of Ref. 13 when working with covariant L’ and
0’ (so that b’ and N are set to zero), and here we will describe the generalization
of this procedure to generically noncovariant L’ and 6.
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The resolution comes from noting that we must not only fix the form of the
flux £ on the bounding hypersurface N, but also must fix a preferred corner flux
on the codimension-2 surface 9% on which the charge is being evaluated. In this
case, the quantity 3’ — )\ serves as a higher codimension symplectic potential,
and hence to resolve the ambiguities, we decompose it in a similar manner as 6’
from Eq. (2.12):

B =N =-6c +dvy +¢, (2.43)

where € is the corner flux. We will obtain unambiguous charges by specifying a
preferred form of e, which could be determined by a Dirichlet variational principle
for a subregion of space—time that includes corners, as discussed, for example in
Ref. 66. In this case, ¢’ is related to the corner terms one adds to the action, although
the full action must include terms coming from both hypersurfaces intersecting at
the corner.X The quantity 7/ can be viewed as a codimension-2 symplectic potential,
and in principle we could further consider decomposing it in a similar manner
to 8 and S’ — XN. Doing so would yield quantities associated with contributions
to the action and flux associated with codimension-3 defects in the shape of the
subregion. Such features would arise at caustics of a null hypersurface, and also
when considering singular diffeomorphisms such as superrotations that produce
42,59,76-79 We note, however, in the absence of
such codimension-3 features, the quantity ' drops out of any expression for the
charges, and hence we will not consider it further in this work, although a careful

defects on a codimension-2 surface.

analysis of this type of term would be an interesting future direction.
The quantity Aé(ﬂ’ — X') appears in the identity (2.29), and the decomposition
(2.43) motivates including the ¢’ term in the localized charge as opposed to the

KIn slightly more detail, we consider a region U bounded by two hypersurfaces N T and N~
intersecting at a codimension-2 corner C, oriented such that U D NT — N~, Nt D C and
N~ D C, where the signs indicate the relative orientations. The action including contributions
from only these boundaries is given by

S:/L’—l— z;—/ ﬁ’,+/(c’+—c1). (2.44)
u N+ N— C

Here, Z/i and Cli arise from independent decompositions on N'£, and these quantities, along with
B, need not be continuous when moving from N~ to A" through C. On the other hand, b’ and
X’ should be continuous across C, since they arise from L’ and 6’ which are continuous throughout
U. Invariance under the standard JKM transformations follows as before, and we can also check
invariance under the e and f ambiguities described in Egs. (2.9a), (2.9b), (2.40a) and (2.40b).
For these ambiguities, the quantity e is required to be continuous through C, but f can take on
separate values f4 at C. This then implies that the action is invariant under these transformations,

S—>S+/N+df+—/j\fﬁdf,+/c(—e—f++e+ff)=s. (2.45)

The corner improvement in the present section only considers contributions from the single hyper-
surface Nt ending on C, but it would be interesting to extend this analysis to account for the
contributions from N .
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flux. The improved charge density is then defined to be
ilg = hg - AéCl (246)
ve
= Q¢ +ig(l +V +d) — L +d (igcl - Iéfy’) , (2.47)

where the expression in the second line follows from applying the definitions (2.30),
(2.26) and (2.43). The improved flux that generalizes Eq. (2.33) is given by

]:—5 = s (’L'gg — Aé& + ilgg) . (2.48)

Defining the improved localized charge .F~I5 as the integral over 0% of izg, we find
that improved charges and fluxes still satisfy the modified Hamilton’s equation,

§He = —1:0+ F; . (2.49)

Once a preferred form for the corner flux € is chosen, the shifts in 8’ and N

described in (2.40b) and (2.9b) require that ¢’ transform according to

d—d—f—e. (2.50)
It follows immediately that the improved charge density (2.46) shifts only by exact
terms under the transformation, and hence the integrated improved charge ﬁg is
invariant.!

The corner flux ¢ in Eq. (2.43) can be shifted by exact terms and total varia-
tions, leaving the left-hand side 3’ — )\’ fixed. The transformations that achieve this
are analogous to the boundary canonical transformations (2.38), but arise in the
codimension-2 context rather than in codimension-1. We call these transformations
corner canonical transformations, given that they change the form of €. One type
of corner canonical transformation is an adjustment of the decomposition (2.43)
by v/ = v +(, € — € — d(, leaving all other quantities fixed. A second type is
a transformation (2.40) with parameter f = F, followed by a boundary canoni-
cal transformation (2.38) with parameters B = —dF and A = —§F. Under the
combined transformations we have

d—=cd—F, v—=+44+(, e—e—-0F-dC, (2.51)

while ¢/ and " are invariant and ﬁg — iLg + AgF'. This combination of transforma-
tions is designed to leave #' invariant. We will make use of these corner canonical
transformations in our discussion of holographic renormalization in Sec. 5.

We emphasize that in our formalism the charges are uniquely determined by
a choice of subregion action principle. The various canonical transformations con-
sidered here coincide with a change in action principle and a corresponding change
in the charges. A small subtlety related to this point occurs in regard to the
effect of the boundary canonical transformation &€ — & — dA. For consistency,

IA slightly different proposal for a corner-improved charge was recently considered in Ref. 56,
which amounts to defining the improved charge density to be }_Lg = he + £ = ng + Iééc’.
We note that this alternative proposal does not have the same invariance properties under the
ambiguities as does il,g, which serves as an argument in favor of (2.46).
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Table 2. A summary of the various transformations in the covariant phase space formalism
and how they act on the differential forms. The first row lists the eight different independent
transformations, the second row their names, and the third the equation numbers where the
transformations are defined. The name acronyms are Jacobson-Kang-Myers (JKM) transforma-
tion, boundary canonical transformation (BCT), and corner canonical transformation (CCT).
The remaining rows list the various quantities that occur in the formalism, their names, defining
equations, and how they transform under the transformations. The first eight rows list the fun-
damental independent quantities, while the remaining quantities are derived from the first eight.
Quantities indicated with a { are required to be continuous from one component of the boundary
to another, while those without this symbol may be discontinuous at these transitions. These
discontinuities are associated with the appearance of corner terms in the integrated action (5.2).
The five transformations in the columns for a, v, e, x and ¢ do not change the integrated action
S, symplectic form €, or integrated (improved) localized charges, and thus are analogous to gauge
freedom in the formalism. By contrast, the three transformations in the columns for B, A and
F do alter these quantities, reflecting the fact that the boundary flux £ and corner flux € must
be specified (for example via a complete action principle) in order to determine unique localized
charges.

Transformation at v et xT B A F ¢
Name JKM | JKM BCT BCT CCT CCT
Equation (2.36) | (2.36) (2.9) (2.9) || (2.38) (2.38) (2.51) (2.51)
Quantity Eqgs.
L'{ | Bulk Lagrangian | (2.5) da
#’t+ | Symplectic pot. (2.5) da dv
b’ | L' noncovariance | (2.7) a de
At | 6/ noncovariance | (2.7) v —de dx
¢’ | Boundary action | (2.12) —a B
¢’ | Corner action (2.43) —e -F
5 (2.43) —x ¢
e | Corner flux (2.43) A —0F —d¢
& | Boundary flux | (2.12) 6B —dA
S | Action (2.13) Jv B —[on F
Q | Sympl. form (2.18) — [y OA
B’ | Corner term (2.12) v A
J¢ | Noether current | (2.21) || diga dlgv | —Agde
Q¢ | Noether charge (2.26) ica Tev —Age | dlgx
—dice
he | Localized charge | (2.30) —Age | dlgx i¢B —I¢A
—digce
he | Improved charge | (2.46) —dige | dIgx i¢B —IgA AgF
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this transformation must shift the corner flux according to e — £+ A (see Table 2),
and these combined transformations have the effect of leaving the variation 4.5 of
the subregion action invariant. One might be tempted to conclude that the corner-
improved charges should then be invariant under this transformation since the
subregion action is meant to uniquely determine the charges; however, according
to Table 2, this transformation in fact shifts the charge density ﬁg nontrivially.
This suggests that one must not only specify the form of the subregion action, but
also the full form of the fluxes £ and ¢ in order to obtain unique expressions for
the charges. In actuality, both £ and e can be uniquely extracted from the action
provided one specifies on which quantities the on-shell action functionally depends.
In particular, for a Dirichlet action principle, the on-shell action is a functional of
the boundary induced metric h;; and the corner induced metric g4 p. This uniquely
5S

determines the momenta 7% = % and 148 = Saan’ and hence the fluxes by the
ij

relation & = 7% 8h;; and € = 74B85qap. Hence, even though the charges depend
on the precise forms of the fluxes, we see that these are ultimately determined in
terms of the subregion action principle.

A summary of the various transformations we have defined in this section is
given in Table 2.

3. Brackets of Localized Charges

With the definition (2.30) of the localized charges in hand, we would next like
to compute the algebra they satisfy. Since these charges arise from the action of
diffeomorphisms on a subregion of a space-time manifold, we should expect the
charge algebra to be closely related to the algebra satisfied by the corresponding
vector fields £ on space—time under the Lie bracket. Diffeomorphisms of space—
time induce an action on the solution space . which serves as a phase space of
our theory, leading to a related Lie bracket of the vector fields é associated with
the space-time vector fields £*. As mentioned in Egs. (2.2) and (2.3), the field
space bracket is simply minus the space—time Lie bracket for field-independent
generators, and for field-dependent generators, it is given by minus the modified
Lie bracket [-, -].

Normally when dealing with Hamiltonian charges for a symplectic manifold,
the Poisson bracket of the charges can be obtained by contracting the vector fields
generating the symmetry into the symplectic form. However, the localized charges
do not satisfy Hamilton’s equation due to the term involving ]:é in (2.32). This

means that the charges H¢ do not generate the same flow as the vector é on the
phase space. Nevertheless, the charges H¢ are functions on phase space, and hence
possess a well-defined Poisson bracket. We will find in this section that this Poisson
bracket on the subregion phase space reproduces the bracket introduced by Barnich
and Troessaert in Ref. 57, providing a novel derivation of this bracket and justifying
its use in defining the algebra of localized charges. Note that there is no contradic-
tion in the fact that these charges have a well-defined Poisson bracket despite the
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presence of fluxes in Hamilton’s equation because the flow generated by H, differs
from the flow generated by &, and it is only the latter that does not preserve the
symplectic form when fluxes are present. Due to the difference between the flows
generated by H¢ and ¢, we will find that the charge algebra differs from the algebra
of vector fields under the modified bracket by the extension terms K¢ ¢ appearing
in Egs. (3.10) and (3.11).

To compute the Poisson bracket, it is first helpful to introduce an abstract index
notation for tensors on field space. We let o7, 4, . .. denote tensor indices on %4, SO
that, for example, the symplectic form on phase space can be written {2, 4. We then
define Q7% to be an inverse of Qgw. The meaning of this statement is somewhat
subtle because Qg4 is degenerate on .7, and so inverting it requires some gauge-
fixing procedure to define the subspace of .#7; on which we are constructing the
inverse. This gauge fixing will yield a tensor Q% satisfying

V20 Vo = Qo . (3.1)

Note that the true subregion phase space &, is obtained from .77, by quotienting
out the degenerate directions, and on this quotient space we expect Q7% to descend
to a well-defined inverse that is independent of the gauge-fixing procedure. We also
assume that the vector fields éd have been constructed to be tangent to the gauge-
fixed submanifold, so that Q%% Qggcgé(g = é” . Often, this requirement introduces
field dependence into the vector £¢, which is one of the reasons for considering
field-dependent symmetry generators.
The Poisson bracket of the localized charges is defined to be™

{H¢, Hey = Q7% (6He) oy (0H¢) 25 - (3.2)

Then since the variation of the localized charges satisfies (2.32), we find for the
Poisson bracket

{He, Hey = 077 (Quref® + (Fo)ar ) (Q9l? + (7)) (3.3)

— 7700 — E2(F)a+ (7 (Fu + Q7 (F)u(Fla  (34)

= {He, HYpr + Q77 (Fe) o (F) 2 (3.5)
where in the last line we have introduced the Barnich—-Troessaert (BT) bracket
{Hg, HC}BT = IéICAQ — Ié]:f + Iéfé = —Ié(SHC + Iéfé (3.6)

This bracket was proposed in Ref. 57 as a means for defining an algebra for
localized charges that only satisfies the modified version of Hamilton’s equation
(2.32), but the interpretation of it as a Poisson bracket on a phase space was left as
an open problem. From Eq. (3.5), we see that the BT bracket in fact coincides with
the ordinary Poisson bracket of the charges H¢, H¢, provided we can argue that

MThe sign in the definition of the Poisson bracket here is the more common choice, which is
opposite to the sign employed in Ref. 13.
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the final term quadratic in the fluxes ]—"é, ]-"é vanishes. To see how this occurs, we
first assume that the corner term S’ that appears in (2.12) is covariant, Aéﬁ’ =0,
that the generators are field-independent 0% = 0, and that the flux has been put
into Dirichlet form, as in (2.15) for a timelike surface or (2.16) for a null surface.
In this case, the symplectic flux fé for a timelike surface simply reduces to

Fe= [ ignohi;. (3.7)

%
In this form, we see that the final term in (3.5) involves the contraction of Q<%
into two metric variations 0h;;(z)dhi(x") at each pair of points x, 2" on the spatial
codimension-2 surface 9%. Hence, it is determined entirely in terms of the Poisson

bracket of the intrinsic metric on the surface {h;;(x), hri(2')}:

/dx/dac’ i (@)ien™ (2" ) {hij(2), ha ()} . (3.8)

However, this bracket should vanish on general grounds, since it involves values of
the induced metric (without time derivatives) at causally separated points on 9.
Additionally, at coincident points x = z’, no delta functions should appear in the
Poisson bracket due to the absence of time derivatives. Because of this, we conclude
that the final term (3.5) vanishes, and hence the Poisson bracket of the localized
charges agrees with the BT bracket, at least in the case that the symplectic flux has
been reduced to the form (3.7)." The story is entirely analogous for a null surface,
and similarly relies on the vanishing of the brackets between intrinsic quantities at
the cut 9%, {gij, g} = {n’, qjx} = {n’,n?} = 0. For example, for the components
dqap of the induced metric perturbation on the future horizon of a Schwarzschild
black hole, Ref. 81 derives the commutators

{9aB(0,v),qcp(8',0")}

1
o (gacqBp + apgBC — 4ABICD)S>(0,0) [@(U —v') — 2] ;o (39

where (6,v) = (0, ¢, v) are coordinates on the horizon. This commutator vanishes®
at v ="',

We can now ask whether any of the conditions leading to this conclusion can
be relaxed. We can allow for the additional terms Ag(8" — \') and hs¢ that appear
in (2.33), provided that these also can be put into Dirichlet form. For the corner
term 3’ — X, this can be done using the corner improvement procedure described in
Subsec. 2.5 by selecting a Dirichlet form for the corner flux £ appearing in (2.43).

"Interestingly, Ref. 80 found that commutativity of the intrinsic metric on a codimension-2 slice
of the boundary is violated in the presence of a nonzero Immirzi parameter when utilizing the
first-order formulation of general relativity. This suggests that the naive BT bracket would be
modified in this case, and it would be interesting to investigate these corrections in more detail.

°That ©(v — v') — 1/2 should be interpreted as 0 for v = v’ can be seen by integrating Eq. (3.9)
against wAB (0)wCP(g') for some wAE which yields at v = v’ the commutator of an operator
with itself.
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For the hse term, this likely leads to some restrictions on the allowed field depen-
dence in £*.P Finally, we can even allow for choices of the flux term £ that are not
Dirichlet form, for example, we could instead require Neumann form & = —h;;67.
As long as the flux £ is of the form where the equation £ = 0 defines a valid
boundary condition for the variational principle,* and the condition of vanishing
symplectic flux .7-'5 = 0 imposes no further restrictions, one will still be able to argue
that the flux terms in (3.5) vanish.

The interpretation given here of the BT bracket as an ordinary Poisson bracket
on the subregion phase space is a novel proposal of this work, and can be compared
to previous arguments for arriving at this definition of the bracket for localized
charges H¢. In Ref. 13, two of us suggested a heuristic derivation of the bracket,
in which the bracket represented the Poisson bracket on a larger phase space con-
sisting of the subregion and a complementary phase space that collects the flux,
yielding a closed global phase space. This interpretation is similar to the one pre-
sented in this work, but differs in that our present proposal shows that no auxiliary
system is needed to interpret the bracket as a Poisson bracket. It is likely the two
proposals are consistent with each other, after employing a gluing construction as
discussed in Subsec. 7.2. Another proposal by Troessaert3? suggested an interpreta-
tion in which the boundary fields on which Dirichlet conditions would be imposed
in the variational principle are interpreted as classical sources for the subregion
phase space, motivated by similar interpretations appearing in AdS/CFT. This
interpretation appears to be close in spirit to the proposal in this paper; however,
Troessaert’s construction involves an explicit decomposition of the bracket into an
ordinary bulk Poisson bracket and corrections involving variations of the boundary
sources. This makes comparison to the present interpretation difficult, although it
would be interesting to further investigate whether the two proposals are consistent
with each other. Finally, we mention some recent work by Wieland®?® in which the
bracket arose as a Dirac bracket after constraining the phase space to remove all
radiative modes from the theory. By contrast, the bracket in this work imposes no
such constraint, and hence disagrees with Wieland’s proposal. However, it may be
that the two proposals agree for a specific choice of transformations and charges
that are “purely Coulombic,” as might be expected for charges associated with
diffeomorphisms acting near the boundary.

Having argued that the BT bracket coincides with the Poisson bracket of the
localized charges, we can use it to compute the canonical algebra satisfied by these
functions on the local phase space. A straightforward calculation (see App. B) using
the bracket definition (3.6) and the expressions (2.30) and (2.33) for the charge

POnce the field-dependence of £* has been fixed, one could decompose hse = —da + dT + ¢,
and include the a contribution in the charge and € in the flux. Such a decomposition will lead
to additional modifications of the brackets of the charges. This kind of decomposition has been
investigated recently in Refs. 68—73.

4This can equivalently be phrased as finding a Lagrangian submanifold for the boundary phase
space involving the symplectic pairs (7%, h;;).
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density and symplectic flux yields the following charge representation theorem:

{He, Hey = (Hpe,cp + Kec) s (3.10)

Kee = / (ieBe@ +¥) = icAg(t +1)) (3.11)
oX

Hence, we see that the bracket reproduces the algebra of the vector fields £* under
the modified bracket (2.3), up to an extension parametrized by a new set of genera-
tors K¢ ¢. The combination ¢ 4+’ that appears in the formula for the extension is a
JKM-invariant quantity, and reduces to the expression for the extension in Ref. 13
when utilizing a covariant Lagrangian L’. Note that Eq. (B.9) indicates that the
extension would involve an additional contribution i¢i¢c (L' +dl’), except for the fact
that we have assumed that £* and (* are both parallel to the same hypersurface,
causing this term to pull back to zero. In fact, this term was first derived in Ref. 17
assuming boundary conditions to make such transformations integrable, and was
also recently explored in Ref. 39. Assuming charges associated with the two inde-
pendent normal directions to % can be consistently defined,'”3%:84 this suggests
the full formula for the extension is given by the sum of (3.11) and the integral of
teic(L' 4+ at’).”

The generators K¢ ¢ are local functionals of the vector fields £, (¢ and the
geometric quantities defined on the boundary, and we can therefore compute their
brackets with the original localized charges using a similar set of arguments as
above:

{He, K¢ p} = Q77 (0He) , (0K ) 4

= _é@ (5KC1¢)@ +Q7% (ff)g{(éKCﬂ/’)ﬁﬁ‘ (3.12)

To simplify this further, we postulate that K¢, is a functional of only intrinsic
variables on the surface, K¢ = K¢ ¢[h;;] (including any field-dependence in the
vectors €%, ¢*). It can be checked that this condition is satisfied in general rela-
tivity with a finite null boundary,'® and we expect it to hold more generally for
theories that admit a Dirichlet variational principle. Its variation can therefore be
written as

§Keo = /8 . (Koot + dore) (3.13)

and the exact piece do¢ integrates to zero on 9. On a null surface, we simi-
larly require that §K¢ ¢ involve only the variations dg;; and dn’. As before, using

"The bracket defined in Ref. 39 further differs from the BT bracket since it is defined to subtract
the extension term K¢ ¢, so that it tautologically leads to a representation of the vector field
algebra. It was later shown in Ref. 85 that this bracket arises as a Poisson bracket of integrable
Hamiltonian charges in the extended phase space constructed by Ciambelli, Leigh and Pai,®¢ and
the generalization to ambiguity-free charges analogous to those constructed in this work was given
in Ref. 87. The need to extend the phase space to arrive at the bracket considered in these works
shows that it is closely related but essentially different from the BT bracket.
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the assumption that ]-'é is in Dirichlet form and that the intrinsic variables com-
mute on 9%, we see that the second term in (3.12) drops out, and we derive the
relation

{He, K¢y} = —IgéKQw . (3.14)

Finally, the assumption that K¢ ¢ is a functional of only intrinsic quantities leads
by the same arguments to the result that the K., generators commute among
themselves,

{Kee, Ky} =0. (3.15)

As before, if we are instead working with a flux £ that is not of Dirichlet form,
the commutation relations (3.14) and (3.15) will remain valid as long as K¢ is
a functional only of quantities that would be fixed by the variational principle
associated with the chosen form of the flux.

The relations (3.10), (3.14) and (3.15) fully define the algebra satisfied by the
canonical charges H¢ and the extension charges K¢ ¢. In the case that I, 55KC,1/1 can
be expressed only in terms of the generators K, ,, the charges (H¢, K¢ ) yield a
representation of an Abelian extension of the algebra satisfied by the vector fields
under the bracket [£, (]. This condition was confirmed, for example, for a class of
vector fields satisfying a Witt algebra acting on Killing horizons in Ref. 13, where
it was further demonstrated that only a single independent generator K¢ arises,
yielding a central extension, the Virasoro algebra. In the most general case, however,
one would expect 155K<,w to be expressed as a sum of H¢ and K, ,, producing a
more complicated algebra, presumably related to Diff(N') or Diff({f), in which K¢ ¢
generates an Abelian subalgebra. It would be interesting to explore these more
complicated algebras in future work.

The requirement that K¢ be a functional of intrinsic data on the boundary
is a nontrivial consistency requirement in order to conclude the algebraic relation
(3.14). To further motivate it, we remark that this requirement can be related
to a generalized notion of symmetry for the subregion.® Normally, symmetries are
defined as transformations that leave the subregion action (2.13) invariant. However,
we can also consider transformations that change the action only by a boundary
term that is constructed entirely from intrinsic data,

IS = / Ae . (3.16)
N

In the Dirichlet variational principle where the intrinsic data is fixed by a boundary
condition, requiring A¢ to depend only on intrinsic quantities then says that the
action is invariant up to a constant. In such a situation, one can still derive a
Noether charge that generates the symmetry, and it is conserved up to quantities
constructed from the intrinsic geometry, which commute with all observables. The

$We thank Don Marolf for discussions on this point.
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quantity I 555 can be reexpressed using the anomaly operator as
IédS = /N Ag((’ + V) +ig(L +al'), (3.17)

where we find both of the contributions that arise in the formula for the exten-
sion, as discussed below (3.11).* Restricting to £ that is tangent to N, we see
that A¢ and Ag(¢' + ') coincide. Hence, Ag(¢' + ') must be expressible purely
in terms of intrinsic quantities to be consistent with this generalized symmetry
principle.

The charge algebra (3.10), (3.11) was derived for localized charges H; con-
structed without employing the corner improvement described in Subsec. 2.5. When
working with the improved charges ffg defined as integrals of the improved charge
density (2.46), the Poisson bracket of the charges is again given by the BT bracket
(3.6) after replacing the flux terms involving ]-'5 to the modified fluxes .7:"5, defined
in (2.48). As before, the charge algebra reproduces the modified bracket algebra of
the vector fields up to an extension (derived in App. B),

{gﬁvgﬁ}:ﬁ[@gﬂ-ﬁ-f(&g, (318)
Kee = / (1eDe (0 + b +dc) —icAg(0 + '+ dc)) . (3.19)
)

An important property of the BT bracket is that it reduces to a Dirac bracket
for the generators Hy when boundary conditions are imposed to make them inte-
grable, meaning they satisfy Hamilton’s equation (2.28) with no fluxes. For a flux
in Dirichlet form, this boundary condition is just that the intrinsic quantities on
the surface are fixed. In this case, since we also require that Ag(¢' +b') is con-
structed purely from intrinsic quantities, the boundary condition also imposes that
Ag(f' + V') is constant on the constrained phase space, and hence K¢ ¢ = 0. In
this case, the vector fields generating the symmetry must be chosen to preserve the
boundary condition, and we find that the generators K¢ ¢ yield a central extension
of the vector field algebra, as required by general arguments?32-88:89
of group actions on a symplectic manifold.

The more general setup considered in this work does not impose such a boundary
condition, and this allows for Abelian extensions or more general forms of the
algebra. The new generators K¢ appearing in the extension are functionals of
the intrinsic geometry evaluated on a slice of the boundary N. It is helpful to
view the collection of all such intrinsic functionals as forming an Abelian algebra of
boundary observables localized on the cut 9. The charges H¢ then act on any such
functional f[h;;], generating its evolution along the vector £ just as in Eq. (3.14),

{He, flhis]} = =10 f[ha) .- (3.20)

on the properties

tAs a side consequence, this demonstrates that extensions appear in the bracket of canonical
charges only for transformations that do not leave the subregion action invariant.
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Hence, even when ¢ is covariant so that the extension terms K¢ ¢ in (3.10) vanish,
we can still construct an extended algebra by allowing the generators H¢ to act on
the intrinsic functionals f[h;;]. These intrinsic functionals are reminiscent of the
edge modes arising in Ref. 90 when accounting for the Hayward term in the gravi-
tational subregion action. It would be interesting to further explore this connection
between edge mode degrees of freedom and the action of the localized charges H¢
on functionals of intrinsic data.

4. Vacuum General Relativity at Null Infinity

In the formalism developed in the past two sections, we have implicitly assumed
that the boundaries N are at finite locations in space-time, and that all quantities
are finite on those boundaries. In Sec. 5, we will extend the formalism to handle
the case of asymptotic boundaries, treated in a conformal completion framework
to bring them to finite locations. In this context, the Lagrangian and symplectic
potential can diverge at the boundaries and must be suitably renormalized using
the techniques of holographic renormalization.?!:27:28:31:91 T this section, we take a
detour to provide a motivating example for our treatment of holographic renormal-
ization of Sec. 5: an analysis of various asymptotic symmetry groups for vacuum
general relativity in asymptotically flat space—times.

As discussed in the introduction, in recent years a number of different field con-
figuration spaces have been suggested that modify the boundary conditions imposed
at 41, and that give rise to extensions of the Bondi-Metzner—Sachs (BMS) group
of asymptotic symmetries. The BMS group arises when one defines a field configura-
tion space by fixing some of the diffeomorphism freedom on the boundary. However,
some of the relevant linearized diffeomorphisms are not degeneracy directions of the
symplectic form, and thus do not correspond to gauge degrees of freedom. Hence it
is a nontrivial restriction on the theory to impose these conditions. Lifting some of
the boundary conditions leads to an enlarged symmetry group called the generalized
BMS group.29-31:46

In this section, we first review the field configuration space definitions which lead
to the BMS group and generalized BMS groups, using the language of Ref. 32. We
then further relax the boundary conditions at null infinity so as to uncover an even
bigger symmetry group. This procedure allows us to uncover new boundary degrees
of freedom, or edge modes.'%17:92:93 The enlarged symmetry group coincides with
the symmetry group on finite null surfaces derived in Ref. 32. Following Ref. 45 we
will call this group the Weyl BMS group. Some of the details of the analysis are
relegated to App. E.

4.1. Field configuration spaces

We describe asymptotically flat space—times using the conformal completion frame-
work, reviewed in App. D. Some of the relevant fields on space—time are the physical
metric §,;,, the conformal factor ®, the unphysical metric g, = ®2§,, and normal
Ng = V@, while some of the fields on .#* are the null generator n', inaffinity x,
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and volume forms 7;;;, and u;;. We restrict attention throughout to 3 + 1 dimen-
sions. Higher-dimensional space-time does possess supertranslation symmetries®*
and associated charges,”®>" and it would be interesting to investigate analogous
extensions of those symmetry groups.

We now review a number of field configuration spaces corresponding to different
boundary conditions at #*. To start, we fix M and #+ and consider the set of all
asymptotically flat space—times (M, gap, ). Since everything should be invariant
under the conformal transformation (g.p, ®) — (6727 gap, e °®), it is convenient
to fix the conformal freedom by fixing a choice of conformal factor ®y on a neigh-
borhood D of .#T, with ®; = 0 and V,® # 0 on £*. We now define the large
configuration phase of all unphysical metrics with that conformal factor:

Lo = {(M, gap, ®)|® = g on D, Gop = 0}. (4.1)

This is the most general configuration space consistent with the equations of motion.
All of the spaces we will consider will correspond to subspaces of I'g obtained by
imposing specific boundary conditions.

Consider first the BMS field configuration space.?*¢ We fix a conformal factor
®g on a neighborhood D of £, fix a particular unphysical metric gg., on &,
and define

pums = {(M, gabs @) [gap).st = Goap).st, =g on D, V,Vp®| s+ =0}. (4.2)

Here we have used the conformal freedom (D.3) to fix the conformal factor, imposed
the Bondi condition (D.9) to set V,V;® to zero on £, and fixed the unphysical
metric on .# . The original justification for imposing these conditions was that the
entire space 'y can be obtained by taking the orbit of I'gyg under diffeomorphisms
and conformal transformations.?* However, not all of these diffeomorphisms are
gauged in the sense of corresponding to degeneracy directions of the symplectic
form (see Sec. 6 for more details), which has led to the recent consideration of
enlarged configuration spaces and weaker boundary conditions.!* The enlargement
leads to new degrees of freedom on the boundary, known as boundary gravitons or
edge modes.16:17:92,93

We next consider the generalized BMSY configuration space of Campiglia and
Laddha.?* 3! Here we fix a conformal factor ®, on a neighborhood D of £+, fix
a volume form 7, and null generator ny on F T that satisfy the identity (D.7c)
with £ = 0, and define*®

Tapms = {(M, gap, @) ' = 0§, Nijk = Toijp, ® = Po on D, Vo Vp®| 54 =0}
(4.3)

YReference 95 argued for imposing boundary conditions that remove these supertranslation sym-
metries, because of the divergence of the associated symplectic flux. However, as argued in Sec. 5
of this paper, such divergences can generically be addressed using holographic renormalization
and so should not be used as a criterion for determining which boundary conditions to impose.
VThe terminology “extended BMS group” was used in Ref. 46, but “generalized BMS group”
seems to be more common.
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Here the normal n’ and volume form Nijk are understood to be computed from g,y
and ® as described in App. D. Compared to the BMS configuration space (4.2), we
have replaced the unphysical metric evaluated on .#+ with the volume form and
the intrinsic normal.

The field configuration space can be further expanded by dropping the volume
form. This yields the Weyl BMS field configuration space*®

I'weMms = {(M,gab, @)\n’ = ’ﬁé, d = dy on D, VaVb<I>|]+ = 0} . (4.4)
Note that the three different configuration spaces we have defined are related by

I'sms C I'gms C I'waws (4.5)

when 7§ and 7, are those computed from goap on .#.

4.2. Symmetry groups

We now turn to describing the symmetry groups and algebras of the three field
configuration spaces (4.2)—(4.4). The derivations of these groups are given in App. E,
where we use the universal structure approach of Ashtekar®” and the techniques of
Ref. 32.

We start by picking a convenient class of coordinate systems on .# . Choose
a cross-section C of .#T and choose coordinates 4 = (6',0%) on C. Extend the
definition of 64 to all of .#T by demanding that #“ be constant along integral
curves of ﬁé. Here for the spaces I'qgms and I'wpwms, ﬁé is the intrinsic normal that
appears explicitly in the definitions, while for the BMS case (4.2), n{ is computed
from the metric ggqp on £ T and from ®. Along each integral curve we define a
parameter u by setting v = 0 on C and demanding that

ng = 8/8u (46)

This construction yields a coordinate system y* = (u,04) on .#+.
In this class of coordinate systems, the diffecomorphisms ¢ : £+ — #% have
the following form for all three groups:

TG [u+ ’y(@A)] , (4.7a)
~A
0 =x"(6"), (4.7b)
where for a point P on .# T we have defined y* = y*(P) and ' = y*(¢(P)). Equa-
tion (4.7b) defines a mapping x from C to itself, or equivalently from the space of
generators of # T to itself. This set of maps is isomorphic to the set Diff(5?) of
diffeomorphisms of the two-sphere. Writing the map (4.7) as («,~,x), the group
composition law is

(02,72, x2) 0 (1,71, X1) = (3,73, X3) (4.8)
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where
a3 = a1 +as0x1, (4.92)
Y3=mt+e 20X, (4.9b)
X3 = X200 X1 - (4.9¢)

The linearized version of the mapping (4.7) is §* = y* + £, where the generator £ is

&= [1(0") + a(0™)u] 0y + £4(0%)0a . (4.10)

Using the notation (4.7), the structure of the three different groups can be
summarized as follows:

e For the BMS group, as is well known, the function ~ parametrizes super-
translations and can be freely specified. The map x and the function « are
constrained by

X*Gap = € qap, (4.11)
where x* is the pullback operator and gap is the spatial metric. It follows that
X is a global conformal isometry of the sphere, of which there is a six-parameter
family isomorphic to the Lorentz group, and « is determined by x. The group
structure is the semidirect product

SO(1,3) x S, (4.12)

where S is the normal subgroup of supertranslations given by o = 0, x = identity,
and the subgroup v = 0 is isomorphic to the Lorentz group SO(1,3). Note that
the semidirect product in Eq. (4.12) has the property that the supertranslation ~
transforms under the conformal isometries of the two-sphere as a scalar density
of weight 1/2, v — e~ %x*v, from Eqgs. (4.9) and (4.11).98

e For the generalized BMS group, the only change is that the six-parameter group
of conformal isometries is replaced by the infinite-dimensional group Diff(5?) of
diffeomorphisms of the two-sphere. Thus, the supertranslation function v can
be chosen freely as before, the diffeomorphism x can be freely chosen, and the
function « is determined as a function of x by

X'fiap = € fiap (4.13)
where fi,; = fﬁijkﬁk . The group structure is the semidirect product
Diff(5?) x S. (4.14)

The semidirect product here has the property that the supertranslation ~ still
transforms as a scalar density of weight 1/2,

Y= e XM, (4.15)

but now under all diffeomorphisms of the two-sphere instead of just the conformal
isometries. This follows from Egs. (4.9) and (4.13).
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e Finally, for the Weyl BMS group, the constraint (4.13) that determines « as a
function of x is lifted, and a can now be freely chosen. This group is isomorphic
to the group of symmetries on any null surface at a finite location defined in
Ref. 32, as can be seen by comparing Eqgs. (4.7) here with Eqs. (4.7) of that
paper. The group has the following structure. We define the subgroup 7 of all
supertranslations to be given by x = identity, which is parametrized by « and ~.
This is a normal subgroup and the total group has the structure

Diff (S?) x T . (4.16)

The supertranslation group 7 contains two subgroups. First, there is the sub-
group S given by «a = 0, parametrized by ~y. These were called affine supertrans-
lations in Ref. 32 since they correspond to displacements in affine parameter.
This is a normal subgroup of both 7 and of the full group. Second, there is the
non-normal subgroup W given by v = 0, parametrized by «. These were called
Killing supertranslations in Ref. 32 since they correspond to displacements in
Killing parameter when there is a Killing vector field. They were also called Weyl
rescalings in Ref. 45, as mentioned earlier. The supertranslation group has the
structure

T=WkxS, (4.17)
so the full symmetry group can be written as
Diff(S?) x (W x S). (4.18)

Here the first semidirect product is such that the supertranslation functions «
and v transform as scalars under diffeomorphisms of the two-sphere, not as scalar
densities,"* from Egs. (4.9).

5. Gravitational Charges at Asymptotic Boundaries:
Holographic Renormalization

5.1. Introduction and overview

We now return to the context of general theories and general space—time dimen-
sions. The general formalism for gravitational boundary symmetries and charges

WHowever, if we change from the Diff(S2) subgroup (o, 7, x) = (0,0, ) to the alternative Diff(S2)
subgroup given by (a, v, x) = [a(X), 0, x], with a(x) the function of x given by imposing Eq. (4.11),
then in the semidirect product (4.18) the Killing supertranslations W transform as scalars but
the affine supertranslations S transform as scalar densities as in Eq. (4.15), from Egs. (4.9). This
alternative Diff(S2) subgroup is the one that arises naturally within the generalized BMS subgroup
(a,7,x) = [a(x),7, x], which is why affine supertranslations transform as scalar densities in the
GBMS and BMS cases.”®

*One can also express the Weyl BMS group as the semidirect product (Diff(S?) x W) x S. In
this case the action of the second semidirect product endows the affine supertranslations with
a certain weight under the Weyl rescalings W, as well as an independent density weight under
the diffeomorphisms, which again can be adjusted at will by choosing the Diff(S2) subgroup
appropriately.
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developed in Sec. 2 assumed that the boundaries are at finite locations in space—
time (for example future event horizons), and that all the quantities defined are
finite on those boundaries. In this section we will extend the formalism to handle
cases of asymptotic boundaries, treated in a conformal completion framework to
bring them to finite locations.Y In general the Lagrangian and symplectic poten-
tial can then diverge at the boundaries. Some previous general treatments of the
covariant phase space framework either did not treat asymptotic boundaries in
general,® or used the finiteness of certain quantities on the boundary as a criterion
to determine which boundary conditions to impose and which field configuration
space to use,>* which is in general unnecessarily restrictive.

The key idea of the extended formalism 1is holographic renormaliza-
tion,21,26-31,36,100

transformations discussed in Subsec. 2.4 to make the integrated action and sym-

which exploits the boundary canonical transformations and JKM

plectic potential ¢’ finite on the boundary. Once one has a renormalized symplectic
potential, the formalism of Sec. 2 then yields finite gravitational global and localized
charges.

In Sec. 2 we discussed the fact that it is sometimes necessary to introduce a back-
ground structure which violates covariance in order to obtain gravitational charges.
For example this occurs with certain boundary conditions on finite null surfaces.!?
Similarly, here it is sometimes the case that the transformations that are necessary
to renormalize the Lagrangian and symplectic form require the introduction of some
background structures. This is the case, for example, for generalized BMS symme-
tries (Subsec. 4.1) in vacuum general relativity at null infinity, where it was shown
in Ref. 46 that a completely covariant renormalization of the symplectic potential
is impossible. A similar situation arises in asymptotically AdS space—times, where
it is necessary to introduce a space—time foliation near the boundary as a back-
ground structure when renormalizing the action. Dependence of the renormalized
quantities on this foliation signals the appearance of Weyl anomalies in the dual
CFT description.?!:26:27:36,58

The various possible background structures that we will consider are (i) a folia-
tion of space—time near the boundary; (ii) a choice of conformal factor ® near the
boundary; and (iii) a choice of vector field v near the boundary which satisfies
v*V,® = 1, which we will call a rigging vector field. We expect that in many
situations only the foliation will be necessary to affect holographic renormalization.
However, later in this section will make use of the more restrictive assumption of
the existence of a rigging vector field to argue that holographic renormalization can
always be successfully carried out.

We start by defining our notation and conventions for the covariant phase space
framework with asymptotic boundaries. As discussed in Subsec. 2.2, our phase

Y Although we assume a conformal completion, our general framework would also be applicable to
situations like odd-dimensional asymptotically flat space—times where the conformal framework
does not apply,?? by making use of a radial foliation.
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1

Fig. 1. Standard setup for holographic renormalization in asymptotically flat space—times. The
subregion under consideration is associated with a segment of £+ to the future of a spatial surface
Y. The cutoff subregion D,, is depicted in gray, and its boundary components Nj ,, consist of 3,

N, and 25.

subspaces are defined by a space—time subregion U, and a spatial slice ¥ whose
boundary 9% lies in OU. We define D = UNIT(X), the intersection of the subregion
with the chronological future of the spatial slice, i.e. the set of all points to the future
of ¥ in U. The region D will be the setting for the action principle for the phase
subspace. We will denote by N the various components of the boundary of D,
one of whom will be the portion of the boundary A discussed in Subsec. 2.2 in
the chronological future of ¥, and one of whom will be the spatial slice . For
asymptotic boundaries we use the conformal completion framework and work with
conformally rescaled fields which are finite on the boundary. The conformal factor ¢
is chosen to be vanishing on asymptotic boundaries and to have a nonzero gradient
there, and to be positive on D.

In order to discuss renormalized actions, we define a cutoff manifold D,, to be
the set of points in D with ® > v, which excludes a neighborhood of the asymptotic
boundaries. We will assume that the boundary of the truncated manifold can be
decomposed into a number of components in the same way as the full manifold:

0D, = JNj. - (5.1)
J

The standard example we will have in mind is depicted in Fig. 1. Here, the region
D, has a single timelike boundary AN, that limits to a segment of #*, and %,
comprises the past boundary of D,,. We also include a future boundary %/ so that
the cutoff region is bounded in space—-time, making all cutoff integrals manifestly
finite.
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On each boundary we define a boundary action E;, and on the boundaries N
we define corner actions c;-. Then the total action is defined to be

SU:/ L'+ / U+ / . (5.2)
D Zj: Niw Zj: Ny

A successful renormalization of the action consists of finding definitions of E; and
c;» so that S, has a finite limit as v — 0. We will generally drop the subscript j in
the remainder of this section.

In the action (5.2) we allow the boundary term £} to have different forms on
different boundaries Nj, and be in effect discontinuous across the interfaces ON;
between two different boundaries. This is the reason for including the corner terms,
which otherwise would give a vanishing contribution if K; + dc; were a continuous
function on 0D. An additional reason for separating out corner terms is as follows.
One might imagine eliminating such terms by replacing ¢; — £} +dc’;. However such
a replacement may violate corner covariance; it can arise that there exist definitions
of c;- that are covariant with respect to corner-preserving diffeomorphisms, but no
extensions of these definitions to objects that are fully covariant with respect to
diffeomorphisms of the entire boundary.

The general scheme for holographic renormalization can be described in terms
of a number of stages, starting with conventional stages to renormalize the action,
and then subsequent stages to renormalize the symplectic potential and to adjust
corner terms. We now give an overview of the various stages. Although in practice
the charges and other JKM-invariant quantities would only be computed at the end
of the process, we list in the overview which of these quantities would change at each
stage in order to clarify the logical structure of the process. In later subsections we
will show that the steps described here can be carried out successfully for general
theories using a rigging vector field and a boundary vector field as background
structures (although we expect that a bulk foliation will in general be sufficient).

(1) We start with a divergent Lagrangian L’ and symplectic potential §’. We choose
the decomposition (2.12) to make ¢ = f' = 0. We assume that the initial
quantities are covariant, so that b’ = X' = 0, and it follows from Eq. (2.43) that
¢ =~ =& = 0. The action S, symplectic form Q, gravitational charges H ¢
and flux &£ are all divergent.

(2) We perform a boundary canonical transformation (2.38) with B and A chosen
to put the flux € into Dirichlet form. The modifies £, ¢/, #/, S and H¢, and
in particular involves adding a boundary term to ¢'. For example, in vacuum
general relativity with a timelike boundary the corresponding boundary term
B is the Gibbons-Hawking—York term.

(3) We perform a second boundary canonical transformation (2.38) to make L'+d¢’
finite and also to make the flux £ finite, while preserving the Dirichlet form of
the flux. The parameter B of the transformation is a boundary counterterm that
is added to ¢ to make L’ + d¢’ finite on the boundary, which is a functional
of the intrinsic data on the boundary.?6-2791 The parameter A is computed
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from B in the same way that the symplectic potential 6’ is computed from the
bulk Lagrangian, by varying with respect to the intrinsic data, see for example
Ref. 55. Schematically

0B = L(S(intrinsic) + dA,
J (intrinsic)

which guarantees that the modification £ — £ + § B — dA to the flux preserves
Dirichlet form. The quantities which change in this step are &, ¢/, 8/, Q, S
and H ¢. In Subsec. 5.3 we show explicitly that it is always possible to find
a boundary canonical transformation (B,A) that makes both L' 4+ d¢’ and &
finite. (It should be possible to always specialize the transformation to preserve
Dirichlet form although we do not show this here.)
We next repeat these steps in one lower dimension to adjust corner terms. We
perform a corner canonical transformation (2.51) parametrized by forms F and
¢ in order to put the corner flux e into Dirichlet form. This involves identi-
fying appropriate intrinsic degrees of freedom on the corners ON. Additional
quantities that change are S and H ¢-
We then perform a second corner canonical transformation (2.51) to make the
integrated action S and corner flux e finite, while maintaining the Dirichlet
form of the corner flux. The parameter —F of the transformation is a corner
counterterm that is added to ¢’ to make the integrated action finite, which is a
functional of the intrinsic data on the corner. The parameter ( is computed from
F as described in step (3) above, by varying with respect to the intrinsic data,
to ensure that the modification (2.51) to the corner flux e preserves Dirichlet
form. The gravitational charges H ¢ as well as the symplectic form €2 are now
finite, if the corner terms can be chosen so that Ag(¢' + dc’) is finite [from
Subsec. 2.5 the charges He will be finite if £, L’ 4 d¢’ and AV + 0 +dc) are
all finite, and ' = 0 here]. In Subsec. 5.4 we show explicitly that this is the
case: it is always possible to find a corner canonical transformation (f, () of
this kind that makes the integrated action S, corner flux € and ¢’ + dc’ finite.
The general proof requires the introduction of additional background structure
on the boundary.
We use a JKM transformation (2.36) with a = ¢/ and v = —/’. This step is
not necessary to obtain finite charges, but it is convenient in order to make
other quantities in the formalism finite. It makes finite the Lagrangian L’ and
symplectic potential #’, and also modifies »’, X' and ¢', but does not affect the
charges, action or symplectic form.
Finally we use a transformation of the form (2.9) with e = ¢/, x = 7' and
r= 5 = 0. This step is also optional, since it does not change the charges, but
it is convenient as it makes ¢’ and 7/ vanish and X’ finite. The other quantity that
is modified is b’, which can still be divergent. However Agb" = Ag (V' + ¢/ + dc’)
will be finite (since this quantity was finite at step (5) and is not modified by
steps (6) or (7)), which is sufficient for finiteness of the charges.
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Table 3. A summary of the steps in the general holographic renormalization procedure of this
paper. The first row lists the numbered steps described in Subsec. 5.1, and the second row the
transformations used in getting to each step from the previous step (detailed in Table 2). The
remaining rows list the various quantities that occur in the formalism, their names, defining
equations, and how they transform under the steps. The symbol — means that the corresponding
quantity is altered by the transformation of that step. The symbols oo, f and 0 mean that the
quantity is diverging, finite and vanishing, respectively, at the end of the step.

Step 1 2 3 4 5 6 7
Transformations B, A B, A F, ¢ F, ¢ a, v e, X
Quantity Eqgs.
S Action (213) | 0 — o0 — o0 oo — f
Q Sympl. form (218) | o0 — o0 — f
Jos I~15 Integ. charge (246) | 0 —o00 o0 00 — f
r Bulk Lagrangian (2.5) (9] 9] () 00 () — f
0’ Symplectic pot. (2.5) 00 00 oo oo oo — f
E Boundary flux (212) | 0 — o0 — f
v Pot., noncovar. (2.7) 0 0 0 0 0 — 00 @ — o0
N Pot., noncovar. (2.7) 0 0 0 0 0 — 00 — f
A Boundary action | (2.12) 0 —00 — 00 00 () —0
B8 Corner term (2.12) 0 — 00— 9] oo —0
d Corner action (2.43) 0 0 0 — 00 @ — oo 00 —0
~ (2.43) 0 0 0 — 00 @ — oo 00 —0
€ Corner flux (2.43) 0 —“00 00 00 — f

The algorithm described here is summarized in Table 3, which shows which
quantities change at each step, and when quantities diverge or become finite.

Although we show that this procedure can always be carried out in order to
obtain finite renormalized charges, there are a number of subtleties that arise in the
asymptotically flat case that are not present in asymptotically dS or AdS spaces.”
These subtleties relate to the form of the counterterm for the action /. and their
dependence on the free data associated with the cutoff surface A. In asymptotically
(A)dS spaces, this free data can be chosen to be the induced metric on the cutoff
surface, which is fully unconstrained by the equations of motion in the limit that
the cutoff is taken to the boundary. The counterterms needed to renormalize the
action are covariantly constructed from the boundary metric, and hence they are
given by local expressions in terms of the free data. Locality and covariance of the
counterterms are important in the holographic correspondence, as they allow the
on-shell action to be interpreted as the generating functional of correlation functions
in a local CFT dual.?%:101,102

“We thank Kostas Skenderis and Ioannis Papadimitriou for discussions on this point.
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For asymptotically flat space-times, one finds that the induced metric on the
cutoff surface is not freely specifiable, but instead satisfies a number of differential
constraints in the limit that the cutoff surface is taken to infinity.'% Even though
counterterms that are local and covariant with respect to the induced metric on
the cutoff surface can be constructed,”’ since this induced metric is not freely
specifiable, the variation of the on-shell action with respect to this induced metric
is necessarily subject to constraints. This generically leads to nonlocal dependence
of the counterterms on the free data on the cutoff surface, and further complicates
a simple holographic interpretation for asymptotically flat spaces.”103:104 While
this does not affect the main results of this work on obtaining finite gravitational
charges, addressing these subtleties is an important question for further developing
the holographic correspondence in flat space.

The remainder of this section is organized as follows. In Subsec. 5.2 we provide
a very general argument which shows that the existence of a renormalized total
action (including bulk, boundary and corner terms) is sufficient to show that it
is possible to renormalize the symplectic potential. The renormalized symplectic
potential and charges will in general depend on the choice of foliation used to
renormalize the action, as discussed above. In Subsec. 5.3 we present a similar and
complementary result. Given any covariant theory in which the Lagrangian and
symplectic potential diverge near the boundary, we demonstrate the existence of
a renormalized Lagrangian and a renormalized symplectic potential, by explicitly
computing the counterterms that one needs to subtract off in order to obtain finite
quantities. These counterterms again depend on the choice of conformal factor, and
in addition depend on a choice of rigging vector field.

As an application of our holographic renormalization formalism, in Sec. 6 we
specialize to vacuum general relativity in asymptotically flat (3 4+ 1)-dimensional
space—times, specialize to the generalized BMS field configuration space, and com-
pute the renormalized symplectic potential and the associated localized charges at
future null infinity.

5.2. Existence of renormalized symplectic potential:
General argument assuming a finite action

In this subsection we show that a renormalized action functional is sufficient to
provide a renormalized symplectic potential. From this one can obtain a complete
set of IR finite observables which act on the boundary phase space.

We emphasize from the outset that noncovariances and background structures
play a crucial role in this renormalization procedure, which thus avoids the no-go
theorem of Ref. 46. In particular, the general argument relies on the introduction
of a background foliation near the boundary, on which the renormalized action
depends [cf. Eq. (5.2)]. Thus, any renormalization of the boundary action can it-
self involve noncovariant counterterms. This is entirely analogous to the way holo-
graphic renormalization works in AdS/CFT, where a radial foliation is introduced
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near the AdS boundary, and different choices of foliations lead to different values
of the boundary action.?!26-28,36.58 (On the boundary, this is simply the statement
that UV regulators break conformal invariance. However, we do demand that the
renormalization procedure respects boundary covariance, a point which was also em-
phasized in Ref. 53. Thus, we do not introduce any background structures beyond
the foliation.

We start by taking a variation of the integrated action (5.2) and using the equa-
tion of motion (2.5) to eliminate the bulk contribution. Applying the decomposition
(2.12) of the symplectic potential results in®*

55, :Z/N 5j+z/a (8] +bc;). (5.3)

N v

We next use the decomposition (2.43) of 3} to give

55,,:2/ 5j+2/ (N +¢5). (5.4)
T SN T SN

Finally, we note that A’ is assumed to be continuous on 9D,,, implying continuity
at the interfaces between different boundaries N. Since the contributions from \’
always occur in pairs with opposite signs coming from the two N, intersecting at
each corner, the overall contribution from )\’ vanishes, and so

05, = / &+ / ;. (5.5)
PRI A

N v

By assumption, the left-hand side has a finite limit as v — 0, implying that the sum
of all the boundary and corner fluxes on the right must also be finite in the limit.
Hence, if any individual contribution in these sums diverges, it must be canceled
by a divergence appearing in a different term. In this case, one expects to be able
to choose each of the corner fluxes €; such that £; + de; has a finite limit.

To see how this is borne out in more detail, we can focus on the standard
example given in Fig. 1 in which the codimension-1 boundaries consist of %, £
and \N,,, and the corners are 93, and 9%/ . The spatial surfaces ¥, and %/ intersect
the @ foliation transversally, and so any divergence coming from an integral of the
respective fluxes over these surfaces must be localized in the & — 0 regions of
these surfaces, which are just their boundaries. Since the boundaries of 3, and Z{j
coincide with the boundaries of NV, it follows that any remaining divergence in the
flux on N,, must cancel against divergences at its boundary. Hence, it is possible
to shift the flux £or by an exact term to cancel its divergence. This allows us to
conclude that we can arrange for the €; to be chosen such that £; 4 de; is finite on
each boundary.

2aNote that some of the boundaries N, may have multiple components, in which case the
quantities c;- and ¢; are understood to be independently specifiable on each component.
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Finally, from the decomposition (2.43), it follows that the symplectic poten-
tial #’ is finite up to exact terms and total variations. Hence we can find a JKM
transformation (2.36) that makes the symplectic potential at any given asymptotic
boundary finite. This renormalized symplectic potential will in general depend on
the choice of foliation.

5.3. Ezxplicit renormalization using background structures

In this subsection we provide an explicit algorithm for holographic renormalization
in general contexts, based on allowing the counterterms to depend on a rigging
vector field in addition to a foliation. The intent is to provide an existence proof
for background-dependent counterterms. However we expect that in applications it
will be generally possible to find counterterms that depend only on a foliation. Note
that the dependence of the counterterms on the additional background structure
provided by the rigging vector is possibly related to the nonlocality of these terms
relative to the free data on the asymptotic boundary, as discussed in Refs. 103
and 104.

As discussed in Subsec. 5.1, the setup is that we have a region D in a (d + 1)-
dimensional space-time, and a portion A of the boundary of D, where we are
using conformal compactification to treat the asymptotic boundary N as a finite
boundary. We assume that the Lagrangian L’ and symplectic potential € are
smooth in the interior of D but can diverge on A/, and assume a smooth conformal
factor ® with ® = 0 on N. We fix a rigging vector field v which is defined on a
neighborhood of A, is nowhere vanishing, and satisfies vV, ® = 1.195196 Note that
® is determined in terms of v from this condition and the condition ® = 0 on N.

Consider now a boundary canonical transformation (2.38) parametrized by B
and A. If we combine this with a JKM transformation (2.36) with ¢ = B and

v = —A, the Lagrangian and symplectic potential transform as
L' - L., =L +dB, (5.6a)
0 —0.,, =0 +06B—dA, (5.6b)

The two main results of this section are:

(1) There exists a transformation of this kind for which the renormalized Lagran-
gian and symplectic potential (5.6) (and not just their pullbacks to surfaces of
constant ®) have finite limits to the boundary A. We will construct this trans-
formation explicitly. This is sufficient to make the charges H ¢ finite, assuming
the property of corner terms described in step (3) of Subsec. 5.1.

(2) The anomaly

Al (5.7)

g—ren

in the pullback to the boundary of the renormalized symplectic potential is the
sum of an exact term and a total variation, both of which are finite on the
boundary.
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The derivation of these results is given in App. F. Here we summarize some of the
details.

5.3.1. Renormalized symplectic potential and Lagrangian
We start by defining some notations. We define for v > 0 a map
T : N =D, (5.8)

which moves any point v units along the integral curve of v passing through that
point. The image of N under this mapping is the surface ® = v which we will denote
by N,. Any differential form A on a neighborhood of A is uniquely determined by
specifying (i) i,A, and (i) the pullbacks 7} A for the values of v that cover the
neighborhood, via A = d® A i, A + Ay, with i,Ap =0 and 7 A, = A

The quantities B and A that define the boundary canonical transformation (5.6)
are given by

iB=0, (5.92)
B = /UO domti, L', (5.9b)
iwA=0, (5.9¢)
A= — /UO donti,b', (5.9d)

where we have chosen a fixed vy > 0. The renormalized Lagrangian and symplectic
potential are given by

ivLie, =0, (5.10a)

il =0, (5.10Db)

Ty 0ren = o0 (5.10c)

The expressions (5.9) and (5.10) become more transparent when expressed in a
suitable class of coordinate systems. We choose a coordinate system (z°, 2!, ..., 29)

for which 2° = ® and v = 9/92°. We define for convenience the basis d-forms,
(d — 1)-forms and (d — 2)-forms

w=dz' A Ndz?, (5.11a)
w; = —ip,ww = (—1)"dx! /\"'/\d/ﬂ?i/\'“/\dl‘d, (5.11b)
Wij = iai’{Dj 5 (5110)

where the hat on a basis one-form means that one-form is omitted in the wedge
product, and ¢ and j run over 1---d. We expand the symplectic potential §’, La-
grangian L', and boundary canonical transformation forms B and A as

L'=Ld" Nw, (5.12a)
0 =00 +60"d® Ay, (5.12b)
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B = B%0 + B'da® A w;, (5.12¢)
A = N+ A7 da® Aoy, (5.12d)
together with a similar notation for L., and 0.,. Using these notations, Egs. (5.9)
reduce to
B'=0, (5.13a)
B%(v,27) = /UU do L(v,27), (5.13b)
, A ) vo 4 ,
AN (v,2?) = —/ do " (v,27), (5.13¢)
A (v,27) =0, (5.13d)
where we have written (2% 2!,...,2%) = (v,2',...,2%) = (v,2?). Similarly
Egs. (5.10) reduce to
Lien =0, (5.14a)
0li =0, (5.14b)
0.0 (v,27) = 0.0 (0,27) = 0'°(vg,27). (5.14c)

We now turn to some examples of applications of this formalism. In many cases
we can split the Lagrangian and symplectic potential into diverging and finite pieces,
L' = L, + Lipites 0 = 04y + 0hinice, such that the diverging pieces obey the
identity (2.5) on shell, 0L/, = d@/;,. It is convenient then to compute the boundary
canonical transformation using just the diverging pieces, which is sufficient to make
L, and 6/, finite. In this case the result (5.14) for the renormalized Lagrangian
and symplectic potential on the boundary becomes

Eren(oa I]) = ‘Cﬁnite(oa :Cj) 5 (515&)

01an(0,27) = 05340 (0,27) (5.15b)

Oron(0,27) = 05010 (0, 27) + 04, (vo, 7). (5.15¢)

If we can further choose vy to make the second term in Eq. (5.15¢) vanish, then we
obtain

9;3n<0’ 'rj> = eégite(ov xj) ’ (5'16)

so the pullback of the renormalized symplectic potential is just the pullback of its
finite piece.

A class of examples which includes vacuum general relativity at null infinity
(see Sec. 6) is when L/, and @/, are finite polynomials in ®~'. In this case the
second term in Eq. (5.15¢) can be made to vanish by choosing vy = co. The choice
vy = 2° = 0o seems at first glance to be problematic, since the coordinates need

only be defined for a finite range of values of x°. However, we can regard the choice
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of value of vy as a specification of a prescription for finding antiderivatives of the
specific functions encountered in Egs. (5.13), so the inconsistency can be finessed.

A more general class of examples is obtained by allowing log terms, which arise
for example in asymptotically AdS space-times. Suppose that there exists some
integer ¢ for which ®‘L’ and ®!¢’ are smooth functions of ® and ®log ®. Then we
can expand L’ and ¢’ as

—1 e}

>N PP (Dlog @)1 + 0. (5.17a)
p=—t q=0

9/0

—1 o)

gt — Z Zgz(nq)@p(@log ) R A (5.17b)

p=—t q=0

-1 o)

L= > £r907(®log®)" + Lanite, (5.17¢)

p=—t q=0

where the coefficients depend only on z‘ and not on z° = ®. The integrals in
Eqgs. (5.13) can conveniently be evaluated by assuming similar expansions for the
integrals and equating coefficients of ®?(® log ®)9, which yields recursion relations
that can be solved. This yields

min(k,~1) p— -
- S Y ST () e

k=—t+1 p=—t+1 g—ft I=j+1

k0

— Y =" PP oP(Dlog @) P (5.18)
p=—t?

and

min(k,—1) p—1 p—1 I ' _
Yy > I (_1> LU0 @P (@ log @)

k
k=—t+1 p=—t+1 j*—t l=j+1
k#0

+ Z Lew—p- )®P (P log @) 7 (5.19)

p——t

Here we have effectively chosen vy = oo for terms in the integrands with p+q < —1,
vg =1 for p+q=—1, and vg = 0 for p + ¢ > —1. These choices again make the

second term in Eq. (5.15¢) effectively vanish,” so we again recover the result (5.16).

PbNote that the condition 6L£iiv = deldiv is not satisfied in this case due to mixing with the finite
terms, but one can directly check that Eq. (5.16) is still valid.
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5.3.2. Anomalies of renormalized symplectic form and Lagrangian

Although the renormalized Lagrangian L., and renormalized symplectic potential
eéen
variant quantities. In this section we will discuss the corresponding anomalies, which
are computed explicitly in App. F. This will yield the second result described above,
that the dependence of the pullback of the renormalized symplectic potential on
the background structures arises only through corner and boundary terms.

We will show that the anomalies in B and A are of the form

are finite, they are no longer covariant, assuming one which starts with co-

AéB = (AéB)ﬁnite + dlif s (520&)
AéA = (AéA)ﬁnite + 5/435 — d,ug — I5EA’ (520b)

where the indicated quantities are finite and ¢ and ¢ are quantities that in general
can diverge on the boundary. Inserting these expressions into Egs. (5.6) for the
renormalized Lagrangian and symplectic potential, and acting with the anomaly
operator yields for field-independent symmetries

AgL;en - d(AéB)ﬁnite y (521&)
Agellren - 6(A5B)ﬁnite - d(AéA)ﬁnite . (521b)

If we now take a pullback to the boundary, and use the fact that the pullback
operator commutes with the anomaly operator and the space-time and phase space
exterior derivatives d and J, we obtain

Agbye, = 0m" (AgB) (5.22)

gxren

finite dﬂ-o* (AEA) finite *

Here on the right-hand side we have denoted the pullback by 7, instead of using
our usual boldface notation.

The explicit expressions for the quantities appearing in the anomalies (5.20) are
as follows. The finite pieces are given by

i (AgB)finite = (5.23a)
75 (A¢B)finite = T, sz’ (5.23D)
i (AgA)finite = 0, (5.23c)
To(AeN)inite = — 75, [100' £ P] . (5.23d)
In coordinate notation these relations are
(A¢B)fnite = 0, (5.24a)
(A¢B) e (v, 27) = (€°L) (vo, 7) (5.24b)
(AeM)ihine = 0, (5.24c)
(AeA)fito (v, 27) = —=(£0"") (vo, 27) , (5.24d)
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where we have decomposed the symmetry generator as & = £99; + £%8;. The quan-
tities k¢ and pe are given by

ivke =0, (5.25a)
vo Vo

Tyke = / do mhigi, L' — iﬂzg/ donli, L, (5.25Db)

tupte =0, (5.25¢)
vo vo

T he = / do mhigin b — ingg/ dvnki,0' . (5.25d)

In coordinate notation these relations are

Ke = (f’/ L do —/ & Edv) w; , (5.26a)

e {El/ "7 dv —6”/ 0" dv — /“0(519” —§j9'i)dv} wij, (5.26b)

where the integrands are evaluated at v = &.

5.4. Renormalization of corner terms

In this subsection we show that it is always possible to find a corner canonical
transformation (2.51) that makes the integrated action S, corner flux £ as well as
¢ + dc finite.

The basic idea is the trivial integral identity, for any function L£(u,v) of two
variables u, v:

/ dﬂ/ d@ﬁ(ﬂ,@)z/ du/ dv L(u,v) / du/ dv L(u,v)
uo vo
—/ du/ dv L(a +/ da/ dv L(u,v). (5.27)

Here the first term on the right-hand side will be the bulk action, which can diverge
as v — 0 or u — 0 (we assume that the integrals are finite at large u and v). The
second and third terms on the right-hand side are boundary terms that are added
at the boundaries u = constant and v = constant (Eq. (5.13)). Finally the fourth
term is the corner term that when added makes the total integral manifestly finite
in the limit © — 0, v — 0, as can be seen from the left-hand side.

We now translate this idea into a covariant notation and add the additional
dimensions which were suppressed in the above argument. Consider two boundaries
N and N which intersect in a (d — 1)-surface C. In Subsec. 5.3 we introduced a
vector field v and a diffeomorphism 7, which moves points v units along integral
curves of v. We also introduced a coordinate v which vanishes on A and for which
v2Vqv = 1.
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We now introduce the additional background structure of a nowhere vanishing
vector field u on the boundary A/. We can then introduce a coordinate u on A by
v =0onC and u*Vsu =1 on M. We can then extend the definitions of u and u
off N by Lie transporting with respect to v. Finally we define the diffeomorphism
7, to be the map that moves points u units along integral curves of u.

Using this notation, the boundary term B associated with the boundary A is
given by Eqgs. (5.9) and (5.13). There is an analogous boundary term B for the
boundary N, given by

iwB = (5.28a)

7B = / duitinL (5.28D)

Finally the corner term ¢ on C required to make the total action finite is given by
ine =20, (5.29a)

iye =10, (5.29Db)

Z?T;ic:/ du/ dv iy, L (5.29¢)

6. Vacuum General Relativity at Future Null Infinity:
Gravitational Charges

In this section, to explicitly demonstrate the holographic renormalization procedure
described in Subsec. 5.3, we specialize to the case of future null infinity in vacuum
general relativity in four-dimensional asymptotically flat space—times, and to the
generalized BMS (GBMS) field configuration space (4.3). We then compute the
renormalized symplectic potential and the localized charge using the results laid
out in Subsec. 5.3 and Sec. 2, with the conformal factor and rigging vector field
taken to be those associated with Bondi—Sachs coordinates. The results obtained
in this section agree with expressions for the charges obtained previously in, e.g.
Refs. 31 and 107, explicitly demonstrating the utility of the holographic renormal-
ization algorithm described in Subsec. 5.3. Although we do not consider it here,
the holographic renormalization algorithm should generalize to the larger WBMS
group described in Subsec. 4.2, for which finite renormalized charges were obtained
in Ref. 45.

We identify the coordinate system discussed in Subsec. 5.3 with the Bondi—Sachs
coordinates according to (20, 2!, 2% 23) = (®,u,0,4) = (®,u,z4). The physical
metric in these coordinates corresponds to the line element?!:107:c¢

ds* = —Ue* du® +2¢*" &2 dud® + @ *hap (dz? — UAdu) (dz® — UPdu).
(6.1)

““We use the symbol “F” here in place of the symbol 5 that is used in Refs. 31 and 107 to avoid
confusion with our symbol for the corner term in decomposition of the symplectic potential [as in
(2.12)].
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Here we have used ® = 1/r in place of the radial coordinate r used in Refs. 31 and
107 (see, e.g. the discussion in Ref. 108 for more details on the construction of the
Bondi-Sachs coordinate system in the physical space-time). In these coordinates,
® = 0 corresponds to .# T, and the null generator of .# 7 is given by n' = (9,)".
Moreover, in these coordinates, we have a foliation of .#T by cross-sections of
constant «. The 1-form on .# T normal to this foliation is given by I; := —V;u. The
functions appearing in (6.1) are smooth in their dependence on (®,u, z4) and their
expansions in powers of ®, after imposing the Einstein equations, are given by3!

U= %R —20M + O (9?), (6.2a)
F= f?g@?cABcAB +0 (2%, (6.2b)
U4 = —%@2%(}/“3 +20°L* + O (9*), (6.2¢)
hap = qap + ®Cap + iqﬂqABC’CDCcD +0 (2%, (6.2d)

where R denotes the Ricci scalar of the leading order sphere metric gap, and /q
denotes the square root of its determinant. In addition, Z4 is the derivative operator
compatible with g45. Moreover, Cap is (—2 times) the shear associated with the
auxiliary normal (% := —®23%V ,u and satisfies ¢*PCap = 0 as well as 6(¢*BCap)
for all perturbations. Furthermore, M denotes the Bondi mass aspect and L4 is
related to the angular momentum aspect.? Note also that it follows from (4.3) that
on' = d,/q = 0. Finally, capital Roman indices are raised and lowered using gap
throughout this section.

Next, we compute the symplectic potential #’, which we take to be the space—

(&

time covariant one given in Eq. (39) of Ref. 34 and so here §' = 6. We will also

take L’ to be the covariant Einstein-Hilbert Lagrangian, so L' = E, We make
use of the Einstein equations for the background metric, the linearized Einstein
equations for the perturbations and the Bondi condition (D.9). We find that the
symplectic potential diverges as ® 2 and that there are no logarithmic divergences.
In particular, the divergent pieces are given in the notation of (5.17) by®® (setting
167G =1)

— — 1
052" =0, 657" = \/21<—572— 2J\/ABanB> :

(6.3)
—2,0 \/5 AB -1,0
6 ):—70,43&1 ;oY =,
ddThe angular momentum aspect N4, defined in Ref. 107, is related to Ly by Na = —3L4 +

2 94(CpcCPC) + 2C4 P2 Cpe.
°°We omit writing the explicit expressions for 954_2’0) and 954_1’0) since they will not be needed
for the explicit charge calculation later in this section.
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Note that here §¢*Z is the variation of the inverse metric, ¢Z, and not
g2 ¢PPsgcp. In addition, we have

000 = /q|26M + 20,02 + 5(Za ™) + %NABcﬁCAB - iRCAB(SqAB — DuUsq™ | .
(6.4)

Note also that here
Nap :=0,Cap, Z:= —%CABCAB = —%@BCAB. (6.5)

We now consider the renormalization of the symplectic potential. Using the expres-
sion (5.18) specialized to t = 2, d = 3 with the coeflicients of the logarithmic terms
taken to vanish, we have that

A=— {1og o0 @*19§‘2’°)} dz? A da®
~ [log @65 — 0716520 du! p da®

- [1og ool <I>*19§‘2’°>} dz® A dat . (6.6)

We follow the procedure described in Sec. 5 which instructs us to find a boundary
canonical transformation that yields finite renormalized quantities L,,, = L' + dB

and 0., = 0’ —dA [recall (5.6a) and (5.6b)]. Since we have taken L' = Land ¢ = 5,
we pick A = =)\ and B = V' [recall (2.8a) and (2.8b)] to parametrize our boundary
canonical transformation. Note however that in vacuum general relativity with zero
cosmological constant, the Lagrangian vanishes on shell. For that reason, it does not
need to be renormalized, and so we take b’ = B = 0. Using the explicit expressions
for the (unrenormalized) symplectic potential along with the linearized Einstein
equations to compute 0., =6 — dA [(5.6b) with B = 0], we find that the effect of
adding dA is to cancel the diverging pieces in each component of # while leaving
the finite pieces unchanged. Moreover, the pullback of the renormalized symplectic
potential to .# 7 is given by (6.4).

Note that our expression for the symplectic potential and the subsequent renor-
malization procedure, when implemented in Bondi coordinates, coincide with those
in Ref. 31. Note also that even though we have demonstrated our renormalization
procedure for conditions that correspond to the generalized BMS configuration
space, subject to the Bondi condition, the procedure itself is completely general
and can be applied to any of the extensions of the BMS algebra discussed in Sec. 4,
with or without the Bondi condition. It is guaranteed to work in any of these cases
using the general algorithm described in Subsec. 5.3.

Having obtained an expression for the pullback of the (renormalized) symplectic
potential, we now seek to obtain a decomposition of it into a boundary term, a
corner term, and a flux term in keeping with (2.12), that is, a decomposition of
the form

0, = 60 +dB' +&. (6.7)

=ren
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Comparing this with (6.4) suggests the following choice for the flux term &

1

E=-n 5

1
NagdCAB — 1RcAB(sqf“B — DaUpdq*P |, (6.8)
where 7 is the volume element on £+ given by n = —/qdu A df A dp. Moreover,
we can read off that

U =n[2M +20,Z + 2.a%*], B =0, (6.9)

where we have used the fact that 8,02 = £,,0Z = 60, Z since dn* = 0.

Note that while C4p is not an intrinsic quantity on £, its variation still occurs
in our expression for the flux in (6.8). This appears to be at odds with the Dirichlet
form of the flux advocated for in this work, since C4p is related to the extrinsic
geometry of #+ with respect to the auxiliary null direction [%. In asymptotically
dS or AdS spaces, the equations of motion allow one to solve for Cxp in terms
of the leading metric gap at £ 1,109111 and hence flux terms involving §Cxp are
still consistent with Dirichlet form. This is no longer the case in asymptotically flat
space-times, in which Cxp represents free data on .#T. Nevertheless, from (6.2d)
we see that C4 g is a subleading component of the spherical part of the metric, h4p,
which is an intrinsic quantity on each ® = const surface, which limit to .#T. It is
therefore not entirely surprising that C4p appears as a configuration variable in the
expression for the flux. Furthermore, the news tensor N g that appears conjugate
to CAP in the expression of the flux is given by the u-derivative of C'4 g according to
(6.5), as one would expect of a momentum variable, lending additional support to
interpreting (6.8) as the appropriate analog of the Dirichlet form of the flux. An
interesting question for future work would be to understand better the principle for
selecting a preferred form of the flux for asymptotically null surfaces, rather than
postulating the form as is done in this section.

We now proceed to calculate

He = SI/ILHS . he , (6.10)

where S’ here denotes u = const cross-sections of a one-parameter family of ® =
const surfaces that limit to #% in the unphysical space-time. As denoted above,
to define the charge, He, on a cross-section, S, of .#, we will perform this integral
and then take the limit S’ — S. We calculate (2.30), where &% for a generalized
BMS vector field is given by!?

£ = fO, + [YA —dP4f + %(IJQCABQBwaO((I)?’) da
2 1 —1 A 1 2 1 A 1 AB 2
+ 0% S0 YA - DD f - Sow %HZMA(%J@ ) +O0(®%)|0s .
(6.11)
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Here f(u,z?) = v(z*)+4iuZpY B (2*) where v(z*) is the supertranslation function
and Y4 is the generator of arbitrary smooth diffeomorphisms on S2. Moreover, Q{g.

ve
is given by (2.26) and @, in vacuum general relativity is given by (where recall that

we have set ﬁ = 1)
é}?cgab = —CedapVEL . (6.12)
Using (6.3), (6.6), (6.11) and the fact that
1:6q"P = —22Y P — 9PV A + " P 90Y €, (6.13)
we find that
IN = Ih = =07 ' uCap2'Y P + - (6.14)
where - - - denotes terms that vanish upon pullback to S’ and are hence not relevant

for the calculation of the charge. Note also that yu = —i,n = /qdf A d¢. Then,

ve

explicitly calculating ()¢, one finds that its pullback to S’ has a piece that diverges
as ® — 0 that is given by ® 2 Z2,Y4 -~ &1y YA9BC 4. The first term is a total
derivative which drops out of the integral over S’. Moreover, the second term cancels
with (6.14) up to a total derivative term. We therefore see that upon integrating
over S, the diverging piece drops out of [, Q. Taking the limit S” — S we then
obtain

/SQQ:—/SM{QfauZ—QfM—%A_@Af

— 2YA{NA - icAB.@CcBC - 116@,4(030030)}] . (6.15)

Using this in addition to (6.9) and (6.11) to compute (2.30) and dropping total
derivative terms, we find that the final expression for H¢ is given by

1 1
Hg = / ‘u|:4fM + QYA{NA — ZCAB.@CCBC — E.@A(OBccBC) }:| . (6.16)
S

This expression is the same as the one derived for the (usual) BMS charge in,
for example Refs. 107, 108 and 57, and is also consistent with the expression for the
charge given in (9.21) of Ref. 45. It was pointed out in Ref. 31 that this expression
diverges in limits to the end-points of #* (i.e as u — 400) when one allows for the
most general fall-offs in u of Cap: Cap = O(u), that are compatible with the action
of the GBMS group on the boundary fields. To cure these “corner” divergences, one
would have to implement an additional renormalization step, similar in spirit to the
one discussed in Subsec. 5.3. Presumably, one would have to add to the expression
for A in (6.6) terms that are finite as ® — 0 but which diverge as v — *oo.
This would modify the expression for 3’ after which one would have to pick an
expression for v (see (6.20) and the discussion around it) which would lead to a
different expression for the charge, H¢. However, addressing this issue is beyond the
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scope of this paper and we leave it to future work. Indeed, it would be interesting
to carry out these steps to attempt to derive the GBMS charge expression in (5.49)
of Ref. 31 which does not have the aforementioned divergences.

We note that the decomposition we picked in (6.9) was not unique even after
having picked the expression for the flux, £, which we take to be given by (6.8).
Instead of the choice made in (6.9), one could instead have picked

U =n2M+ 9s%*), B =20Zp. (6.17)

Also, because of the Bondi condition, (Z4% “)n = d(isn), and therefore one could
also consider a decomposition of (6.4) in which

U =mn[2M +20,2], B =—é(ian), (6.18)

where we have defined a vector % on £+ such that Z'l; = 0 and %4 = X 'te;4

where e;4 is a projector onto angular directions. Finally, one could also consider

U=2qM, B '=—0(ign—2Zu). (6.19)

To resolve the ambiguity between these choices, as described in Subsec. 2.5, one
needs to implement a corner improvement where one looks for a decomposition of
B — X of the form [see (2.43)]

B —=N=-6+dy +e¢. (6.20)

As described in (2.46), the improved expression for the charge density is given by

ff one needs to fix an expression

iLg = he — Aéc’ . To obtain unambiguous charges,
for £ in addition to the expression for £ which we fixed to be given by (6.8). Here,
we pick ¢ = A% with the specific choice of A given by (6.6). Since we have
computed A = —A, we see from Eq. (6.20) that this choice amounts to always
setting ¢’ = —3’. It is then easy to check that calculating the charge in the same
way as before but with h¢ replaced with ilg for each of the three cases given in
Egs. (6.17)—(6.19), the final charge expression remains unchanged and in each case
is just given by (6.16), even though the boundary Lagrangian ¢ is different in
each case. This demonstrates that, as highlighted earlier in the paper, fixing an
expression for the flux terms in the problem, on the boundary as well as the corners
(€ and ¢ in this case), gives us an unambiguous expression for the charge.

fThe 4/ term in (6.20) only contributes an exact piece to the charge density and therefore, in the
present context, its choice does not affect the charge. We therefore pick 4/ = 0 here for convenience.
g8 Note from (6.6) that A is actually divergent on .# 1, and so really this decomposition is done on
a cutoff surface near £+ after extending 3/ arbitrarily away from .#1. Obtaining a finite corner
flux on # T would entail a more careful analysis of corner terms in the action of vacuum general
relativity which we leave to future work.

hhNote also that to ensure finiteness of the charge in the u — oo limits described earlier (an issue
we have chosen to ignore here), one would need to pick a different expression for e. Presumably,
this would follow from a more careful analysis of the corner terms in the action and the resulting
charge expression will indeed be modified in that case.
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7. Discussion

We conclude with a discussion of a number of future directions and applications of
this work.

7.1. More general asymptotic symmetries

The holographic renormalization argument presented in Sec. 5 demonstrates that
all asymptotic charges can be rendered finite once appropriate counterterms have
been found to produce a finite renormalized gravitational action. This holds with-
out imposing asymptotic boundary conditions on the dynamical fields, and hence
motivates exploring formulations of the theory in which the standard boundary
conditions are relaxed. Indeed, the arguments of Sec. 5 were inspired by similar con-
siderations for asymptotically anti-de Sitter space-times3® in which the standard
Dirichlet boundary condition was relaxed. This produces an enlarged asymptotic
symmetry algebra for these space—times, which have been further explored in the
works on the A-BMS group.®4119 In the past, finiteness of the action and charges
has been suggested as a reason for selecting boundary conditions for the theory,
but the analysis of this work suggests that this is unnecessary, since finiteness can
instead be achieved through holographic renormalization. The only reason for im-
posing boundary conditions should be to obtain a well-defined variational principle,
or, equivalently, to ensure the phase space describes a closed system that does not
lose symplectic flux through its boundary.

Relaxing the standard boundary conditions of four-dimensional asymptotically
flat space—times leads to the enlarged symmetry algebras discussed in Sec. 4. Each
of the symmetry groups described there still fixes some structure at null infinity,
but since holographic renormalization applies in the absence of any such boundary
condition, it is tempting to propose an even more general set of symmetries. These
would be obtained by relaxing the final condition leading to the Weyl BMS con-
figuration space (4.4), namely, not imposing n’ be fixed. We would expect to obtain
in this manner all diffeomorphisms of .# T as asymptotic symmetries, and it would
be interesting to compute expressions for the associated charges.! The enlarged
algebra may also be related to the extended symmetries of finite null surfaces
explored in Ref. 113.

Another context in which extended symmetries can arise is in higher-dimensional
asymptotically flat space—times. In higher than four space—time dimensions, there
exist consistent boundary conditions that eliminate the supertranslations as asymp-
totic symmetries. However, in light of the relation between supertranslations and
the Weinberg soft graviton theorems,'14 116
able to find a phase space in higher dimensions that admits a nontrivial action of
supertranslations. Such relaxed boundary conditions have been explored in Refs. 94,
117 and 118, and the general holographic renormalization argument suggests that

which hold in all dimensions, it is desir-

iThe appearance of Diff(.#) has also been suggested to appear in the context of asymptotically
de Sitter and anti-de Sitter spaces in Ref. 112.
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a phase space can be constructed in which these transformations produce finite
charges.# It would be interesting to carry out the holographic renormalization pro-
cedure in these higher-dimensional cases and to construct the phase space on which
the renormalized BMS charges are defined, as well as to obtain charges associated
with higher-dimensional versions of the symmetry algebras described in Sec. 4.
Some ideas in this direction have been explored in Refs. 55, 119-121.

A final application would be to investigate the recently proposed wiio Sym-
metry of 4D asymptotically flat gravity, which was derived at the level of celes-
tial amplitudes.'?? An interesting question to address is whether the charge gen-
erators of this algebra arise from asymptotic diffeomorphisms, to give a space—
time interpretation of the symmetry transformations. The holographic renormal-
ization procedure in this work provides an ideal framework for investigating this
question.

7.2. Gluing and quantization

One of the main motivations for considering localized charges is to understand the
embedding of the localized phase spaces and their observables into the global phase
space of the theory. In the classical context, understanding this embedding can help
give meaning to quasilocal notions of energy, which are relevant in practice since
astrophysical processes are usefully described using local descriptions of objects’
locations and momenta, despite the fact that local observables are nonperturba-
tively ill-defined in a diffeomorphism-invariant theory. There is a natural construc-
tion known as Marsden—Weinstein symplectic reduction'?? by which localized phase
spaces can be assembled into a global phase space, ensuring in the process that the
localized charges become trivial, as would be expected for charges associated with
a gauge symmetry. This application of symplectic reduction to the gluing of local
phase spaces was discussed in the work of Donnelly and Freidel.'® The idea is to
take two adjacent localized phase spaces &1 and s, each containing a set of
charges Hé, i = 1,2, associated with diffeomorphisms that act at their common
boundary. One then constructs the product phase space P15 = F; X HPo, which
also admits an action of the boundary symmetry, generated by the sum of the in-
dividual charges, H g(’t =H 51 + H 52 The reduced phase space is obtained by then
restricting to the submanifold of zero total charge H, g"t = 0, and further quotienting
by the flow generated by the charges within this submanifold. This two-step process
results in a new phase space Preq = P12//G, with G the group of boundary sym-
metries. The fact that the boundary symmetries should act trivially on the global
phase space is now encapsulated by the restriction to the zero charge submani-
fold and further quotienting by the group action. This process thus gives a way of

JiThese relaxed boundary conditions have been questioned in Ref. 95 on the grounds of not leading
to finite fluxes through .#*, but such divergences can always be handled by the procedure of
holographic renormalization, at the expense of introducing some dependence on a background
structure (see, for example Ref. 96).
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realizing the individual phase spaces &2; within the global phase space, although
they are not symplectic submanifolds due to the quotient procedure needed in the
construction.

The work of Donnelly and Freidel focused on symmetries in general relati-
vity that preserve the codimension-2 boundary of a subregion Cauchy surface.!®
Such symmetries are simpler to handle since the flux term in Hamilton’s equa-
tions (2.29) identically vanishes (assuming covariant 8’ — X and field-independent
generators), and the Wald-Zoupas procedure is not needed in order to construct
localized charges. The more general localized charges considered in this work are
defined even when there are nonzero fluxes, and in Sec. 3 we showed that their
Poisson brackets on the localized phase space are given by the BT bracket, which
reproduces the diffeomorphism algebra of the vector fields (or a suitable modifica-
tion when generators are field-dependent) whenever the extension term K¢ . can
be shown to vanish. This is enough to apply the Marsden—Weinstein reduction pro-
cedure, since the localized charges generate an action of the boundary symmetry
group on the localized phase space, even though this action does not generically act
like a diffeomorphism on all observables, due to the failure of such a transforma-
tion to satisfy Hamilton’s equation. It would be very interesting to carry out this
procedure in more detail in order to better understand the relevance of localized
charges within the full global phase space.

An even more interesting question is to understand how to apply the reduction
in the case of nonvanishing extension terms in the algebra of localized charges,
as in Eq. (3.10). The extensions K¢ ¢ represent additional independent charges,
and together with the H¢ generators they produce an algebra that is larger than
the original set of boundary symmetries. There is a question of how to interpret
these additional charges, and how to interpret the reduction with respect to the
additional generators. The mathematical machinery for handling such situations

124 and it would be worth investigating

is called symplectic reduction by stages,
whether the reduced phase space obtained using this procedure reproduces the
expected global phase space.

Another major motivation for carrying out this reduction procedure is in the
applications to the quantum theory of subregions in a gravitational theory. There
is an analogous procedure to Marsden—Weinstein reduction whereby the physical
Hilbert space Hpnys is realized as a subspace of the tensor product H' ® H?, where
H? are the Hilbert spaces constructed via quantization of the localized phase spaces
271 16,125 Thig subspace is defined as the zero charge eigenspace associated with the
boundary symmetries in the localized phase spaces, and restricting to this physical
Hilbert space has the interpretation of imposing the constraints associated with
diffeomorphism invariance. There are a number of results beginning with the works
of Guillemin and Sternberg that show in certain situations that the process of
quantization commutes with symplectic reduction.'?® Hence, we should expect that
the localized phase spaces &2 provide useful semiclassical descriptions of the local
Hilbert spaces H°.
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These local phase spaces are important when addressing questions regarding
entanglement entropy for subregions in gravitational theories and the entropy asso-
ciated with black hole horizons. It has long been appreciated that black holes

127-129

possess an entropy proportional to their area, and in a variety of contexts,

this entropy can be usefully interpreted as entanglement entropy.'3% 133 Even more
generic subregions in gravity are expected to possess a finite entropy;'34 136 for
example, in holography, subregions bounded by extremal codimension-2 surfaces
have an entropy given by the Ryu-Takayanagi formula, which is interpreted as the
entanglement entropy of a subregion of the boundary conformal field theory.'3” The
construction of localized Hilbert spaces as described above is then crucial for giving
a bulk Hilbert space interpretation of this entropy. The larger Hilbert space H' ®@H?
in which the physical Hilbert space is embedded is known as the extended Hilbert
space, and contains additional edge mode degrees of freedom that contribute to
the entanglement entropy.'?®> These edge modes can be viewed as objects charged
under the boundary symmetries considered in this work, and hence the localized
charges play a central role in characterizing edge mode degrees of freedom. In some
cases, considerations of boundary symmetries can in fact be shown to determine
the entropy given some reasonable assumptions on the quantization of the localized
phase space. The best examples of this often involve a set of Virasoro symmetries
or a related centrally extended algebra acting on a Killing horizon.®%11713 In this
case, the quantization is conjectured to involve a CFT, and the Cardy formula for
such a theory then is able to reproduce the Bekenstein—-Hawking entropy of the
horizon. It is interesting that the central extension in these examples seems to play
an important role in determining the entropy, and this may be related to interesting
properties of the reduction procedure for algebras involving nonzero extensions.

7.3. Corner improvements

In Subsec. 2.5, we described an additional correction that must be added to the
localized charges to arrive at an expression that is fully invariant under the extra
ambiguities mentioned in that section. This correction was first described in App. C
of Ref. 13, and this work generalizes the proposal to allow for noncovariances
in L' and #’. As mentioned in the text, the correction to the charge density in-
volves a quantity ¢’ which appears as a contribution to the subregion action from
codimension-2 corners. Note there are additional questions involving the precise
relation between the full corner contribution to the action and the ¢’ appearing in
the charge, since, as discussed in footnote k, there are independent contributions
to the corner action coming from the boundary of each hypersurface N'* ending
at the corner. Spelling out the precise relation between these contributions to the
action and the localized charges would be an interesting future direction to explore.

Ambiguities of the type described in Subsec. 2.5 arose in the construction of
GBMS charges in Sec. 6, where there could have been other possible choices for the
form of the corner flux than the one we picked. It would be interesting to relate
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the choice made there to a more careful analysis of boundary terms needed to
obtain a finite variational principle for subregions bounded by .#*, and to carefully
derive these terms from a corner Dirichlet principle as well as a corner-improved
holographic renormalization procedure, as described in Subsec. 5.1. A possible result
of such an analysis would be to obtain GBMS charges that are finite in the limit
to either end of #*. This would allow comparison to the expression obtained by
Compere, Fiorucci and Ruzziconi in Eq. (5.49) of Ref. 15, which does satisfy this
finiteness property but was derived somewhat indirectly by using input from soft
theorems.

Finally, we mention that localized charges constructed via the Brown—York pro-
cedure, as described recently in Ref. 37, also enjoy the property of being free of the
ambiguities discussed in Subsec. 2.5, since these charges only depend on the form
of the codimension-1 flux £. On the other hand, these charges can differ from the
canonical charges for transformations that act anomalously on the boundary struc-
tures, and hence may yield different expressions than the corner-improved charges.
It would be useful to carry out this comparison in detail.

7.4. Alternative resolutions of the ambiguity

In this work, we have emphasized that resolving the ambiguities in the covariant
phase space construction amounts to choosing a preferred form of the flux. Fol-
lowing Ref. 13, we advocated for the use of a Dirichlet form of the flux, given the
close connection to standard holographic constructions, junction conditions, and
the Brown—York formulation of localized charges recently explored in Ref. 37. Addi-
tional intrinsic counterterms preserving the Dirichlet form of the flux are necessary
for asymptotic symmetries, where they are needed to ensure a finite flux through
the boundary, and were related to the holographic renormalization of the action in
Subsec. 5.2. Previously, there have been other proposals for resolving the ambigui-
ties, and we take a moment to briefly comment on these alternative approaches.
The approach initially advocated by Wald and Zoupas,** and employed in sub-
sequent work, for example Ref. 32, fixes some ambiguities using a stationarity con-
dition, although for sufficiently permissive boundary conditions, this requirement
either does not yield a unique result, or else fails to hold. A different approach is
to focus on the properties of a given Lagrangian, and to extract a preferred sym-
plectic potential using homotopy operators of the variational bicomplex.!8138:139
While this certainly yields an unambiguous result, there is still a degree of arbi-
trariness in the fact that homotopy operators for a given complex in general are
not unique. In fact, the original formulas by Iyer and Wald” for the symplectic
potential are completely unambiguous. The ambiguity instead arises in addressing
why one particular formula for the symplectic potential is preferred over another.
In this regard, we find that resolving the ambiguity by focusing on properties of
the flux yields a clearer explanation of what choices have been made in finding the
resolution. It would still be interesting to carefully relate the resolutions we explore
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in this work to those involving the variational bicomplex, and understand the extent
to which these two approaches can be made equivalent. Finally, we mention the work
of Kirklin, % who uses a construction based on the path integral for a subregion, and
extracts a manifestly unambiguous symplectic potential using ideas closely related
to the Peierls bracket construction.*® This procedure has a number of advantages
beyond being manifestly unambiguous, including making a more direct connection
to the quantum description of the subregion, and being completely covariant with
respect to the codimension-2 corner of the subregion; i.e. it does not require a pre-
ferred codimension-1 hypersurface N' bounding the subregion. Unfortunately, the
construction is sufficiently different from the standard covariant phase space that
it is not immediately clear what the specific form of the corner contribution to
the symplectic potential is in Kirklin’s construction. It would be very interesting
to make this comparison, and determine whether his construction is related to the
Dirichlet form of the flux that was the focus of this work.

7.5. Casimir energy of vacuum AdS

A byproduct of the localized charge construction in Subsec. 2.3 is that the result-
ing charges are largely free from the usual ambiguity to be shifted by phase space
constants. The reason for this is that there are fewer quantities that qualify as true
constants when no boundary condition is imposed on the intrinsic boundary data.
The requirement that the charges satisfy Eq. (2.32) is therefore a stronger condi-
tion than the one occurring in standard canonical frameworks in which boundary
conditions are imposed to ensure the flux .7-'5 vanishes. The additional content in
Eq. (2.32) is that the charge H¢ must satisfy this equation even for variations that
violate the boundary conditions. For example, when taking £ to be in Dirichlet
form, and choosing £* such that Ag(8" — A') + hse vanishes, one would find that
imposing a Dirichlet boundary condition causes the entire flux fé to vanish, and
H¢ is then the charge that integrates Hamilton’s equation for the transformation.
However, any other quantity H é that differs from H¢ by a functional of the intrinsic
quantities on the boundary would also satisfy Hamilton’s equation, since such in-
trinsic functionals are phase space constants once the Dirichlet boundary condition
is imposed. On the other hand, these intrinsic functionals have a nontrivial varia-
tion for fluctuations that do not hold the intrinsic data fixed, in which case H, é will
fail to satisfy (2.32) in the larger phase space considered in this work where such
variations are permitted. This allows us to conclude that the charge H¢ is unique
up to an overall constant that is independent of the bulk and boundary geometry.
The expression (2.31) represents a valid choice for fixing this constant, and allows
for meaningful comparison of the values of the charges in different space—times.
An important context in which such a comparison arises is in odd-dimensional
asymptotically AdS spaces, where, depending on the choice of boundary confor-
mal frame, the charges in vacuum AdS can take on nonzero values. In particular,
for asymptotic time translations, the nonzero charge is interpreted as the Casimir
energy for the dual CFT.2” This result crucially relies on the ability to compare the
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charges in different conformal frames, and for the alternative definition of canonical
charges proposed by Ashtekar, Magnon and Das (AMD),'4%:142 the energy vanishes
for vacuum AdS, regardless of the choice of conformal frame. The resolution of
this discrepancy lies in the fact that the AMD charges differ from the charges con-
structed from a holographic stress tensor by an intrinsic functional of the boundary
geometry.2!:22 This intrinsic functional has the effect of subtracting off the value of
the charge of vacuum AdS in the appropriate conformal frame, so that the AMD
charges always vanish in vacuum AdS.

This raises the question as to which definition of charge coincides with the
expression (2.31) in the context of asymptotically AdS space—times. The answer can
be inferred from the results of Ref. 37 (see also Refs. 20, 21 and 53), which showed
that when the flux is chosen to be of Dirichlet form, H¢ agrees with the Brown—
York charges constructed from the boundary stress tensor obtained by varying the
subregion action with respect to the intrinsic boundary variables.?3:¥k Since the
Casimir energy is obtained from holographic charges constructed using the Brown—
York method, it is immediately apparent that the charges H, considered here will
reproduce the Casimir energy of asymptotically AdS space—times, and therefore
differ from the AMD charges. It is important to emphasize that, like the holographic
charges, any shifts in the localized charges H¢ are derived from a corresponding
change in the subregion action, since the action principle completely determines the
expression for the charges. This property is not shared by the AMD charges, and
there does not appear to be any action principle that would yield the AMD formula
for the charges via the method of Subsec. 2.3. Our construction thus provides a novel
means of obtaining this Casimir energy from canonical methods that does not suffer
from ambiguities associated with shifting the charges by intrinsic functionals.

7.6. Implications for holography

There are a number of potential applications of this work to various aspects of
holography. The arguments of Subsec. 5.1 on holographic renormalization of the
symplectic potential are largely motivated by well-known constructions that origi-
nated in AdS/CFT.21:2528 Although Dirichlet boundary conditions were initially
thought to be necessary in order to obtain a finite symplectic form, it was pointed

kkMore precisely, the equivalence between the Brown—York and canonical definitions of charges was
shown to hold for transformations that act covariantly on the intrinsic geometry of the boundary.
In the case of a null boundary, we showed in Ref. 37 that for transformations that act anomalously
on the null generator n’, in the sense Azn? = wgni for some function we, the two definitions of
charges differ by an intrinsic functional constructed from we. In the asymptotically AdS context,
a similar anomaly should arise for asymptotic symmetries associated with conformal isometries
of the boundary metric with nontrivial conformal factors. In these cases, the holographic charges
and canonical charges H¢ likely differ, and it would be interesting to investigate whether this
difference has any physical interpretation. Note that this subtlety does not affect the discussion
of the Casimir energy, since that involves charges associated with time translation, which is a
boundary isometry with vanishing conformal factor.
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out in the work of Compere and Marolf that in fact the holographic renormalization
procedure also yields a finite boundary symplectic form, after taking into account
the appropriate corner contributions.?¢ This then motivates definitions of a wide
class of charges associated with all boundary diffeomorphisms, instead of focusing
only on the subalgebra of conformal Killing vectors of the boundary metric. For
example, in the context of asymptotically de Sitter or anti-de Sitter spaces, such
considerations led to the identifications of the A-BMS symmetry algebras, which
are useful in obtaining the BMS symmetries upon taking a flat space limit.%4->%-110
The general proof in Subsec. 5.2 that such renormalization is always possible, inde-
pendent of the details of the space—time asymptotics, suggests that the associated
generalized charges are always present, and hence should have an interpretation in
the dual holographic description.

One puzzling aspect of interpreting these charges holographically is that the
symmetry algebras constructed in this way are much larger than the algebras typi-
cally encountered in standard examples of AdS/CFT. For example, in asymptoti-
cally AdS spaces, the dual quantum theory is a conformal field theory, where the
only conserved diffeomorphism charges are those associated with conformal isome-
tries. On the other hand, the charges considered in this work are generically not
conserved, due to the presence of nonzero fluxes through the boundary, and hence
there is no immediate contradiction with standard holographic considerations. The
existence of these charges appears to be most closely tied to the ability to define
a local stress tensor operator in the dual theory. As recently reviewed in Ref. 37,
the entire set of localized charges can be constructed using the Brown—York stress
tensor on the subregion boundary. Although each individual charge may not be
conserved, the stress tensor itself satisfies a covariant conservation equation as a
consequence of the gravitational constraints. In a holographic dual picture, the dic-
tionary relates the Brown—York stress tensor to the local stress tensor of the dual
field theory. Because the continuity equation relating the nonconservation of the
charges to the flux is intimately related to the covariant conservation equation of
the stress tensor, one could speculate that the diffeomorphism charges become im-
portant when characterizing the theory in a hydrodynamical regime, which gives
a coarse-grained, effective description of the quantum theory in which the impor-
tant degrees of freedom are those associated with conserved quantities, such as the
stress tensor. This connection between gravity and hydrodynamics has been noted

143,144

in holography in the fluid-gravity correspondence, and has also appeared in

various other contexts including the membrane paradigm of black holes'*>146 and

considerations of the Einstein equation of state.'*”

There are a number of other possible holographic applications of this work.
The considerations of localized charges are well-adapted to describing gravitational
theories in local subregions, and in some cases these subregions can be given a
holographic interpretation in terms of a CFT deformed by an irrelevant 77 or
T? deformation.!*®149 Some ideas relating the 7T deformation to covariant phase

space constructions were recently considered in Ref. 150.
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Another area of interest to which the localized charges may be relevant is in the
recent models of black hole evaporation that reproduce the Page curve,?!-153
outgoing Hawking radiation in an asymptotically flat AdS black hole is collected
in a nongravitational theory on flat space, in order to induce evaporation. This
gluing construction is similar in spirit to the reduction procedure described in Sub-

where

sec. 7.2 for combining subregions, and hence it may be worthwhile to understand
the evaporation models from that perspective. Furthermore, the gluing construc-
tion should in principle be possible in setups where both subregions are gravita-
tional, and hence may yield a useful way of understanding black hole evaporation
models without restricting one of the subregions to be nongravitational. This may
help address recent criticisms of applicability of the evaporation models to genuine
asymptotically flat gravitational systems raised in Refs. 154 and 155.

Finally, the considerations of null surfaces and holographic renormalization is
particularly well-adapted to applications in celestial holography, which seeks to
find a dual of asymptotically flat space in terms of a celestial CFT.23:156:157 [p
particular, it would be worthwhile to understand the covariant counterterms needed
to renormalize the action and the associated null Brown—York stress tensor recently
considered in Ref. 37, without explicitly employing the auxiliary rigging vector used
in Subsec. 5.3.
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Appendix A. Field Space Calculations

Here we collect some identities satisfied by various operators on field space. Given
a vector field V' on %, its action on differential forms via the Lie derivative is given
by Cartan’s magic formula

Ly =16+ 6l . (Al)
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More generally, if v is a vector-valued one-form on .%, we can define a derivation
of the exterior algebra of degree 0 denoted I, which is given by contraction on the
vector index and then antisymmetrization of the remaining covariant indices; on a
p-form «, this is given by!°®

(Iya)dld,‘,...%p = Vﬁﬁa:@ﬂ2...£{p ) (A.2)

where the underline denotes antisymmetrization of the indices. The graded com-
mutator of I, with the exterior derivative § defines a new derivation of degree 1
denoted L,,

L,=1,6—6I,. (A.3)

In particular, a field-dependent vector field £% has nontrivial variation 0¢* which
is a one form on field space. The map &% — é extends to 6%, producing a vector-
valued one form on % denoted (5A§ . This object then defines derivations I 5 and L 5
by the above definitions. A vector-valued differential form p of higher degree defines
derivations I, and L, in a similar manner.

Lemma A.1. The various derivations defined above satisfy

[Les£el = £(1.50) (A.4)

£, I5] =0, (A.5)

e Isel = Iie (A.6)

U Il =Io, o =I56(" — I86°, (A7)

L Ig) = Ir, 7%= [6¢, €% + 81:6¢" — 36", (A.8)
(Lo Lel = =Lz 16 C1" = [6,¢)" — 1e0C" + 166" (A.9)

In particular, (A.9) implies that the field space Lie bracket is given by

—

Proof. For (A.4), we compute
[Lg, £¢] = T0Lc + 01 £ — £cIgd — £01¢
=TeLsc + £clgd+ Locls — L6 — L1
= Lr5¢c — Loclg + Lol (A.11)

yielding the identity. Equation (A.5) is identically true from the definition of how
£¢ and Iy act on field space differential forms. Equations (A.6) and (A.7) follow

from the Nijenhuis-Richardson bracket for two algebraic derivations.!58
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For Eq. (A.8), we know from the general structure of brackets of derivations that

[L¢, I5.] must be an algebraic derivation, and hence is determined by its action on

a basis of one-forms d¢. This then produces
[Le: I55)0¢ = 1:0L5c) + 0 L 1,500 — L0 £ed
= L5000+ £s¢Led + Ls1,600¢
B £([6<,£]+6lgéc—1§<55)¢’ (A.12)

which then reproduces the right-hand side of (A.8).

Finally, for the commutator [Lé, L é], we know that the resulting derivation will
be a Lie derivative, and hence it is determined by its action on the scalars ¢. We
can therefore compute

[Le Ll = Le g — LeLed
= Lrocd+ £cLed = L1560 — £eLcd

=—L¢,c19- (A.13)

Lemma A.2. The operator Aé satisfies the following identities:

[0, A¢] = Agz s (A.14)
[Ag A =Dpgg, = —Am , (A.15)
[AE’IE]:IEZC: i CI]+II 5 (A.16)
Proof. Equation (A.14) follows from
0Ag = 0(Lg — £¢ — Ise)
= L~ £5¢ — £+ Lg — 150
= A6+ Ay (A.17)
since 16/5\5 =0.
To derive Eq. (A.15), we can use the identities in Lemma A.1 to derive
[Ag Al =[(Lg = £¢ — 1), (Lg — £¢ — I5)]
= ~Lgg + fieq — Lroc + £1.5¢
—[Lg Il = Uge, Lel + g, Izl - (A.18)
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The last three commutators all combine into a single contraction I4, and using
(A.7) and (A.8) we find

~[5¢,€]% = LOC" + 06" + [3€, C]° + 31:0¢°

— 15 6C" + I5:0¢" + I5z6¢" =4[¢, ¢]*. (A.19)
Hence, Eq. (A.18) becomes

Bebd=—Ieg+featlpn = "Ara (4.20)

Finally, for Eq. (A.16), we apply Egs. (A.6) and (A.10) to compute
[Ag L] = [Lg — £ — Igp, 1] (A.21)
= I[é,é]y +II/5\6§ (A.22)
= I+ e = I (A.23)
O

Appendix B. Phase Space Calculations

The standard Iyer-Wald identity®7 for computing the contraction of a vector field
into the symplectic current receives modifications when 6’ contains noncovariances.
Making generous use of Cartan’s magic formula in addition to Egs. (2.4), (2.7b),
(2.21), (2.24), (A.14), as well as the fact that on-shell, 6L’ = df’, we find that

’_ o o
—Iaw' = —Lg0" + 010
= —£59’ — Aéel — 15%9/ + (5(Jé + ’L'gL/ + Agb/)
= —i¢df — digd' — Ag&b’ - dAé)\’
- Jgg - A&b/ + d(gQé + ig(SLl + (SAéb/

= d(0Q¢ — Q5e — et — AN, (B.1)
where we used dig L’ = i5¢ L' +i¢dL’ in the third line. This is then used in determin-
ing the charges and fluxes that appear upon contracting —I ¢ into the symplectic
form. Taking into account the additional boundary contribution to 2 [Eq. (2.18)],

the result localizes to a boundary integral, whose integrand, using Egs. (2.4) and
(2.12), is given by

5Q/£ — QSE - ngl - Aé/\/ + 1555’
= 5Ql€ — Qgg + ig(%l — Jggﬁ/ + dig,@/ — i€ — Aé/\l + Léﬁ/ — 5Iéﬁ/
= (S(Qg +igl — Iéﬁ/) - ng — sl + Aé(ﬁ/ - )+ Iggﬁl — i€ + digf
=0he — hse — 1€+ Aé(ﬁ/ - /\/) + d’igﬂ/, (B.2)
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where we recall the definition of the charge density
he = Qg +igl! — Ip". (B.3)

Integrating this expression over the boundary of a Cauchy surface then yields
Eq. (2.29).

The exterior derivative of he can then be explicitly computed, using Eqgs. (2.4)
and (2.12),

dhe = Jé + Jggf/ — igdél — Igdﬁ/
= L0 — il — Agb' + T:00 — Al —igdl" — I.dp’
= Iég — Aé(e/ + b/) — ig(L/ + df/) , (B.4)

which verifies Eq. (2.34).

When computing the bracket between the localized charges, it is helpful to
have an expression for the anomaly of the charge density. First, we note using
the expression (2.26) for Q¢, the transformation property (2.22) satisfied by the

ve

covariant part @, and the identity (A.16), that the anomaly of Q’C is given by
AéQ’C = _QE[QC]] + Ql]é&& + iCAégl — ICAAEB, , (B.5)
and similarly it follows that the anomaly of the charge density is
AéhC = —h[[€7§]] + hjfég + i(Aé(ﬁ’ +v) - IéAé(B/ - ). (B.6)

The bracket (3.6) of the charges is then given by

{HE,HC} = _IE(SHC + Ié]:é = /@E me¢, (B.7)

and by applying the definition (2.33) of 7 and using (B.4) and (B.6), the integrand
can evaluate to

me e =—Lehe — AéhC + IC” (255 — Aé(ﬂ/ — )\/) + h(sg) (B.8)
= hpe ) —ic Qe (U + V) +ieAe (€ + V) +igic(L' + dl') — dighe . (B.9)

Integrating this over the surface 9. yields the charge representation theorem quoted
in Eq. (3.10), using that £* and ¢ are both tangent to A/ which causes the term
igic(L' + dl’) to pull back to zero.

A similar computation yields the bracket for the corner-improved charges con-
structed in Subsec. 2.5. Working with an improved charge density fzg defined by
dropping the final exact term in Eq. (2.47) which integrates to zero in the charge,

he = Qe +ig(t +V +de') — e, (B.10)
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we find that its exterior derivative is given by
dhe = 1€ — As (U +V 4 dd) —ic(L' +dl'), (B.11)
and its anomaly by
Aghe = ha +icAg(U + b +dc) — I:Age. (B.12)
The bracket of the charges is
(He, Hey = — Il + 1. F; = /6 e (B.13)

with .7:"5 defined in (2.48). Then applying (B.11) and (B.12), the integrand eva-
luates to

Mec = 7‘££}~L< — Aéilg + If (’Lg(c/‘ - Aéé‘ + ilaf) (B14)
= hie.cp +icDe(C +V +dc)
—icA(U +V +dd') +igic(L' + d') — dighe , (B.15)

which by the same arguments as above yields the corner-improved charge represen-
tation theorem, Eqgs. (3.18) and (3.19).

Appendix C. Scaling Transformations on a Null Surface

Consider a space-time (M, gqp) containing a null surface N. In this appendix we
review the various geometric quantities that are naturally defined on A (see for
example Sec. 3 of Ref. 32 for more details), and how they transform under rescalings
of the null normal and under conformal transformations of the metric. We restrict
to four-dimensional space—times in this section.

We pick a smooth future-directed normal covector n, on N, and define the
inaffinity , a function on A/, by!!

nVant = kn®, (C.1)

where we are using = to mean equality when evaluated on A. The contravariant
normal n® = ¢%ny, when evaluated on # 1, can be viewed as an intrinsic vector n,
since nn, = 0. We denote by ¢;; the degenerate induced metric, and by ;1 the
3-volume form on A given by taking the pullback of 7.5, Where 74 is any three
form with 4nqpeng) = €apea- Finally we define a 2-volume form by

pij = —nigen” . (C.2)

I1f the extension of ng away from A is chosen to satisfy Vianp) = 0, the quantity « is equivalently
given by the relation V,(nyn®) = 2kn, which is the usual definition of surface gravity for a
horizon when n, is a Killing vector field. Thus the inaffinity is sometimes called surface gravity
for general normals nq, although in the most general case where V{,ny) # 0, these two definitions
of k will not agree.
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Next, we take the pullback on the index a of V,n?, which is then orthogonal to
ny on the index b. This quantity therefore defines an intrinsic tensor Wij called the
Weingarten map.'®® The second fundamental form or shape tensor is K;; = W, *qy;,
which can be decomposed as

1
Kij = E@qij + 045 (C?))

in terms of an expansion™™ © and a symmetric traceless shear tensor o;.
These fields on a null surface obey the relations32159

gin’ =0, (C.4a)

Kijn’ =0, (C.4b)
W, nt = knt (C.4c)

(£n — O)qij = 2045, (C.4d)
(£n —O)nijr =0, (C.4e)
(£ —O)pi; =0, (C.4f)
(£n—K)O = —%@2 — 0ijoq " ¢" — Ryynn®, (C.4g)

where ¢ is any tensor that satisfies qijqj kae = qir-
Consider now rescaling the normal according to

n' —e’n’, (C.5)
where o is a smooth function on N'. We can also perform a conformal transformation
on the metric,

Gab — 62Tgab . (06)

Here T is a smooth function on a neighborhood of A/, but we will be interested
only in T restricted to N. Under the combined effect of these transformations the
various fields transform as

ng — e n, (C.7a)

Qij — €2T(h‘j ) (C.7b)

pij — €% uij (C.7c)
Mgk — € gk, (C.7d)
k= e (k+ L£po+2£,7), (C.7e)

mmThe relation of the expansion © to the divergence V,n® of the normal depends on how one
extends the definition of n® off the null surface. If that extension satisfies ngn® = 0, then © =
Van® — k. If that extension satisfies V[,ny) = 0, then we have instead © = Van® — 2,160
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0 = e”(O+2£,Y), (C.76)
Kij = "V (Kij + qi; £,7) (C.7g)
W,) = 7 [W,? + Di(o + T)n/ + £,76]], (C.7h)

where D; is any derivative operator on N. These transformation laws preserve the
relations (C.4).

In applying this framework to null surfaces N at a finite location in space—
time,32 the metric gqp is the physical metric. Hence there is no freedom to confor-
mally rescale the metric, and we must take T = 0. In this case the scaling laws
(C.7) reduce to the scaling laws™ given in Eq. (3.3) of Ref. 32. By contrast, in
applying the framework to future null infinity N' = .#, the metric g, is the un-
physical metric and is subject to the conformal rescaling freedom (D.3), which also
includes a rescaling of the normal. In this case we must take T = —o, and with this
specialization the scaling laws (C.7) reduce to the laws (D.8) given in App. D.

Appendix D. Asymptotically Flat Space—times:
Notations and Conventions

In this appendix we review the definition of asymptotically flat space—times in
3 + 1 dimensions, and define the notations we use for the conformal completion
framework used to describe them.

Consider vacuum space—times that are asymptotically flat at null infinity, &,
in the sense of Ref. 161. This means that we have a manifold M with boundary
# which is topologically R x S2, and an unphysical metric gq; which is smooth on
M for which .# is null. We also have a smooth conformal factor ® on M which
satisfies ® = 0 on .# and for which

ng =V,® (D.1)
vanishes nowhere on .#. Finally the physical metric
Gab = (I)_anb (D.2)

satisfies the vacuum Einstein equation Gup = 0 on M \ #. The conformal trans-
formation

(gabv q)) — (672090.17, eig(I)) ) (D3)

where ¢ is a smooth function on M, preserves the physical metric. Although nor-
mally one would expect the theory to be invariant under this conformal freedom, it
is possible in general contexts for the definitions of gravitational charges to depend
on background structures like the choice of conformal frame (as it does in AdS),

"M Note that the quantities denoted here by VVij7 O, qij, Mij, Niji and n? were denoted there ICij,
0, hij, €5, €ij% and 0% respectively.
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as we argued in Sec. 2. The following discussion can be easily adapted to past null
infinity but we will focus on future null infinity just for simplicity.

As for any null surface, the metric g, and normal n, determine a number of
geometric quantities on T, reviewed in App. C. These include the inaffinity x,
the expansion O, the shear tensor o;;, the induced metric g;;, the 3-volume form
Mijk, the 2-volume form p;;, the second fundamental form or shape tensor K;, and
the Weingarten map W, I For general null surfaces these quantities obey a number
of identities given in Egs. (C.4). We now review properties of these quantities that
are specific to #T.

First, the normal n, is a pure gradient from Eq. (D.1), and so V{,n = 0. Since
#7* is null we have n,n® = ®g + O(®?) for some function g on .#*. Taking a
gradient, evaluating at & = 0, using the symmetry of V,n; and using the definition
(C.1) of the inaffinity x now yields that

g’ nany = 26® 4+ O(9?). (D4)

Second, it follows from the vacuum Einstein equation satisfied by the physical metric
that

Viany) = f9ab (D.5)

for some function f on .#7; see, e.g. Eq. (2.6) of Ref. 46. As a reminder we are
using = to mean equality when evaluated on .# . Combining this with Eq. (D.1)
yields Vony = fgap, from which we obtain f = k and

VaVe® = Kgap (
0 =2k, (D.6b
o5 =0, (D.6c
W, = kd?!. (D.6d

Inserting Egs. (D.6b) and (D.6¢) into the general identities (C.4) for any null surface
yields the relations

qin’ =0, (D.7a)
(£n —2r)0i5, =0, (D.7¢)

Under the conformal transformation (D.3) the transformation laws for the various
fields on . are given by the special case T = —o of the transformation laws (C.7)
discussed in App. C, and are given by

n' = ent, (D.8a)
Ng = € g, (D.8Db)
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% — € i, (D.8&c)

Mij — 6720#713‘ ; (D.8d)
Mijk — efgamjk, (D.8e)
k= e’ (k— £,0). (D.8f)

These transformation laws preserve the relations (D.6) and (D.7). Using the freedom
(D.8f) one can enforce the Bondi condition

k=0. (D.9)

However in most of our analysis in this paper we will not make this specialization
and will allow x to be nonzero.

Appendix E. Symmetry Groups at Future Null Infinity in
Vacuum General Relativity

In this appendix we derive the symmetry groups that correspond to the three
different field configuration spaces defined in Sec. 4 in the body of the paper. Rather
than proceeding directly, it will be more convenient to proceed in three stages,
following the universal intrinsic structure approach of Ashtekar®” and the techniques
of Ref. 32:

e We define universal intrinsic structures in each of the three cases, and derive the
corresponding group of diffeomorphisms of .# T that preserve these structures.

e We define boundary structures on £ in each of the three cases, and define
associated field configuration spaces. These configuration spaces are related to
those given in Sec. 4 by taking orbits under the conformal transformations.

e Finally, we show that the symmetry groups of the intrinsic structures coincide
with those of the field configuration spaces associated with the boundary struc-
tures, and with the symmetry groups of the spaces of Sec. 4.

We first explain these steps in detail in the BMS context, and then outline the
extensions to the generalized BMS and Weyl BMS contexts.

E.1. Bondi—Metzner—Sachs case
E.1.1. Definition of intrinsic structure

Consider triplets of tensor fields (n’, g;;, k) defined on .#T that satisfy the relations
(D.7a) and (D.7b) for which the vector field n’ is complete. We define any two
such triplets to be equivalent if they are related by a rescaling of the form given by
Egs. (D.8a), (D.8c) and (D.8f):

(ni, Qij, K) ~ (e"ni, e_gaqij, e’k — e’ £,0). (E.1)
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We denote the equivalence class associated with a given triple as
Ug1 = [ni,qij, /‘6} . (EQ)

We call the quantity up; an intrinsic geometric structure on .# . These structures
are universal in the sense that given any two such structures on £+, there exists a
diffeomorphism ¢ : £ — .#T which maps one onto the other via pullback.®

We will be defining a number of similar equivalence classes throughout this
appendix, and our notational conventions for these objects are as follows. In the
symbol ugp, A can be 2 (if the induced metric ¢;; is present in the set of fields),
1 (if the volume form 7, is instead present), or 0 (if neither g;; nor 7, is present).
The second index B can be 1 (if the inaffinity x is present in the set of fields) or
0 (if x is absent). Thus there will be six types of equivalence class, us1, 111, Ug1, s,
u1g and ugg. Additionally, we will consider structures in which the normal covector
n, is also present in the set of fields. When this is the case, we will use the notation
pap, while the notation u 4 p is reserved for structures in which n, is absent. Finally
tensor fields in the equivalence classes are barred (e.g. 7', Qij»- - .) when & is absent,
and are not barred (e.g. n’, g;;,...) when & is present.

A given asymptotically flat space-time (M, g,;) determines a unique intrinsic
structure us; = u21[g,;], as follows. Choose an unphysical metric g,, and confor-
mal factor ® for which §,, = ® 2g.. Compute the quantities Qij n’ and x from
the unphysical metric and conformal factor, and take the equivalence class (E.2).
The result is independent of which conformal factor and unphysical metric within
the equivalence class is chosen, by the equivalence relation (E.1) and the scaling
laws (D.8).

We can define a different type of universal intrinsic structure,”” without the
inaffinity x, as follows. Consider pairs (n’,q,;) that satisfy Egs. (D.7a) and (D.7b)
with Kk = 0:

n'q; =0, £pq;=0. (E.3)
We define two such pairs to be equivalent if they are related by a transformation
of the form (D.8) that preserves x = 0, that is,

(ﬁia ‘jij) ~ (eaﬁia 6720‘713') (E4)
with £70 = 0. We denote the equivalence class associated with a given pair as
Ugp = [ﬁia (L-j] . (E5)

There is a one-to-one correspondence between intrinsic structures of the type us;
and those of the type usg. Given an intrinsic structure [ni, Qij, /@], if we consider
the set of representative triples (ﬁi,cjij,O) with vanishing inaffinity, the result is
the equivalence class [ﬁi, (jij]. Conversely, given the equivalence class [ﬁi, cjij}, we
can take any element (7', q;;), consider the corresponding triple (7’,q,;,0), and

©°This can be shown by an argument similar to that given in Subsec. 4.1 of Ref. 32.
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then take the equivalence class under the equivalence relation (E.1) to generate the
intrinsic structure of type us;. We will denote this one-to-one correspondence as
Ug1 = u21(u20)~

E.1.2. Symmetry group of intrinsic structure

Consider now diffeomorphisms ¢ : #+ — #+. We define the action of the pullback
©* on an intrinsic structure ug; = [n’,¢;;, x| by acting with the pullback on a
representative of the equivalence class:

©* [n',qij, k] = [p*n", 0" qij, K] . (E.6)
This action is well defined, since if (n’, g;;, k) and (7", q;j, k) are two triples related
by a rescaling function o, then the pullbacks of these triples are related by the
rescaling function ¢*o. Now given an intrinsic structure us;, we define the corre-
sponding symmetry group to be the group of diffeomorphisms which preserves the
intrinsic structure:

Dy = {9 I = IF| g us =um}. (E.7)

From the definition (E.6) and the equivalence relation (E.1), given a diffeomor-
phism ¢ in this group and a representative (ni,qij,ﬁ) of the intrinsic structure,
the action of the diffeomorphism is that of a rescaling by some smooth function
a=alp,n):

o't =e ", (E.8a)
0 qi; = 62&%'7 (E.8b)
Ok =e YK+ £pa). (E.8¢)

The dependence of the function « on the choice of representative (or equivalently
on the normalization of the normal) is given by
alp,e’n’) = a(p,n') + 0 — p*o, (E.9)

from Egs. (E.1) and (E.8).
We similarly define the symmetry group D,,, to be the group of diffeomorphisms
that preserves a given intrinsic structure ugg = [ﬁi, (jij]:

Duyy = {91 I = I ¢ uz = uz} . (E.10)

Because of the one-to-one correspondence discussed above, this group coincides
with the group (E.7), in the sense that

Duzl(uzo) = Duzo ) (Ell)

where the notation is defined after Eq. (E.5). To see this in more detail, if ¢ € D,,,
then p*ugy = ugg, and so *us; (Ugp) = gy (9*U20) = U2 (ugg), where we have used
covariance, and so ¢ € Dy, (uy)- The converse uses the fact that the mapping
Ugyg — Ll21(U20) is a bijection.
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Because of the equality (E.11), we can give an alternative characterization of
the symmetries in the group. From the definition (E.6) and the equivalence relation
(E.4), given a representative (n?, q;;) of the intrinsic structure uy and a diffeomor-
the action of the diffeomorphism is that of a rescaling by some
smooth function a = a(p,n?):

phisms ¢ in D

uz0

o*nt = e ¢, (E.12a)
© ;= 62&@‘]‘ ) (E.12b)

where
£Laa=0. (E.13)

The dependence of the function a on the choice of representative is given by
a(@v eoﬁi) = a(@a ﬁl) +o— 90*0- ) (E14)

from Eqgs. (E.1) and (E.12), which coincides with the dependence (E.9) except that
here we must have £70 = 0 from Eq. (E.4). Equations (E.3), (E.12) and (E.13)
are the usual definitionP? of the BMS group. The linearized versions of Eqs. (E.12)
and (E.14) are

Len' = —an’, (E.15a)
Leq;; = 2aq;; (E.15b)

and
o<(§i7 e”ﬁi) = a({iﬁi) — £eo, (E.16)

where the infinitesimal diffeomorphism is represented by the vector field £ on #+.

E.1.3. Definition of field configuration space

We now turn to the definition of a field configuration space whose symmetry group
matches that of the intrinsic structures discussed above. We start by defining a
geometric structure on .# T which we call a boundary structure, which is an extension
of our previous definition of intrinsic structure. We consider sets of tensor fields on
F 7 of the form

(niaqm'aﬂyna) ) (El?)

where n, is a choice of normal covector, the remaining fields satisfy the relations
(D.7a) and (D.7b), and the vector field n’ is complete. We define any two such sets

PPThe induced metric g;; induces a unique two-dimensional Riemannian metric on the space
of generators of .#1, from Egs. (E.3). One can specialize the choice of representative in the
equivalence class [ﬁi,qiﬂ, using the freedom (E.4), to make this metric have constant scalar
curvature (i.e. be a round two metric). While this specialization is often used to simplify the
presentation of the BMS group, it is not necessary to do so.
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to be equivalent if they are related by a rescaling of the form (D.8) for some smooth
function o:
(n', qij, kyma) ~ (e7n', e 27 g5, €7k — €7 £0,en,) . (E.18)
We denote the equivalence class associated with a given set as
po1 = [0, qij, K, 14 - (E.19)
A choice of equivalence class is the desired boundary structure on .#+.

A choice of boundary structure pa; = [n’, ¢ij, £, ng) determines a unique intrin-
sic structure ug;: choose a representative (n',g;;, f,n,), discard ng,, and form the
equivalence class ug; = [n’,¢;;, k] under the equivalence relation (E.1). The result
is independent of the representative initially chosen, from Eqgs. (E.1) and (E.18).
We will denote this induced intrinsic structure by 2 (p21). The boundary structure
contains more information than the intrinsic structure, which is necessary for the
definition of the field configuration space.

Just as for intrinsic structures, a given asymptotically flat space—time (M, g,;)
determines a unique boundary structure pa; = p21[G,), as follows. Choose an un-
physical metric g,; and conformal factor ® for which g,, = ® 2g,;. Compute the
quantities g;;, n’, k and n, from the unphysical metric and conformal factor, and
take the equivalence class (E.19). The result is independent of which conformal
factor and unphysical metric are chosen, by the equivalence relation (E.18) and the
scaling laws (D.8).

Just as for intrinsic structures, we can define a different type of boundary struc-
ture, without the inaffinity &, as follows. Consider triplets (ﬁi7(jij7ﬁa) that satisfy
Egs. (E.3) for which 7, is a complete normal covector. We define two such triplets
to be equivalent if they are related by a transformation of the form (D.8) that
preserves k = 0, that is,

(n’, ‘Z‘j»ﬁa) ~ (@Uﬁia 672061'3" e “Na) (E.20)

with £70 = 0. We denote the equivalence class associated with a given triplet as
P2o = [ﬁia(jijaﬁa] . (E.21)
Just as above, a boundary structure poy determines a unique intrinsic structure
usp = ugo(p2o) by dropping the normal covector 7,. Also, just as for intrinsic
structures, there is a one-to-one correspondence between boundary structures of
the type po1 and those of the type pag, which we will denote as pa; = pa1(p2o) and
P20 = Pao(p21). Given an asymptotically flat space—time (M, g,;), we define the

corresponding boundary structure of the new type to be

P20(Gap) = P20(P21(Gap)) - (E.22)

Next, given a boundary structure po1, we define the corresponding field config-
uration space to be the set of all unphysical metrics and conformal factors that are
compatible with that boundary structure:

Lpoy = {(M, gab, @) € To| p21(gab, ) = po1} - (E.23)
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Similarly, given a boundary structure pog, we define the field configuration space

szo = {(M7gab7 (I)) € F0| pZO(gab, (I)) = pQO} . (E24)
These two spaces coincide, from Eq. (E.22), in the sense that
szl(pzo) =Ty (E.25)

An argument analogous to that given in App. B of Ref. 32 can be used to show
that the orbit of I'p,, under diffeomorphisms of M is the entire space I'g defined in
Eq. (4.1).

E.1.4. Symmetry group of field configuration space

We now turn to a discussion of the symmetry group of diffeomorphisms that pre-
serve the configuration phase space,

gpm = {"/} M =M | 1/)(f+) = j+’ w*FPm = szl} . (E'26>
These diffeomorphisms induce diffeomorphisms of .#*: for any 1 in G,,,, we define

o =1v|g+, (E.27)
and since 1 preserves the boundary, ¢ is a diffeomorphism from #* to .#*+. Next,
since 1) preserves .# 1, the pullback of any normal covector n, evaluated on .#+
must be a rescaling of that normal, so we have

Y'ng =e'ng, (E.28)

where v = (1), n,) is a smooth function on .#* which depends on the diffeomor-
phism and on the normalization of the normal. The dependence on the normaliza-
tion of the normal is given by

V(e ng) = (1, na) + 0 — @ o, (E.29)

from Egs. (E.27) and (E.28).
The physical asymptotic symmetry group is given by modding out by trivial
diffeomorphisms whose asymptotic charges vanish:

me = gp21/ ~ - (E3O)

Here the equivalence relation ~ is defined so that two difeomorphisms are equivalent
if they are related by a trivial diffeomorphism. For space—time boundaries that are
null surfaces at a finite location, the trivial diffeomorphisms are those with32

@ = identity, ~v=0. (E.31)

This is also true in the BMS context, and we will assume it remains true for the
more general symmetry groups discussed below, pending the explicit computation
of the corresponding charges. It follows that the group D,,, is in one-to-one corre-
spondence with the set of pairs (p,7):

DF‘Zl = {((,0,'7) |'¢} € glf‘zl} . (E32>
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We now argue that the group D,,, coincides with the symmetry group D,,,
of the intrinsic structure discussed in Subsec. E.1.2. From the condition ¥*I'y,, =
T'y,, in the definition (E.26), we obtain that for any (M, gup, ®) in T'y,, we have
po1 = U*P21(gab, P) = P21 (V* gap, ¥*P). Using Egs. (E.27) and (E.28) we can rewrite

this as
[@*nia<p*Qijvw*Hae’yna] = [nivqijah:,na} . (E33)

Using the equivalence relation (E.18) it follows that there exists a scaling function
a on ST for which

o*n' = e nt, (E.34a)
0 qi; = € qij (E.34D)

PR =e YK+ £r0a), (E.34c¢)
e'ng = e“n, . (E.344)

The first three equations here coincide with Egs. (E.12), which imply that ¢ lies in
D
laws (E.9) and (E.29). In particular this implies that v is determined by ¢, v = v(y),
which implies from Eq. (E.32) that D,,, and D

ws, - The last equation implies that o = «y, which is compatible with the scaling

up; are isomorphic.

E.1.5. Alternative definition of field configuration space with
conformal freedom fixed

The literature has often used an alternative definition of the field configuration
space, which differs from the definition (E.23) given above only in that the conformal
freedom is fixed.3*4¢ This configuration space I'gysg is defined in Eq. (4.2), and
depends on a choice of conformal factor ®g on a neighborhood D of .#T and a
choice of unphysical metric ggqp on £,

We now show that the orbit of I'gyg under conformal transformations is a par-
ticular space I'p,, , where pa; = [ﬁ%, d0i5+0, 70 a} and 71, G ;; and 7ig o are computed
from the given data ®y on D and goqp on £ 1. First, it follows from the definitions
(E.23) and (4.2) that I'gms C T'y,, . Next, suppose that (M, gqp, @) lies in T'p,, . It
follows that

[niyqij7’€ana:| = [ﬁ%)a(joijaoaﬁ(]a] ) (E35)

where the fields on the left-hand side are computed from g,;, ®. From the equiva-
lence relation (E.18) there exists a scaling function o on . so that

(’n’ia Gij, R, na) = (e—aﬁ(i)’ e2a(jo 75 e_a-fﬁoa» ea'FLOa) . (E36)

By suitably extending the definition of o from .# T into the interior of the space—
time we can make e~ “® coincide with ® on D, since the gradients of these functions

2250105-80



A general framework for gravitational charges and holographic renormalization

agree on .# . It then follows that
(M, e > gap, e @) (E.37)

lies in I'pus.

From this relation between I'gpms and I'y,, , it follows that the asymptotic sym-
metry group of I'gys coincides with Dy, . Note however that a bulk diffeomorphism
1 acts differently on the two spaces. On I'gpyig it acts in tandem with a conformal
transformation to preserve the conformal factor,

d 2
ab, P T “Gab, @ | , E.38
)~ | (775 ) "o (B.38)
while on I'y,, it acts simply as
(gabs @) = (V" gap, P*@). (E.39)

E.2. Generalized BMS field configuration space and
symmetry group

We now turn to the generalized BMS field configuration space and generalized BMS
group of Refs. 29-31. The discussion in this case mirrors exactly the discussion of
the BMS case given in the previous section, with the following modifications:

e The induced metric ¢;; is replaced everywhere by the volume form 7;;;. Thus we
use Eq. (D.7c) instead of Egs. (D.7a) and (D.7b), and use the scaling relation
(D.8e) everywhere instead of the relation (D.8c).

e The equivalence relation (E.1) is replaced with

(n',Mijr, &) ~ (€70, e 3 ik, ek — €7 £,0) (E.40)
and the definition (E.2) of intrinsic structure is replaced by
Uy = [ni,mjk,/i} ) (E.41)
e Similarly the equivalence relation (E.4) is replaced by
(ﬁivﬁijk) ~ (e7’, 6_3077ijk) (E.42)

with £50 = 0 and £57;;, = 0. The definition (E.5) of intrinsic structure is
replaced

U = [ﬁi,ﬁi]‘k] . (E.43)

and D
and again coincide in the appropriate sense. The relations (E.12) that define the

e The corresponding symmetry groups D are defined as in App. E.1.2,

uil uio

symmetries are replaced by
o'’ =e R, (E.44a)
P g = € i (E.44b)

2250105-81



V. Chandrasekaran et al.

where £z = 0, whose linearized versions are*6
£Len' = —an’, (E.45a)

e The definitions (E.19) and (E.21) of boundary structures are replaced by the
analogous definitions

P = [ni,mjk,ﬁ, na} (E.46)
and
P10 = [ﬁiaﬁijkvﬁa] . (E.47)

e The corresponding field configuration spaces I'y,, and I'y,, are defined as be-
fore, and the argument that the corresponding symmetry groups Dy,, and Dy,
coincide with those of the intrinsic structures is unchanged.

e The definition (4.2) of the conformal-freedom-fixed field configuration space is
replaced with the definition (4.3) of the space I'apms. As before, one can show
that taking the orbit of I'ggys under conformal transformations yields a particu-
lar space Iy, , with py; = [ﬁg, Moijks 05 o a], and that the asymptotic symmetry
group of I'gpms coincides with Dy, .

E.3. Weyl BMS field configuration space and symmetry group

The field configuration space can be further expanded by omitting both the induced
metric ¢;; and volume form 75 from the definitions. We call the resulting space the
Weyl BMS field configuration space, following Ref. 45, since the extra symmetries
correspond to conformal transformations of the form (D.8) that are independent of
other pieces of the symmetry generator. The resulting symmetry group then coin-
cides with the symmetry group of general null surfaces at finite locations derived in
Ref. 32. This coincidence of symmetry groups should facilitate understanding how
the asymptotic symmetry group is obtained from a limit of symmetry groups on
finite null boundaries. It will also be important in future derivations of global con-
servation laws in black hole space—times, where analyses analogous to Refs. 162 and
163 at future timelike infinity will be needed in order to determine the appropriate
matching of symmetry generators on the future horizon with those on future null
infinity; see for example the discussion in Sec. 7 of Ref. 32.

For the Weyl BMS field configuration space, the required modifications to the
discussion of the BMS case of App. E.1 are:

o The induced metric ¢;; is omitted everywhere. Thus the equivalence relation (E.1)
is replaced with

(n', k) ~ (e7n' ek — e £,0), (E.48)
and the definition (E.2) of intrinsic structure is replaced by

Upp = [ni, Ii] . (E49)
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Similarly the equivalence relation (E.4) is replaced by

(n') ~ (e“n") (E.50)
with £z0 = 0. The definition (E.5) of intrinsic structure is replaced

ugo = [1'] . (E.51)

o The corresponding symmetry groups D,,,, and D, are defined as in App. E.1.2,
and again coincide in the appropriate sense. The relations (E.12) that define the
symmetries are replaced by

o*nt =e A", (E.52)
where £ = 0, whose linearized version is
Len' = —an'. (E.53)

The symmetry group (E.52) coincides with that of general finite null surfaces,
given by Eqgs. (4.4) of Ref. 32 specialized to x = 0.

e The definitions (E.19) and (E.21) of boundary structures are replaced by the
analogous definitions

po1 = [0, K, ng) (E.54)
and
poo = [n, 7] . (E.55)

e The corresponding field configuration spaces I'y,, and I'y,, are defined as be-
fore, and the argument that the corresponding symmetry groups Dy,, and Dy,
coincide with those of the intrinsic structures is unchanged.

e The definition (4.2) of the conformal-freedom-fixed field configuration space is
replaced with the definition (4.4) of the space I'wpms. As before, one can show
that taking the orbit of I'wwgms under conformal transformations yields a par-
ticular space I'p,, with po1 = [ﬁé,OﬁOaL and that the asymptotic symmetry
group of I'wpwms coincides with Dy, .

E.4. Properties of the asymptotic symmetry groups

We now turn to a characterization of the structure of the symmetry groups discussed
in the previous sections and the corresponding algebras.

For convenience, we will specialize to the definitions D,,,, Dy,, and D, of
these groups in which the inaffinity x has been set to zero, given by Eq. (E.10) and
its avatars. For each universal structure usg, 19 or ugg, we pick a corresponding
representative (n',q;;), (', 7,j;), or (2*). The null generator 72’ is common to all of
these representatives, and we construct a coordinate system (uﬁA) on .#1 using
this normal as described in Subsec. 4.2 in the body of the paper. The symmetry

transformations are then given by Egs. (4.7).
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To derive these transformations, we start with Eq. (E.12a), which is common
to all three groups. Combining this with Eq. (4.6) yields

ou 204
By = ey = ooy + E.
which yields 04 = 4 (A7), and inverting yields Eq. (4.7b). It also yields
dyti(u, 04) = ex(wb?) | (E.57)

Also from Eq. (E.13) which applies to all three groups we obtain that 9,e“ = 0, so
that a = a(64), and now integrating Eq. (E.57) yields Eq. (4.7a).

This completes the derivation for the Weyl BMS case, where the functions Y,
« and v are unconstrained. For the generalized BMS case, it follows from the
conditions (E.44) and the definition (C.2) of u;; that the function « is given by
Eq. (4.13). Similarly, for the BMS case, it follows from the condition (E.34b) that
the function « is given by Eq. (4.11).

Finally, it can be useful to understand the action of the groups on representatives
of the universal structures for which x # 0. We specialize for simplicity to linearized
supertranslations of the form

¢ = fnt. (E.58)

Note that the symmetry generator & is invariant under the conformal rescalings
(D.8) by definition, but that the coefficient f has a nonzero conformal weight,
transforming as f — e~ 7 f from Eq. (D.8a). For the BMS group the coefficient f
satisfies the conformally invariant equation

(£n _K)f =0, (E59)

from Egs. (D.7a), (D.7b), (E.8a) and (E.8b). This equation is also valid for the
generalized BMS group, from Eqgs. (D.7c¢) together with the unbarred version of
Egs. (E.45). Finally, for the Weyl BMS group, Eq. (E.59) is replaced with the
conformally invariant equation¢

(b —K)f =0, (E.60)

from Eqgs. (E.8a) and (E.8c) which apply to the group D,,,. This equation now
admits the two different kinds of supertranslations as solutions.

Appendix F. Details of Holographic Renormalization with a
Rigging Vector Field

In this appendix we derive some of the results on holographic renormalization which

were discussed in Sec. 5.

49This equation differs from the corresponding Eq. (4.17) of Ref. 32, despite the fact that the
underlying algebras of infinitesimal diffeomorphisms & on the null surfaces coincide. The difference
arises from the fact that the scaling properties of x and n* differ in the two cases (see App. C).
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We start by inserting the coordinate expansions (5.12) of the Lagrangian and
symplectic form into the identity (2.5), and specializing to on-shell field configura-
tions. This yields

g + 0" =oL. (F.1)

Similarly the boundary canonical transformation (5.6) can be written in terms of
coordinate components as

£ren = £+B,lz +B,007 (an)
0.5, = 0'° +3B° — A, (F.2b)
T 20

It follows that the choices (5.13) of B and A yield Lyen = 018, = 0, cf. Eq. (5.14a).
Also differentiating Eq. (F.2b) with respect to #° and combining with Eqs. (5.13)
and (F.1) gives 0,2, o = 0. Hence to evaluate 6,3, at 2° = 0 we can evaluate it at
20 = vp, at which value it reduces to 6'°(vg), from Egs. (F.2b) and (5.13). This
yields the result (5.14c).

We next turn to the computation of the anomalies (5.20). Given the prescription

(5.9) for B[L',v], the anomaly is given by, from the definition (2.4),
A:B = B*L',v] — Byp*L ,y*v]. (F.3)

Here it is understood that the right-hand side is to be linearized in the diffeo-
morphism ¢, whose linear part is parametrized by the vector field &. (It will be
convenient to initially work with the full nonlinear diffeomorphism rather than its
linearized version). Acting on both sides with ¥ ~!* we see that the right-hand
side is proportional to &, and so we can drop the 1y ~1* on the left-hand side when
working to linear order. This gives

A¢B = B[L ¢~ *v] = B[L/,v]. (F.4)

Defining By = B[L’,1~**v], we have from Eqgs. (5.9) that B is given by

iﬁBl = 0, (F5a)
v
7 By :/ do izl , (F.5b)
where v = ¢~ *v and
Ty 21/107%080_1, (FG)

with ¢ : N' — N being the restriction of ¢ to the boundary N. Acting on both
sides of Eq. (F.5b) with ¢* now gives

vo
wp By = / do mip i L (F.7)
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Using ¥* =1+ £¢ + --- together with Eq. (F.4) this can be rewritten as

vo
T A¢B = —m LB +/ domhiyLel . (F.8)

v

We now switch to using the coordinate notation of Subsec. 5.3.1. First, for any
vector field w = w9y + w'd; and any d-form y = x’w + x'dx® A w;, the Lie
derivative is given by

Lux = [wxo —wix' + (w'X°)] @
+ [—wigx® = w'ix? + (WX 0 + (Wx') ;] da® Ao (F.9)

Using this formula together with Egs. (5.13), we find Eq. (F.8) reduces to
. vo vo .
(AeB)° = (€°£) (v0) — (gl / oL — / dmg%) . (F.10)

The other component of AzB is given by combining Eq. (F.5a) with v =v — Lev
and Eq. (F.4), which gives

ivA;B=irB. (F.11)

Using v = 0y this yields

Vo

(A¢B)' = gfo/ doL . (F.12)
Combining the results (F.10) and (F.12) with Egs. (5.24a), (5.24b) and (5.26a) now
shows consistency with the identity (5.20a).
The derivation of AéA is exactly analogous. Equations (F.8) and (F.11) are
replaced by
vo

’/T:AéA = 77T;£§A — / do T;ivfge/, (F.13a)

v

i?)AéA = 7:£§1)A7 (Flgb)

which together yield
Uy

. 0 i . Vo . Vo . .
Agh = — [(509”)(1;0) —/ dv £00'° + sf/ do '} —/ dv 5]9{;} w;
+ & / dv 67 dz® Ay (F.14)

Combining this with Eqs. (5.24¢), (5.24d), (5.26) and (F.1) now shows consistency
with the identity (5.20b).
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