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ABSTRACT

Similarity checking is a common approach for detecting cheating
in programming courses. A known limitation is high rates of
similar pairs for programs lacking variability in possible solutions,
especially for small programs. We experienced this issue in our
CS1 course, where similarity checking in early weeks yielded
many highly-similar pairs, many of which were not likely due to
copying. Yet, we wish to catch copying students early, so that we
can intervene and help those students avoid developing copying
habits that may cause them trouble later. Our approach is to
modify the program specifications to include variability-inducing
requirements, namely places in the specifications where students
make choices in their solutions, where different choices reduce
the similarity scores. Those variability-inducing requirements are
intentionally designed to avoid making the problem much harder
for students. Examples of variability-inducing requirements
include adding requirements to check for invalid input, or
counting items. Such requirements have many different possible
ways of implementing each. Essentially, variability-inducing
requirements decrease the odds that two students would submit
programs scored as highly-similar by a similarity checker, even
for small programs. For 5 programs in our CS1 course, we added
some variability-inducing requirements. Compared to an earlier
term, the similarity checker’s highly-similar-pairs rate dropped
from 52% to 20% on average. Students’ scores stayed the same
from 98% to 96%, though time did increase from 18 min to 31 min
on average. Adding such requirements helps instructors to do
similarity detection and perform early interventions if desired.
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1 INTRODUCTION

Similarity detection tools [1][2], [3], 4 help instructors detect
cheating on programming assignments, aka labs. However, if a
lab’s solutions don’t have much variability, then similarity due to
copying is hard to distinguish from coincidental similarity,
resulting in a long unuseful similarity list. Figure 1 provides an
example list, where 490 solution pairs have high similarity scores
above 9.0, using a MOSS-based [2] similarity checker that outputs
values from 0-10.0. For labs with low-variability solutions, which
often dominate early labs in a class, the long similarity lists may
cause instructors to skip cheating detection for those labs.
Unfortunately, skipping cheating detection can lead to students
developing a habit of copying, which may get them in trouble
later, such as doing poorly on exams or being caught cheating on
later labs.

Pair | Student#1 | Student#2 | Similarity Score
1 A B 10.0
2 A Cc 10.0

490 9.1

Figure 1: Similarity detector output list, without added
variability-inducing requirements, is quite lengthy.

Figure 2 provides an example scenario. In this example, assume a
priori that Student B copied from Student A, with similar code
highlighted, yielding the similarity score of 10.0 in Figure 1.
However, assume a priori that Student C did not copy but
coincidentally wrote a very similar solution, also yielding a 10.0
similarity score with A. Student D did not copy either, yielding a
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5.2 similarity score with A. Labs with low-variability solutions
have too many coincidentally-similar pairs like (A, C) that are
hard for instructors to distinguish from pairs like (A, B). These
“false positives” can create excessive work for instructors, who
cannot determine whether students A, B, or C are copying from
each other.

Specification: Given an integer, countdown until both digits are identical.

Student A: Student B:

int main() { int main() {
int num; int a;
cin>>num; cin>>a;

if ((num=>100)|Inum=<11) {
cout<<"Input must be 11-100";

if ((a>100)[ja<11) {
cout<<"Input must be 11-100";

} }
else { else {
cout<<num<<""; cout<<g<<"";
while ((num%10)!=(num/10)) { while ((a%10)!=(a/10)) {
num--; a—:
cout<<num<<""; cout<<g<<"";
} }
} }
} }
Student C: Student D:
int main() { int main() {
int x; int input;
cin >> x; cin >> input;

if (x> 100) || (x < 1) { if (input < 11 || input > 100) {
cout << "Input must be 11-100"; cout << "Input must be 11-100";
} return 0;
else { }
cout << x<<""; for (inti = input; i >= 11, i-) {
while ((x % 10) != (x / 10)) { int ones =i % 10;

= int tens =i/10;
cout << x <<""; cout<<i<<"",
} if (ones == tens) {
} i=0;
} }

}
}

Figure 2: Code similarity for a lab, with no variability-
inducing requirements introduced yet. The highlighted text
is what the similarity checker considers similar compared
to Student A; the checker outputs that Student B has 10.0
similarity, Student C has 10.0 similarity, and Student D has
5.2 similarity.

Many approaches to reducing the number of highly-similar
students focus on improving the similarity detection tool itself,
such as improving string-, graph-, or metric-based comparison
[5], [6]. Some tools exclude small files to reduce false positives [7].
Some research [8] has examined how detection tools behave when
students modify copied code. One approach aims to detect the
original in a set of similar programs [9]. Some suggest looking
beyond just code, to also consider comments and other features
[10]. Many suggest going beyond similarity detection, such as
requiring students to commit code and using machine learning to
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detect oddities [11], or similarly to allow resubmission for higher
scores and detecting oddities in that history [12].

We focus on modifying the lab assignment itself to reduce
coincidental similarity. Our approach introduces variability-
inducing requirements to a lab: requirements that give students
more implementation choices, yet don’t make the program
substantially harder. More solution flexibility yields fewer
coincidentally-similar solutions, meaning the remaining similar
pairs may be more likely to instances of copying.

This paper describes our efforts to introduce variability-inducing
requirements in early week labs in a class. Our experiments
showed that the number of highly-similar pairs of students
decreased, while scores stayed about the same, though time spent
did increase. Instructors can follow a similar procedure in their
classes to enable more effective similarity checking on their labs
too.

2 ADDING VARIABILITY-INDUCING
REQUIREMENTS INTO OUR CS1 CLASS’S LABS

For years, we were frustrated by not being able to effectively use
similarity checking in the early weeks of our introductory
programming (CS1) class, due to excessively-long similarity lists.
Our CS1 is offered every 10-week quarter at a large public state
university. The class has 300-500 students (half computing majors,
half in other science/engineering majors that require CS1), with
two instructor-led 80-min lecture sessions and one teaching-
assistant-led 110-minute lab session per week, in C++. The class
had 329 students in Winter 2022 and 539 students in Fall 2022,
which are the terms compared below. The class uses a zyBook
[13], with weekly: before-lecture interactive readings having ~100
questions (Participation Activities or PAs), ~20 code reading or
writing homework problems (Challenge Activities or CAs), and 5-
8 weekly programming assignments (Lab Activities or LAs). All
are auto-graded with auto-feedback, partial credit, and unlimited
resubmissions. The course grade is typically 10% PAs, 10% CAs,
20% LAs, 5% class participation, and the remaining 50-60% from a
midterm exam and final exam, taken in-person, half multiple-
choice and half code-writing.

We examined our past CS1 offering from Winter 2022. Many labs
in Weeks 1-5 had similarity lists so long that we could not cheat
check those labs. Week 1 and 2 labs are relatively easy, covering
input/output, variables, assignments, and math functions. So we
focused on Weeks 3, 4, and 5, which covered Branches (3), While
Loops (4), and For Loops / Strings (5). Those topics tend to be more
challenging than in Weeks 1 and 2, and thus copying becomes
more likely. Table 1 summarizes the 5 labs we chose. Labs 1 and 2
are from Week 3, Lab 3 from Week 4, and Labs 4 and 5 from Week
5.
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Table 1: The 5 selected labs, and the added variability-
inducing requirements.

Lab summary Added requirements

Lab 1: Largest number: Output the
largest number given three integers

Output the instances of the
largest number

Lab 2: Leap year: Given year, write [Output whether the year is
a function returning whether leap

year

also a century year (evenly
divisible by 400)

Lab 3: Countdown until matching
digits: Given an integer, countdown
until both digits are identical

Output the distance from
the start and end number

Lab 4: Count input length: Output
number of characters excluding
periods, exclamation marks, or
question marks

Output the number of end-
of-sentence punctuation
characters found

Lab 5: Output inclusive/exclusive  [Based on one more input,

range: Given two numbers, output |include or exclude the high

every number in the range / low bounds in the range

The table also summarizes the variability-inducing requirements
that we added to each lab, in our Fall 2022 CS1 offering.

For example, Lab 3’s original requirements asked students to read
an input number 11-100, and countdown until digits match, as in
input 46 yielding 46 45 44. Some student solutions were shown
earlier in Figure 2. In our roughly 300-student class, that lab had
490 pairs of students with a similarity score greater than 9.0,
which is generally the threshold above which copying students
may appear. Not only is that number of pairs too many for us to
examine, but we usually could not determine cheating by looking
at pairs because the similarity could have been coincidental. To
induce variability in the solution, we added a requirement that the
program also output the distance from the start to end numbers.
This simple added requirement has various implementations.
Figure 3 shows, via underlining, how Students A and C (from
Figure 2) chose two different implementations of the new
requirement.

Student A used an in-line arithmetic operation to output the
distance between start and end numbers, whereas Student C
initialized a counter and incremented the counter in the while
loop. Those two solutions drop the similarity score from 10.0 to
8.8. Note that more possible solution approaches exist, such as
incrementing using “count += 1” or “count = count + 1” or
increasing the counter before decrementing in the while loop.
Also, students could choose to calculate the distance in an
intermediate variable before outputting.

Ideally, the additional variability-inducing requirements should
not make the lab substantially more difficult. For Lab 3 above,
students already had labs using arithmetic operations in cout
statements, and already learned the concept of counters and how
to increment by 1.
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Specification: Given an integer, countdown until both digits are identical.
Additionally, output the distance between start and end.

Student A: Student C:

int main() { int main() {
int num; int x;
int startNum; ir}t count = 0;
cin >> num; cin >> x;

if ((x > 100) || (x < 1)) {
cout << "Input must be 11-100";

startNum = num:;

if ((num>100)||Inum=<11) { }
cout << "Input must be 11-100"; else {
} cout << x <<""
olse while ((x % 10) 1= (x / 10)) {
cout << num <<""; K=
while ((num%10)!=(num/10)) { countt+;
num--: cout << x<<"";
cout<<num<<"": }
} cout << " " << count;
cout<<" "<<startNum-num; }

} }
}

Figure 3: Code solutions for Lab 3, with a variability-
inducing requirement introduced. Student C, who did not
copy from A, chose a different solution approach, receiving
a similarity score of 8.8, dropping C’s similarity with A
below 9.0.

But now the program has many different solutions, and the odds
of coincidentally-similar solutions is reduced. As such, the added
requirement greatly reduces the size of the similarity list; for
example, Figure 4 shows that the similarity list from Figure 1 was
reduced from 490 pairs down to 103 pairs. Copying students
would be easier to detect in that smaller list.

Pair | Student#1 | Student#2 | Similarity Score
1 A B 10.0
2 B X 10.0

103 9.1

Figure 4: Similarity detector output list, with variability-
inducing requirements added, is much shorter.

As another example, Lab 1 originally asked the student to output
the max of three input numbers. We added the requirement that
the student also output the number of times that the largest
number appeared in those three numbers. That additional
requirement logically is itself easier than the original problem, but
can be done in different ways as seen in Figure 5. For example, a
student could, at the program’s end, use a counter to count how
many times the largest value matched one of the inputs. Or they
could count as the max was being determined. There are several
other ways.

For most labs, we only introduced one new variability-inducing
requirement, but Lab 5 also altered an existing requirement.
Previously, the lab asked for a range in “increments of 10.”
However, to increase the number of possible solutions, we altered
the range to increment by 1, allowing for increment operators
such as “i++” and “++i” in addition to “i += 1" and “i =i + 1”.
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Specification: Output max of three numbers and output the number of

instances of the largest number.

Student A: Student C:

int main() { int main() {
int a, b, ¢, max; int a, b, c, max;
in nt = 0; int count = 1;

cin>>a>>b>>c;

if(a>=b&&a>=c)y

cin>>a>>b>c;
if(a>=b&&a>=c)y

max = a; max = a;

} if (a== count++;

else if (b >=a && b >= ¢){ if (a == nt++:
max = b; }

} else if (b >=a && b >=c){

else { max = b;
max = c; if (b == a) { count++;

} |f == nt++:

if (max == a) { }
count++; else {

} max = c;

if (max == if (c == a) { count++;
count++; if(c== count++;

} }

if == cout << max << " "<< count;
count++; }

}

cout << max << " "<< count;

}

Figure 5: Code solutions for Lab 1. Student A uses a counter
at the end of the program, but student C increments the
counter while checking for max. C has a similarity score of
8.1vs A.

As with other labs, we added a new variability-inducing
requirement in Lab 5 wherein a third input, which could be 0 or 1,
would indicate whether the range would be inclusive or exclusive
of its low/high bounds. Again, many solution approaches exist.
Figure 6 shows two such approaches; Student A introduced new
variables for the bounds, and set those variables according to the
third input, whereas Student C modified the for loop’s
initialization by adding the fourth input, and modified the for
loop’s ending condition by subtracting the fourth input. More
choices exist as well. The inclusive/exclusive approach adds a bit
of difficulty but not much.

Specification: Output the given range. Include or exclude the low/high
bounds based on a third input.

Student A: Student C:
int main() { int main() {
intx, vy, z intm, n, [;

cin >> x >>y >> 7;

ifz==1){
x+=1:
y=1:
1

if(x<=y){

for(inti = x; i <=y; ++i) {

cout <<j<<*"

b
}
else {

cout << "Error: " << X << ">" << y;
}

}

Figure 6: Code solutions for Lab 5. Student C has a similarity

with A score of 8.5.

cin>>m>>n>> |:

if (m <=n) {
for(inti=m+ L i<=n-1; ++){

cout << j<<*7;
}

}
else {
cout << “Error: * << m << *>" << |;
}
b
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Labs 1, 2, 3, and 5 all used variations of an approach that adds
simple requirements to the existing ones, where the added
requirement has multiple implementation choices. Lab 4 was
somewhat unique, in that we generalized an existing requirement.
Previously, it asked to check for “periods, exclamation marks, and
question marks”, leading to nearly all students creating an
expression with the checks in that same order: if (c == " || ¢ ==V’
|| ¢ == ‘?’). We generalized by merely asking for “end-of-sentence
punctuation characters”, such that students tended to use
different orders. Figure 7 shows two examples provided in the lab
specifications to clarify what “end-of-sentence punction
characters” should be included. To avoid implying an order, the
first example used an exclamation point followed by a period,
while the second example used a question mark, then a period,
then an exclamation point.

Ex: If the input is "Listen, Sam! Calm down. Please’’, the output is:

28

Ex: If the input is "What time is it? Time to get a watch. O.K., bye now!", the output is

43
Figure 7: Two example sentences for Lab 4.

3 RESULTS

Figure 8 provides similarity results of our adding variability-
inducing requirements to labs, comparing the original 5 labs from
Winter 2022 vs. those labs in the Fall 2022 term with the new
requirements added. The number of pairs above 9.0 similarity,
with 9.0 chosen from our past cheating investigation experience,
dropped from an average of 687 pairs per lab to 135 pairs per lab,
for an 80% reduction (p = 0.0056, using a two-sample equal-
variance one-tailed t test).

W22 W F22

o 1000

P

A 800

@

£ 600

E

(]

< 400 o 595 .

[ 1

5 200 95 103 l 58

5 0 || || = B
1 2 3 4 5 Average

LAB

Figure 8: # of pairs of students with similarity score >= 9.0.

We have also begun doing cheat checking not just by seeking out
the highest code pairs, but by seeking the students who have high
similarity (above 9.0) with classmates. This is especially useful to
focus our limited time on students who seem to be copying on
many labs. Thus, Figure 9 shows the % of students on each lab who
have at least one above-9.0 similarity with any other student.
Whereas originally 65% of all Winter 2022 students were involved
in a high-similarity pair, after adding the variability-inducing
requirements, only 22% were found in Fall 2022 -- a 66% reduction
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(p = 0.0005). Note: The figure only considers students who actually
submitted the lab, as that is most proper in determining the %,
though that value is close to the same as considering all students
since most students did all five labs in both terms.
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Figure 9: % of submitted students with similarity score >=
9.0.

To determine whether adding variability-inducing requirements
made the labs harder for students, we examined the average lab
scores and time spent. Figure 10 shows students receiving on
average score of 98% in Winter 2022 and 96% in Fall 2022, with
that small difference not being statistically significant (p = 0.174,
using a two-sample unequal-variance one-tailed t test).
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Figure 10: Average lab scores (%).
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Figure 11: Average time spent (minutes).

Figure 11 shows students spending an average of 18 minutes in
Winter 2022 vs 31 minutes in Fall 2022 (p = 0.0045, using a two-
sample equal-variance one-tailed t test). Thus, lab scores stayed
relatively the same, but time spent increased after introducing
variability-inducing requirements. This makes sense, because the
new labs involved some more work to implement the variability-

434

ITiCSE 2023, July 8-12, 2023, Turku, Finland

inducing requirements, but that work wasn’t substantially more
complex, yielding increased time but the same scores.

4 HOW TO ADD VARIABILITY-INDUCING
REQUIREMENTS

Based on our experiences, we developed some general guidelines
for adding variability-inducing requirements into labs that
otherwise may yield numerous coincidentally-similar pairs. The
main technique we used to add the new requirements centered
around adding requirements simpler than the main ones for that
lab, such as:

e Adding a check for invalid input (divide by zero). Such checks
can go in many different places.

e Asking for output to be formatted more cleanly, such as
outputting a comma separated list but saying that the last
number should not have a comma. Such formatting can be
done in various ways using output statements in different
places.

e Asking for complementary computations, such as asking not
just for all numbers in a string but also for all non-numbers in
a string. Many choices exist on how to get the complement,
such as at the same time, or done separately afterwards.

e Adding conditions in a for loop that only apply to the first or
last item, which can be done via different initializations, by
branches in the loop, and more.

e Adding a counter or counting component, which can be done
in many ways, either throughout the main solution, or near
the end of the solution.

Another technique we discovered was to generalize how a
problem was stated, so that students wouldn’t all create the same
ordering of items. The punctuation example above (Lab 4) was one
example. Another was in how we wrote large equations; we can
reformat them such that they look less like a program equation,
so that there are many ways to convert the equation into a
program.

Another approach, which we did not use, is to teach multiple
styles. For example, an instructor can tell students that they can
use i++ or ++i in for loops, and then intentionally switch between
the two styles while teaching. Or, an instructor could teach that
variables can optionally be declared on the same line, as in “int x,
y”. This can create even more variation in students’ solutions. We
did not use this approach because we like to keep things simpler
for the students initially, but we notice students tend to use
different styles from our class (often when copying from online
solutions), and copying students are more easily detected when
they use the same style yet that style has variations across the
class.

5 DISCUSSION / THREATS TO VALIDITY

In both terms, we showed students the power of the similarity
checker, with our goal being to deter cheating. But this could help
some students learn how to beat a similarity checking. Of course,
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those students might not appear on the high-similarity list, but
this is an issue to consider in any work involving a similarity
checker.

Fall 2022 had two instructors teaching the various sections, while
Winter 2022 had only one of those instructors teaching all
sections. We don’t believe this influenced results, as the two
instructors coordinated closely and basically taught the same class
that term (with identical labs, exams, schedules, policies, etc.), and
because all students were treated as one large class that term for
purposes of similarity checking, but we mention the fact for
completeness.

Fall 2022 experimented with a new late policy, allowing students
to submit after a target date with a 1% per day penalty, up to 7
days late. This could have some impact on cheating by reducing
pressure around deadlines, but likely not nearly as large of an
impact as seen in the data presented above.

We only looked at labs in Weeks 3, 4, and 5. Ideally, this approach
would be used in Week 2 as well, because we do end up finding
some students cheating in Weeks 2 and even in Week 1, usually
after catching them in a later week like Week 6, and then looking
back at their earlier weeks.

Reducing high similarity pairs is a key goal of this work. But, a
secondary benefit of the added requirements is that, even for pairs
rated as highly similar by a similarity detection tool, the added
requirements introduce some variability that an instructor might
notice even if the similarity detection tool deems the code the
same. This can help an instructor decide whether programs were
copied or are coincidentally similar.

Ideally, we want to analytically quantify the impact that a
variability-inducing requirement has on a set of possible
solutions. Future work will be looking at actual solutions to a lab
before and after adding variability-inducing requirements and
determining the probability of each possible solution appearing.
This work would help with the development of a variability score
that suggests what score is recommended to minimize the
possibility that two students had the exact same code by chance.

6 CONCLUSION

Similarity detection remains a central technique for detecting
cheating in programming classes. Having found similarity
detection weak for certain labs due to excessively long similarity
lists, especially in early weeks of a course and smaller programs,
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we intentionally introduced variability-inducing requirements
into our lab requirements for certain labs. Doing so reduced the
list sizes by 80%, by reducing the likelihood of coincidental
similarity. These smaller lists can then be checked for copying by
instructors. We described techniques that instructors can use to
introduce such requirements into their labs; more surely exist as
well. Our goal ultimately is to catch copying students early
enough that, instead of giving them an F for cheating across many
weeks, we can apply a smaller penalty and correct their behavior
so that they can ultimately succeed in the course.
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