

ITiCSE 2023, July 8-12, 2023, Turku, Finland Ashley Pang & Frank Vahid

5.2 similarity score with A. Labs with low-variability solutions

have too many coincidentally-similar pairs like (A, C) that are

hard for instructors to distinguish from pairs like (A, B). These

“false positives” can create excessive work for instructors, who

cannot determine whether students A, B, or C are copying from

each other.

Figure 2: Code similarity for a lab, with no variability-

inducing requirements introduced yet. The highlighted text

is what the similarity checker considers similar compared

to Student A; the checker outputs that Student B has 10.0

similarity, Student C has 10.0 similarity, and Student D has

5.2 similarity.

Many approaches to reducing the number of highly-similar

students focus on improving the similarity detection tool itself,

such as improving string-, graph-, or metric-based comparison

[5], [6]. Some tools exclude small files to reduce false positives [7].

Some research [8] has examined how detection tools behave when

students modify copied code. One approach aims to detect the

original in a set of similar programs [9]. Some suggest looking

beyond just code, to also consider comments and other features

[10]. Many suggest going beyond similarity detection, such as

requiring students to commit code and using machine learning to

detect oddities [11], or similarly to allow resubmission for higher

scores and detecting oddities in that history [12].

We focus on modifying the lab assignment itself to reduce

coincidental similarity. Our approach introduces variability-

inducing requirements to a lab: requirements that give students

more implementation choices, yet don’t make the program

substantially harder. More solution flexibility yields fewer

coincidentally-similar solutions, meaning the remaining similar

pairs may be more likely to instances of copying.

This paper describes our efforts to introduce variability-inducing

requirements in early week labs in a class. Our experiments

showed that the number of highly-similar pairs of students

decreased, while scores stayed about the same, though time spent

did increase. Instructors can follow a similar procedure in their

classes to enable more effective similarity checking on their labs

too.

2 ADDING VARIABILITY-INDUCING

REQUIREMENTS INTO OUR CS1 CLASS’S LABS

For years, we were frustrated by not being able to effectively use

similarity checking in the early weeks of our introductory

programming (CS1) class, due to excessively-long similarity lists.

Our CS1 is offered every 10-week quarter at a large public state

university. The class has 300-500 students (half computing majors,

half in other science/engineering majors that require CS1), with

two instructor-led 80-min lecture sessions and one teaching-

assistant-led 110-minute lab session per week, in C++. The class

had 329 students in Winter 2022 and 539 students in Fall 2022,

which are the terms compared below. The class uses a zyBook

[13], with weekly: before-lecture interactive readings having ~100

questions (Participation Activities or PAs), ~20 code reading or

writing homework problems (Challenge Activities or CAs), and 5-

8 weekly programming assignments (Lab Activities or LAs). All

are auto-graded with auto-feedback, partial credit, and unlimited

resubmissions. The course grade is typically 10% PAs, 10% CAs,

20% LAs, 5% class participation, and the remaining 50-60% from a

midterm exam and final exam, taken in-person, half multiple-

choice and half code-writing.

We examined our past CS1 offering from Winter 2022. Many labs

in Weeks 1-5 had similarity lists so long that we could not cheat

check those labs. Week 1 and 2 labs are relatively easy, covering

input/output, variables, assignments, and math functions. So we

focused on Weeks 3, 4, and 5, which covered Branches (3), While

Loops (4), and For Loops / Strings (5). Those topics tend to be more

challenging than in Weeks 1 and 2, and thus copying becomes

more likely. Table 1 summarizes the 5 labs we chose. Labs 1 and 2

are from Week 3, Lab 3 from Week 4, and Labs 4 and 5 from Week

5.

431

Variability-Inducing Requirements for Programs: Increasing Solution Variability for Similarity Checking ITiCSE 2023, July 8-12, 2023, Turku, Finland

Table 1: The 5 selected labs, and the added variability-

inducing requirements.

Lab summary Added requirements

Lab 1: Largest number: Output the

largest number given three integers
Output the instances of the

largest number

Lab 2: Leap year: Given year, write

a function returning whether leap

year

Output whether the year is

also a century year (evenly

divisible by 400)

Lab 3: Countdown until matching

digits: Given an integer, countdown

until both digits are identical

Output the distance from

the start and end number

Lab 4: Count input length: Output

number of characters excluding

periods, exclamation marks, or

question marks

Output the number of end-

of-sentence punctuation

characters found

Lab 5: Output inclusive/exclusive

range: Given two numbers, output

every number in the range

Based on one more input,

include or exclude the high

/ low bounds in the range

The table also summarizes the variability-inducing requirements

that we added to each lab, in our Fall 2022 CS1 offering.

For example, Lab 3’s original requirements asked students to read

an input number 11-100, and countdown until digits match, as in

input 46 yielding 46 45 44. Some student solutions were shown

earlier in Figure 2. In our roughly 300-student class, that lab had

490 pairs of students with a similarity score greater than 9.0,

which is generally the threshold above which copying students

may appear. Not only is that number of pairs too many for us to

examine, but we usually could not determine cheating by looking

at pairs because the similarity could have been coincidental. To

induce variability in the solution, we added a requirement that the

program also output the distance from the start to end numbers.

This simple added requirement has various implementations.

Figure 3 shows, via underlining, how Students A and C (from

Figure 2) chose two different implementations of the new

requirement.

Student A used an in-line arithmetic operation to output the

distance between start and end numbers, whereas Student C

initialized a counter and incremented the counter in the while

loop. Those two solutions drop the similarity score from 10.0 to

8.8. Note that more possible solution approaches exist, such as

incrementing using “count += 1” or “count = count + 1” or

increasing the counter before decrementing in the while loop.

Also, students could choose to calculate the distance in an

intermediate variable before outputting.

Ideally, the additional variability-inducing requirements should

not make the lab substantially more difficult. For Lab 3 above,

students already had labs using arithmetic operations in cout

statements, and already learned the concept of counters and how

to increment by 1.

Figure 3: Code solutions for Lab 3, with a variability-

inducing requirement introduced. Student C, who did not

copy from A, chose a different solution approach, receiving

a similarity score of 8.8, dropping C’s similarity with A

below 9.0.

But now the program has many different solutions, and the odds

of coincidentally-similar solutions is reduced. As such, the added

requirement greatly reduces the size of the similarity list; for

example, Figure 4 shows that the similarity list from Figure 1 was

reduced from 490 pairs down to 103 pairs. Copying students

would be easier to detect in that smaller list.

Figure 4: Similarity detector output list, with variability-

inducing requirements added, is much shorter.

As another example, Lab 1 originally asked the student to output

the max of three input numbers. We added the requirement that

the student also output the number of times that the largest

number appeared in those three numbers. That additional

requirement logically is itself easier than the original problem, but

can be done in different ways as seen in Figure 5. For example, a

student could, at the program’s end, use a counter to count how

many times the largest value matched one of the inputs. Or they

could count as the max was being determined. There are several

other ways.

For most labs, we only introduced one new variability-inducing

requirement, but Lab 5 also altered an existing requirement.

Previously, the lab asked for a range in “increments of 10.”
However, to increase the number of possible solutions, we altered

the range to increment by 1, allowing for increment operators

such as “i++” and “++i” in addition to “i += 1” and “i = i + 1”.

432

ITiCSE 2023, July 8-12, 2023, Turku, Finland Ashley Pang & Frank Vahid

Figure 5: Code solutions for Lab 1. Student A uses a counter

at the end of the program, but student C increments the

counter while checking for max. C has a similarity score of

8.1 vs A.

As with other labs, we added a new variability-inducing

requirement in Lab 5 wherein a third input, which could be 0 or 1,

would indicate whether the range would be inclusive or exclusive

of its low/high bounds. Again, many solution approaches exist.

Figure 6 shows two such approaches; Student A introduced new

variables for the bounds, and set those variables according to the

third input, whereas Student C modified the for loop’s
initialization by adding the fourth input, and modified the for

loop’s ending condition by subtracting the fourth input. More

choices exist as well. The inclusive/exclusive approach adds a bit

of difficulty but not much.

Figure 6: Code solutions for Lab 5. Student C has a similarity

with A score of 8.5.

Labs 1, 2, 3, and 5 all used variations of an approach that adds

simple requirements to the existing ones, where the added

requirement has multiple implementation choices. Lab 4 was

somewhat unique, in that we generalized an existing requirement.

Previously, it asked to check for “periods, exclamation marks, and

question marks”, leading to nearly all students creating an

expression with the checks in that same order: if (c == ‘.’ || c == ‘!’
|| c == ‘?’). We generalized by merely asking for “end-of-sentence

punctuation characters”, such that students tended to use

different orders. Figure 7 shows two examples provided in the lab

specifications to clarify what “end-of-sentence punction

characters” should be included. To avoid implying an order, the

first example used an exclamation point followed by a period,

while the second example used a question mark, then a period,

then an exclamation point.

Figure 7: Two example sentences for Lab 4.

3 RESULTS
Figure 8 provides similarity results of our adding variability-

inducing requirements to labs, comparing the original 5 labs from

Winter 2022 vs. those labs in the Fall 2022 term with the new

requirements added. The number of pairs above 9.0 similarity,

with 9.0 chosen from our past cheating investigation experience,

dropped from an average of 687 pairs per lab to 135 pairs per lab,

for an 80% reduction (p = 0.0056, using a two-sample equal-

variance one-tailed t test).

Figure 8: # of pairs of students with similarity score >= 9.0.

We have also begun doing cheat checking not just by seeking out

the highest code pairs, but by seeking the students who have high

similarity (above 9.0) with classmates. This is especially useful to

focus our limited time on students who seem to be copying on

many labs. Thus, Figure 9 shows the % of students on each lab who

have at least one above-9.0 similarity with any other student.

Whereas originally 65% of all Winter 2022 students were involved

in a high-similarity pair, after adding the variability-inducing

requirements, only 22% were found in Fall 2022 -- a 66% reduction

433

Ashley Pang & Frank Vahid ITiCSE 2023, July 8-12, 2023, Turku, Finland

(p = 0.0005). Note: The figure only considers students who actually

submitted the lab, as that is most proper in determining the %,

though that value is close to the same as considering all students

since most students did all five labs in both terms.

Figure 9: % of submitted students with similarity score >=

9.0.

To determine whether adding variability-inducing requirements

made the labs harder for students, we examined the average lab

scores and time spent. Figure 10 shows students receiving on

average score of 98% in Winter 2022 and 96% in Fall 2022, with

that small difference not being statistically significant (p = 0.174,

using a two-sample unequal-variance one-tailed t test).

Figure 10: Average lab scores (%).

Figure 11: Average time spent (minutes).

Figure 11 shows students spending an average of 18 minutes in

Winter 2022 vs 31 minutes in Fall 2022 (p = 0.0045, using a two-

sample equal-variance one-tailed t test). Thus, lab scores stayed

relatively the same, but time spent increased after introducing

variability-inducing requirements. This makes sense, because the

new labs involved some more work to implement the variability-

inducing requirements, but that work wasn’t substantially more

complex, yielding increased time but the same scores.

4 HOW TO ADD VARIABILITY-INDUCING

REQUIREMENTS

Based on our experiences, we developed some general guidelines

for adding variability-inducing requirements into labs that

otherwise may yield numerous coincidentally-similar pairs. The

main technique we used to add the new requirements centered

around adding requirements simpler than the main ones for that

lab, such as:

• Adding a check for invalid input (divide by zero). Such checks

can go in many different places.

• Asking for output to be formatted more cleanly, such as

outputting a comma separated list but saying that the last

number should not have a comma. Such formatting can be

done in various ways using output statements in different

places.

• Asking for complementary computations, such as asking not

just for all numbers in a string but also for all non-numbers in

a string. Many choices exist on how to get the complement,

such as at the same time, or done separately afterwards.

• Adding conditions in a for loop that only apply to the first or

last item, which can be done via different initializations, by

branches in the loop, and more.

• Adding a counter or counting component, which can be done

in many ways, either throughout the main solution, or near

the end of the solution.

Another technique we discovered was to generalize how a

problem was stated, so that students wouldn’t all create the same

ordering of items. The punctuation example above (Lab 4) was one

example. Another was in how we wrote large equations; we can

reformat them such that they look less like a program equation,

so that there are many ways to convert the equation into a

program.

Another approach, which we did not use, is to teach multiple

styles. For example, an instructor can tell students that they can

use i++ or ++i in for loops, and then intentionally switch between

the two styles while teaching. Or, an instructor could teach that

variables can optionally be declared on the same line, as in “int x,

y”. This can create even more variation in students’ solutions. We

did not use this approach because we like to keep things simpler

for the students initially, but we notice students tend to use

different styles from our class (often when copying from online

solutions), and copying students are more easily detected when

they use the same style yet that style has variations across the

class.

5 DISCUSSION / THREATS TO VALIDITY
In both terms, we showed students the power of the similarity

checker, with our goal being to deter cheating. But this could help

some students learn how to beat a similarity checking. Of course,

434

ITiCSE 2023, July 8-12, 2023, Turku, Finland Ashley Pang & Frank Vahid

those students might not appear on the high-similarity list, but

this is an issue to consider in any work involving a similarity

checker.

Fall 2022 had two instructors teaching the various sections, while

Winter 2022 had only one of those instructors teaching all

sections. We don’t believe this influenced results, as the two

instructors coordinated closely and basically taught the same class

that term (with identical labs, exams, schedules, policies, etc.), and

because all students were treated as one large class that term for

purposes of similarity checking, but we mention the fact for

completeness.

Fall 2022 experimented with a new late policy, allowing students

to submit after a target date with a 1% per day penalty, up to 7

days late. This could have some impact on cheating by reducing

pressure around deadlines, but likely not nearly as large of an

impact as seen in the data presented above.

We only looked at labs in Weeks 3, 4, and 5. Ideally, this approach

would be used in Week 2 as well, because we do end up finding

some students cheating in Weeks 2 and even in Week 1, usually

after catching them in a later week like Week 6, and then looking

back at their earlier weeks.

Reducing high similarity pairs is a key goal of this work. But, a

secondary benefit of the added requirements is that, even for pairs

rated as highly similar by a similarity detection tool, the added

requirements introduce some variability that an instructor might

notice even if the similarity detection tool deems the code the

same. This can help an instructor decide whether programs were

copied or are coincidentally similar.

Ideally, we want to analytically quantify the impact that a

variability-inducing requirement has on a set of possible

solutions. Future work will be looking at actual solutions to a lab

before and after adding variability-inducing requirements and

determining the probability of each possible solution appearing.

This work would help with the development of a variability score

that suggests what score is recommended to minimize the

possibility that two students had the exact same code by chance.

6 CONCLUSION
Similarity detection remains a central technique for detecting

cheating in programming classes. Having found similarity

detection weak for certain labs due to excessively long similarity

lists, especially in early weeks of a course and smaller programs,

we intentionally introduced variability-inducing requirements

into our lab requirements for certain labs. Doing so reduced the

list sizes by 80%, by reducing the likelihood of coincidental

similarity. These smaller lists can then be checked for copying by

instructors. We described techniques that instructors can use to

introduce such requirements into their labs; more surely exist as

well. Our goal ultimately is to catch copying students early

enough that, instead of giving them an F for cheating across many

weeks, we can apply a smaller penalty and correct their behavior

so that they can ultimately succeed in the course.

ACKNOWLEDGMENTS
This material is based upon work supported by the National

Science Foundation under Grant No. 2111323.

REFERENCES
[1] Novak, M., Joy, M., & Kermek, D. (2019). Source-code similarity detection

and detection tools used in academia: a systematic review. ACM

Transactions on Computing Education (TOCE), 19(3), 1-37.

[2] Schleimer, S., Wilkerson, D.S. and Aiken, A., 2003, June. Winnowing: local

algorithms for document fingerprinting. In Proceedings of the 2003 ACM

SIGMOD international conference on Management of data (pp. 76-85).

[3] Software plagiarism detector, https://jplag.ipd.kit.edu/.

[4] Prechelt, L., Malpohl, G. and Philippsen, M. Finding plagiarisms among a set

of programs with JPlag. Journal UCS, 8(11), 2002.

[5] Bellon, S., Koschke, R., Antoniol, G., Krinke, J., & Merlo, E. (2007).

Comparison and evaluation of clone detection tools. IEEE Transactions on

software engineering, 33(9), 577-591.

[6] Ducasse, S., Rieger M., and Demeyer S., “A Language Independent

Approach for Detecting Duplicated Code,” Proc. Int’l Conf. Software

Maintenance (ICSM ‘99), 1999.

[7] Hage, J., Rademaker, P. and Van Vugt, N., 2010. A comparison of plagiarism

detection tools. Utrecht University. Utrecht, The Netherlands, 28(1).

[8] Ragkhitwetsagul, C., Krinke, J. and Clark, D., 2018. A comparison of code

similarity analysers. Empirical Software Engineering, 23(4), pp.2464-2519.

[9] Saoban, C. and Rimcharoen, S., 2019, July. Identifying an original copy of

the source codes in programming assignments. In 2019 16th International

Joint Conference on Computer Science and Software Engineering (JCSSE)

(pp. 271-276). IEEE.

[10] Inoue, U. and Wada, S., 2012, May. Detecting plagiarisms in elementary

programming courses. In 2012 9th International Conference on Fuzzy

Systems and Knowledge Discovery (pp. 2308-2312). IEEE.

[11] Ljubovic, V. and Pajic, E., 2020. Plagiarism detection in computer

programming using feature extraction from ultra-fine-grained repositories.

IEEE Access, 8, pp.96505-96514.

[12] Tahaei, N. and Noelle, D.C., 2018, August. Automated plagiarism detection

for computer programming exercises based on patterns of resubmission. In

Proceedings of the 2018 ACM Conference on International Computing

Education Research (pp. 178-186).

[13] zyBooks, http//www.zybooks.com, 2023.

435

