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5.2 similarity score with A. Labs with low-variability solutions 

have too many coincidentally-similar pairs like (A, C) that are 

hard for instructors to distinguish from pairs like (A, B). These 

“false positives” can create excessive work for instructors, who 

cannot determine whether students A, B, or C are copying from 

each other.  

 
Figure 2: Code similarity for a lab, with no variability-

inducing requirements introduced yet. The highlighted text 

is what the similarity checker considers similar compared 

to Student A; the checker outputs that Student B has 10.0 

similarity, Student C has 10.0 similarity, and Student D has 

5.2 similarity. 

 

Many approaches to reducing the number of highly-similar 

students focus on improving the similarity detection tool itself, 

such as improving string-, graph-, or metric-based comparison 

[5], [6]. Some tools exclude small files to reduce false positives [7]. 

Some research [8] has examined how detection tools behave when 

students modify copied code. One approach aims to detect the 

original in a set of similar programs [9]. Some suggest looking 

beyond just code, to also consider comments and other features 

[10]. Many suggest going beyond similarity detection, such as 

requiring students to commit code and using machine learning to 

detect oddities [11], or similarly to allow resubmission for higher 

scores and detecting oddities in that history [12]. 

We focus on modifying the lab assignment itself to reduce 

coincidental similarity. Our approach introduces variability-

inducing requirements to a lab: requirements that give students 

more implementation choices, yet don’t make the program 

substantially harder. More solution flexibility yields fewer 

coincidentally-similar solutions, meaning the remaining similar 

pairs may be more likely to instances of copying. 

This paper describes our efforts to introduce variability-inducing 

requirements in early week labs in a class. Our experiments 

showed that the number of highly-similar pairs of students 

decreased, while scores stayed about the same, though time spent 

did increase. Instructors can follow a similar procedure in their 

classes to enable more effective similarity checking on their labs 

too. 

2 ADDING VARIABILITY-INDUCING 

REQUIREMENTS INTO OUR CS1 CLASS’S LABS 

For years, we were frustrated by not being able to effectively use 

similarity checking in the early weeks of our introductory 

programming (CS1) class, due to excessively-long similarity lists. 

Our CS1 is offered every 10-week quarter at a large public state 

university. The class has 300-500 students (half computing majors, 

half in other science/engineering majors that require CS1), with 

two instructor-led 80-min lecture sessions and one teaching-

assistant-led 110-minute lab session per week, in C++. The class 

had 329 students in Winter 2022 and 539 students in Fall 2022, 

which are the terms compared below. The class uses a zyBook 

[13], with weekly: before-lecture interactive readings having ~100 

questions (Participation Activities or PAs), ~20 code reading or 

writing homework problems (Challenge Activities or CAs), and 5-

8 weekly programming assignments (Lab Activities or LAs). All 

are auto-graded with auto-feedback, partial credit, and unlimited 

resubmissions. The course grade is typically 10% PAs, 10% CAs, 

20% LAs, 5% class participation, and the remaining 50-60% from a 

midterm exam and final exam, taken in-person, half multiple-

choice and half code-writing.  

We examined our past CS1 offering from Winter 2022. Many labs 

in Weeks 1-5 had similarity lists so long that we could not cheat 

check those labs. Week 1 and 2 labs are relatively easy, covering 

input/output, variables, assignments, and math functions. So we 

focused on Weeks 3, 4, and 5, which covered Branches (3), While 

Loops (4), and For Loops / Strings (5). Those topics tend to be more 

challenging than in Weeks 1 and 2, and thus copying becomes 

more likely. Table 1 summarizes the 5 labs we chose. Labs 1 and 2 

are from Week 3, Lab 3 from Week 4, and Labs 4 and 5 from Week 

5.  
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Table 1: The 5 selected labs, and the added variability-

inducing requirements. 

Lab summary Added requirements 

Lab 1: Largest number: Output the 

largest number given three integers 
Output the instances of the 

largest number 

Lab 2: Leap year: Given year, write 

a function returning whether leap 

year 

Output whether the year is 

also a century year (evenly 

divisible by 400) 

Lab 3: Countdown until matching 

digits: Given an integer, countdown 

until both digits are identical 

Output the distance from 

the start and end number 

Lab 4: Count input length: Output 

number of characters excluding 

periods, exclamation marks, or 

question marks 

Output the number of end-

of-sentence punctuation 

characters found 

Lab 5: Output inclusive/exclusive 

range: Given two numbers, output 

every number in the range 

Based on one more input, 

include or exclude the high 

/ low bounds in the range 

The table also summarizes the variability-inducing requirements 

that we added to each lab, in our Fall 2022 CS1 offering. 

For example, Lab 3’s original requirements asked students to read 

an input number 11-100, and countdown until digits match, as in 

input 46 yielding 46 45 44. Some student solutions were shown 

earlier in Figure 2. In our roughly 300-student class, that lab had 

490 pairs of students with a similarity score greater than 9.0, 

which is generally the threshold above which copying students 

may appear. Not only is that number of pairs too many for us to 

examine, but we usually could not determine cheating by looking 

at pairs because the similarity could have been coincidental. To 

induce variability in the solution, we added a requirement that the 

program also output the distance from the start to end numbers. 

This simple added requirement has various implementations. 

Figure 3 shows, via underlining, how Students A and C (from 

Figure 2) chose two different implementations of the new 

requirement. 

Student A used an in-line arithmetic operation to output the 

distance between start and end numbers, whereas Student C 

initialized a counter and incremented the counter in the while 

loop. Those two solutions drop the similarity score from 10.0 to 

8.8. Note that more possible solution approaches exist, such as 

incrementing using “count += 1” or “count = count + 1” or 

increasing the counter before decrementing in the while loop. 

Also, students could choose to calculate the distance in an 

intermediate variable before outputting. 

Ideally, the additional variability-inducing requirements should 

not make the lab substantially more difficult. For Lab 3 above, 

students already had labs using arithmetic operations in cout 

statements, and already learned the concept of counters and how 

to increment by 1. 

 
Figure 3: Code solutions for Lab 3, with a variability-

inducing requirement introduced. Student C, who did not 

copy from A, chose a different solution approach, receiving 

a similarity score of 8.8, dropping C’s similarity with A 

below 9.0. 

 

But now the program has many different solutions, and the odds 

of coincidentally-similar solutions is reduced. As such, the added 

requirement greatly reduces the size of the similarity list; for 

example, Figure 4 shows that the similarity list from Figure 1 was 

reduced from 490 pairs down to 103 pairs. Copying students 

would be easier to detect in that smaller list. 

Figure 4: Similarity detector output list, with variability-

inducing requirements added, is much shorter. 

 

As another example, Lab 1 originally asked the student to output 

the max of three input numbers. We added the requirement that 

the student also output the number of times that the largest 

number appeared in those three numbers. That additional 

requirement logically is itself easier than the original problem, but 

can be done in different ways as seen in Figure 5. For example, a 

student could, at the program’s end, use a counter to count how 

many times the largest value matched one of the inputs. Or they 

could count as the max was being determined. There are several 

other ways. 

For most labs, we only introduced one new variability-inducing 

requirement, but Lab 5 also altered an existing requirement. 

Previously, the lab asked for a range in “increments of 10.” 
However, to increase the number of possible solutions, we altered 

the range to increment by 1, allowing for increment operators 

such as “i++” and “++i” in addition to “i += 1” and “i = i + 1”. 

432



ITiCSE 2023, July 8-12, 2023, Turku, Finland  Ashley Pang & Frank Vahid 

 

 

Figure 5: Code solutions for Lab 1. Student A uses a counter 

at the end of the program, but student C increments the 

counter while checking for max. C has a similarity score of 

8.1 vs A. 

 

As with other labs, we added a new variability-inducing 

requirement in Lab 5 wherein a third input, which could be 0 or 1, 

would indicate whether the range would be inclusive or exclusive 

of its low/high bounds. Again, many solution approaches exist. 

Figure 6 shows two such approaches; Student A introduced new 

variables for the bounds, and set those variables according to the 

third input, whereas Student C modified the for loop’s 
initialization by adding the fourth input, and modified the for 

loop’s ending condition by subtracting the fourth input. More 

choices exist as well. The inclusive/exclusive approach adds a bit 

of difficulty but not much. 

Figure 6: Code solutions for Lab 5. Student C has a similarity 

with A score of 8.5. 

Labs 1, 2, 3, and 5 all used variations of an approach that adds 

simple requirements to the existing ones, where the added 

requirement has multiple implementation choices. Lab 4 was 

somewhat unique, in that we generalized an existing requirement. 

Previously, it asked to check for “periods, exclamation marks, and 

question marks”, leading to nearly all students creating an 

expression with the checks in that same order: if (c == ‘.’ || c == ‘!’ 
|| c == ‘?’). We generalized by merely asking for “end-of-sentence 

punctuation characters”, such that students tended to use 

different orders. Figure 7 shows two examples provided in the lab 

specifications to clarify what “end-of-sentence punction 

characters” should be included. To avoid implying an order, the 

first example used an exclamation point followed by a period, 

while the second example used a question mark, then a period, 

then an exclamation point. 

 
Figure 7: Two example sentences for Lab 4. 

3 RESULTS 
Figure 8 provides similarity results of our adding variability-

inducing requirements to labs, comparing the original 5 labs from 

Winter 2022 vs. those labs in the Fall 2022 term with the new 

requirements added. The number of pairs above 9.0 similarity, 

with 9.0 chosen from our past cheating investigation experience, 

dropped from an average of 687 pairs per lab to 135 pairs per lab, 

for an 80% reduction (p = 0.0056, using a two-sample equal-

variance one-tailed t test). 

 
Figure 8: # of pairs of students with similarity score >= 9.0. 

 

We have also begun doing cheat checking not just by seeking out 

the highest code pairs, but by seeking the students who have high 

similarity (above 9.0) with classmates. This is especially useful to 

focus our limited time on students who seem to be copying on 

many labs. Thus, Figure 9 shows the % of students on each lab who 

have at least one above-9.0 similarity with any other student. 

Whereas originally 65% of all Winter 2022 students were involved 

in a high-similarity pair, after adding the variability-inducing 

requirements, only 22% were found in Fall 2022 -- a 66% reduction 
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(p = 0.0005). Note: The figure only considers students who actually 

submitted the lab, as that is most proper in determining the %, 

though that value is close to the same as considering all students 

since most students did all five labs in both terms. 

Figure 9: % of submitted students with similarity score >= 

9.0. 

 

To determine whether adding variability-inducing requirements 

made the labs harder for students, we examined the average lab 

scores and time spent. Figure 10 shows students receiving on 

average score of  98% in Winter 2022 and 96% in Fall 2022, with 

that small difference not being statistically significant (p = 0.174, 

using a two-sample unequal-variance one-tailed t test). 

Figure 10: Average lab scores (%). 

 

Figure 11: Average time spent (minutes). 

Figure 11 shows students spending an average of 18 minutes in 

Winter 2022 vs 31 minutes in Fall 2022 (p = 0.0045, using a two-

sample equal-variance one-tailed t test). Thus, lab scores stayed 

relatively the same, but time spent increased after introducing 

variability-inducing requirements. This makes sense, because the 

new labs involved some more work to implement the variability-

inducing requirements, but that work wasn’t substantially more 

complex, yielding increased time but the same scores. 

4 HOW TO ADD VARIABILITY-INDUCING 

REQUIREMENTS 

Based on our experiences, we developed some general guidelines 

for adding variability-inducing requirements into labs that 

otherwise may yield numerous coincidentally-similar pairs. The 

main technique we used to add the new requirements centered 

around adding requirements simpler than the main ones for that 

lab, such as:  

• Adding a check for invalid input (divide by zero). Such checks 

can go in many different places.  

• Asking for output to be formatted more cleanly, such as 

outputting a comma separated list but saying that the last 

number should not have a comma. Such formatting can be 

done in various ways using output statements in different 

places.  

• Asking for complementary computations, such as asking not 

just for all numbers in a string but also for all non-numbers in 

a string. Many choices exist on how to get the complement, 

such as at the same time, or done separately afterwards.  

• Adding conditions in a for loop that only apply to the first or 

last item, which can be done via different initializations, by 

branches in the loop, and more.  

• Adding a counter or counting component, which can be done 

in many ways, either throughout the main solution, or near 

the end of the solution.  

Another technique we discovered was to generalize how a 

problem was stated, so that students wouldn’t all create the same 

ordering of items. The punctuation example above (Lab 4) was one 

example. Another was in how we wrote large equations; we can 

reformat them such that they look less like a program equation, 

so that there are many ways to convert the equation into a 

program.  

Another approach, which we did not use, is to teach multiple 

styles. For example, an instructor can tell students that they can 

use i++ or ++i in for loops, and then intentionally switch between 

the two styles while teaching. Or, an instructor could teach that 

variables can optionally be declared on the same line, as in “int x, 

y”. This can create even more variation in students’ solutions. We 

did not use this approach because we like to keep things simpler 

for the students initially, but we notice students tend to use 

different styles from our class (often when copying from online 

solutions), and copying students are more easily detected when 

they use the same style yet that style has variations across the 

class. 

5 DISCUSSION / THREATS TO VALIDITY 
In both terms, we showed students the power of the similarity 

checker, with our goal being to deter cheating. But this could help 

some students learn how to beat a similarity checking. Of course, 
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those students might not appear on the high-similarity list, but 

this is an issue to consider in any work involving a similarity 

checker. 

Fall 2022 had two instructors teaching the various sections, while 

Winter 2022 had only one of those instructors teaching all 

sections. We don’t believe this influenced results, as the two 

instructors coordinated closely and basically taught the same class 

that term (with identical labs, exams, schedules, policies, etc.), and 

because all students were treated as one large class that term for 

purposes of similarity checking, but we mention the fact for 

completeness.  

Fall 2022 experimented with a new late policy, allowing students 

to submit after a target date with a 1% per day penalty, up to 7 

days late. This could have some impact on cheating by reducing 

pressure around deadlines, but likely not nearly as large of an 

impact as seen in the data presented above. 

We only looked at labs in Weeks 3, 4, and 5. Ideally, this approach 

would be used in Week 2 as well, because we do end up finding 

some students cheating in Weeks 2 and even in Week 1, usually 

after catching them in a later week like Week 6, and then looking 

back at their earlier weeks. 

Reducing high similarity pairs is a key goal of this work.  But, a 

secondary benefit of the added requirements is that, even for pairs 

rated as highly similar by a similarity detection tool, the added 

requirements introduce some variability that an instructor might 

notice even if the similarity detection tool deems the code the 

same. This can help an instructor decide whether programs were 

copied or are coincidentally similar. 

Ideally, we want to analytically quantify the impact that a 

variability-inducing requirement has on a set of possible 

solutions. Future work will be looking at actual solutions to a lab 

before and after adding variability-inducing requirements and 

determining the probability of each possible solution appearing. 

This work would help with the development of a variability score 

that suggests what score is recommended to minimize the 

possibility that two students had the exact same code by chance. 

6 CONCLUSION 
Similarity detection remains a central technique for detecting 

cheating in programming classes. Having found similarity 

detection weak for certain labs due to excessively long similarity 

lists, especially in early weeks of a course and smaller programs, 

we intentionally introduced variability-inducing requirements 

into our lab requirements for certain labs. Doing so reduced the 

list sizes by 80%, by reducing the likelihood of coincidental 

similarity. These smaller lists can then be checked for copying by 

instructors. We described techniques that instructors can use to 

introduce such requirements into their labs; more surely exist as 

well. Our goal ultimately is to catch copying students early 

enough that, instead of giving them an F for cheating across many 

weeks, we can apply a smaller penalty and correct their behavior 

so that they can ultimately succeed in the course. 
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